

Title	Equivariant algebraic vector bundles over a product of affine varieties			
Author(s)	Masuda, Kayo			
Citation	Osaka Journal of Mathematics. 1997, 34(1), p. 115-131			
Version Type	VoR			
URL	https://doi.org/10.18910/6659			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER A PRODUCT OF AFFINE VARIETIES

KAYO MASUDA

(Received April 7, 1996)

0. Introduction

Let G be a reductive complex affine algebraic group and Z a complex affine G-variety with a G-fixed base point $z_0 \in Z$. Throughout this paper, the base field is the field C of complex numbers. Let Q be a G-module. We denote by $\operatorname{Vec}_G(Z,Q)$ the set of algebraic G-vector bundles over Z whose fiber at z_0 is Q and by $\operatorname{VEC}_G(Z,Q)$ the set of G-isomorphism classes in $\operatorname{Vec}_G(Z,Q)$. We denote by [E] the isomorphism class of $E \in \operatorname{Vec}_G(Z,Q)$.

There are many interesting problems concerning $VEC_G(Z,Q)$, especially when the base space Z is a G-module P. One of them is the Equivariant Serre Problem, which asks whether $VEC_G(P,Q)$ is the trivial set consisting of the isomorphism class of the product bundle $P \times Q$. When G is trivial, the Quillen-Suslin Theorem says that $VEC_G(P,Q)$ is the trivial set. More generally, Masuda-Moser-Petrie [9] recently have shown that $VEC_G(P,Q)$ is trivial for any abelian group G. However, when G is not abelian, $VEC_G(P,Q)$ is non-trivial in general. Schwarz [13] (see Kraft-Schwarz [5] for details) first presented counter examples to the Equivariant Serre Problem by proving that $VEC_G(P,Q) \cong C^p$ when the algebraic quotient space P//G is one dimensional i.e. isomorphic to affine line A. When $\dim P//G \ge 2$, there are many non-trivial examples of $VEC_G(P,Q)$ ([11], [4]) but it remains open to classify elements in $VEC_G(P,Q)$ in general.

The results of [13] extend to the case where the base space is a weighted G-cone with smooth one dimensional quotient (for a precise definition, see §1; a G-module with one dimensional quotient is an example of such a cone):

Theorem A ([8]). Let X be a weighted G-cone with smooth one dimensional quotient and Q be a G-module. Then $VEC_G(X,Q) \cong C^p$ for a non-negative integer p. Moreover, there is a G-vector bundle $\mathfrak B$ over $X \times C^p$ such that the map $C^p \ni z \mapsto [\mathfrak B|_{X \times \{z\}}] \in VEC_G(X,Q)$ gives a bijection.

Masuda-Petrie have made the following observation. Let X and p be as above and Y an irreducible affine variety with trivial G-action. We denote by $Mor(Y, C^p)$ the set of morphisms from Y to C^p . Then there is a map

$$\Phi: Mor(Y, \mathbb{C}^p) \to VEC_G(X \times Y, \mathbb{Q})$$

defined by $\Phi(f) = [(id_X \times f)^*\mathfrak{B}]$ for $f \in \operatorname{Mor}(Y, \mathbb{C}^p)$. It is bijective when Y is a point by Theorem A. Moreover, Theorem A implies that Φ is injective. Masuda-Petrie have shown that Φ is bijective in some examples. We prove

Main Theorem. Let X be a weighted G-cone with smooth one dimensional quotient and Y an irreducible affine variety such that every vector bundle over Y and $(A - \{0\}) \times Y$ is trivial. If a G-module Q is multiplicity free with respect to a principal isotropy group of X, then

$$\Phi: \operatorname{Mor}(Y, \mathbb{C}^p) \to \operatorname{VEC}_G(X \times Y, \mathbb{Q})$$

$$f \mapsto [(id_X \times f)^*\mathfrak{B}]$$

is bijective and hence $VEC_G(X \times Y, Q) \cong Mor(Y, \mathbb{C}^p)$ where p and \mathfrak{B} are given in Theorem A.

Here a G-module Q is called *multiplicity free* with respect to a reductive subgroup H if in the decomposition of Q as a direct sum of irreducible H-modules, each irreducible H-module occurs with multiplicity at most 1. G-modules which satisfy the multiplicity free condition with respect to some reductive subgroup are abundant. Moreover, the integer p in Theorem A is computed or estimated mainly in the case where Q is multiplicity free with respect to a principal isotropy group of X ([5], [10]).

When Y is m-dimensional affine space A^m , the assumptions on Y in the Main Theorem are satisfied by Swan's Theorem ([15]). So we have

Corollary. Let X, Q and p be the same as in the Main Theorem. Then

$$VEC_G(X \times A^m, Q) \cong Mor(A^m, C^p).$$

We show the Main Theorem by calculating $VEC_G(X \times Y, Q)$. For the calculation of $VEC_G(X \times Y, Q)$, we apply the techniques of Kraft-Schwarz [5] (or [8]). In order to extend the glueing argument of Kraft-Schwarz we need the hypotheses on Y (cf. remark after Theorem 3.4). But it is still difficult to apply their method directly to $VEC_G(X \times Y, Q)$ for any G-module Q since the dimension of the algebraic quotient space of the base space is greater than 1 (unless Y is a point). However, when Q is multiplicity free with respect to a principal isotropy group of X, the argument in [5] and [8] becomes drastically simplified and even in the case where the base space is $X \times Y$ the argument does not become difficult so much. For example, thanks to the multiplicity free condition, the approximation property established in [5] (or [8]) becomes obvious. It is not hard to check that

a similar argument to that in [5] and [8] works in our case.

The organization of this paper is as follows. In §1 we recall the definition of a weighted G-cone with smooth one dimensional quotient and discuss its properties. In §2, under the multiplicity free condition, we investigate the action of a cyclic group Γ and prove the vanishing of a group cohomology of Γ (Lemma 2.2) which is needed to show the key fact that every G-vector bundle over $X \times Y$ is trivial when restricted to $(X - \pi_X^{-1}(0)) \times Y$ where $\pi_X : X \to X // G \cong A$ denotes the algebraic quotient map (Theorem 3.3 (1)). Its proof is elementary by virtue of the multiplicity free condition. In §3 we show that every G-vector bundle over $X \times Y$ has a trivialization over $(X - \pi_X^{-1}(0)) \times Y$ which reduces $VEC_G(X \times Y, Q)$ to a double coset of transition functions. Furthermore, from the multiplicity free condition, the double coset turns out to be a quotient group of some abelian group. In order to analyze the quotient group, we prove the decomposition property established in [5] (or [8]) in §4. Thanks to the multiplicity free condition, its proof also becomes elementary. In §5 we give a proof of the Main Theorem.

I thank Professor Mikiya Masuda for helpful discussions. I also thank Professor K.H. Dovermann, Professor T. Petrie and Professor L. Moser-Jauslin for comments. I am grateful to Professor M. Miyanishi for giving me a lot of information on algebraic vector bundles.

1. Weighted G-cone with one dimensional quotient

Let G be a reductive algebraic group and Z an affine G-variety (reduced but not necessarily irreducible). We denote by $\mathcal{O}(Z)$ the ring of regular functions on Z and by $\mathcal{O}(Z)^G$ the ring of G-invariants. The quotient space Z//G is the affine variety corresponding to $\mathcal{O}(Z)^G$ and the quotient map $\pi_Z: Z \to Z//G$ is the morphism corresponding to the inclusion $\mathcal{O}(Z)^G \subseteq \mathcal{O}(Z)$.

We recall the definition of a weighted G-cone with smooth one dimensional quotient ([10]). Let X be a $G \times C^*$ -affine variety. The C^* -action defines an integer-valued grading on $\mathcal{O}(X)$.

DEFINITION. An affine $G \times C^*$ -variety X is called a weighted G-cone with smooth one dimensional quotient if it satisfies the following conditions:

- (1) $\mathcal{O}(X)^{C^*} = C$ and $\mathcal{O}(X)$ is positively graded with respect to the C^* -action.
- (2) $\mathcal{O}(X)^G = \mathbb{C}[t]$ where $t \in \mathcal{O}(X)^G$ is homogeneous.

REMARK. A G-module P with dim P//G=1 is a weighted G-cone with smooth one dimensional quotient. In fact, the C^* -action corresponds to the scalar multiplication, so that condition (1) is clearly satisfied. It is known that $P//G\cong A$

118 K. MASUDA

when $\dim P//G=1$ ([5, p.13]), this implies that condition (2) is also satisfied.

From now on, X will denote a weighted G-cone with smooth one dimensional quotient. It follows from condition (1) that X has a unique closed C^* -orbit, in fact a $G \times C^*$ -fixed point, which we denote by x_0 . Condition (2) means that the quotient space X//G is isomorphic to the affine line $A = \operatorname{Spec} C[t]$. We identify X//G with A. Then the quotient map $\pi_X: X \to X//G \cong A$ is given by the function $t \in \mathcal{O}(X)^G \subset \mathcal{O}(X)$. Since t is homogeneous, every fiber of π_X over $A := A - \{0\}$ is isomorphic to each other.

Let H be a principal isotropy group of X, that means it is the minimal one among isotropy groups of points of closed orbits in X up to conjugation (cf. [7]). Since every fiber over \dot{A} is isomorphic to each other, isotropy groups of points of closed orbits in $X - \pi_X^{-1}(0)$ are all conjugate to H. Let $x \in X - \pi_X^{-1}(0)$ be a point whose isotropy group is H. Set $X_{cl} := \overline{(G \times C^*)}x$. It is a closed $G \times C^*$ -subvariety of X. Hence clearly, $\mathcal{O}(X_{cl})^{C^*} = C$. Since π_X maps a G-closed set to a closed set ([3]), $\pi_X(X_{cl}) = \overline{\pi_X((G \times C^*)x)} = \overline{\dot{A}} = A$. Thus $X_{cl}//G = X//G = A$, i.e. $\mathcal{O}(X_{cl})^G = \mathcal{O}(X)^G = C[t]$. Hence X_{cl} is also a weighted G-cone with smooth one dimensional quotient. We denote the restriction map of π_X to X_{cl} by $\pi_{cl} : X_{cl} \to X_{cl}//G = X//G$. We set $F := \pi_{cl}^{-1}(1)$. Then $F \cong G/H$ ([10]).

Let Y be an irreducible affine variety with trivial G-action. Then $(X \times Y)//G = (X_{ct} \times Y)//G = A \times Y$.

Lemma 1.1. Let Q be a G-module. If every vector bundle over Y is trivial then for every $E \in \operatorname{Vec}_G(X \times Y, Q)$ there exists $f \in \mathcal{O}(X \times Y)^G = \mathcal{O}(A \times Y)$ such that f(0,y)=1 and E is trivial over $(X \times Y)_f := \{(x,y) \in X \times Y | f(x,y) \neq 0\}$.

Proof. Let $E \in \operatorname{Vec}_G(X \times Y, Q)$. Since $\{x_0\} \times Y$ is fixed under the G-action and every vector bundle over Y is trivial by assumption, E restricts to a trivial G-vector bundle $\{x_0\} \times Y \times Q$ ([2]). The Equivariant Nakayama Lemma ([1]) implies that the G-isomorphism $E |_{\{x_0\} \times Y} \to \{x_0\} \times Y \times Q$ extends to a G-homomorphism $E \to X \times Y \times Q$ which is an isomorphism over a G-invariant open neighborhood U of $\{x_0\} \times Y$. Note that $U \supset \pi_X^{-1}(0) \times Y$ since the set of G-closed orbits in $\pi_X^{-1}(0) \times Y$ is just $\{x_0\} \times Y$. Let V be the complement of U in $X \times Y$. Since V is a G-invariant closed set, V//G is also closed in $A \times Y$. Let $f_i \in \mathcal{O}(A \times Y)$, $1 \le i \le r$ be the generators of the defining ideal of V//G. Since $V//G \cap (\{0\} \times Y) = \emptyset$, the ideal (f_1, \dots, f_r, t) is equal to $\mathcal{O}(A \times Y)$. Restricting the functions to $\{0\} \times Y$, we obtain $(f_1(0,y), \dots, f_r(0,y)) = \mathcal{O}(Y)$. Hence there exist $g_i(y) \in \mathcal{O}(Y)$, $1 \le i \le r$ such that $\sum_{i=1}^r g_i(y) f_i(0,y) = 1$. Let $f := \sum_{i=1}^r g_i f_i \in \mathcal{O}(A \times Y)$. Then f is contained in the defining ideal of V//G and f(0,y) = 1. This means that the image of U under the quotient map $X \times Y \to (X \times Y) //G \cong A \times Y$ contains $(A \times Y)_f$, hence $U \supset (X \times Y)_f$.

Г

Note that $X_{cl} \times Y$ contains all closed G-orbits in $X \times Y$. Hence it follows from the Equivariant Nakayama Lemma that the restriction map $VEC_G(X \times Y, Q) \rightarrow VEC_G(X_{cl} \times Y, Q)$ is an injection (cf. [1]).

2. The multiplicity free condition and the action of Γ

Let Q be a G-module and H be a principal isotropy group of X. Note that H is a reductive subgroup of G by the Theorem of Matsushima. Decompose Q as a direct sum of irreducible H-modules

$$Q \cong \bigoplus_{i=1}^q n_i W_i$$

where W_i are mutually non-isomorphic irreducible H-modules and n_i is the multiplicity of W_i in Q. Recall that $F = \pi_{cl}^{-1}(1)$. We set $M := \text{Mor}(F, \text{GL}Q)^G$ which is the group of G-equivariant morphisms from F to GLQ. Since $F \cong G/H$,

$$M = \operatorname{Mor}(F, \operatorname{GL}Q)^G \cong \operatorname{GL}(Q)^H \cong \prod_{i=1}^q \operatorname{GL}_{n_i}.$$

Let $d := \deg t$. Note that d > 0 since $\mathcal{O}(X)$ is positively graded. The C^* -action on X_{cl} induces a C^* -action on $X_{cl}//G = A$. The induced C^* -action on A is scalar multiplication with the d-th power. Let Γ be the group of d-th roots of unity. Then Γ acts trivially on A, so $F = \pi_{cl}^{-1}(1)$ is invariant under the Γ -action. Let $B = \operatorname{Spec} C[s]$ where $t = s^d$. The group Γ acts on B by scalar multiplication and $B/\Gamma \cong A$. We define an action of $\gamma \in \Gamma$ on M by

$$(\gamma m)(f) = m(\gamma^{-1}f)$$
 for $m \in M$, $f \in F$

and on $M(B \times Y) := Mor(B \times Y, M)$ by

$$(\gamma \mu)(b,y) = \gamma(\mu(b\gamma,y))$$
 for $\mu \in M(\mathbf{B} \times Y), b \in \mathbf{B}, y \in Y$.

DEFINITION. A G-module Q is called multiplicity free with respect to a reductive subgroup K if $n_i = 1$ for all i in the decomposition of Q as a direct sum of irreducible K-modules as above.

When Q is multiplicity free with respect to H, M is isomorphic to a q-dimensional torus. From now on, we assume that Q is multiplicity free with respect to H and identify M with $(C^*)^q$ unless otherwise stated.

Lemma 2.1. The group Γ acts on the torus $M \cong (C^*)^q$ by permutation of C^*s .

Proof. Let $\gamma \in \Gamma$ be a generator. We make an observation about the isomorphisms between $M = \text{Mor}(F, \text{GL}Q)^G$ and a torus. Choose $f_0 \in F$ whose

120 K. MASUDA

isotropy group is H. Evaluating an element of $Mor(F, GLQ)^G$ at f_0 induces an isomorphism $M = Mor(F, GLQ)^G \to GL(Q)^H$. Since the Γ -action on $F \cong G/H$ is G-equivariant and the isotropy group of f_0 is H, $\gamma^{-1}f_0 = gf_0$ for some g in the normalizer of H in G. We fix such a $g \in G$. For $m \in M$ we have

$$(\gamma m)(f_0) = m(\gamma^{-1}f_0) = m(gf_0) = \rho(g)m(f_0)\rho(g)^{-1}$$

where $\rho:G\to \operatorname{GL}Q$ is the rational representation associated with Q. Hence the action of γ on M corresponds to conjugation by $\rho(g)\in\operatorname{GL}Q$ on $\operatorname{GL}(Q)^H$. Since g is in the normalizer of H in G, $\rho(g):Q\to Q$ maps an H-submodule to an H-submodule (but $\rho(g)$ is not necessarily H-equivariant). Let $Q=Q_1\oplus\cdots\oplus Q_q$ where Q_i are mutually non isomorphic irreducible H-submodules. Since Q_i is an irreducible H-submodule H-submodule and $Q=\bigoplus_{i=1}^q \rho(g)Q_i$ since $\rho(g)\in\operatorname{GL}Q$. From the assumption that irreducible H-submodules Q_i are mutually non isomorphic, it follows that irreducible H-submodules $\rho(g)Q_i$ are not isomorphic to each other. Hence the conjugation by $\rho(g)$ on $\operatorname{GL}(Q)^H=\Pi_i\operatorname{GL}(Q_i)^H$ is a permutation of $\operatorname{GL}(Q_i)^H\cong C^*$. This shows that γ acts on $M\cong (C^*)^q$ by permuting C^* s.

Let $\vec{B}_Y := \vec{B} \times Y$ where $\vec{B} = B - \{0\}$. Since M is a torus, $M(\vec{B}_Y) = \text{Mor}(\vec{B}_Y, M)$ is considered as a direct product of copies of $\mathcal{O}(\vec{B}_Y)^*$ (the group of invertible elements in $\mathcal{O}(\vec{B}_Y)$). Note that an element of $\mathcal{O}(\vec{B}_Y) = \mathcal{O}(\vec{B}) \otimes_{\mathbf{c}} \mathcal{O}(Y)$ is a Laurent polynomial in s with coefficients in $\mathcal{O}(Y)$. Since Y is irreduceble, i.e. $\mathcal{O}(Y)$ is an integral domain, one easily sees that $\mathcal{O}(\vec{B}_Y)^* = \mathcal{O}(\vec{B})^* \mathcal{O}(Y)^*$. We denote by $H^1(\Gamma, M(\vec{B}_Y))$ the group cohomology of Γ with values in $M(\vec{B}_Y)$ (for the definition of a group cohomology, see [14] for example). For later use, we prove the next lemma.

Lemma 2.2

$$H^{1}(\Gamma, M(\mathbf{B}_{Y})) = \{*\}.$$

Proof. Let $\gamma \in \Gamma$ be a generator. From Lemma 2.1, γ acts on the q-dimensional torus M by permuting components. It is sufficient to show that the cohomology group vanishes when M consists of a single Γ -orbit of one component C^* . Hence we may assume that the action of γ on M is a cyclic permutation of q components. Note that d=qk for some positive integer k since $\gamma^d=1$. Let $\{A(\gamma)\}_{\gamma\in\Gamma}$ be a 1-cocycle of Γ with values in $M(\dot{B}_{\gamma})$. It follows from the 1-cocycle condition that

$$I = A(\gamma^d) = A(\gamma^q) \cdot \gamma^q A(\gamma^q) \cdots \gamma^{q(k-1)} A(\gamma^q)$$

where I denotes the constant map to the identity element of M. Let $A(\gamma^q)(s,y)=(f_1(s,y),\cdots,f_q(s,y))$ where $f_i(s,y)\in\mathcal{O}(\dot{B}_Y)^*=\mathcal{O}(\dot{B})^*\mathcal{O}(Y)^*$. Since the action of γ^q on M is trivial, it follows from the above identity that

$$f_i(s,y)f_i(\gamma^q s,y)\cdots f_i(\gamma^{q(k-1)}s,y)=1$$
 for $1 \le i \le q$.

This implies that f_i is independent of s, so $f_i \in \mathcal{O}(Y)^*$ and $f_i^k = 1$. Since $\mathcal{O}(Y)$ is an integral domain, f_i must be a k-th root of unity. Hence $A(\gamma^q)$ is a constant map to an element of M with entries of k-th roots of unity. Let $A(\gamma)(s,y) = (a_1(s,y), \cdots, a_q(s,y))$ where $a_i(s,y) \in \mathcal{O}(\dot{B})^* \mathcal{O}(Y)^*$. Since $A(\gamma) \cdot \gamma A(\gamma) \cdots \gamma^{q-1} A(\gamma) = A(\gamma^q)$ from the 1-cocycle condition, we obtain

(1)
$$a_i(s,y)a_{i+1}(\gamma s,y)\cdots a_q(\gamma^{q-i}s,y)a_1(\gamma^{q-i+1}s,y)\cdots a_{i-1}(\gamma^{q-1}s,y)=\gamma^{qr_i}$$

for a positive integer r_i , $1 \le i \le q$. Note that $a_i^{-1}(s,y)a_i(\gamma^q s,y) = \gamma^{q(r_{i+1}-r_i)}$ for $1 \le i \le q-1$.

We will construct $\phi = (\phi_1(s, y), \dots, \phi_q(s, y)) \in M(\dot{B}_Y)$ such that $A(\gamma) = \phi^{-1} \cdot \gamma \phi$. The elements ϕ_i must satisfy

(2)
$$a_{i}(s,y) = \phi_{i}^{-1}(s,y)\phi_{i+1}(\gamma s,y) \quad \text{for} \quad 1 \le i \le q-1 \\ a_{q}(s,y) = \phi_{q}^{-1}(s,y)\phi_{1}(\gamma s,y).$$

We rewrite (1) using (2). Then the condition which ϕ_i must satisfy is

(3)
$$\phi_i^{-1}(s,y)\phi_i(\gamma^q s,y) = \gamma^{qr_i} \quad 1 \le i \le q.$$

Take $\phi_1(s,y) = s^{r_1}$ and define $\phi_j(s,y) = \phi_{j-1}(\gamma^{-1}s,y)a_{j-1}(\gamma^{-1}s,y)$ for $2 \le j \le q$. Then ϕ_i satisfies (2) clearly, and (3) also since $a_i^{-1}(s,y)a_i(\gamma^q s,y) = \gamma^{q(r_{i+1}-r_i)}$. Hence $\phi = (\phi_1(s,y), \dots, \phi_q(s,y))$ is the required element.

3. Triviality over the principal stratum

Let $\dot{X}_{cl} := X_{cl} - \pi_{cl}^{-1}(0)$. In this section, we show that for every $E \in \mathrm{Vec}_G(X_{cl} \times Y, Q)$, $E|_{\dot{X}_{cl} \times Y}$ is trivial when Y satisfies the assumptions in the Main Theorem in the introduction. Since E is trivial over a G-invariant open neighborhood of $\pi_{cl}^{-1}(0) \times Y$ by Lemma 1.1, it follows that $\mathrm{VEC}_G(X_{cl} \times Y, Q)$ is isomorphic to a double coset of a group of transition functions and $\mathrm{VEC}_G(X \times Y, Q) \cong \mathrm{VEC}_G(X_{cl} \times Y, Q)$ (Theorems 3.3 and 3.4).

We denote by $\mathbf{B} *^{\Gamma} F$ the quotient of $\mathbf{B} \times F$ by Γ where $\gamma \in \Gamma$ acts on $\mathbf{B} \times F$ by $(b, f)\gamma = (b\gamma, \gamma^{-1}f)$ for $b \in \mathbf{B}$, $f \in F$. The group G acts on $\mathbf{B} *^{\Gamma} F$ by g[b, f] = [b, gf] for $g \in G$. There is a morphism $\dot{\mathbf{B}} *^{\Gamma} F \to X_{cl}$ mapping [b, f] to bf where $\dot{\mathbf{B}}$ is identified with C^* so that bf makes sense. This morphism can be extended to a map $\varphi : \mathbf{B} *^{\Gamma} F \to X_{cl}$ by defining $\varphi([0, f]) = x_0$.

Lemma 3.1 ([8, 3.1]). The map $\varphi: \mathbf{B} *^{\Gamma} F \to X_{cl}$ is a G-morphism, and it restricts to an isomorphism from $\dot{\mathbf{B}} *^{\Gamma} F$ to \dot{X}_{cl} .

Let $E \in \text{Vec}_G(X_{cl} \times Y, Q)$. We denote by \tilde{E} the pull-back of $E|_{\dot{X}_{cl} \times Y}$ under the

122 K. Masuda

map $\mathbf{B} \times F \times Y \to (\mathbf{B} *^{\Gamma} F) \times Y \xrightarrow{\varphi \times id} \dot{X}_{cl} \times Y$ where id denotes the identity map on Y.

Lemma 3.2. If every vector bundle over $\mathbf{A} \times Y$ is trivial, then the $G \times \Gamma$ -vector bundle $\tilde{\mathbf{E}}$ is isomorphic to the product bundle $\mathbf{B} \times F \times Y \times Q \to \mathbf{B} \times F \times Y$ as a G-vector bundle.

Proof. We identify F with G/H and set $E_0 := \tilde{E}|_{\dot{B} \times \{eH\} \times Y}$. Then E_0 is isomorphic to a trivial H-vector bundle since the H-action on the base space is trivial and every vector bundle over $\dot{A} \times Y$ is trivial by assumption ([2, 2.1]). Since the fiber of E_0 is a G-module Q, $\tilde{E} \cong G *^H E_0$ is trivial as a G-vector bundle.

The next theorem is the key fact to analyze $VEC_G(X_{cl} \times Y, Q)$ and $VEC_G(X \times Y, Q)$.

Theorem 3.3. Let Q be a G-module which is multiplicity free with respect to H and Y be an irreducible affine variety such that every vector bundle over $\dot{A} \times Y$ is trivial.

- (1) For every $E \in \text{Vec}_G(X_{cl} \times Y, Q)$, $E|_{\dot{X}_{cl} \times Y}$ is trivial.
- (2) Furthermore, if every vector bundle over Y is trivial, then the restriction map $VEC_G(X \times Y, Q) \rightarrow VEC_G(X_{cl} \times Y, Q)$ is a bijection.
- Proof. (1) By Lemma 3.2, we may assume that \tilde{E} is the trivial G-vector bundle $\dot{\mathbf{B}} \times F \times Y \times Q$. From Lemma 3.1 and the fact that the Γ -action on $\dot{\mathbf{B}} \times F \times Y$ is free, it follows that $E|_{\dot{\mathbf{X}}_{cl} \times Y}$ is isomorphic to the quotient of \tilde{E} by the Γ -action.

The action of $\gamma \in \Gamma$ on $\tilde{E} = \vec{B} \times F \times Y \times Q$ must be in the following form

$$(b, f, y, q)\gamma = (b\gamma, \gamma^{-1}f, y, \tilde{A}(\gamma)(b, f, y)(q))$$
 $b \in \dot{\mathbf{B}}, f \in F, y \in Y, q \in Q$

where $\widetilde{A}(\gamma) \in \operatorname{Mor}(\dot{\mathbf{B}} \times F \times Y, \operatorname{GL}Q)^G \cong M(\dot{\mathbf{B}}_{\gamma})$. Set $A(\gamma) := \widetilde{A}(\gamma)^{-1}$. Then one easily verifies that $\{A(\gamma)\}_{\gamma \in \Gamma}$ satisfies the 1-cocycle condition and gives rise to an element of $H^1(\Gamma, M(\dot{\mathbf{B}}_{\gamma}))$. Since $H^1(\Gamma, M(\dot{\mathbf{B}}_{\gamma})) = \{*\}$ by Lemma 2.2, there exists $\phi \in M(\dot{\mathbf{B}}_{\gamma})$ such that $A(\gamma) = \phi^{-1} \cdot \gamma \phi$ for all $\gamma \in \Gamma$. Then the following map gives an isomorphism from \widetilde{E} to a trivial $G \times \Gamma$ -vector bundle

$$\tilde{E} = \dot{\mathbf{B}} \times F \times Y \times Q \to \dot{\mathbf{B}} \times F \times Y \times Q$$
$$(b, f, y, q) \mapsto (b, f, y, (\phi(b, y)(f))(q)).$$

where the Γ -action on Q in the right hand side is trivial. This shows that $E|_{\dot{X}_{cl}\times Y}$ is isomorphic to a trivial G-vector bundle from the remark above.

(2) As noted in §1, the Equivariant Nakayama Lemma implies that the

restriction map $VEC_G(X \times Y, Q) \to VEC_G(X_{cl} \times Y, Q)$ is injective. We show its surjectivity. Let $E \in Vec_G(X_{cl} \times Y, Q)$. From (1) and Lemma 1.1, E is trivial over $\dot{X}_{cl} \times Y$ and $(X_{cl} \times Y)_f$ for some $f \in \mathcal{O}(A \times Y)$ such that f(0,y)=1. Let ψ be the transition function of E with respect to trivializations over $\dot{X}_{cl} \times Y$ and $(X_{cl} \times Y)_f$. Note that ψ can be viewed as an equivariant vector bundle automorphism of a trivial bundle over $(\dot{X}_{cl} \times Y) \cap (X_{cl} \times Y)_f = (X_{cl} \times Y)_{tf}$ with fiber Q. Since $(X_{cl} \times Y)_{tf}$ is a closed G-subvariety of an affine variety $(X \times Y)_{tf}$ and contains all closed G-orbits in $(X \times Y)_{tf}$, ψ extends to an equivariant vector bundle automorphism ψ of a trivial bundle over $(X \times Y)_{tf}$ by the Equivariant Nakayama Lemma. Let E be the G-vector bundle over $(X \times Y)_{tf}$ by the Equivariant function ψ . Clearly E restricts to E, and this proves the surjectivity.

REMARK. For $E \in \operatorname{Vec}_G(X \times Y, Q)$, $E|_{\dot{X} \times Y}$ is trivial since the restriction map $\operatorname{VEC}_G(\dot{X} \times Y, Q) \to \operatorname{VEC}_G(\dot{X}_{cl} \times Y, Q)$ is an injection from the Equivariant Nakayama Lemma.

By virtue of Theorem 3.3 (2), we will continue to study $VEC_G(X_{cl} \times Y, Q)$ instead of $VEC_G(X \times Y, Q)$ in the following. Set

$$\dot{A}_{y} := \dot{A} \times Y, \quad \tilde{A}_{y} := \dot{A}_{y} \times_{(A \times Y)} \tilde{A}_{y}$$

where \tilde{A}_{Y} is an affine scheme such that

$$\mathcal{O}(\widetilde{A}_Y) = \{ f(t,y) / g(t,y) \mid f(t,y), g(t,y) \in \mathcal{O}(A \times Y) \text{ and } g(0,y) = 1 \}.$$

Note that $\mathcal{O}(\tilde{A}_Y) = \mathcal{O}(\dot{A}_Y) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(\tilde{A}_Y)$. Similar definition applies for **B**. For a scheme Z together with a morphism $Z \to A \times Y$, we set

$$\mathfrak{P}(Z) := \operatorname{Mor}(Z \times_{A \times Y} (X_{cl} \times Y), \operatorname{GL} Q)^{G}.$$

Theorem 3.4. Let Q be a G-module which is multiplicity free with respect to H. If Y is an irreducible affine variety and every vector bundle over Y and $\dot{A} \times Y$ is trivial, then there exists a bijection

$$VEC_G(X_{cl} \times Y, Q) \cong \mathfrak{P}(\dot{A}_Y) \setminus \mathfrak{P}(\tilde{A}_Y) / \mathfrak{P}(\tilde{A}_Y).$$

Proof. Let $E \in \operatorname{Vec}_G(X_{cl} \times Y, Q)$. By Theorem 3.3 (1) and Lemma 1.1, there exist trivializations $\psi : E |_{\dot{X}_{cl} \times Y} \cong \dot{X}_{cl} \times Y \times Q$ and $\tilde{\psi} : E |_{(X_{cl} \times Y)_f} \cong (X_{cl} \times Y)_f \times Q$ where $f \in \mathcal{O}(A \times Y)$ and f(0,y) = 1. Then $\dot{\psi} \circ \tilde{\psi}^{-1}$ defines a transition function $\tilde{\alpha} \in \operatorname{Mor}((X_{cl} \times Y)_{tf}, \operatorname{GL}Q)^G$ by

$$\dot{\psi} \circ \tilde{\psi}^{-1}(x,y,q) = (x,y,\dot{\tilde{\alpha}}(x,y)q)$$

for $(x,y) \in (X_{cl} \times Y)_{tf}$, $q \in Q$. Note that an element of $Mor((X_{cl} \times Y)_{tf}, GLQ)$ is

124 K. Masuda

considered as an invertible matrix with entries in $\mathcal{O}((X_{cl} \times Y)_{tf})$. Since

$$\mathcal{O}((X_{cl} \times Y)_{tf}) = \mathcal{O}((A \times Y)_{tf}) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(X_{cl} \times Y)$$
$$= \mathcal{O}(A \times Y)_{tf} \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(X_{cl} \times Y)$$

where $\mathcal{O}(A \times Y)_{tf}$ denotes the localization by tf, the canonical inclusion $\mathcal{O}(A \times Y)_{tf} \to \mathcal{O}(\tilde{A}_Y)$ induces an injection $\operatorname{Mor}((X_{cl} \times Y)_{tf}, \operatorname{GL}Q)^G \to \mathfrak{P}(\tilde{A}_Y)$. We define a map $\Psi : \operatorname{VEC}_G(X_{cl} \times Y, Q) \to \mathfrak{P}(\tilde{A}_Y) \setminus \mathfrak{P}(\tilde{A}_Y) \setminus \mathfrak{P}(\tilde{A}_Y)$ by $\Psi([E]) = [\tilde{\alpha}]$. Then the map Ψ is well-defined. In fact, let $E' \in \operatorname{Vec}_G(X_{cl} \times Y, Q)$ and $\phi : E' \to E$ be a G-vector bundle isomorphism. Let ψ' be a trivialization of $E' \mid_{\dot{X}_{cl} \times Y}$ and ψ' a trivialization of $E' \mid_{\dot{X}_{cl} \times Y)_{f'}}$ where $f' \in \mathcal{O}(A \times Y)$, f'(0,y) = 1. Then $\psi' \circ \psi'^{-1}$ defines an element $\tilde{\alpha}' \in \mathfrak{P}(\tilde{A}_Y)$. The equivariant vector bundle automorphism $\psi \circ \phi \circ \psi'^{-1}$ of a trivial bundle over $(X_{cl} \times Y)_f \cap (X_{cl} \times Y)_{f'} = (X_{cl} \times Y)_{ff'}$ defines $\tilde{\alpha} \in \mathfrak{P}(\tilde{A}_Y)$. Similarly, $\psi' \circ \phi^{-1} \circ \psi^{-1}$ defines $\dot{\alpha} \in \operatorname{Mor}(\dot{X}_{cl} \times Y, \operatorname{GL}Q)^G = \mathfrak{P}(\dot{A}_Y)$. Since $\tilde{\alpha}' = \dot{\alpha}\tilde{\alpha}\tilde{\alpha}$, Ψ is well-defined. It is easy to see that Ψ is bijective.

REMARK. There are two hypotheses on an irreducible affine variety Y:(1) every vector bundle over Y is trivial, and (2) every vector bundle over $A \times Y$ is trivial. They are used in order to apply the glueing argument of Kraft-Schwarz; (1) is used in order to prove the bundle triviality over a neighborhood of $\pi_X^{-1}(0) \times Y$ (Lemma 1.1) and (2) is used in order to prove the bundle triviality over $X \times Y$ (Theorem 3.3). If Y is smooth and satisfies (1), then every vector bundle over $X \times Y$ is trivial ([6]). However, the author does not know whether and when (1) implies (2).

Since $\varphi \times id: (\mathbf{B} *^{\Gamma} F) \times Y \to X_{cl} \times Y$ is an isomorphism over A_Y by Lemma 3.1, it induces an isomorphism:

$$(\varphi \times id)_{\star} : \mathfrak{P}(\dot{A}_{Y}) \xrightarrow{\sim} M(\dot{B}_{Y})^{\Gamma}.$$

Lemma 3.5. For any G-module Q and an irreducible affine variety Y, the morphism $\varphi \times id$ induces a bijection

$$\mathfrak{P}(\dot{A}_{Y})\backslash\mathfrak{P}(\tilde{A}_{Y})/\mathfrak{P}(\tilde{A}_{Y})\cong M(\dot{B}_{Y})^{\Gamma}\backslash M(\tilde{B}_{Y})^{\Gamma}/(\varphi\times id)_{*}\mathfrak{P}(\tilde{A}_{Y}).$$

Proof. Note that $\mathcal{O}(\tilde{B}_{Y}) \cong \mathcal{O}(\tilde{A}_{Y}) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(B \times Y)$. In fact, the product map $\mathcal{O}(\tilde{A}_{Y}) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(B \times Y) \to \mathcal{O}(\tilde{B}_{Y})$ defined by $h_{1} \otimes h_{2} \to h_{1}h_{2}$ is an isomorphism. It is obvious that the map is $\mathcal{O}(\tilde{A}_{Y})$ -algebra homomorphism and injective. We show that it is surjective. Let $f/g \in \mathcal{O}(\tilde{B}_{Y})$ where $f,g \in \mathcal{O}(B \times Y)$ and g(0,y)=1. Set $\bar{g} := \prod_{\gamma \in \Gamma} \gamma g$. Then $\bar{g} \in \mathcal{O}(B \times Y)^{\Gamma} = \mathcal{O}(A \times Y)$ and $\bar{g}(0,y)=1$. Hence $\bar{g} \in \mathcal{O}(\tilde{A}_{Y})^{*}$ and f/g is the image of $\bar{g}^{-1} \otimes (f\bar{g}/g) \in \mathcal{O}(\tilde{A}_{Y}) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(B \times Y)$ by the product map. Thus

$$\begin{split} \mathcal{O}(\tilde{\boldsymbol{B}}_{\boldsymbol{Y}}) &= \mathcal{O}(\tilde{\boldsymbol{B}}_{\boldsymbol{Y}}) \otimes_{\mathcal{O}(\boldsymbol{B} \times \boldsymbol{Y})} \mathcal{O}(\dot{\boldsymbol{B}}_{\boldsymbol{Y}}) \\ &\cong \mathcal{O}(\tilde{\boldsymbol{A}}_{\boldsymbol{Y}}) \otimes_{\mathcal{O}(\boldsymbol{A} \times \boldsymbol{Y})} \mathcal{O}(\dot{\boldsymbol{B}}_{\boldsymbol{Y}}) \\ &= \mathcal{O}(\tilde{\boldsymbol{A}}_{\boldsymbol{Y}}) \otimes_{\mathcal{O}(\dot{\boldsymbol{A}} \times \boldsymbol{Y})} \mathcal{O}(\dot{\boldsymbol{B}}_{\boldsymbol{Y}}) \end{split}$$

i.e. $\tilde{B}_{\gamma} \cong \tilde{A}_{\gamma} \times_{\dot{A}_{\gamma}} \dot{B}_{\gamma}$. Since φ is G-equivariant, the isomorphism $\varphi \times id : \tilde{B}_{\gamma} *^{\Gamma} F \cong \tilde{A}_{\gamma} \times_{\dot{A}_{\gamma}} (i\dot{B} *^{\Gamma} F) \times Y) \to \tilde{A}_{\gamma} \times_{\dot{A}_{\gamma}} (i\dot{X}_{cl} \times Y)$ induces an isomorphism $(\varphi \times id)_{*} : \mathfrak{P}(\tilde{A}_{\gamma}) \to M(\tilde{B}_{\gamma})^{\Gamma}$. It is easy to see that $\varphi \times id$ induces a bijection from $\mathfrak{P}(\dot{A}_{\gamma}) \setminus \mathfrak{P}(\tilde{A}_{\gamma}) \setminus \mathfrak{P}(\tilde{A}_{\gamma}) \to M(\dot{B}_{\gamma})^{\Gamma} \setminus M(\tilde{B}_{\gamma})^{\Gamma} / (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{\gamma})$.

When Q is multiplicity free with respect to H, $M(\tilde{B}_{Y})^{\Gamma}$ is an abelian group since M is a torus. Hence we obtain from Theorem 3.4 and Lemma 3.5

Theorem 3.6. Under the assumptions in Theorem 3.4,

$$VEC_G(X_{cl} \times Y, Q) \cong M(\tilde{\mathbf{B}}_{\mathbf{Y}})^{\Gamma} / (M(\dot{\mathbf{B}}_{\mathbf{Y}})^{\Gamma} (\varphi \times id)_* \mathfrak{P}(\tilde{\mathbf{A}}_{\mathbf{Y}})).$$

By Theorem 3.6, we will analyze $M(\tilde{B}_{\gamma})^{\Gamma}/(M(\dot{B}_{\gamma})^{\Gamma}(\varphi \times id)_{*}\mathfrak{P}(\tilde{A}_{\gamma}))$ in the following sections.

4. The decomposition property

We set

$$M(\tilde{\boldsymbol{B}}_{Y})_{1} := \{ \mu \in M(\tilde{\boldsymbol{B}}_{Y}) \mid \mu(0, y) = I \}$$

$$M(\tilde{\boldsymbol{B}}_{Y})_{1}^{\Gamma} := M(\tilde{\boldsymbol{B}}_{Y})_{1} \cap M(\tilde{\boldsymbol{B}}_{Y})^{\Gamma}.$$

Note that $M(\tilde{B}_{\gamma})_1$ is considered as a direct product of copies of $\mathcal{O}(\tilde{B}_{\gamma})_1 := \{f \in \mathcal{O}(\tilde{B}_{\gamma}) | f(0,y) = 1\}.$

Lemma 4.1 (The decomposition property)

$$M(\tilde{\mathbf{B}}_{\mathbf{Y}})^{\Gamma} = M(\dot{\mathbf{B}}_{\mathbf{Y}})^{\Gamma} M(\tilde{\mathbf{B}}_{\mathbf{Y}})_{1}^{\Gamma}.$$

Proof. Every $0 \neq h(s,y) \in \mathcal{O}(\tilde{B}_{Y})$ is written in the form

$$h(s, y) = s^r f(s, y) / g(s, y)$$

for $r \in \mathbb{Z}$, f(s,y), $g(s,y) \in \mathcal{O}(B \times Y)$, $f(0,y) \neq 0$, g(0,y) = 1. If h is invertible, then $f(0,y) \in \mathcal{O}(Y)^*$. In fact, there exists $h' = s^r f'(s,y) / g'(s,y)$ such that hh' = 1. Here, $r' \in \mathbb{Z}$ and f' and g' satisfy similar conditions to f and g, respectively. Thus $s^{r+r'} f(s,y) f'(s,y) = g(s,y) g'(s,y)$. Since the right hand side is a polynomial in s with constant term 1, r+r' must not be positive. Suppose r+r' < 0. Comparing the terms with the lowest degree in s in both sides of the above identity,

f(0,y)f'(0,y) = 0. While $\mathcal{C}(Y)$ is an integral domain and neither f(0,y) nor f'(0,y) is zero, this is a contradiction. Thus r+r'=0 and f(0,y)f'(0,y)=1, i.e. f(0,y) is invertible. Hence we obtain

$$h(s,y) = f(0,y)s^r \cdot f(0,y)^{-1} f(s,y) / g(s,y) \in \mathcal{O}(\dot{B}_y)^* \mathcal{O}(\tilde{B}_y)_1$$

Thus $M(\tilde{B}_{Y}) = M(\dot{B}_{Y})M(\tilde{B}_{Y})_{1}$. Since $M(\dot{B}_{Y}) \cap M(\tilde{B}_{Y})_{1} = I$, the decomposition of $M(\tilde{B}_{Y})$ to a product of $M(\dot{B}_{Y})$ and $M(\tilde{B}_{Y})_{1}$ is unique. Let $\mu \in M(\dot{B}_{Y})^{\Gamma}$ and $\mu = \dot{\mu}\tilde{\mu}$ where $\dot{\mu} \in M(\dot{B}_{Y})$ and $\tilde{\mu} \in M(\tilde{B}_{Y})_{1}$. Since the Γ -action on $\mathcal{O}(\tilde{B}_{Y})$ preserves the order at s = 0 and Γ acts on M by permuting components (Lemma 2.1), it follows from the uniqueness of the decomposition of $M(\tilde{B}_{Y})$ to a product of $M(\dot{B}_{Y})$ and $M(\tilde{B}_{Y})_{1}$ that $\dot{\mu} \in M(\dot{B}_{Y})^{\Gamma}$ and $\tilde{\mu} \in M(\tilde{B}_{Y})^{\Gamma}$.

We denote by $\mathfrak{P}(\tilde{A}_{\gamma})_1$ the subgroup of $\mathfrak{P}(\tilde{A}_{\gamma})$ consisting of elements which are equal to the constant map to $I \in GLQ$ on $\{x_0\} \times Y$.

Proposition 4.2

$$M(\tilde{\mathbf{B}}_{\mathbf{Y}})^{\Gamma}/(M(\dot{\mathbf{B}}_{\mathbf{Y}})^{\Gamma}(\varphi \times id)_{\star}\mathfrak{P}(\tilde{\mathbf{A}}_{\mathbf{Y}})) \cong M(\tilde{\mathbf{B}}_{\mathbf{Y}})_{1}^{\Gamma}/(\varphi \times id)_{\star}\mathfrak{P}(\tilde{\mathbf{A}}_{\mathbf{Y}})_{1}.$$

Proof. From Lemma 4.1 and the fact that $M(\dot{B}_{Y})^{\Gamma} \cap M(\tilde{B}_{Y})_{1}^{\Gamma} = I$, the projection $M(\tilde{B}_{Y})^{\Gamma} \to M(\tilde{B}_{Y})^{\Gamma} / M(\dot{B}_{Y})^{\Gamma} \cong M(\tilde{B}_{Y})_{1}^{\Gamma}$ induces an isomorphism

$$M(\tilde{\mathbf{B}}_{\mathbf{Y}})^{\Gamma}/(M(\tilde{\mathbf{B}}_{\mathbf{Y}})^{\Gamma} (\varphi \times id)_{*}\mathfrak{P}(\tilde{A}_{\mathbf{Y}})) \cong M(\tilde{\mathbf{B}}_{\mathbf{Y}})_{1}^{\Gamma}/(M(\tilde{\mathbf{B}}_{\mathbf{Y}})_{1}^{\Gamma} \cap (\varphi \times id)_{*}\mathfrak{P}(\tilde{A}_{\mathbf{Y}})).$$

Since
$$M(\tilde{B}_{Y})_{1}^{\Gamma} \cap (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{Y}) = (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{Y})_{1}$$
, the proposition follows.

Let $\hat{\mathbf{B}} := \operatorname{Spec} \mathbf{C}[[s]]$ where $\mathbf{C}[[s]]$ denotes the ring of formal power series in s. We set $\hat{\mathbf{B}}_{Y} = \hat{\mathbf{B}} \times Y$. The group $M(\hat{\mathbf{B}}_{Y})$ has a natural grading induced from $\mathcal{O}(\hat{\mathbf{B}}) = \mathbf{C}[[s]]$. For $r \ge 1$, we define

$$M(\hat{\mathbf{B}}_{\mathbf{Y}})_{r} := \{ \mu \in M(\hat{\mathbf{B}}_{\mathbf{Y}}) \mid \mu = I + O(s') \}$$

$$M(\hat{\mathbf{B}}_{\mathbf{Y}})_{r}^{\Gamma} := M(\hat{\mathbf{B}}_{\mathbf{Y}})_{r} \cap M(\hat{\mathbf{B}}_{\mathbf{Y}})^{\Gamma}.$$

We also define $\hat{A}_Y = \hat{A} \times Y$ where $\hat{A} = \operatorname{Spec} C[[t]]$ and $\mathfrak{P}(\hat{A}_Y)_1$ in a similar way to $\mathfrak{P}(\tilde{A}_Y)_1$. There exists a canonical map

$$M(\tilde{B}_{\gamma})_{1}^{\Gamma}/(\varphi \times id)_{*}\mathfrak{P}(\tilde{A}_{\gamma})_{1} \rightarrow M(\hat{B}_{\gamma})_{1}^{\Gamma}/(\varphi \times id)_{*}\mathfrak{P}(\hat{A}_{\gamma})_{1}.$$

In the following section, we will show that the above map is in fact a bijection. For preparation, we prove

Lemma 4.3. For all $r \ge 1$,

$$M(\hat{\boldsymbol{B}}_{Y})_{1}^{\Gamma} = M(\tilde{\boldsymbol{B}}_{Y})_{1}^{\Gamma} M(\hat{\boldsymbol{B}}_{Y})_{r}^{\Gamma}.$$

Proof. It is clear that $M(\hat{B}_{Y})_{1}^{\Gamma} \supset M(\tilde{B}_{Y})_{1}^{\Gamma} M(\hat{B}_{Y})_{r}^{\Gamma}$. We show the opposite inclusion. Let $\mu = (h_{1}(s, y), \dots, h_{q}(s, y)) \in M(\hat{B}_{Y})_{1}^{\Gamma}$ where $h_{i}(s, y) = 1 + \sum_{j=1}^{r-1} a_{ij}(y)s^{j} + O(s^{r})$, and $a_{ij}(y) \in \mathcal{O}(Y)$ for $1 \le i \le q$. Define $\tilde{\mu} = (\tilde{h}_{1}(s, y), \dots, \tilde{h}_{q}(s, y))$ by $\tilde{h}_{i}(s, y) := 1 + \sum_{j=1}^{r-1} a_{ij}(y)s^{j}$ for $1 \le i \le q$. Since the Γ -action preserves the grading on $M(\hat{B}_{Y})_{1}$ (Lemma 2.1), $\tilde{\mu} \in M(\tilde{B}_{Y})_{1}^{\Gamma}$ and $\tilde{\mu}^{-1} \cdot \mu \in M(\hat{B}_{Y})_{r}^{\Gamma}$.

5. Moduli of vector bundles over $X \times Y$

We define

$$\mathfrak{E}(\hat{A}_Y) := \operatorname{Mor}(\hat{A}_Y \times_{A \times Y} (X_{cl} \times Y), \text{ End } Q)^G.$$

Note that $\mathfrak{C}(\hat{A}_{Y}) \cong \mathcal{O}(\hat{A}_{Y}) \otimes_{\mathfrak{O}(A)} \operatorname{Mor}(X_{cl}, \operatorname{End} Q)^{G}$. Since $\operatorname{Mor}(X_{cl}, \operatorname{End} Q)^{G}$ is a free module of rank dim $\operatorname{End}(Q)^{H}$ over $\mathcal{O}(X_{cl})^{G} = \mathcal{O}(A)$ for any G-module Q ([10]), $\mathfrak{C}(\hat{A}_{Y})$ is a free module of rank q over $\mathcal{O}(\hat{A}_{Y})$.

Let m be the Lie algebra of M, i.e.,

$$\mathfrak{m} := \operatorname{Mor}(F, \operatorname{End} Q)^G \cong \operatorname{End}(Q)^H \cong C^q$$
.

The map $\varphi: \mathbf{B} *^{\Gamma} F \to X_{cl}$ induces an $\mathcal{O}(\hat{A}_{Y})$ -module homomorphism $(\varphi \times id)_{\sharp}: \mathfrak{C}(\hat{A}_{Y}) \to \mathfrak{m}(\hat{\mathbf{B}}_{Y})^{\Gamma}$. Setting Y to be a point, we obtain an $\mathcal{O}(\hat{A})$ -module homomorphism $\varphi_{\sharp}: \mathfrak{C}(\hat{A}) \to \mathfrak{m}(\hat{\mathbf{B}})^{\Gamma}$ where $\mathfrak{C}(\hat{A}):=\operatorname{Mor}(\hat{A} \times_{A} X_{cl}, \operatorname{End} Q)^{G}$. The morphism $\varphi_{\sharp}: \mathfrak{C}(\hat{A}) \to \mathfrak{m}(\hat{\mathbf{B}})^{\Gamma}$ is an injection of free $\mathcal{O}(\hat{A})$ -modules and of full rank ([8, 6.1]). Through the canonical isomorphisms $\mathfrak{C}(\hat{A}_{Y}) \cong \mathfrak{C}(\hat{A}) \otimes_{\mathcal{C}} \mathcal{O}(Y)$ and $\mathfrak{m}(\hat{\mathbf{B}}_{Y})^{\Gamma} \cong \mathfrak{m}(\hat{\mathbf{B}})^{\Gamma} \otimes_{\mathcal{C}} \mathcal{O}(Y)$, $(\varphi \times id)_{\sharp}: \mathfrak{C}(\hat{A}_{Y}) \to \mathfrak{m}(\hat{\mathbf{B}}_{Y})^{\Gamma}$ agrees with $\varphi_{\sharp} \otimes id: \mathfrak{C}(\hat{A}) \otimes_{\mathcal{C}} \mathcal{O}(Y) \to \mathfrak{m}(\hat{\mathbf{B}})^{\Gamma} \otimes_{\mathcal{C}} \mathcal{O}(Y)$. Note that $\mathfrak{C}(\hat{A}_{Y})$ inherits a grading induced from $\mathcal{O}(X_{cl})$. For $r \geq 1$, let $\mathfrak{C}(\hat{A}_{Y})_{r}$, be the ideal of $\mathfrak{C}(\hat{A}_{Y})$ generated by the homogeneous elements of degree r. We define

$$\mathfrak{P}(\hat{A}_{Y})_{r} := \{ A \in \mathfrak{P}(\hat{A}_{Y}) \mid A - I \in \mathfrak{G}(\hat{A}_{Y})_{r} \}$$

$$\mathfrak{m}(\hat{B}_{Y})_{r}^{\Gamma} := \{ \mu \in \mathfrak{m}(\hat{B}_{Y})^{\Gamma} \mid \mu = O(s^{r}) \}.$$

We have a commutative diagram

$$\mathfrak{P}(\hat{A}_{Y})_{r} \stackrel{(\varphi \times id)_{*}}{\to} M(\hat{B}_{Y})_{r}^{\Gamma}$$

$$\stackrel{\exp \uparrow}{\downarrow} \qquad \qquad \qquad \uparrow \uparrow^{\exp}$$

$$\mathfrak{E}(\hat{A}_{Y})_{r} \stackrel{\to}{\to} m(\hat{B}_{Y})_{r}^{\Gamma}$$

where the vertical maps are isomorphisms induced from exp: End $Q \rightarrow GLQ$.

Lemma 5.1. There exists a positive integer r_0 such that $(\varphi \times id)_* \mathfrak{P}(\hat{A}_{\gamma})_r = M(\hat{B}_{\gamma})_r^{\Gamma}$ for any $r \ge r_0$.

Proof. Setting Y to be a point in $\mathfrak{E}(\hat{A}_Y)_r$, we also have $\mathfrak{E}(\hat{A})_r$ for $r \ge 1$. Then there exists a positive integer r_0 such that $\varphi_{\sharp}\mathfrak{E}(\hat{A})_r = \mathfrak{m}(\hat{B})_r^{\Gamma}$ for any $r \ge r_0$ ([8, 6.1]). Thus

$$\begin{split} (\varphi \times id)_{\sharp} \mathfrak{E}(\hat{A}_{Y})_{r} &\cong \varphi_{\sharp} \mathfrak{E}(\hat{A})_{r} \otimes_{\mathbf{C}} \mathcal{O}(Y) \\ &= \mathfrak{m}(\hat{\mathbf{B}})_{r}^{\Gamma} \otimes_{\mathbf{C}} \mathcal{O}(Y) \\ &\cong \mathfrak{m}(\hat{\mathbf{B}}_{Y})_{r}^{\Gamma} \,. \end{split}$$

Using the above commutative diagram, we have $(\varphi \times id)_* \mathfrak{P}(\hat{A}_{\gamma})_r = M(\hat{B}_{\gamma})_r^{\Gamma}$.

Proposition 5.2. The canonical map

$$M(\tilde{\mathbf{B}}_{\mathbf{y}})_{1}^{\Gamma}/(\varphi \times id)_{\star}\mathfrak{P}(\tilde{\mathbf{A}}_{\mathbf{y}})_{1} \to M(\hat{\mathbf{B}}_{\mathbf{y}})_{1}^{\Gamma}/(\varphi \times id)_{\star}\mathfrak{P}(\hat{\mathbf{A}}_{\mathbf{y}})_{1}$$

is a bijection.

Proof. The surjectivity follows from Lemmas 4.3 and 5.1. We show its injectivity. It is enough to show that $M(\tilde{B}_{Y})_{1}^{\Gamma} \cap (\varphi \times id)_{*} \mathfrak{P}(\hat{A}_{Y})_{1} \subset (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{Y})_{1}$. Let $\mu \in M(\tilde{B}_{Y})_{1}^{\Gamma} \cap (\varphi \times id)_{*} \mathfrak{P}(\hat{A}_{Y})_{1}$. Since $M = \operatorname{Mor}(F, \operatorname{GL} Q)^{G} \subset \operatorname{Mor}(F, \operatorname{End} Q)^{G} = \mathfrak{m}$, we can consider $M(\tilde{B}_{Y})^{\Gamma}$ as a subset of $\mathfrak{W}(\tilde{A}_{Y})^{\Gamma}$. Similarly, we can consider $\mathfrak{P}(\hat{A}_{Y})$ as a subset of $\mathfrak{W}(\hat{A}_{Y})$. We regard μ as an element of $\mathfrak{m}(\tilde{B}_{Y})^{\Gamma} \cap (\varphi \times id)_{\sharp} \mathfrak{V}(\hat{A}_{Y}) \cong \mathcal{O}(\tilde{A}_{Y}) \otimes_{\sigma(A)} \mathfrak{m}(B)^{\Gamma} \cap \mathcal{O}(\hat{A}_{Y}) \otimes_{\sigma(A)} \varphi_{\sharp} \mathfrak{V}(A)$ where $\mathfrak{V}(A) = \operatorname{Mor}(X_{cl}, \operatorname{End} Q)^{G}$. Since $\varphi_{\sharp} : \mathfrak{V}(A) \to \mathfrak{m}(B)^{\Gamma}$ is an injection of free $\mathcal{O}(A)$ -modules and of full rank ([8, 6.1]), one sees that μ is an element of $\mathcal{O}(\tilde{A}_{Y}) \otimes_{\sigma(A)} \varphi_{\sharp} \mathfrak{V}(A) \cong (\varphi \times id)_{\sharp} \operatorname{Mor}(\tilde{A}_{Y} \times_{(A \times Y)}(X_{cl} \times Y), \operatorname{End} Q)^{G}$. Since $\mu \in (\varphi \times id)_{*} \mathfrak{P}(\hat{A}_{Y})_{1}$, this implies that $\mu \in (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{Y})_{1}$. Hence the injectivity follows.

Now, we can describe $VEC_c(X \times Y, Q)$.

Theorem 5.3. Let X be a weighted G-cone with smooth one dimensional quotient and Y an irreducible affine variety such that every vector bundle over Y and $A \times Y$ is trivial. When a G-module Q is multiplicity free with respect to a principal isotropy group of X, the map

$$\Phi: \operatorname{Mor}(Y, \mathbb{C}^p) \to \operatorname{VEC}_G(X \times Y, \mathbb{Q})$$
$$f \mapsto \lceil (id_X \times f) * \mathfrak{B} \rceil$$

is a bijection. Here p and B are given in Theorem A in the introduction.

Proof. We have proved

$$VEC_{G}(X \times Y, Q) \cong VEC_{G}(X_{cl} \times Y, Q) \quad \text{(by 3.3 (2))}$$

$$\cong M(\tilde{B}_{Y})^{\Gamma} / (M(\dot{B}_{Y})^{\Gamma} (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{Y})) \quad \text{(by 3.6)}$$

$$\cong M(\tilde{B}_{Y})_{1}^{\Gamma} / (\varphi \times id)_{*} \mathfrak{P}(\tilde{A}_{Y})_{1} \quad \text{(by 4.2)}$$

$$\cong M(\hat{B}_{Y})_{1}^{\Gamma} / (\varphi \times id)_{*} \mathfrak{P}(\hat{A}_{Y})_{1} \quad \text{(by 5.2)}.$$

From the commutative diagram above Lemma 5.1, the exponential map induces an isomorphism

$$\begin{split} M(\hat{\pmb{B}}_{Y})_{1}^{\Gamma}/(\varphi\times id)_{*}\mathfrak{P}(\hat{\pmb{A}}_{Y})_{1} &\cong \mathfrak{m}(\hat{\pmb{B}}_{Y})_{1}^{\Gamma}/(\varphi\times id)_{\sharp}\mathfrak{E}(\hat{\pmb{A}}_{Y})_{1} \\ &\cong (\mathfrak{m}(\hat{\pmb{B}})_{1}^{\Gamma}/\varphi_{\sharp}\mathfrak{E}(\hat{\pmb{A}})_{1}) \otimes_{\pmb{C}} \mathcal{O}(Y). \end{split}$$

Hence $\operatorname{VEC}_G(X \times Y, Q) \cong (\operatorname{m}(\hat{\mathbf{B}})_1^{\Gamma} / \varphi_{\sharp} \mathfrak{G}(\hat{\mathbf{A}})_1) \otimes_{\mathbf{C}} \mathcal{O}(Y)$. In particular, when Y is a single point, we obtain a bijection $\operatorname{VEC}_G(X,Q) \cong \operatorname{m}(\hat{\mathbf{B}})_1^{\Gamma} / \varphi_{\sharp} \mathfrak{G}(\hat{\mathbf{A}})_1$. By composing the bijection to the map $C^p \ni z \mapsto [\mathfrak{B}|_{X \times \{z\}}] \in \operatorname{VEC}_G(X,Q)$, we have a bijection

$$C^p \cong \mathrm{VEC}_G(X,Q) \cong \mathrm{m}(\hat{\mathbf{B}})_1^{\Gamma} / \varphi_{\sharp} \mathfrak{E}(\hat{A})_1.$$

We identify $\mathfrak{m}(\hat{\mathbf{B}})_{1}^{\Gamma}/\varphi_{\sharp}\mathfrak{E}(\hat{\mathbf{A}})_{1}$ with C^{p} through the above bijection. Using this identification we have a bijection

$$\begin{aligned} \operatorname{VEC}_{G}(X \times Y, Q) & \cong (\operatorname{m}(\hat{B})_{1}^{\Gamma} / \varphi_{\sharp} \mathfrak{E}(\hat{A})_{1}) \otimes_{\mathbf{C}} \mathcal{O}(Y) \\ & \cong C^{p} \otimes_{\mathbf{C}} \mathcal{O}(Y) \\ & \cong \operatorname{Mor}(Y, C^{p}) \end{aligned}$$

which we denote by $\Psi: VEC_G(X \times Y, Q) \to Mor(Y, C^p)$. Note that when Y is a point, Ψ becomes $\Psi_0: VEC_G(X, Q) \cong m(\hat{B})_1^{\Gamma} / \phi_{\sharp} \mathfrak{E}(\hat{A})_1 \cong C^p$ and it satisfies that $\Psi_0([\mathfrak{B}|_{X \times \{z\}}]) = z$ for any $z \in C^p$. Thus it follows from the way of constructing Ψ that

$$(\Psi \circ \Phi)(f)(y) = \Psi([(id_X \times f)^* \mathfrak{B}])(y)$$
$$= \Psi_0([\mathfrak{B} \mid_{X \times \{f(y)\}}])$$
$$= f(y)$$

for any $f \in \text{Mor}(Y, \mathbb{C}^p)$ and $y \in Y$. Thus $\Psi \circ \Phi = id$ (in particular, Φ is an injection. cf. remark in the introduction). Since Ψ is a bijection, in particular, an injection, the above identity implies that Φ is a surjection. Hence Φ is bijective.

As remarked in the introduction, if we take $Y = A^m$ the assumptions on Y in

130 K. Masuda

Theorem 5.3 are satisfied.

Corollary 5.4. Let X, Q, and p as in Theorem 5.3. Then

$$VEC_G(X \times A^m, Q) \cong Mor(A^m, C^p).$$

REMARK. There is a formula to compute the dimension p of $VEC_G(X,Q)$ ([8, 6.5]), [5, VI]).

Let $Q \cong \bigoplus_{i=1}^q W_i$ where W_i $(1 \le i \le q)$ are irreducible *H*-modules. If every W_i is *G*-stable, then $VEC_G(X,Q)$ is trivial (cf. [5, VII]). So we have

Corollary 5.5. Let X and Q be as in Theorem 5.3 and W_i be as above. If every W_i is G-stable, then for any affine variety Y satisfying the assumptions in Theorem 5.3, $VEC_G(X \times Y, Q)$ is trivial.

For example, let $G = O(2) = \mathbb{C}^* \rtimes \mathbb{Z}/2\mathbb{Z}$ and V_m $(m \ge 1)$ be a 2-dimensional G-module on which \mathbb{C}^* acts with weights m and -m and the generator of $\mathbb{Z}/2\mathbb{Z}$ acts by interchanging the weight spaces. It is easy to see that $V_m//G \cong A$ and the principal isotropy group of V_m is a dihedral group $D_m = \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/2\mathbb{Z}$. Note that V_l is an irreducible D_m -module when $m \nmid 2l$. Hence for any affine variety Y satisfying the assumptions in Theorem 5.3, $\mathrm{VEC}_G(V_m \times Y, V_l)$ is trivial for a positive integer l such that $m \nmid 2l$.

References

- [1] H. Bass and W. Haboush: Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482.
- [2] H. Kraft: G-vector bundles and the linearization problem, CMS Conference Proceedings 10 (1989), 111-123.
- [3] H. Kraft: Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik D1, Vieweg Verlag, Braunschweig, 1984.
- [4] F. Knop: Nichitlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220.
- [5] H. Kraft and G.W. Schwarz: Reductive group actions with one dimensional quotient, Publ. Math. IHES 76 (1992), 1-97.
- [6] H. Lindel: On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981), 319-323.
- [7] D. Luna: Slice etales, Bull. Soc. Math. France, Memoire 33 (1973), 81-105.
- [8] K. Masuda: Moduli of equivariant algebraic vector bundles over affine cones with one dimensional quotient, Osaka J. Math. 32 (1995), 1065-1085.
- [9] M. Masuda, L. Moser-Jauslin and T. Petrie: The equivariant Serre problem for abelian groups, Topology 35 (1996), 329-334.
- [10] M. Masuda, L. Moser-Jauslin and T. Petrie: Equivariant algebraic vector bundles over cones with smooth one dimensional quotient, to appear in J. Math. Soc. of Japan

- [11] M. Masuda, L. Moser-Jauslin and T. Petrie: Invariants of equivariant algebraic vector bundles and inequalities for dominant weights, (preprint).
- [12] M. Masuda and T. Petrie: Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687-714.
- [13] G.W. Schwarz: Exotic algebraic group actions, C. R. Acad. Sci. Paris 309 (1989), 89-94.
- [14] J.P. Serre: Local fields, GTM 67, Springer Verlag, New York-Heidelberg-Berlin, 1979.
- [15] R.G. Swan: Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120.

Department of General Education Akashi College of Technology 679-3 Nishioka Uozumi Akashi 674 JAPAN

E-mail: kayo@akashi.ac.jp