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境界要素法による 3次元ラプラスの式の数値解法について

大阪大学大学院工学研究科船舶海洋工学専攻博士後期課程 1年

1 目的

白倉洋亮

大阪大学大学院工学研究科船舶海洋工学専攻教授

内藤林

時間領域で浮体運動をシミュレートするプログラムを開発することを目標として，ラプラスの式の境界値問

題を数値的に解くことができるプログラムを開発中であるその計算方法についてまとめた．

2 境界積分方程式の離散化

境界積分方程式は次式となる．

亨）c/;(i) + J {亨） aG〗~x') 一塁G(亨）} dS(x') = O 
&V 

ここで領域外向き法線ベクトルを正方向とする各要素について離散化すると，

(1) 

c:x(x)</J(x) +竺J{¢;(:i?)°G(三）一三G(x,x')} dS(匂=o. (2) 
p=l &VP 

fJn fJn 

面積分を要素上のパラメーター s,tで置き換えると次式を得る．

亨）叩（五） +'〗n叩(,,,, {¢(,'t) 8G(釘，/J~~(,,t))-蒻;: t) G(X, ,;(,, t))} J(,, t)d,dt~0, (3) 

ゞう

~~ で

→ → 

が＝む'(s,t), J(s, t) = 雇 (s,t) 紐 (s,t) 
ふ
. X 

at' 
dS = J(s, t)dsdt, (4) 

I I , nax , naェ

である各要素上で <f;(s,t) = I: 的(s,t)q;tl,卯(s,t)/枷=I: N1(s, t)(姉／枷）印の関係が成立するので(3)
l=l l=l 

は次式に変形できる．

亨）efi(x) +勺JI {勺的(s,t)¢;Pl fJG(汀 (s,t)) 
r=l . 8Vp(,,t) l=l 

枷

—冒的(s,t)° 誓；t) G(汀 (s,t))} J(s, t)dsdt = 0. (5) 

離散化するとき全ての節点，及び要素には通し番号をふる．更に節点番号と要素番号との対応をとるため，節点

には通し番号とは別に，局所的節点番号を要素毎ふる．例えばある節点における¢ の値には次の 2つの表現が

可能である

砂 広域節点番号 i番目の位慨における¢の値

副 p番目の要素上の局所節点番号 l番の位慨における¢の値
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これら二つの表現は変換 Tにより関連づけられており， T(p,l)= iのように要素番号 pと局所節点番号 lが
分かれば広域節点番号 iを得ることができる (5)は和の順序を入れ替えると次式となる

PrnaェImaェ

噸）<t>(x) +〗 !;<t>四 !la叩(s,t)聞(s,t) aG(x,;:(s, t)) J(s, t)dsdt 
Pm心,lrnax 

— LL 蒻(p]p=l l=l玩I! la叩 (s,t)N1(s, t)G(x, 訊s,t))J(s, t)dsdt = 0, 
ここで Dr,t(i), ~'iい (i) は次式で定義される．

Dp,t(i) = J J 的(s't)fJG(i, x1(s, t)) 
枷
J (s, t) dsst, 

叩(,,t) 

如 (;r)= j j N1(s, t)G(i, x1(s, t))J(s, t)dsst. 
8怜(s,t) 

(7),(8)を代入すると， (6)は次式となる．

Pmaェlmax PmaェIma.,

噸）祖） + LL創Dv,1(x)-LL 珈 [r]" 

8n1 
Sp,t(石）= 0. 

p=l l=l p=l l=l 

(6) 

、1
’

`
r
1
-

‘,

7

8

 

9
.
[
`

’ー、

(9) 

(9)で<t>(x)が定数であるとすると，

Pm心,lmaェ

噸） + LL加 (x)= o, 
p=l l=l 

(10) 

となり， (10)は立体角計算の時非常に便利である. 3次元問題では， G(iぶり=I/Ji -x'I, aG(i, x')/枷＝
11. ・(i -a?)/li -x叩となるので， (7),(8)は次式となる．

加 (i)= J J 的(s,t) 11.(s, t)・(i -x'(s, t)) .J(s, t)dsdt, 
叩 (,,t) Ji-が(s,t) Jil 

.J(s, t) 
知 (i)= J J N1(s,t) → dsdt. 

叩 (s,t) 匝ーが(s,t) I 

(9),(10)より，立体角 a(i)を消去すると，次式となる．

-(勺立Dい(x))tp(x) + I、喜℃副Dp,1(i) 一竺竺闘~lSp,t(i) = 0 
p=l l=l p=l l=l p=l l=l 

(9),(10),(13)を選点についての式に書き換えると次式となる．

訥砂

.
1
 
• 
• 
’
 

,t 
.• 

¢
 

¥
｀
¥
 _
_
_
_
 lー
／

ヽ
~
ーH
｀
凡D
 
笠
は
で
芦
叩（
 

Pmoェlmox Pma.~lm心

+ LL劇D闘— LL
〇¢[I,] . 
" 

゜
s(•l = o, 

nt 
p,I 

p=l l=l p=l l=l 
Pmn.r Im心

訥 +LL堺=0, 
p=l l=l 

Pmax lmax PmaェImax 

+ I: I:1(p1 . 
(p] . 

iD悶— LL 讐1 沿= 0. 
p=l l=l p=l l=l 
T(p,1)が

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

各選点において¢豆蒻／枷のどちらか一方が未知数であるので， (16)を必要な数だけたて，連立 1次方程式を

解いて未知数を求めることができる．
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3 影響係数の計算法

境界積分方程式を空間について離散化するとき，形状関数の選び方によって様々な場合が考えられ，影榔係数

の計算法もまた形状関数の選び方に影縣される．次の 3つの場合について考える．

1)場の関数qi,如は0次要素，境界形状を表す関数五は 1次要素により表現．

2)場の関数及び境界形状を表す関数は全て 1次要素により表現．

3)場の関数及び境界形状を表す関数は全て 2次要素により表現．

l)の場合には要素中央 (s=t=O)の位置に選点をとり， 2),3)の時には節点のどれか一つと選点を一致させ

る．数値計算上では選点と節点が十分に離れているとき，影響係数の計算は比較的容易で，直接 (7),(8)を数値

積分により計算すれば影響係数が求まる.1次以上の要素を利用するとき，計算速度を増すために多重極展開を

用いることもある．一方で，選点と節点が非常に近く，同一要素上に存在するとき， (7),(8)の被積分関数は特異

性を持つので，このような自己影響係数の計算には特別な工夫が必要となる自己影糊係数の計算には多くの

方法があるが，ここでは， 1)のとき [2],2)の時[3],3)の時[llの方法を用いることにする．

3.1 形状関数

形状関数を列挙する．

0次要素 ([max= 1) 

1次要素 (lmax= 4) 

N(s, t) = l. 

1 1 
凡(s,t) = -(1 -s)(l -t), N2(s, t) = -(1 + s)(l -t), 

4 4 
1 1 

応(s,t) = -(1 + s)(l + t), N4(s, t) = -(1 -s)(l + t). 
4 4 

2次要素 (lm,u= 9) 

Nm(s, t) 

Nm(s, t) 

1 
= 4s(s+sm)t(t+tm), (m= 1,3,5,7), 

1 
= -(1 -t~ 茫— s;itり [tmt(I + tmt) + Sms(I + Sms)], 
2 

(m = 2,4,6,8), 

的 (s,t) = (l-s)2(1-t)乞

(17) 

(18) 

(19) 

3.2 自己影響係数の計算（境界形状表現1次要素，場の関数表現0次要素の時）

場の関数については節点，選点ともに要素中央に存在し，境界形状を定めるために要素の 4すみの座標が与

えられている．この場合， (14),(15) ,(16)は簡単な形になり，

砂）<p(i) 
Pmaェ

+ I: 炉D(i)
Pmax蒻 [p]

p —こ加副= 0, 
p=l r=l 

(20) 

Pmaェ

訥 +I: 叩=0, (21) 

p=l 

-(〗外;J) 砂＋ Pma., こ炉D(i) /Jmax蒻 [p]
P ―こ茄副=0, 

p=l p=l 

T(p)f.i 

(22) 
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となる.(22)で自己影郡係数の内実際に計算が必要となるのは Sいだけとなる.s炉は演算して行くと特異
性がある項と特異性が無い項に分離できる

副=j j J(:, t) clsdt 
avp(s,t) Ix -が(s,t)I

2 2 

LLCmn炉 tn

= J J~m=On=O dsdt 
叩 (s,t)vr2記+ro炉 +r22s叩

2 2 

L LCmnS→ -v<. 冨
= J J~m=On=O dsdt 
叩 (,,t) v乃記+ro炉 +r22茫t2

+ ff~2dsdt. 
叩(•,tl v乃os2+ ro出+r22茫f

(23)右辺最後の項は特異性を持つが，解析的に計算することが可能であり，結果は次式となる [2]. 

.;c; 11 /1 dsdt 
-1, -~yt·20茫+ ro炉 +r22s叩

= .;c; 仏(1,1) -/3(-1, 1) -/,(1,-1) + J,(-1, -1)}, 

t 
ls(s,t) =~log{as+/3cos<f>t+vr20茫＋彎+ r22四｝

+~log { a cos <f>s + j3t + V亨＋疇+r22S叩｝，

Cl'. = I塁l.=t=0・/3=I盟l,=t=O,cos</>= Cu, 喜I)s=t=O 
3.3 自己影響係数の計算（境界形状表現1次要素，場の関数表現1次要素の時）

この場合， (14),(15),(16)は，次のようになる．

Pmaェ 4 Pmaェ 4

訥砂+LL副D仇— LL疇- 5(i) 
枷 l p,I = 0, 

p=l l=l p=l l=l 
Pmaェ 4

訓+I:L堺=0, 
p=l l=l 

Pma.~4 

-(謬心）か＋謬彪D~'.J
Pmnx 4 蒻 [p]

— LLー 5(i)= o. 
枷 I p,l 

p=l l=l p=l l=l p=l l=l 

また， S~'.;,D闘は次式のようになる．

D似=ff  附 s,t) n(s, t) . (x叫訊8't))J(s, t)dsdt, 
叩<•,t) lx<ilーが(s,t)l3 

堺=ff 的(s,t) J(sしt) dsdt. 
叩(•,t) lx<i)ーが(s,t)I

(23) 

(24) 

ヽ
j
,

、ー，

5

J

6

 

2

2

 

，ー、

'-i,

(27) 

(28) 

(29) 

、
I

'

,
＿

l
‘

0

1

 

3

3

 

9
•
I
‘
,
＿

t

、

(30) ,(31)の計算のうち，選点と節点が近いとき SACT(Self-AdaptiveCo-ordinate Transform)を用いて計算し

た SACTは被積分関数が弱い特異性を持つとき，特異性が強い部分に積分点を集中することで通常のガウス
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の数値積分によって特異積分を計算する方法である [3].被積分関数を J(s,t)とするとき

1 1 

I = j j f(s, t)dsdt 
-1 -1 

= fl fl f { [("/1 —可＋可叩+3)] [伍—可＋三+3)] 
-1 -1 (1 +年） '(1+ 3ず）｝
3("/1ー可）2 3 ("/2一ア）2
X 

(1 + 3ず） (1 + 372り
d,1d,2, 

ここで

可= ij百s•+ js•J +紅s• —Js•! +百，ゞ＝百2-1, 

ア={ftご石＋屈ご石+t, t* = t2 -l. 

(s,t) = (s,t)は f(s,t)の特異点である．

(32) 

(33) 

(34) 

(35) 

3.4 自己影響係数の計算（境界形状表現2次要素，場の関数表現2次要素の時）

この場合自己相関関数の計算には DTM°(DegenerateTriangle Mapping)を用いる [l].3次元空間に存在す

る平面上の 3角領域を単位正方形領域に写像する座標変換として次の座標変換を用いる．

(;) = (1 -pi) (;:) + pi(l -P2) (;:) + P1P2 (;:) (36) 

P1,P2は3角極座標， (sゎ朽）：j = 1,2,3は3角形のそれぞれの頂点における (s't)の値である.4角形領域fJVj

を幾つかの 3角形領域に分けこの変換により変数変換する．この時，特異点になる節点が 3角形の頂点となる

ようにする.3角領域で特異性を持つ被積分関数は，各々単位正方領域の特異性を持たない関数に変換される．

選点が k(k= 1,2, .. ・,8,9)番目の節点に一致しているとき，変換後の内挿関数は DTMの性質から，補助関
数匹を用いて，次のように表すことができる．

ぬ={ 1 + Pt如 (p1,pi) (m = k) 
p1H叫Pt,Pサ (mfc k) 

(m=l,2, ... ,9). 

補助関数 Hmを用いて様々な物理量を表現すると，最終的に影響係数は以下のようになる．

S招＝

D糾＝

D鮒＝

心/1/1知 (p1,p叫 (p1,P2)Aμdp1dp2,
11=1 

• 0 .。 R(p1,P2) 

心11/1 K(p1,P2)加 (p1'P2)J(p1, p2)A』p1clp2,(m =f k), 
μ=1 
0 , 0 即 (p1,P2) 

心f1 f 1 K(p1, P2) 
o o p1R3(P1,P2) 

[1 + H叫P1,P2)] J(p1, P2)A砂p1dp2,
μ=l 

(m = k). 

(37) 

(38) 

(39) 

(40) 

ここで， m=l,2,... ,9で Kは要素を 3角形に分割する時の 3角形の個数であり，氏 E[2,3,4]となる.(40)式

は， Pl→0の時，舟となり値が定まらないしかし，これらの項は立体角 aの項と打ち消し会うため，積分を実
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行する必要はない

Xー(”pいP2) ＝ 

lx(i) -x(s, t)I ＝ 
K(p1, 四） ＝ 
R(pi, 四） ＝ 
clS = 
Jμ ＝ 

ここで， Aμ はμ 番目の三角形の面積である．

4 試計算

， 
— 1=1伍品，
m=l 

P1 R(p1, pz), 

jiX(p1,P2) + jzY(pいP2)+店Z(p1,P2),

J炉 (P1,p2)+戸(p1,P2)+炉 (pいP2),
= J(pいPz)Jμ(PいP2)dp1dp2,
2p1Aμ, 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

円管内流について試計算を行い，その結果を評価した.Fig. 1に境界条件， Fig.2に計算格子を示す．全境界

で如を与える場合と，流出境界では¢ を，その他の境界では如を与える場合の 2種類の境界条件で計算を

行った. Fig. 3,4,5にそれぞれ 1),2),3)の計算結果を示す.1)の場合には流入出境界の角点近傍の如の計算

（節点番号 121-300)で特に誤差が大きくなっている．その他の場所でも全般に誤差は大きい.2) ,3)の場合は

ほぼ解析解に近い数値解が得られたが， 3)の場合には流出入境界角点（節点番号467-497)で 1%前後の誤

差がみられた数値積分の精度を上げた結果この誤差は減少するため，計算精度に起因していると考えられる．

5 大型計算機センターヘの要望

SX4は計算速度は速いのですが，時間領域でシミュレーションを繰り返し行うような場合はその高性能を持っ

てしても非常に長時間の計算になり，結果として高価な計算コストになりがちです．

並列化，ベクトル化，ライプラリーの使用によるより一層の高速化も考えられるのでしょうが，コードを計算

機センター用に変更すると他環境との併用をする場合に不便です．一方でパソコン，ワークステーションの高

速化はめざましく，安価なワークステーションを研究室で買う方が安くつく場合もあります．

ですから，より安く，また他環境との併用が容易なシステムをご提供いただければと思います．より一層のセ

ンターの方々の啓蒙活動を期待いたします．
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Fig. 1境界条件 Fig, 2計算格子

。 ゜節点番号

0——-50 Wi'. 「-1で;u--200 250 300 -350 400 450 500 550 

Fig.:3: 1)場の関数0次要素，境界形状 1次要素による計算結果 ゜節点番号

節点番号

.. o 100 150 200 國 -:ino 350 400 450 500 sso 600-6印

Fig.4: 2)場の関数境界形状 1次要素による計算結果 節点香号

-,;. 

1.. 

DO 
節点番号

.,v ょou・r:so 200 2so 300国~--4

Fig.5: 3)場の関数，境界形状2次要素による計算結果 ゜節点香号
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