
Title スーパーコンピュータSX-4利用報告(追加)　

Author(s) 西野, 友年; 奥西, 巧一

Citation 大阪大学大型計算機センターニュース. 1999, 111,
p. 39-49

Version Type VoR

URL https://hdl.handle.net/11094/66320

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



’ -----スーパーコンピュータ SX-4利用報告（追加）
本センターでは、昨年度、利用
者の方々に SX-4をいろいろな
角度からモニターしていただき、
得られた結果やノウハウ（失敗例
や成功例を含めて）を本センター
のすべての利用者が共有できるよ
うに提供していただくことを目的

として、スーパーコンピュータ sx
-4モニターの募集を行いました。
この報告書は、本センターニュー
ス98-5月号、 98-11月号に掲載しま
したが、新たに次の方の報告書が提
出されましたので掲載します。

雙・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・-・一塁
3次元 Isingモデルの密度行列繰り込み群

―数値計算的側面について一

神戸大学大学院自然科学研究科構造科学・物質機能専攻講師西野友年

http://quattro.phys.sci.kobe-u.ac.jp/nishino.html 

大阪大学大学院理学研究科物理学専攻大学院博士後期課程奥西巧一

http://glimmung.phys.sci.osaka-u.ac.jp/okunishi/okusjis.html 

1 はじめに：形而上の問題

N 次元格子模型の統計力学は「場の理論」を解析する上で大切な研究分野の一

つです。 （…．ということに興味の無い方は、後は読み飛ばして次の章に進んで下さ

い。）特に 3次元格子模型の分配関数を求める解析的手法は、例外的な場合を除い

て皆無に等しく、数値計算（＝力技）の助けは必須と言えるでしょう。この目的で一

般的に用いられているのはモンテカルロ法ですが「ネコも杓子もモンテカルロ」で

は面白く無いので、ここでは趣向を変えて「数値繰り込み群」を用いてみることに

しました。（繰り込み群＝情報圧縮と考えて下さい。）まあ、どのような手法にも

得手不得手がありますから、一つの研究対象に複数の計算手法を準備しておくのも、

悪いことではありません。

さて、数値繰り込み群の分野において近年最も目覚ましい発展の一つと言えば、

（計算物理学業界の）誰もが Whiteによる「密度行列繰り込み群」 (DensityMatrix 

Renormalization Group)を取り上げるでしょう。 [1]「密度行列繰り込み群」という

名称は、とても長ったらしいので、ふつうは略称 DMRGで呼ばれています。（情報

メデイアの業界でDesignMethodology Research Group, Distributed Multimedia 

Research Group, Digital Modulation Research Group等の紛らわしい用語も用い

られていますので、混同しないように御注意!!)DMRGは、もともと 1次元量子系

（とい呼ばれる物理系）の為の数値計算手法なのですが、著者達はこの手法を 2次元

古典系に拡張しました。 [2]ぶっちゃけて言うと、 1次元， 2次元と来れば次は 3次

元という、とても単純な発想で 3次元古典系、特に 3次元 Ising模型に手を出し（て

しまっ）た訳です。
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本稿では、上記のような訳の分からない物理的議論はさておいて、研究の為に用

いた数値計算に関する工夫についてまとめます。 （物理的な所については、付録の

論文 [3]を参照して下さい。）ついでに、もうひと言。「 3次元 Ising模型を研究して

何の現世利益がある？」とは質問しないで下さい。何しろ、形而上の問題ですから。

(a) (b) 

図 1:(a)立方体への整数i,j,k,l,m,nの張り付け。 (b)2つの立方体の張り合わせ。

つづいて：形而下の問題

まず、各面に（整数）変数が張り付いている多面体を考えます。一番単純な例とし

て、立方体（＝サイコロ）を考えましょう。立方体には X-,Y-, Z-面、及びそれぞれ

の裏面、合計 6つの面がありますから、各面に整数 i,j,k,l,m,nを割り振れます。

我々が注目するのは、ある整数の配列 (ijklmn)が「出現する」確率 Pijklmnです。

ここで「出現する」と言ったのは統計力学的な意味においてなのですが、あまり深

く考えずに、単に（正の）実数値テンソル pijklmnを立方体に対応させて取り扱うと

お考え下さい。仮にそれぞれの整数が 0叉は 1のみを取るとした場合、 (ijklmn) 

は (000000)から (111111)までの64通りの違った組み合わせを取り得ます。従って

この場合 ~jklmn は（計算機上では） 64次元ベクトル

P(((((2 * i + j) * 2 + k) * 2 + l) * 2 + m) * 2 + n) (1) 

として表現できます：「添え字は左側にある方が上位のアドレスを表す」という規則

に基づいて 6脚テンソルを一次元ベクトルに書き換えた訳です。（貴方はインテルが

好きですか？それともモトローラが好きですか？）

さて、 2つの立方体 pijklmnとP汀 k'l'mぽ，の張り合わせを確率の合成則（…とい

うほど大層な物ではないのですが＾ー＾）

Q切 ')(kk')l'(mm')(nn')=区pijklmnP,汀 k'l'm'n'
Ii' 

(2) 

で定義しましょう。左辺の Qは合成された直方体が、表面上に整数(i,2j + j', 2k + 
k', l', 2m + m', 2n +が）を持つ確率です。面の対応は図 l(b)に示してある通りで、
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立方体の lに対応する面とがに対応する面が「くっついて」消滅しています。（業

界用語で「テンソルの縮約」と言います。）式 (1)に習って Qをベクトルで表現す

図 2:積み木遊び。

ると

Q(((((((((i*2+ j) *2+ j') *2+ k) *2+ k') *2+l') *2+m) *2+m') *2+n) *2+n') (3) 

という 1024次元ベクトルになります。 (…. こんな長ったらしい式は見たくもあり

ませんが＾二；）同様に、どんどん立方体を積み重ねて行き、ルービックキューブ

のような物を作るのが「密度行列繰り込み群」の最終的な目標の一つです。従って、

式 (2)のような計算を何回もくり返さなければなりません。（ちなみに、昨今の学生
に「ルービックキューブ知ってるか？」と聞いても無駄です。 NeXTCubeも同様。

Generation Gapというモノでしょうか…．）
さて、式 (2)をそのまま数値計算プログラムにすると、全部で 11個の添え字があ

りますから、ループ長 2の 11重doループになります。このように短いループ長の

多重 doループは、 SX-4(に限らずその辺に転がってるパイプライン型のスーパー

コンピューター）にとって悪夢以外の何物でもありません。そこで、少し高速化（ベ

クトル化）の工夫をしてみましょう。式 (2)のベクトル化が妨げられている原因は、
Qの添え字の順番が(ijkmnj'k'l'm'n')という素直な順番になっていなくて、 Qを
数値表現した場合のベクトル要素が

(((((((((i*2十亀j)*2+ k) *2+m) *2+n) *2+ j') *2+ k') *2 +l') *2+m') *2+n') (4) 

という連続したアドレスに格納されていないからです。これを改善するべく、ちょっ

と高速化（とプログラムの節約）の工夫してみましょう。

まず最初に pijklmnの足の順番を入れ替えたテンソルを準備します。

P'=P  lmnijk ijklmn (5) 

これは、ただ単に Pの要素を入れ替えただけです。この操作は、添え字を上位アド

レス ijk= (2 * i + j) * 2 + kと、下位アドレスlmn = (2 * l + m) * 2 + nの 2組に
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分けて考えれば、 2重 doループで行えることが簡単にわかります。こうして得ら

れた Pfmnijkを用いて、

Q伝nij切'k'l'm'n'=L Pfmnijkpi勺'k'l'm'n'
li' 

(6) 

を先に計算します。添え字 mnijkとj'k'l'm'がは連続した下位アドレスとみなせ

ますので、式 (6)の計算はループ長32の3重doループとして計算できます。後は、

Q' の添え字の順番を式 (5)のような代入により何回か入れ替えて、mnijkj'k'l'm'が

終的に欲しい形Q虹 1)(kk')l'(mm')(nが）に持って行くだけです。こういった添え字の入

れ替えは高々 4重doループで実行可能です。こうして我々は「魔の 11重doルー

プ」から逃れることができました。同時に、ベクトル化の恩恵により演算も高速化

されます。

このように、添え字が幾つもあるテンソルの「縮約」や「内積」や「乗算」を行う

場合は、予め要素の格納順番をベクトル化（およびプログラミング）に都合の良いよ

うに変更しておいて、それから演算を開始するのが「ベクトル化による高速化」の秘

訣です。（もうすぐ 21世紀なのですが、こういう類いの高速化を自動的に行ってく

れるコンパイラは、ついぞお目見えしませんでした。来世紀の発展に期待します。）

最後に：残った課題

現在、計算速度のボトルネックになっているのは、式 (5)のようなベクトル格納

形式の変更です。並列化で、より高速になるかな？と一瞬考えたのですが、結局は

同じメモリーにアクセスに行ってしまうので、思ったほど並列化の効果は上がりま

せん。もう少し精進して—発想の転換をして―更に数値計算を高速化できないか

どうか、今後とも考えて行こうと思います。 （さもないと「計算物理業界の若き獅

子達」に一瞬で叩～き潰されてしまいます。）

本研究の遂行に際して、 sxモニタ制度による計算費免除をいただきました。こ
の場をかりて大阪大学大型計算機センターに感謝いたします。また、付録の論文（英

文）は Journalof the Physical Society of Japanより許可を得て転載したものです。
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A Density Matrix Algorithm for 3D Classical Models 

Tomot.oslii NISIIINO* am! Kouichi 01¥UNISIII I.•• 

Department of Physics, Faculty of Science, Kobe University, Rokkodai 657-8501 
1 Department of Physics, Graduate School of Science, Osaka University, Toyonaka 560-0043 

(Hcccivcd April 17, 10U8) 

¥Ve generalize the corner transfer matrix renormalization group, which consists of ¥A/hite's den-
sity matrix algorithm and Baxter's method of the corner transfer matrix, to three dimensio叫
(3D)_ classical models. The renormalization group transformation is obtained through the di;:ig-
onalization of density matrices for a cubic cluster. A trial application to 3D Ising lllodel witl1 
m = 2 is shown as the simplest case. 

KEYWORDS: density matrix, renormalization group, corner tensor 

§1. Introduction 

Variational estimation of the partition function has 
been one of the standard technic in statistical mechan-
ics. For a two-dimensional (2D) classical lattice model 
defined by a transfer matrix T, the variational partition 
function per row is written as 

入＝
〈VITIV〉

〈VIV〉'
(1.1) 

where IV〉representsthe trial state and〈VIis its conju-
gate; 入ismaximized when〈VIand IV〉coincidewith the 
left and the right eigenvectors of T, respectively. In 1941 
Klamers and v¥Tannierl. 2) investigated the Ising model, 
assuming that IV〉iswell approximated by a product of 
matrices 

V(... ,i,j,k,l, ...) = ... Fiipikpkl・・・, (1.2) 

where i, j, k, l, etc., are the Ising variables, and piJ is 
a symmetric 2 by 2 matrix. The approximation is more 
accurate than both the mean-field and the Bethe ap-
proximations.3l Baxter improved the trial state by intro-
ducing additional degrees of freedom_4-5) His variational 
state is defined as 

V(... ,i,j,k,l, ...)=~... F1{FiごFe~』...'

(1.3) 
where a, b, c, d, etc., are 2れ-stategroup spin variables. 
The tensor F, ばcontains4・22n elements, and therefore it 
is not easy to optimize F1l - adjust the elements - so 
that入ism訟 imized.He solved the optimization problem 
by introducing the corner transfer matrix (CTM), and 
by solving self-consistent equations for the tensors. 6) In 

1985 Nightingale and Blote used Baxter's tensor product 
as a initial state in the projector Monte Carlo simulation 
for the Haldane system. 7) Baxter suggested an outline of 

generalizing his CTM method to 3D systems,6l however, 

the project has not been completed. 

.... a,b,c,d .... 

ゞ E-mail:nishino@phys560.phys.kobe-u.ac.jp 
●事 E-mail:okunishi@godzilla.phys.sci.osaka-u.ac.jp 

Similar variatio叫 formulationshave been applied to 

one-dimensional (lD) quantum systems, especially for 
S = l spin chains. The variational ground state図〉 is
given by a modified tensor product 

w(... ,i,J,k,z, ...) = 区 ... A揺Aに応A;1e・ ・ ・, 
... ,a,b,c,d,e, ... 

(1.4) 
where the subscripts a, b, c, d, e, etc., are m-state group 
spin variables. Affleck, Lieb, Kennedy, and Tasaki 
(AKLT) showed that the臣ound-stateof a bilinear-
biquadratic S = l spin chain is exactly expressed by 
the tensor product with m = 2.8) The variational for-
mulation has been generalized by Fanncs et al. for 
the arbitr紅 ylarge m.9-11) Now such ground state is 
called'finitely correlated state'10l or'matrix product 
state'.12) Quite recently Niggemann et al.13) showed that 

the ground state of a 2D quantum systems can be ex-
actly written in terms of a two-dimensional tensor prod-
uct. Although憧〉 ineq. (1.3) does not look like JV〉in
eq. (1.4), they are essentially the same. We can trans-
form IV〉into憧〉 byobtaining A贔fromF, 晶through

14) a kind of duality transformation; the opposite is also 
possible. 
The application of both JV〉ineq. (1.3) and位〉
in eq. (1.4) are limited to translationally invariant (or 
homogeneous) systems. In 1992 White established a 

more flexible numerical variational method from the view 
point of the real-space renormalization group (RG) .15, 16) 

Since his numerical algorithm is written in terms of 
the density matrix, the algorithm is called'density 
matrix renormalization group'(DMRG). White's vari-

ational state is written. in a position dependent tensor 
product 17. 18) 

<J>(... ,i,j,k,l, ...)= ~ ... A揺尻C贔D;1e...' 
... ,a.,b,c,d,e, ... 

(1.5) 

where A蒻isnot always eq叫 toB砂 etc. This inho-
mogeneous property in間 makesDMRG possible to 
treat open boundary systems19l and random systems.20l 

Now the DMRG is widely used for both quantum21l 
and classica!22-24l problems. Quite recently Dukelsky 
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1998) A Drvl Algorithm for 30 Classical Models 3067 

et al. analyzed the correspondence (and a small dis-

crepancy) between DMRG and the variational formula 
in eq. (1.4).25-27) 

The decomposition of the trial state into the tensor 

product tells us how to treat lattice models when we try 

to obtain the partition function. The essential point is to 

break-up the system into smaller pieces - like the local 
ij . 

tensor Fa.b m eq. (1.3) or、A揺ineq. (1.4) - and recon-
struct the original system by multiplying them. Accord-

ing to this idea, the authors combine DMRG and B盛

ter's method of CTM, and proposed the corner transfer 

matrix renromalization group (CTMRG) method. 28, 29) 

It has been shown that CTMRG is efficient for determi-
nations of critical indices29l or latent heats.30) 

The purpose of this paper is to generalize the algo-

rithm of CTMRG to three-dimensional (3D) classical 

systems. We focus on the RG algorithm rather than 

its practical use. In the next section, we briefly review 
the outline of CTMRG. The key point is that the RG 

transformation is obtained through the diagonalization 

of the density matrix. In§3 we define the density matrix 

for a 3D vertex model, and in§4 we explain the way to 

obtain the RG transformation. The numerical algorithm 
is shown in§5. A trial application with m = 2 is shown 

onc us10ns are summai・ized in for the 3D Ising Model. C 1 
§6. 

ormulat10n 1n Two Dimens10n §2. F 

The aim of CTMRG is to obtain variational parti-

tion functions of 2D classical models. Let us consider 
a square cluster of a 16-vcrtcx model (Fig. 1) as an ex-

ample of 2D systems. ¥Ve impose the fixed boundary 

condition, where the boundary spins shown by the cross 

marks point the same direction. In order to simplify the 

following discussion, we assign a symmetric Boltzmann 

weight W況 1= T•Vjkli = 1-Vilkj to each vertex,31) where 
i, J・, k and l denote two-state spins (= Ising spins or ar-
rows) on the bonds. (Fig. 2(a)) 
We employ two kinds of transfer matrices in order to 

express the partition function Z2N of the square cluster 

with linear dimension 2N. One is the half-row transfer 

matrix (HRTM). Figure 2(b) shows the HRTM P. 贔with
length N = 3 , where the subscnpts a = (a1, a2, ... , aN) 

. . . . respectively, represent row spins anclb=(b1,b2. ,bN), 
in-line spins — on the left and the right sides of the 
HRTM. We think of P. 虚asa matrix labeled by the su-
perscript i. The other is the Baxter's corner transfer 
matrix (CTM),4-5) that represents Boltzmann weight of 

a quadrant of the square. Figure 2(c) shows the CTM 

C0,1, with linear dimension N = 3. The partition function 

Z2N is then expressed as 

Z2N = Ti・p = Tr 04' (2.1) 

where Pab三 (Cり is the density matrix. From the ab 
symmetry of the vertex weight lViJkl, the matrices P, ふ
Cab> and Pab are invm・iant under the permutation of sub-

scripts. 
There are recursive relations between lV, P, and C. 
We can increase the length of HRTM by joining a vertex 

Fig. 1. Square cluster of a symmetric vertex model; the shown 
system is the example with linear dimension 2N = 6. The cross 
marks x show the boundary spins. 

i 
i b3 b2 b1 

r -

a, 皐a3 I 

1• .j 
a2 b2 a2 

a1 b1 a1 
k 

(a) (b) (C) 

Fig. 2. Boltzmann weight and transfer matrices. The dots repre-
sent spin variables inside the square cluster shown in Fig. 1, and 
the cross marks represent the boundary spins. (a) Vertex weight 
w況 1.(b) Half -row transfer matnx P, 晶 (c)Corner transfer 
matnx C ab・ 

P註=I:wijkl~ 孟， (2.2) 
k 

where the extended row-spins are defined as ii= (a, l) = 

(a1,a2, ... ,aN,l) and b = (b,j) = (b1,b2, ... ,bN,j). 
(Fig. 3(a)) In the same manner, the area of CTM can 
be extended by joining two HRTMs and a vertex to the 

CTM 

c咋=L TV;jkl摩PばCed, (2.3) 
cd kJ 

where the extended row-spins ii印ndb are defined as ii = 
(a,l) = (a1,a2, ... ,aN,l) and b = (b,i) = (b1,b2, ... , 
aN, i). (Fig. 3(b)) In this way, we can construct HRTM 

and CTM with arbitrary size N by repeating the exten-

sion eqs. (2.2) and (2.3). 
It should be noted that the matrix dimension of both 

cab and P. 晶increasesvery rapidly with their linear size 
N. The fact prevents us to store the matrix elements 

of ca.b and P. 虚whenwe numerically calculate the parti-
tion function Z2N. This difficulty can be overcomed by 

compressing CTM and HRTM into smaller matrices via 
the density matrix algorithm, 15, 16)・where the RG trans-

formation is obtained through the diagonalization of the 

density matrix Pab三 (Cりab.Let us consider the eigen-
value equation for the density matrix 

こ凡,,Ab= 心A~, (2.4) 
/, 
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b3 b2 b1 . -r 

1 k-+-~ 一
a3 

a2 

a1 

闊=L心AtP"J,. 
o.b 

(2.10) 

(a) (b) 

Fig,. 3. Exlcusious of (a) Lire_ llf{TM (cq. (2.2)), aud (b)しhe
CTM. (eq. (2.3)). 

where A。isthe eigenvalue in decreasing order入12心と
... 2 0, and A°'= (A1, A~, ...) T is the corresponding 
eigenvector that satisfies the orthogonal relation 

(A°', Aり=I: 埒A~= o°'f3. (2.5) 
Q. 

It has been known that入。 rapidlyapproaches to zero 
with respect to a:,6, 16) and that we can neglect tiny eigen-
values from the view point of numerical calculation. We 
consider only m numbers of dominant eigenvalues in the 
following; the greek indices run from 1 to m. The mun-
ber m is determined so that江:=1心 becomesa good 
lower bound for the partition function Z2N ='Ir p. 
Equation (2.4) shows that for a sufficiently large m the 
density matrix p can be well approximated as 

m 

Pゅ,.__,L店A『心．
o=l 

似fJ= LA~ 碍cab・
ab 

(2.6) 

The above approximation shows that the m-dimensional 
diagonal matrix 

知c,/3= I: 騎Afpゅ=bc,13位 (2.7)
ab 

contains the relevant information of p; we can regard p 
as the renormalized density matrix. This is the heart 
of the density matrix algorithm: the RG廿ansformation 
is defined by the matrix A = (A 1, A汽...,A門 whichis 
obtained through the diagonalization of the・density ma-
伍 x.

As we have applied the RG transformation to the den-
sity matrix p, we can renormalize the CTM by applying 
the matrix A as 

(2.8) 

Since C0.b and Pab have the common eigenvectors -re-
member that p = 04 -the renormalized CTM is an m-
dimensional diagonal matrix 

C = diag(叫，W2,.. ,, Wm), (2.9) 

wherew。isthe eigenvalue of the CTM that satisfies心＝
w~. In the same manner, we obtain the renormalized 
HRTM 

In this case闊 isnot diagonal with respect to a and /3; 
the RG tmnsfo竹nationis not always d・iagonahzation. 
We can extend the linear size of CTM and HRTM 
using eqs. (2.2) and (2.3), and we can reduce their ma-
trix dimension by the RG transformation in cqs. (2. 7) 
and (2.8). By repeating the extension and the renormal-
ization, we can obtain the renormalized clen_sity matrix 
p and the approximate partition function Z2lv = Ti・ 戸
for arbitrary system size N. This is the outline of the 
CTMRC. 

§3. Density Matrix in Three Dimension 

In order to generalize the density matrix algorithm 
to 3D systems, we first construct the density matrix in 
three dimension. As an example of 3D systems, we con-
sider a 64-vertex model, that is defined by a Boltzmann 
weight T,~ij klm:7.. (Fig. 4(a)) In order to simplify the fol-
lowing chscuss10n, we consider the case where T,Vijklmn is 
invariant under the permutations of the two-state spins 
i, j, k, l, m and n.32) As we have considered a square clus-
ter in two-dimension, (Fig. 1) we consider a cube with 
linear dimension 2N, where the boundary spins (on the 
surface of the cube) are fixed to the same direction. Ac-
cording to the variational formulation shown in§1, we 
first decompose the cube into several parts shown in 
Figs. 4(b)-4(d). 
The tensor P, 晶cdshown in Fig. 4(b) is a kind of 
three-dimensional HRTM. The superscript i represents 
the two-state spin at the top. The spin at the bottom 
is fixed, because it is at the boundary of the system. 
The subscript a represents the gi・oup of in-line spins 
a= (a1, a2, ... , aN); b, c, and dare defined in the same 
way. From the symmetry of the vertex weight, P, 晶cdis 
invariant under the permutations of subscripts. 
The tensor Sぷ:'shownin Fig. 4(c) does not have its 
2D analogue; it is an array of vertices. The subscripts 
a and b represent in-line spins; other two sides are the 
boundary of the cube. The superscript X represents an 
N by N array of spins on the square surface 
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a
 

亨(a) 

d
 

(b) 

(C) 

(d) 

Fig. 4. Parts of the cubic cluster with linear dimension 2N: (a) 
Vertex weight W ijklmn・ (b) The tensor P i c The tensor 
3XY XYZ 

abed" () 
ab . (d) Corner Tensor C . The cross marks x represent 
the boundary spins. 

Following the formulation in two-dimension, let us con-

sider the size extension of P, S, and C. The length of P 

can be increased by joining a vertex (Fig. 5(a)) 

P心 =~wijklmnP, 訟盃，
n 

where the extended in-line_ spins are defined as a = 
(a,j) = (a1,a2, ... ,aN,j), b = (b,k) = G伍，bz,...'bN, 
k), c = (c,l) = (c1,c2, ... ,cN_,l), and d = (d,m) = 
(d1, d2, ... , d N, m). The linear size of S can be increased 

by joining two P and a vertex (Fig. 5(b)) 

(3.2) 

S轟t= I:I:wijklmn~ ふ P心 S心Y
ln ce 

where the extended in-line spins are defined as ii = 

(a,j) = (a1,a2, ... ,aN,j), and b = (g,i) = (g1,g2, ... , 
gN, i). The extended spin array X is defined as 

(
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(3.3) 

(3.4) 

and Y is defined in the same way from the indices m, 
d, h and Y. The linear size of the corner tensor C can 

be increased by joining three P, three S, and a vertex 

(Fig. 5(c)) 

---
cxyz = L L L wijk/11111~』ぃl P, ふ1hP, ふぶ

lmn cd eh qr TUV 

xS岱ts汀SげcTVV_

向
(a) 

(b) 

Fig. 5. Extensions of (a) P in eq. (3.2), (b) S in eq. (3.3), and 
(c) C in eq. (3.5). 

The extended superscripts .X, Y, and Z are defined in 
the same way as eq. (3.4). In eq. (3.5) we have to take 

care of the orientation of the surfaces T, U, and V. 

Now we can express the partition function三2Nof the 

cube with linear size 2N using the corner tensors. ¥Ve 

first join two corner tensors (Fig. 5) to obtain a symmet-

ric matrix 

DばU)(ZV)=~CXYZ C附YV,
y 

(C) 

(3.6) 

where we regard the pair (ZV) as the column index of 

D, and (XU) as the row index. The tensor Cm is the 

mirror image of C: cuYV三 C
尻 YVT

m 
. The partition 

function:::: 幻 isthen expressed as 

46-

号=TI.・D4 = L QばU)(XU),
XU 

Q似 U)(Z¥I)= 

X D(CD)(EF) D(EF)(ZV)_ 

Vol. 28 No.4 

(3.7) 

where the matrix Q is the forth power of D (Fig. 6) 

I: D(XU)(AB) D(AB)(CD) 

(AB)(CD)(EF) 

(3.8) 

The matrix Q can be seen as a density matrix for the 

cube, because Tr Q is the partition function三2N" By 

contracting two superscripts of Q, we obtain a density 

submatrix 

(3.5) 

1999-2 
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：
 
Fig. 6. The density matrix Q in eq. (3.8) is obtained by joining 
two corner tensors (eq. (3.6)) to obtain the tensor D, and then 
joining four of them. (eq. (3.8)) 

p入~Z = I: Q(X U)(ZU), 
u 

which will be used for the RG transformation for the spin 

array. 
xz Let us consider a density submatrix p for the ex-

tended cube with size 2(N + 1), where Xis the extended 
spin array eq. (3.4); for aヽvhilewe label the elements of 
Z as 

） 
in order to define another density submatrix. By tracing 
out N by N + 1 variables of the extended density matrix 
p xz 

I
X
:
・
ー

X
了

（
ー

•
9
=
＿-
9
-
＝
-
＿
＿
●
●
＿
＿
●
＿

-
.
-
i
―
●
ー
ー
，
．．
 
＼
 

＝
 

I~ 

I 
X1N 

： 
X 
I 

ユ
b' N 

Pjg = 

.. 
~ 

L 
b.=b'. x .. =x' , ,']'] 

凡
：
・
丘
炉

，
 

,t,,;) 
-X p
 

LPXZ⑰ =A砂摩，
z 

(3.9) 

(3.10) 

(3.11) 

where f = (!1, ... , JN, k) and g = (f'1, ... , f'N, k'), we 
obtain another density submatrix for the extended in-
line spins. In the same way, we obtain Pfg for the in-

line spins of length N -f = (x1N,・・・,xNN) and g = 
(x'iN, ... , x'N N) -by tracing out N -1 by N variables 
of pxz in eq. (3.9). 

§4. RG Algorithm in Three Dimension 

As we have clone in§2, we obtain RG transformations 
by way of the cliagonalizations of the density submatri-
ces. ¥.Ve first consider the eigenvalue relation 

(4.1) 

where we assume the decreasing order for Aw. ¥Ve keep 

first rがeigenvalues,(i:Ji = 1, ... , rが） and neglect the rest 
of relatively small ones. We then obtain the RG trans-

formation matrix Uふthatmaps the spin array X to an 
m1 -state block spin屯. For example, the corner tensor 
cxyz is renormalized as (Fig. 7(a)) 

•• 
＇ 

••••••••••••••••••••••••••••••. 

••• ••• • 
’
 

甲 -

(Vol. 67, 
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•••••••••••••••• 

・・・・・・・・・・・・甲•••• •••• 
••• • •• 

••• •••• 
• 
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‘‘,＇’ 

~
p
a
 
‘,＇̀` 

‘̀
l
 

~
S
b
 

‘,＇`‘ ）
 
c
 

‘、,̀`

~
C
 

Fig, 7. The renormalized tensors (a) Pi 
碩祠
in cq. (4.4), (b) S鱈

碩
in cq. (4.5), and (c)ぴ '1'8in eq. (4.2). The grcek letters a, (3, 1, 
and o denote m-state renormalized in-line spins, and the capital 
ones W, <P, and 0 denote m'-stat.c renormalized spin arrays. 

ぴ峠=LU点算嬬CXYZ_
XYZ 

(4.2) 

It should be noted that under the transpose of the spin 
array X→ xr the matrix u点transformsas士u;:ac-
cording to the parity of the block spin屯
Let us consider another eigenvalue relation 

こ町g碍， 

翌<I>
af3 ＝ 

心
f
ーj
 

心＼ハ

凡い＝区Pふ:d屹ArAJAか
abed 

区S盆｝／店A仰U点Uぷ
r,.bXY 

(4.3) 

for the density submatrix p 19, where f and g arc in-
line spins. ¥i¥Te assume the decreasing order for入,;;as 

before, and we keep m numbers of large eigenvalues. 
（ゆ=1, ... , m) The matJ:ix A'f then represent the RG 

transformation for the in-line spin f. For example, P, ふd
is renormalized as (Fig. 7(b)) 

(4.4) 

X By using both U and A ,f; 
'¥f・  

. we can rcnormahze sxY as a.b 

(Fig. 7(c)) 

(4.5) 

As a result of RG transformations, the tensors P. ふ小
5XY 
ab , and C 

XYZ are approxnnatecl as 

P' abed ～ 

m 

LA~ 屈AJA防。~祠
a,/3祠=1
， 

m m 

Sぷ）, rv L L A~Afutu謬闘
af3=1炉I>=l

m 
， 

0xyz~L ⑰Uぷ蟷ぴ崎
'¥4'0=1 

(4.6) 

(4.7) 

(4.8) 

For the models that have unique ground-state spin con-
figuration, the above approximations become exact when 

T = 0 and T = oo even for m =吋=1. 
Now we can directly generalize the algorithm of 
CTMRG to 3D lattice models. The algorithm consists of 
the extensions for P0い(eq.(3.2)), S/J,1'(eq. (3.3)), and 
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CX)'z (cq. (3.5)), and the RG transformations cqs. (4.2), 
(4.4) and (4.5). The procedure of the renormalization 
group is as follows: 
(1) Start from N = 1, where all the tensors can 
be expressed by the I3oltzma1111 weight 1-V・ 況:lmn・
P心=T.-Viabcdx'S訟Y= T,VaXbYx x'and C入YZ= 
ZXYXXX' TV where the mark'x'represents the fixed 
boundary spin. ・ 
(2) Join the tensors W ijklmn> a.bed> ab' p; 5XY and CXYZ 

using eqs. (3.2), (3.3), and (3.5), res_pectively, and 
obtain the extended ones P -'-sxY, and C 入i咳

瞑 d' 祁
(Increment N by one.) 
(3) Using the extended corner tensor ex四~in eq. (3.5), 
calculate the density matrix p xz via eq. (3.9) and 
its submatrix p-_ in eq. jg (3.11). 

(4) Obtain the RG transformation matrix U岱andA名
using eqs. (4.1) and (4.3), respectively. We keep m' 
states for w, and m states for a. 
(5) Apply the RG t f rans ormat10ns to the extended ten-

sors to obtain P,。p祠 (eq.(4.4)), S靡(eq.(4.5)), and 
¢曇 (eq.(4.2)). 
(6) Goto the step (2) and repeat the _proced1.'.res (2)-(5) 
for the renormalized tensors P, S, and C. 

Every time we extend the tensors in the step (2) the sys-

tem size -the linear dimension of the cube -increases 
by 2. After the step (3) we can obtain the lower bound 

of the partition function by taking the trace of the den-

sity submatrix -= xz 
~2(N+l) = Ti・p = Ti・p- We stop jg' 

the iteration when the partition function_per vertex con-
verges. Since the extended spin array X of the density 

入賣Z
matrix p contains the original (unrenormalized) spin 
variable, we can directly calculate the local energy and 
the order parameter.29) 

Let us apply the above algorithm to the 3D Ising 
model. The model is equivalent to the 64-vertex model 
whose vertex weight is given by 

H'ijklmn = L四 uo-j瓜如uo-muo-n> (4.9) 
o-=士1

where Uび;is unity when a = i, and is砂＋
when a -/= i. The pru-ameter I< denotes the inverse tem-
perature J / ksT. For this model the initial conditions 
for step (1) are slightly modified as 

P晶cd= Ux;Uxa.UxbUxcUxd 

S心/= UxxUxYuxa.uxb 
cXYZ = UxxUx)'広z, (4.10) 

where'x'represent the boundary Ising spin. (The modi-
fication is nothing but the change in normalizations.) ¥Ve 
impose ferromagnetic boundary condition x = 1. As a 
trial calculation we keep only two states for both in-line 
spins (m = 2) and spin arrays (m'= 2); when m'= 2 
the parity of the renormalized spin array ¥fl in eq. (4.1) is 
always even. Figure 8 shows the calculated spontaneous 
magnetization. Because of the smallness of m and叫
the transition temperature Tc is over estimated, where 
the feature is common to the Klamers-Wannier approx-
1mat10n. l) 

Compare to the CTMRG algorithm for 2D classical 

1.0 

i:::: 0.8 

゜..... ..... C'O 0.6 N ..... ...... 
Q) 

Q 0.4 

゜C1:l ~ 
0.2 

0.00 

．
 
．
 
．
 
．
 

1"_• 

2 T 3 4
 
5
 

Fig. 8. Calculated spontaneous magnetization of the 30 Ising 
model when m = m'= 2. The arrow shows the true Tc・

systems, the above RG algorithm for 3D system requires 
much more computational time. The reason is that after 
the step (2) the extended in-line spjn f becomes 2加
state, and the extended S})_iII array X becomes 2m2兄
state; in order to obtain px z in the step (3) we have to 
create a matrix Dは0)(加） by eq. (3.6) whose d11nens10n 
is 4m伍 '2.For the simplest (non-trivial) case m =吋＝

2 the dimension is already 256. 

§5. C onclusion and Discussion 

We have explained a way of generalizing the RG al-
gorithm of CTMR.G28• 29) to 3D classical models, focus-
ing on the construction of the density matrix from eight 
corner tensors. The RG transformations are obtained 
through the cliago叫 izationsof the density matrices. As 
far as we know it is the first generalization of the infinite-
system density matrix algorithm 15• 16l to 3D classical sys-
tems. 

From the computational view point, the calculation 

in 3D is far more heavy than that of CTMR.G in 2D; we 
have to improve the numerical algorithm in 3D for realis-
tic use. What we have clone is to approximate the eigen-
state of a transfer matrix in 3D_ as a two-dimensional 
product of renormalized tensor P (eq. (4.4)); the most 
important process is to improve the tensor elements in P 
so that the vai-iational partition function is maximized. 
The improvement of tensor product state for 1D quan-
tum system proposed by Dukelsky et al., 26, 27) where 

their algorithm does not explicitly require the density 
matrix, may of use to reduce the numerical effort in three 
r c 11nens10n. 
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