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1. Introduction and main result

In this paper we are concerned with formal power series isoisitof the following
first order semi-linear partial differential equation:

d
P(x, D)u(x) = Y a;i(x)Du(x) = f(x,u(x)), u(0)=0
(1.1) i=1 )

Bx,- ’

where coefficients; M )i( =,1..,d) and f (, u ) are holomorphic in a neighborhood
of x =0 and ,u ) =(Q 0), respectively.

If a;(0) # O for somei , the solvability is well known by Cauchy-Kowadky's
theorem. Therefore we shall study the case where

x=(x1,....,xq) €C?, D;=

(1.2) a;(0)=0 forall i =1...,d,

which is called a singular or degenerate case. In the foligwive always as-
sume (1.2).

The first purpose of this paper is to prove the existence ardutfiqueness of
the formal power series solution x () §:|a\21”axa (@ = (o1,...,0q) € N9,
N={0,1L2...}, o] =aa+---+ag x* =x;"--x5) centered at the origin for the
singular equation (1.1). As we will see later, we can proveritder some condition
on the principal partP X, D ). However, this formal power serieduson u (x) does
not necessarily converge. So we would like to obtain the odtdivergence, which is
called the Gevrey order, of the formal solution (cf. Defmiti1.1). This is the second
purpose of this paper.

1.1. Motivation. In the paper Hibino [2], we considered the following singula
first order linear partial differential equation:

d
(1.3) P(x, DYu(x) = a;(x)Diu(x) + b(x)u(x) = £ (x).

i=1
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wherea; () are the same as the above and we assume §1x2); ( J andare(hplo-
morphic atx =0. We remark that we do not demand (0) =0 here.

In Hibino [2], we obtained the condition under which the falnpower series
solutionu c) =) .\ Uax® Of the equation (1.3) exists uniquely, and obtained the
Gevrey order ofu X ). Firstly, let us introduce this result.

Let D,a(0) := (D;a; (0)},j=1...« be the Jacobi matrix at the origin of the mapping

.....

a=(a,...,ay) and let its Jordan canonical form be
A
B
By
0,
where
AL O 01
o NFEOG=1...,m),
)\2. O.'- .
A= , B, = , 6;=0o0rl¢=1...,m-1),
5111—1 1
h=1,...,k,
A 0
N—————

np

and 0, is a zero-matrix of ordep m( k p>0; ny > 2, m +ny+---+n; +p =d).
Let us assume the following condition (Po) according to thki@ ofm (“P0” de-
rives from Poincaré):

m

Z Aia; +b(0)
b(0) %0 (if m =0),

for all N™ (if m > 1
(Po) > dlal foral «c€ (if m > 1),

where is a positive constant independent @fc N™.
Before stating the main result in Hibino [2], let us give thefidition of the
Gevrey order, which gives the rate of divergence of formakgroseries.

Derinimon 1.1, Letu () =)\ Uax® be a formal power series centered at the
origin. We say that: X Yelongs toG¥} (s = (s1, ..., ss) € RY), if the power series

vE) =) “a(a')gi_m
aeNd !

d

converges in a neighborhood 6= 0, where ) = (1,...,1), s—1¥ = (s—1, ..., 54—
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1) and @1)*~1 = (@)t (ag) L. Especially,u ¢ )e G} if and only if u(x)
is a convergent power series near =0.

Now the main result in Hibino [2] is stated as follows:

Theorem 1.1 (Hibino [2]). Under the condition(Po), the equation(1.3) has a
unique formal power series solutian(x) = > . 4ox“. Furthermore the formal so-
lution u(x) belongs toG 2.2V} where

max{ni, ..., ni} (if k > 1),

N=?21 (if k=0and p > 1),

(if k= p =0).

NI =

Therefore in the casé = p = 0 the formal solution convergedut in other cases it
diverges in general.

The purpose of this paper is to generalize this result up moi-rear equations.

Now let us consider the equation (1.3) again and let us tryatoutateu (0). Since
the condition (Po) implies thak (0¥ O, it is easy to prove that (0) ¥ (X)(0).
Therefore it follows from a change of unknown functions: ( 3 %) € u(0) that under
the conditiond (0)# O (especially the condition (Po)) the equation (1.3) isiemant
to the following one:

d
(1.4) > ai(x)Div(x) +bx)v(x) =g(x), v(0)=0
i=1

whereg ) is holomorphic in a neighborhood of the origin witt0) € 0.
Therefore corresponding to the conditign (0) =0, it is naltuo assume the fol-
lowing condition for our equation (1.1):

(1.5) f(@0)=0

In the following we always assume (1.5).

1.2. Main result. Let us state the main result in this paper. First, we state the

condition. Instead of the condition (Po), we assume theofotig condition (Po2):

m

> Xiai — £u(0,0)

i=1

£(0,0)#0 (if m = 0)

> 8la| for all aeN™ (if m > 1),

(P02
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where f, (Q 0) =§f/0u)(0, 0).
Now our main result is stated as follows:

Theorem 1.2. Under the condition(Po2), the equation(1.1) has a unique for-
mal power series solution(x) = Z‘a|21 un,x®. Furthermore the formal solutiom(x)

belongs toG{?---2N} ‘where N is same as iTheorem 1 1

In order to prove Theorem 1.2, we shall transform the eqnatiol) in the next
section. For that transformed equation we can obtain theiggeGevrey order in indi-
vidual variables of the formal solution (Theorem 2.1). Walklprove the unique ex-
istence of the formal solution and its Gevrey order seplrafedmitting the unique
existence of the formal solution, we will prove its Gevreyder in §4 (in the case
m = 0) and§5 (in the casen > 1) by using the contraction mapping principle in
Banach spaces which consist of formal power series. The ddagpaces employed in
the proof will be introduced ir$3. The unique existence of the formal solution will be
proved in§6.

_Remark 1.1. The studies in this paper and Hibino [2] are inspired oy $tudy
in Oshima [8]. He studied a characterization of the kernel dedciokernel of the lin-
ear mapping

P(x,D): O — O,

where O is the set of holomorphic functions at the origin. He studikd casen > 1
andk =0 in our notation, and obtained the condition under Wwhihe formal solution
converges. As mentioned in our theorem, when> 1, k = 0 andp > 1, the for-

gives one of the generalizations Gfshima [8].

Many mathematicians have generalizédhima’s result. The cases of higher order
equations are studied by Miyake [4] and Miyake-Hashimotph Monlinear equations
are studied in Gérard-Tahara [1] and Miyake-Shirai [6].rbtaver for linear equations,
Kashiwara-Kawai-Sjostrand [3] and Miyake-Yoshino [7{gidifferent characterizations
of convergence of formal solutions.

2. Reduction of equation and Newton polyhedron

In order to prove Theorem 1.2 we shall transform the equatioh) by a linear
transform of independent variables which reduées (0) tdatslan canonical form.
A reduced equation is written as follows according to theugalofm ,k andp :

Case (). m>1,k>1,p>1:

P =go(x, yb oo ¥R ) g, vh oy zoulx yh o 0E ),

(2.1)
u(0,0,...,0,0)=0Q
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wherex = f1,...,x,) € C", y" = (f,...,yl) € C* (h = 1,...,k) and

z = (z1,...,zp) € CP. go and g are holomorphic at the origin which satisfy
20(0,0,...,0,0) = 0 andg £, y*, ..., %, z,0) = g.(x,y%, ..., y*, z,0) = 0, respec-
tively. FurthermoreP; is a linear partial differential operator which has the daling
form:

(2.2) P = Z Aixi o= = £(0,0) +P]+ P+ P]"+P/" +h,

l

where

m—1

Pl = Z 5 x,+1
finite

¥ Z < > Ciagi gig (8 ¥ oo YK, DX ONP - (yk)ﬁkzv) ox;’

lal+| gL+ | 0¥ #7122
|21

ny finite

_ h 1 k
2009 5[ (D S I
h=1 jy=1 N Jale L+ 8 4]y 22
lal>1
1 1 k k 8
x x () () Z”)a p
Vi
p finite 9
1 k 18t kyg*
+Z( TN 3 G P9 10 LR z)5
=1N o+ gL+ 8K 4y | >2 1
lal>1
k np—
P =) Z yﬂ,u
h=1 j,= th

n finite
+ Z > ( Yoo R D0YT (yk)ﬁkﬂ) o
h=1 ja=1 ™| B+ -+ By 22
finite ) . )
+ Z < Z egpt g (0, Y Y DN ()P z”) —
|4+ B |+ |y | >2
m finite

1 & 0
P{”’=Z( ) c,-ﬂl...aw(x,yl,...,yk,z)(yl)ﬁ---(yk)ﬁz”)
i=1

ox;’
| BE| -+ B+ v | >2 !

h:h(x7yl7"'7yk7z)
finite
1 k
= ) Ragr. o,y Y5 x0T - (64 2.
[at]+] B[+ +[ BF]+]y| >1
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In the above expressions, all coefficienfss:...5:, €tc., are holomorphic at the origin,
and none of them vanish at the origin unless they vanish ichdhyt In the following
expressions, we assume the same conditions for those doactippearing in the coef-
ficients.

Case (i), m>1,k>1,p=0:

P =go(x, v . 9 )+ g (e yh oy ue, vt L yR),

2.3
@3 u(0,0,...,0)=0,

where go and g are holomorphic at the origin which satisfy(0,0,...,0) = 0 and
glx, yL ..., ¥5,0) = gu(x, yL, ..., y*, 0) = 0, respectively. The linear partial differen-
tial operatorpP; is same as (2.2), where

m—1

P{ —Z5x,+1

m finite
N . «\ O
(T st e o)

i=1 || +|BL|+ -+ BK | >2
la>1

n finite
1 \ O
P = ZZ ( D dhepepl OO0 ) oy}’
Jn

h=1 jp=1 N jaf+ gl gF| 22
>1

le| 2

k np—

DY Z Vigor
h=1 j,= Jh
ny finite o
1 k
S ( )OI T O e et )a—,,,
h=1 jy=1 |BY+--+|8F[>2 Jn
m finite P
1
Pllm = Z ( Z C,‘ﬂl..ﬂk(x’ yl,...,yk)(yl)ﬁ "'(yk)ﬁ )8)(
=1 N B ] B4 >2 ’
— 1 k
h_h(xvyv"'vy)
finite
1 k
= S hapegyt Ly ON (M

o[ +] B +--+] B4 21
Case (i), m>1,k=0,p>1

(2.4) P = go(x, z) + g(x, z,u(x,2)), u(0,0)=0Q

where go and g are holomorphic at the origin witpy(0, 0) = 0 andg £,z, 0)=
gu(x, z,0) = 0, respectively. The linear partial differential operafris same as (2.2),
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where

m—1 9 m finite P
Py = Z 5ixi+18x,- +Z ( Z Ciar (X, Z)XOLZ’Y> Ox:’

1

i=1 i=1 [af+]v|=>2
|| >1
p finite 0
P// — @y
1~ eqav(xv 7)x“z 8_7
g=1 N lal+y[>2 %q
] >1
p finite
"o ~ 0
P = E § egy(x, 2)z 92,
q=1 *|y|>2 4
m finite
nmro_ 2 : 2 : ~ 9
Pl = C,'»Y()C, Z)Z 5,
i=l N yl=2 !
h = h(x,z)
finite
= g havy(x, 2)x%27.
la+y[>1

Case (iv). m>1,k=p=0:
(2.5) Pru = go(x) + g (x, u(x)), u(0)=0,

where go and g are holomorphic at the origin witfp(0) =0 andg &, 0= g.(x,0) =
0, respectively. The operatadr; is given by

m 8 m—1 8
(2.6) Pr=) Aixig— = fu0,0)+)  dixinas—
i=1 ! i=1 ¢
m finite D) finite
+Z ( Z Cia(x)x )8)6,‘ + Z ha(x)x.
izl a|>2 la|>1

Case (v). m=0,k>1,p>1.

Plu:gO(ylv---ayka)"'g(yl,---,yk,Z,M(yl,---,yk,Z)),
u(0,...,0,0)=Q

2.7)

where go and g are holomorphic at the origin which satisfy(0,...,0,0) = 0 and
gyt ...y, 2,0) = g.(vY, ..., ¥, z,0) = 0, respectively. Furthermor®; is a linear
partial differential operator which has the following farm

(2.8) Py =—f£,(0,0)+P/" +h,
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where
k np—
" —
DY Z y
h=1 j,= /"

k  ny finite P
1 k

) Sl (D S Aol P

Jn

=1 n=1 N B By 22

finite
1 k (9
+Z ( Z eQﬁl"'BkV(ylv"'vykv Z)(yl)ﬁ (yk)ﬁ Zv)a_zqv

g=1 B+ H] B+ ] 22
h=hOt ...,y 2)
finite
1 k
Z hﬁl”'ﬁk’)’(ylv M) ykv Z)(yl)ﬁ e (yk)ﬁ Z’Y'
[BY[+---+] B4 [+]v] >1

<

Case (vi). m=0,k>1, p=0:

(2'9) Plu:go(yl7"'7yk)+g(yl7"'7yk7u(y17"'7yk))7 u(oﬂ"'ﬂo)zoﬂ

where go and g are holomorphic at the origin witfp(0, ...,0) =0 andg ¢%, ..., ¥,
0) = g.(». ..., y*,0) = 0, respectively. The linear partial differential operatey is
same as (2.8), where

k np—
P=D Z Visasor
h=1 ju= Jh
np finite 5
1 k
+ZZ( S d s Oh e 0Y ...(yk)g)a N
L B2 Vi,
h=hOY. .., 95
finite
1 k
= Y hppOh 0N 0N
| +--+] 84|21

Case (vi). m=k=0, p>1
(2.10) Piu = go(z) + g (2. u(z)), u(0)=0,

where go and g are holomorphic at the origin satisfying(0) = 0 andg ¢, 0)=
g.(z,0) = 0, respectively.P; is same as (2.8), where

P finite 9
P = Z ( Z eq’y(Z)Z'y) 92
q:l Zq

[v1>2
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h = h(z)

finite

= Z h(2)27.

[v|>1

Now we shall study the equations (2.1), (2.3), (2.4), (2(8)7), (2.9) and (2.10).

In order to give the Gevrey orders in an individual variabde formal solutions
of the above equations, we study the Newton polyhedron @falirmpartial differential
operators (see also Hibino [2] and Yamazawa [9]).

Newton polyhedron. Let

finite
P(E. D)= Y aap©)EDy

lee].| 3] =0

(€ =(&,...,&), Df = (0/0€1)P - - (0/0¢4)P) be a linear partial differential operator,
where all coefficients are holomorphic at the origin and dé vemish at the origin
unless they vanish identically.

Let us defineQ ¢, 3) c R**! by

O, B) ={(X, )= (X1, ..., X, V) eR™: Xy >0 — 6, (i =1,....d), Y <|6|}

and let us define the Newton polyhedroh P () of the operdor by

ool U o@nfirrro

(o, 3) with a,z#0
0(0,0) (it P=0),

N(P) =

where ChA denotes the convex hull of a sett R4,
Now we shall apply the above general definition to our oper#&po We remark
that the correspondence of variables betweeny, ..., y*, z) and ¢ is given by

S

Case (i) | (x,y%...,y%2)
Case (ii) (x, v%, ..., 99
Case (iii) (x,2)
Case (iv) —
Case (v) | (% ...,y%2)
Case (vi) Ot ..,
Case (vii) z

In order to state the main theorem in this section, we shdlhéeghe setsS; i( =1,
2,3,5,6,7),8;, 8}, 87, 8}, §7 (=1, 2, 3) whose elements give the Gevrey orders
of formal solutions.
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Case (i). We define ﬁl(p, ot ..., o% 1) and Mi(p, ot, ..., 0%, 1) ((p,o%, ...,
o*, 1) e[l,+00), p=(p1. .. .spm)s 0" = (0F, ... on) (=1, ... k), 7= (71,.... 7))
by

ﬁl(p’ O’l, o O'k, 7_) - {(X, yl’ o yk’ Z, W) c Rd+l; (p — 1(’")) - X
k
+ Z(ah — 1) Y+ (r =10y 2 W > _1}
h=1

and

Mp, o*, ..., 0" 1) = {(X,yl,...,yk,z, W) e R™ (p—1™) . x

k
+ Z(Uh _ 1("/1)) Y+ (r— l(p)) Z-W 2> 0},

h=1
respectively, and defing;, S}, S/, 1, §; and S} as follows:

S1 = {(p.o% ..., 0%, 7)€ [1, +0)!; N(P)) C Mi(p, ot ..., 0%, )},
51 ={(p. 0" ... 0% 1) € [1, +00); N(P{) C IIi(p. o*,.... 0" )},
57 = {(p. ot ... 0" 1) € [L +o0)s N(P{") C Ii(p. o, ... 0" )},
S1 = {(p, ot ..., o, T) € [1, +oo)d; N(Pll”) C Ii(p, ot ..., 7},
S1 = 1{(p, ot ..., o, T) € [1, +oo)d; N(P{) C My(p, ot ..., o, 7},
S7 = {(p, ol ..., ok 1) e[, +o0); N(P{"") C Hi(p, ol, ... ok n}.

Case (i). We set ITx(p, 0%, ...,d%) and M(p, 0%, ...,0%) ((p, 0% ..., 0% €
[1, +00)’) by

(p, o, ..., 0%

k
= {(X, VL VEW) eRTE (p— 1) X+ (0" — 1) - W > _1}

h=1

and
I (p, ol ..., 0"

k
= {(x, VUL VE W) e RPL (p— 10y x+ Z(oh — 20y Yy > o},

h=1
respectively, and defing,, S}, S, S», S, and s} as follows:

So = {(p, ot ..., 0%) € [1, +o0)?; N(P)) C ITalp, o, ..., M)},
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Sy = {(p, ot ..., 0F) € [1, +o00)!; N(P]') C Map, ot ..., ")},
Sy = {(p, 0%, ..., 0") € [1,+00)!; N(P{") C Ma(p, o, ..., 0"},
So = {(p. o, ..., 0% €1, +00)!; N(P)") C Hap,ot, ..., 05},
S5 = {(ps ol ... 0" e 1, +0); N(P]") C Iy(p, ot .., ak)},
Sy ={(p,ot, ..., 0% €1, +o0); N(P]") C ITa(p, o?, ..., 0"}

Case (jii). We define IT5(p, 7) and IT3(p, ) ((p, 7) € [1, +00)?) by
Ma(p, 7) = {(X, Z,W) e R™™L (p— 1) . x+(r —1Py. 2 - W > —1}
and
M3(p, 7) = {(X, 2, W) e R™Y (p—10). X + (7 —10). 2 - W > 0},
respectively, and definds, S5, S, S3, S5 and s as follows:

S3 = {(p. 7) € [1, +o0)!; N(P)) C Ma(p, 1)},

85 = {(p,7) € [1, +00)’; N(P}") C M3(p, 7)},
84 = {(p. ) € [1, +o0); N(P{") C M3(p, 7)},
Ss = {(p. 7) € [1, +00)’; N(P{") C M3(p, )},
85 = {(p, 7) € [1, +o0)*; N(P{') C Ma(p, T)},
S5 = {(p. 7) € [1, +o0); N(P{"") C H3(p, 7)}.

Cast (V). We definelIs(c?, ..., 0%, 1) ((01, ..ok 1) el +oo)d) by
s(c?, ..., 0%, 7)

k
= {(yl, LG VEZW) eRTY Y (0 - 1) Y (1) 2w > 0},

h=1
and defineSs by
Ss={(ct, ..., 0%, 7) € [1, +o0)?; N(P]") C MIs(a?, ..., 0%, 7)}.
Cast (vi). We definelTs(c?, ..., o*) ((o% ..., 0%) € [1, +c0)?) by
k
Me(o, ..., 0% = {(yl, L VEW) EREE N (oM — 1) YW > o},
h=1

and defineSs by

Se={(c*, ..., 0% €1, +o0)¥; N(P]") C ITs(c?, ..., o")}).
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Case (vii). We define IT7(7) (7 € [1, +o<)?) by
(7)) = {(Z,W) e R, (- —1)). z —w > 0},
and defineS7 by

S7={7 €[1,+x)!; N(P]") C I(7)}.

Then we obtain the following theorem.

Theorem 2.1. In Case (i) esp. (ii), (iii), (iv), (v), (vi) and (vii)), under the con-
dition (Po2) the equation(2.1) (resp. (2.3), (2.4), (2.5), (2.7), (2.9and (2.10)) has a
unique formal power series solution. Furthermore the fdrs@lution belongs taG {}
if s satisfies the following condition

Case (). P/"=0=s=(p,o%....,05 7)eSinNSNS,

P/=0=s=(p ol ...,057) EglﬁSlﬂgf,
P/, P/ #0=
s=(p,ot ... 0k 1) € SN S N{(S; NSy US, NS},
Case (i). P/ =0=s=(p,o%...,0%) € 82N 8NS5,
Pl”:O:>s=(p,al,...,ak)E:Sv’gﬂSgﬂg”,
P]{/,P]{W ;é 0=
s=(pot, ..., o) € San SN {(SyN SY)U (S, S},
Cask (iii). P/ =0=s=(p,7) € S3NS3N S},
P1/I20$S =(p, 7) e§3053ﬂ§”,
PP #0=s=(p,7) € S3N S3N {(S5N S4) U (S5 SY)},

Case (iv). s=1@,

Case (V). s=(o%...,0% 1) €S,

Cask (vi). s=(ot,...,0") € Se,

Case (vii). s=7 € S7.

On the concrete method of determining Gevrey orders seendlifd].

Remark 2.1. In the casen > 1, the Gevrey orders given in Theorem 2.1 are
more precise than those in Hibino [2]. In Case (i) (resp. Qéasand Case (iii)), when
P/, P/ #0, Hibino [2] demands more strong conditien & ¢, ..., 0%, 7) € SN
S1NS;NSY (resp.s =p.ot,....08) € $N8N8yNSY ands =, 7) € S3NS3NS4N
S%). For example, in Case (iii), let us consider the followimgebr partial differential
operator:

Pi=xD,+1 +x2DZ +Z2DX,

wherex ,z € C; D, = 3/0x, D, =9/0z. Herex2D, and z2D, correspond toP;’ and
P/, respectively. For this operator, we can easily prove tA#8,(5/3) € S3N S3 N
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SLN Sy and (53, 4/3) € S3N 83N 84N SY. Therefore the formal solutiom x(z ) of
the equation (2.4) belongs both @t4/3%3} and toG{%34/3} Hibino [2] proves only
u(x, z) € G14/35/3}

Remark 2.2. We can easily see that the following always satisfies the condi-
tion in Theorem 2.1 for each case:

Cast (i). o= (po, 03, ..., 08, 70) (if P/ #0),

=", a8, ..., ok, 70) (if P’ =0),

Cask (ii). 5o = (po, 03, ..., 08) (if P #0), =A™, o3, ..., 0k (if P]'=0),

Case (jii). so = (po, 70) (if P #0), = (1", 7o) (if P} =0),

Cast (iv). so= 1@,

Case (V). so= (0(1), e, 0’6, T0),

Cast (Vi). so=(03,...,0%),

Case (VII) So = 7o,

m

wherepo= (N +1/2,...,N+1/2), ol =(N+LN+2...,N+n,) (h=1,...,k) and
p

To=(N+1,...,N+1).

Therefore by a linear transform of independent variablesiragve obtain Theo-
rem 1.2 from Theorem 2.1 and the next Lemma 2.1. Thus the pybdtheorem 1.2
is reduced to that of Theorem 2.1.

Lemma 2.1 (Hibino [2]). Letu(x) =Y, nitax® € GE55} (s > 1). Then for
any linear transformL: C¢ — C¢, it holds thatv(y) := u(Ly) € G155},

In the cases (i), (i), (iii) and (iv) (that is, the case > 1), Therorem 2.1 can be
proved by a same method. On the other hand, in the cases {¥gan@ (vii) (that is,
the casen =0), the theorem can be proved by a same methodetieffesm the one
used in the cases (i)—(iv). Therefore we shall prove only dhses (i) and (v) in the
following.

3. Banach spaceG{sH(R) and G{s"s}(RL, R?)

Theorem 2.1 is proved by a contraction mapping principle am&h spaces which
consist of formal power series. For this purpose we shallndefivo types of Banach
spaces necessary in the proof, and we shall prove some lemegaed later. These
Banach spaces are originally introduced in Hibino [2] anthe®f lemmas in this sec-
tion have been already proved there.

Derinimion 3.1. (1) Lets = §1,...,54) € R (Re = {r € R, r > 0}),
(s, 5% = (s%,...,s(}l,sf,...,si) € Ry R = (Ry,...,R;) € (R+\ {0}) and

(R, R®) = (R},...,R}.R% ..., R%) € (R:\ {0})"*%:. The spaces of formal power
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seriesGUH(R) and GU*"**}(RL, R?) are defined as follows:
We say thatu £ ) =, tax® belongs toG 1} (R) if

G} - lal'
llullg”’ = Z |u°‘|(s-a)!R < +00

aeNd

(lo| =1+ +ay, s-a= Zles,-a,-).
We say thatu _f’ y ) :z:(aﬁ)eNdlﬂlz Magxayﬁ c G{sl‘sz}(Rl, RZ) if

{sts?} ._ o[B! Iyo p2ya3

[ulllgr g2’ = Z |Mocﬁ|m(R )*(R?)” < +00
(or, B)ENU*2

(Jof =az+--+ag, |81 =P+ + B, st =k star, 52 8= 312, 520;), where

k' = I'(k+1), k > 0. ThenG{}(R) and G¥*"*}(R?, R?) are Banach spaces equipped

1.2

with the norms|| - | and ||| - |1, .}, respectively.

(2) We define the subspace{'(R) (resp. CN}({)JI’JZ}(Rl, R?) of the Banach space

GU}(R) (resp.GU'"}(RY, RY) by

GEI(R) = {u(r) = 3 wox € GVI(R); uol=u(0)) =0}

a€eNd

(resp. GEH(RY, R?)

={u@ = Y wapx®y? € GUNRY R wool= u(O, 0)):0}).
(a.B)ERM™2

Then Gés}(R) (resp.é({fl‘sz}(Rl, R?)) is also a Banach space as a closed linear sub-
space ofGU}H(R) (resp.G{*"*}(RY, R?)).
Lemma 3.1 (Hibino [2]). (1) If s; >1forall i =1,...,d, then

Gt = U GUI(R).
Re(R:+\{0})4

2) If s,.l > 1 and sj? >1foralli=1...,dyandj=1,...,d,, respectivelythen

G = U GUHRY R,
(Rl,RZ)E(R+\{O})‘]1+‘[2

Lemma 3.2 (Hibino [2]). Let us fixT = (T1,...,T;) € (R:+\ {0})? and
(T4, 173 = (T, ..., T}, TZ, ..., T7) € (R« \ {0})™*%, and let us assume that(x) =
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Daend @ax® and a(x, y) = 37, s enire aapx®y? are holomorphic on[[%,{x; €

C; |n| < T} and [[2{x € C; |xi| < T} x [74{y; € C; |y;| < T?}, respec-
tively.

Q) fO0< R < T forall i=1,...,d then the multiplication operatot:(x)- is
bounded on bottG*}(R) and G{(R) for all s € [1, +oc)! with the norm bounded
by |a|(R), where|a|(R) =) an|R®. Especially the operator norm is bounded by

aeNd
|a|(T).
2 1f0 < R < T'and 0 < RJ? < Tj? forall i = 1,...,d, and j =
1,...,do, respectively then the multiplication operator(x, y)- is bounded on both

GUH(RY, R?) and GE (R, R?) for all (s1,5%) € [1, +oo)™ with the norm
bounded byla|(R, R?), where|a|(R', R?) := Y", scnive [aap|(RT)*(R?)P. Especially
the operator norm is bounded Hy|(7?, T?).

The following lemma will play a very important role when weatlevith nonlinear
terms.

Lemma 3.3. (1) Lets € [1,+oc0)? and assume that(x) and v(x) belong to
GUH(R) (resp. G§H(R)). Thenu(x) - v(x) also belongs toG {3 (R) (resp. G{ (R)).
Furthermore for allu andv it holds that

(3.1) - vl BT < Sllufl§F - ol §7

whereS =maxX{s;; i =1,...,d}.

(2) Let (s1,5%) € [1, +00)®*% and let us assume that(x, y) and v(x, y) belong to
~ ~ 1.2

GU""}(RY, R?) (resp. GJ' ’51 }Z(Rl, R?). Then it also holds thai(x, y) - v(x,y) €
G} (R, R?) (resp. € G (RY, R?). Furthermore for ally andv it holds that

st,s? - 5152 sts?
(3.2) - ol 55t < SllalllE ) -1l

RY,R? RL,R?2 RYL,R2 >

whereS = max{s?, sjz; i=1...,d1; j=1,...,do}.

1

Proof. First of all, we remark that in general the Beta funmti

1
B(k,1) = / -y tdr
0
has the following property:
O<ki<ko, O<hhi<l = B(kl, ll) > B(kz, 12).

Moreover we remark that the following equality holds: Ror/ > 0,

k!

m:B(k+l,l+l)(k+l+l)
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(1): Letu(x) =3 ene tax®, v(x) =X gene vpx” € GUH(R). Then we have

Gy _ la+ 8"
-l = > |uavﬁ|m13 B

Here it follows from the above remarks that

(s - a)l(s - B)!

G (0+9) = B(is-a+ls-f+1)-(s-a+s-3+1)

IN

B(la[+ 1, [B]+1)-(s-a+s-S+1)
latB]! s -a+s-B+1
la+ Bl Jaf+[B+1

|af!B]!

which implies that

a+Bl g lall 1A
G @)= Gl G

Therefore we have obtained (3.1). It is clear that -((}) € G (R) for u(x), v(x) €
GEH(R).

(2): Letulr,y) =3 prenie Uapx®y? and v, y) = 2 (y.5)eNr: v,5x7y% be
in G5} (RL, R2). Then we have

{s1s%} _ |Ck +7|'|ﬁ+5|' Lyot 2\(3+6
u-v = g Ua3Un~s (R)XTY(RA)P™.
e ol s @em' SR OE R EXRCED)

Here it holds that

(s-a+s2-P)(st-y+5%-0)!
(s1-(a+7)+s2-(B+))!
= B(st-a+s?- B+ st y+s2-0+1)- (sl-(a+y)+s2-(ﬁ+5)+l)
B(laf + 8]+ L [y +[6]+1)- (s~ (a+7) +s*- (3+6) +1)
(laf + [BDUy [+ [8D! st - (a+ry)+52-(B+0)+1
(la+ [ +]5+0])! lat+y[+]3+0]+1
5 ol * 18D +1o])
(la+y+]B+aDt

Moreover if we admit

(ol +[BDMy [+ 1ot _ lafty[t B[]
(ot +[B+D! 7 Ja+qy|t |+

A

IN

(3.3)
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then we obtain that

atylB+ol o B o)
CTlar ) +s2 G = (Trars? B (T s o)

Therefore we have obtained (3.2).
Let us prove (3.3). By putting: :3al, b = |8], ¢ = |y| andd =4, it is
sufficient to prove the following inequality: Far b, ¢, d,> 0,

(a +Db)(c+d)! < alc! b'd!

(3.4) (@+b+c+d) ~ (a+c) (b+d)

Let us consider the equality

(5 + ,r])a+h . (5 + n)r+d - (g + ,r])a+h+r+d’

and let us calculate the coefficients &fn”*? in both sides. Then we have

Z (a+b> (C+d)_(a+b+c+d)
1<i<a+h, 1< j<c+d i J atc ’

i+j=a+c
which implies that

(@a+b)! (c+d) - <a+b> _ <c+d) < <a+b+c+d) _(a+b+c+d)

alb! cld! a ¢ a+e T(at)(b+ad)’

Therefore (3.4) is proved and (3.2) is completely provedisltclear thatu £,y )
~ 1l .2 ~rl .2
v(x, y) € G H(RY, R?) for u(x, y), v(x,y) € GE*H(RY, R?). O

4. Proof of Theorem 2.1 (whenm = 0)

Let us start the proof of Theorem 2.1. We shall prove the umigxistence of the
formal solution in§6. So in this section and the next section, admitting the usiq
existence of the formal solution, we will prove its Gevreyder. In this section we
study the casen = 0 (i.e., Cases (v), (vi) and (vii)). As mamaw in §2 we only
consider Case (v), that is, we only consider the equation).(Eurthermore, for sim-
plicity we assumek = 1. We write a formal power series solutasu (y,z) =
Z(ﬂiv)e,\,,ﬁp,m“mﬂugvyﬁﬂ (n+ p =d) and use the Banach spa%‘”}(Y, Z) in-

stead ofGéS}(R). Thereforeu ¢,z X G({)"‘T}(Y, Z) means

(o7} _ (81 +1vD s
||”||Y,z = Z |”Bv|mY Z7 < +oo.

(B.v)ENTHP
[Bl+]v]=21

We recall that the equation (2.7) is written as follows:

(4.1) Puu = go(y, 2) +g(y. 2 u(y. 2)), u(0,0)=0Q
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where go and g are holomorphic at the origin which satisps(0,0) = 0 and
g(v,z,0) = gu(y,z,0) = 0, respectively. Furthermor®; is a linear partial differen-
tial operator which has the following form:P, = —1,(0, 0) + P;"" + h, where

finite
9
P;"—zy,ﬂ (X ) g
|81+~ |>2 J
finite

+ Z ( D e Z)yﬂzv) 8%,’
q=1 *|Bl+|y|=2
h = h(y,z)
finite
Z hgy(y, 2)y°27.
|Bl+v[=1
Here all coefficientsd;s.,, e,3, and hg, are holomorphic at the origin, and none of
them vanish at the origin unless they vanish identically.
We assume that =o(7) satisfies the condition in Theorem 2.1, and prove that
the formal solution of (4.1) belongs 6177},

Proof of Case (v) of Theorem 2.1. We may assume thg}(0, 0) = 1 since
fx(0, 0) #0. Let us define the operat@r by

(4.2) Tu =—(P{" +h)u +go(y, z) + g(y, z, u(y, z)),

and let us write thes-closed ball inGé"’T}(Y, Z) as Gé”’T}(Y, Z;¢):

GY Y, ;) ::{u(y,z)= 3wy’ e G, 2, ||u||{”}<e}

(B,v)eN™*P
[Bl+]v]=1

We shall prove that” is well-defined as a mapping fraﬁ”}(Y, Z;¢) to itself
by choosingY ,Z and suitably and that it becomes a contraction mapping therte(no
that G({)"‘T}(Y, Z;¢) is a complete metric space as a closed subset of the Banack sp

Gy, 2)).
First we estimate the operator norms/ofand P;” on the space ‘”}(Y Z).

It follows from Lemma 3.2, (1) thak-: G({)" T}(Y, Z) — G({)" "}y, Z) is bounded
for sufficiently smally andZ with the estimate

(4.3) - ull§%7 < ALY, Z)||ull$77,

where

finite
Aq(Y, Z):Cl{ > YﬁzV}

1Bl+|v[>1
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for some constanC;. Here and hereafteY ={(,...,Y,) andZ =(,...,Z,) are
taken so small such that the coefficients of the operalgtsy;, etc., are holomorphic
on [Tio{y; € C |yjl < ¥} x I[Nz € C; |z4| < Z,}. In order to estimate the
operator norm ofP;” we need the following:

Lemma 4.1. Leto, 7, u, v, ¢’ and v’ satisfy

4.4)
0pm 1 (=1 g=1....p) and o (u—p)+T(w—0)> ||+l

Then y“z”DﬁlD;" is a bounded operator o177} (Y, Z) and the operator norm is
bounded by(Y"z¥)/(Y* z*'). Furthermore if|u| + |v| > 1, the operatory"z” D! DV’
is bounded orG({)”'T}(Y, Z) and the operator norm has the same estimate.

Remark 4.1. Let us write the Newton polyhedron of the operaj?dlz”fo,D;f/
as

J)jz,uj—,u; (=1...,n),

N(#z" D' DY) =S (V.2 W) eR™,; 2, > v, —1) (g=1....p),

W < ||+ V|
Furthermore we definél o(7) ((o, 7) € [1, +00)?) by
(o, 7)={(V, Z,W) € R"™; (0 —1"). Y+ (r — 1) . Z - W > 0},
and defineS by
s={(. 7 €1, +o0)"s N(y*2D{' DY) C (e, 1)}
Then the conditiond, 7) € S is equivalent to (4.4).

Proof of Lemma 4.1. It is similar to the proof of Lemma 4.1 inbkio [2].
U

Proof of Case (v) of Theorem 2.1 (continued). By the assuwmpfi, 7) € Ss,
Lemma 3.2, (1) and Lemma 4.1, it holds thaf”: Gé"’T}(Y, Z) — G({)"‘T}(Y, Z) is
bounded for sufficiently smaly an#@ and that

(4.5) 1Py u 4% < Ax(y, Z2)ul§57,

where

n—1 n finite

) _ Yj+1 finite 5 1 p 8 1
Ag(Y,Z)—CZ{Z T ( >y ZV>7+Z( oy Z”)Z—}
J q

j=1 J=L N Bl >2 T =1 N BlHyI>2
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for some constanc,.
Next, in order to estimate nonlinear terms, we introduce esotations. Let

gnmu)= > gy
Bl [=0r>2

be the Taylor expansion of y(z,u ) (recall thaty,¢, 8)g.(y,z,0)= 0). Further-
more let us define the formal power serigs(y, z, u) by

1g|(y, z,u) = Z |8 |¥P 270"
|Bl+|v|>0,r>2

We may assume thdg|(y, z, u) converges in[[i_;{y; € C; [y;| < L;} x [[/_1{z €
C; lzg| < My} x {u € C; |u] < N} for some positive constants; M, and
(j=1....n;9g=1...,p).

We remark the following: It holds that

8uly,z,u) = Z (r + 1)gpr.rey’2 0",
|B]+v[>0.,r>1
and that
gul(vozu) = Y+ Dlgpynly’u”
|Bl+]7v=0.r>1

converges in[[j_;{y; € C; [y;| < L;} x [[7{zg € C; |7yl < My} x {u € C; Ju| <
NY.

Now it follows from Lemma 3.3, (1) that i; < L; (j = L...,n), Z, < M,
(g=1,....p)uc G{” "y, Z) and ||u||{°' "} < N/S, whereS = maxo;, 74 j =
1,...,nandg =1...,p}, theng ¢, z,u {, z)) belongs th({)"‘T}(Y, Z). Moreover it
holds that

(4.6) (. 2w MG < glel(v. 2 Slul57)
< 2lel(L. M, SJul{™) < oo,

whereL =(1,...,L,) andM =M, ..., M,).
Next by noting

1
g0 zou) — g(3, 2 0) = (u — ) /O g0 (v, 2. v+ 0(u — v)) dO

we see that iij < Lj (j = ]_7...7,/1), Zq < Mq (C] — 17”.’1]) and ||u||{0'7'},
v II{” ™} < N/2S, then we have

(4.7) lg (v, 2, u(y, 2)) — g (v, 2z, v(y, D) 1177}
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< = ol {757 < leal (¥, 2 Sl {77+ 1013%7))
< = ol % lgal (L M, SO + 1013%7) )

Under the above preparations let us take- 0, Y and Z as follows: We take
€ > 0 such that

1
(4.8) §|g|(L, M,Se) <¢e
and
(4.9 |gul(L, M, 2Se) < 1.

Since |g|(y, z, u) = O(?) and |g,|(y,z,u) = O(u), we can take such > 0. Further-
more for thise we takeY andZ such that

(4.10) AW, Z¥+|gol}% +—|g|(L M,S2)<e
and

(4.11) A, Z)+|gu|(L, M, 2S¢) < 1,
where

A(Y, Z) = A(Y, Z) + Aa(Y, Z).

We can take sucly and by the fagj(0, 0) =0 and the expression of Y,(Z ).

It follows from (4.3), (4.5), (4.6) and (4.10) thate G{"" (¥, z) and [|u||{%" <
e imply Tu € G{”™ (¥, ) and ||Tu||{" ™} <. HenceT is well-defined as a mapping
from GO" "Ny, Z;¢€) to itself. Moreover by (4.3), (4.5), (4.7) and (4.11), wee sbat
T: G({)" Ny, Z;e) — G{" "Ny, Z;¢) is a contraction mapping. Therefore there exists
a uniqueu ¢,z )€ GO" T}(Y Z;¢) which satisfiesTu X,z ) = X,z ). Lemma 3.1, (1)
implies u (v, z) € G127}, and it is easy to see that thisy, ) is a solution of (4.1).

Since we admit the unique existence of the formal solutitwe, proof is completed.
O

5. Proof of Theorem 2.1 (whenm > 1)

In this section we study the case > 1 (i.e. Cases (i), (i), (iii) and (iv)).
We only consider Case (i). By the same reason as in the preweation we con-
sider the case&k = 1. We write a formal power series solutionzasy,¢) =
S (e BN [af#|8]+ |y 1 Hapy XYY (m + n + p = d) and use the Banach
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spaceG "™ (X, (v, 2)) (resp. G} (X, v, 2)) instead ofé({fl’sz}(Rl, R?) (resp.
GE (R, RY). Thereforeu ¢, v,z Je GO (X.(Y.2)) (resp.€ G (X.Y.2))
means

{p.lo.1)} .— | (18] + [])! ayB

ulllx vz E [#asy| XYP77 < +o0
(Y, . . Y]
(T"f'&;‘e,\“m‘ﬂ:{) (p « + o /g +T ’}/)

al+| B+ y|>

ot (ol + B[+ 1) o
(resp ”tu,)Y.z} : Z |ua67|(p-a+a-ﬂ+r-7)!x YPZ7 < +0 ).

(o, B, y)ENmMIN*P
lec+[Bl+|y] 21

We recall that the equation (2.1) is written as follows:
(5.1) Py = go(x, y,2) + g(x, y, 2 u(x,y.2)), u(0,0,0)=Q

where go and g are holomorphic at the origin which satisfy(0, 0, 0) = 0 and
g(x,y,2,0) = gu(x, y,z,0) = 0, respectively. Furthermor®, is a linear partial dif-
ferential operator which has the following formP; = Y72 \ixi(9/0x;) — f,(0, 0) +
P{+ P+ P/" + P{"" +h, where

m—1 9 m finite o
Pl/ = Z&x,‘ﬂa—xi +Z ( Z cl-ag»y(x,y,z)xo‘y Z’Y)(‘?_x,-’
i=1

i=1 [el+| B+ v] =2
[e|=1

n finite )
Pl =) ( D djaplx, y, Dx%y ZV) By,

J=1 N lal+8ltyI>2
laf 21

14 finite 0
* ( Y Coam(E Y, Dxy Z7> i
q=1 2q

[el+| B+ v] =2
[e|>1

n—1 P n finite b
P =) ymm =+ < > digxy, Z)yﬁzv) dy;
= Vi Y

=1 N |BIHA>2 J

P finite 9
(T amten)
q

q=1 > |B|+[v]>2
m finite P
P =) ( Y sy, Z)yﬁz”> T
=1 N |B)+|y]>2 !
h=h(x,vy,2)
finite

= ) hapy(r v xyPR
||+ Bl+v[>1
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Here all coefficientsingy, cigys djapy, djgys €gapy, €98y and hqag, are holomorphic
at the origin, and none of them vanish at the origin unlesg tlaish identically.

We assume that (o, 7) satisfies the condition in Theorem 2.1, and prove that
the formal solution of (5.1) belongs 6127}, We remark that we admit the unique
existence of the formal solution.

Proof of Case (i) of Theorem 2.1.  First we define the operatorG{»o-7} —
GiroT} py

m 8
A= Z Xixi=— — fu(0, 0).
i=1 Oxi

The condition (Po2) implies that - « — £, (0, 0) # O for all « € N, where\ - a =
>, M. Hence the operatort is bijective anti™! is given by

U,
Afl U, auB v\ = aBy a v,
( Z ﬁ'Yx—yZ) Z A,Oé_f“(ovo)xyz
(a’ﬁ’,y)eNmﬂH-p (a’ﬁ’,y)eNmﬂH-p
Now we introduce a new unknown functidi x,(y,z ) by
U(x,y,z) = Au(x, y,z), that is uk,y, z)=A"1U(x,y,z).
Then the equation (5.1) is equivalent to the following one:
(5.2) PoU = go(x, y,2) +g(x,y,2, A" U(x, y,2)), U(0,0,0)=Q
where
Po=1+(P[+P/+P/"+P"+h)A?!
(1 : identity mapping)

Let us define the operatdf by

(5.3)
TU =—(P{+ P+ P{" + P[" + ) A™'U + go(x, y, 2) + g(x, y, 2, A" U(x, y,2)),

and let us write the-closed ball inG{”“™(x, (v, 2)) and G{**"}(x, v, Z) as
G (x, (v, Z);¢)

= {U(x,y, D= D Uapx™P € GO (v 2 IVINIKETS) <€}

(cv. B.y)ENMIND
lal+|Bl+]v|=1
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and
G{p«U,T}(X Y 7 5)
0 LY, Z,
= {U(xa yv Z) = Z Uaﬁfyxayﬂz'y c Gép-ﬂ',T}(X7 Y’ Z), ||U||§(7Y?.’ZT} S 6}7
(cv,B,y)ENTHND
[+ 8]+ >1
respectively.

We shall prove tha” is well-defined as a mapping frém  to itbglfchoosing
X, Y, Z ande suitably and that it becomes a contraction mapping thererevh

~ (0T when P/ =0 or “P;’, P//" # 0 and
GO (X, (¥, 2);e) ( ! B 7 ) :

s=(po,7)ESINSINS, NS

o h P// - “P”, P////
Gép, f }(X, Y, Z,E) (W en 1 0 gr 1 1 , #gl/a:ld)

s=(p,o,7)e S NSNS NS

Let us estimate the operator norms & ¢ P;’ + P + P+ h)A~1 on the spaces
Gire(x (v, 2) and G (x. ¥, Z).

By the condition (Po2) there is some constant  such rmé(g\-a—f,, 0,0) <cC
for all « € N". Hence the operaton—1!: G({,p'(‘”)}(x, (Y, 2)) — G({)"’("’T)}(X, (Y, 2))
(resp.G({)p“”T}(X, Y, Z) — Gé”"”}(x, Y, 7)) is bounded and we have

A tu e <cluie?

(54) o,T o,T
(resp. 47Ul < o).

Therefore it follows from Lemma 3.2 that the operato —*: f}({)”'(d'T)}(X, (Y, 2)) —
Gl (x, (v, 7)) (resp.G{* (X, ¥, Z) — Gi» 7} (X, v, 2)) is bounded and we
have

Ilh- AT U <aux. v, )0

(55) h_A,]_ {p,o, 7} <A {p.o.T}
resp. || UIYYZ < AX Y, DNUNYYS )
where
finite
Ax(X, Y,Z):cl< > X“YﬁZ”)
||+ B]+]v[>1

for some constanC;. In order to estimate the operator norm a® (+ P, + P" +
P/"")A~! we need the following lemma:
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Lemma 5.1. (1) Letp, o, 7, i, v, w, i/, V', W' satisfy

pi,0i, 7o >10G=L...,m;, j=1,...,n, g=1,...,p) and
(5.6) s , /
prw—w)+o-(u—p)+7-(v—"2")2>w+|u+]v|.

Then the operator®y“z” D¥ D D¥' A=! is bounded both orG{»"} (X, (v, Z))
and on G{»>7}(X v, Z), and the operator norm is bounded bg(X“Y*Zz")/
(x“'y* zV"), whereC is the same constant as(B14). Furthermore if|w|+|pu|+|v| >
1, the operatorxy#z* D D¥ DV A1 is bounded both orG{”" ™} (X, (¥, Z)) and
on G({)”'”’T}(X, Y, Z), and the operator norm has the same estimate.

2) If w]>1,

pi,0j, 7, >1@G=L....m; j=1...,n;, ¢q=1,...,p) and
(5.7) p , ,
prlw—w)+to - (u—p)+7-(v—r)=wl+|uf+v] -1,

then the operatorx®y“z”D* DY D A=! is bounded both onG{rD}(x, (v, 2))
and on f}({)”'(”'T)}(X, (Y, Z)), and the operator norm is bounded gy, (X“Y*Z")/
(X«'y* z"") for some constant,,.

(3) If |'| > 1 and (5.7) hold, then the operatory#z” D" D! D A~ is bounded
on G1»o7}(X,Y, Z), and the operator norm is bounded .. (XCYHZ")/
(x«'y* z"") for some constanC,,,,.,/.. Furthermore if|w| + |u| + || > 1, then
x“yrzv DY DY DY’ A=1 is bounded onG{** 7} (X, v, Z) and the operator norm has
the same estimate.

Remark 5.1. Let us write the Newton polyhedron of the operator
x“ytz" DY DY DY as

‘)C‘lzwl_w,/ (i:]-v"'vm)v

’ ’ ’ yZ,Uf_/fJI (j:]"'"’n)’
N(x“y'z" DY DI DY) = { (X, ), Z RG22 )
(x“yHz¥ DS i v (X, Y, Z2,W) € Z,>v,—v, (@=1....p),

q
W < |+ [+ V|

Furthermore we define‘?[(p, o,7)and I @, o, 7) ((p, o, 7) € [1, +o0)?) by
O(p,o,7)={(X, Y, Z,W) € R™Y (p—1M). X +(c—1").Y+(r—1). 2w > —1}
and

O(p,o,7)={(X,V, Z,W) € R (p—1). X +(6—17). y+(r—-1).Z—Ww > 0},
respectively, and defind and S as follows:

$ = {(p.0.7) € [L+00)s N@*y"z" D2 DY DY) C [(p, 7, 7)},
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S = {(p.o.7) € [L, +00)'; N(x*y"z*D2 D' DY) C M(p, 0, 7)}.

Then the conditionsy o, 7) € S and (p,o,7) € S are equivalent to (5.7) and (5.6),
respectively.

Proof of Lemma 5.1. It is similar to the proof of Lemma 5.1 inbktio [2]. We
remark that the condition (Po2) plays an important role ia pinoof. U

Proof of Case (i) of Theorem 2.1 (continued). Whef” = 0, it follows from
the assumptiony o, 1) € SlﬁSlﬁSl, Lemma 3.2, (2), Lemma 5.1, (1) and (2) that the
operator @] + P]' + P{")A~1: G({)” @Il (x, (v, 2)) — G({)” (@)X, (v, 2)) is bounded
for sufficiently smallX ,Y andZ . Moreover we have

(5.8) 1Py + P{' + PPYATUNI S < Aalx. Y, DIWUNIES

where

m—1 m finite

X 1
AxX,Y, Z) = Cz{z Xf1+ ( Z X“YﬂZV)Y
i=1 ! i=1 !

[al+[B]+|v[=>2

|a|>1

n finite P finite 1
+ xeyBzy) = + XyPzr) —

(% )i % )7
Jj=1 ||+ B|+|v][>2 q= \\+\f3\+\7\>2

|| >1 || >
n—1 Y finite 1 p finite 1
2j+1 By — By _—
TS ( X rm)gen( 2 v
[Bl+v|>2 q=1 *|B|+[v|>2

for some constants.

When P/ = 0, it follows from the assumptionp(o,7) € S N 1 N
§1’, Lemma 3.2, (1), Lemma 5.1, (1) and (3) that the operatBf t P;" +
P/ AL G({)”"”T}(X, Y, Z) — G({)”"”T}(X, Y, Z) is bounded. Moreover we have

(5.9) 1P+ P+ PP AT < As(X, Y, 2)||U )|y
where
m—1 X m finite 1
As(X.Y.Z) = C ity xeyhfzr) —
oz =e{ ey (Y .
i=1 i=1 [+ B+~ >2
la] >1
n—1 Y n finite 1 p finite 1
Jj*l B7y | _— B7zvy | _—
(X vr)pe( Y vr)y

j=1 Jj= [B]+|v[>2 q=1 *|B|+[v]>2
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m finite 1
+ YPzv | —

S( Y v

i=1 N |Bl+v[>2
for some constan€s. N _

When P, P/ # 0 and p,o,7) € S1 N SN Sp NSy, it follows from
Lemma 3.2, (2), Lemma 5.1, (1) and (2) that the operat8f £ P/’ + P}’ +
P/ ALY GO (x, (v, 2)) — G DY (x, (v, 2)) is bounded. Moreover we have

(5.10)  [[[(P{+ P} + P{" + P") A~ U |0 < Au(X, v, 2)IIUNIL5Y,
where
m—1 e m finite 1
= i+l ayBzv) =
A4(X,Y,Z)—C4{Z X +Z< > XYZ)XI_
i=1 i=1 ||+ B|+]~v][>2
[ >1
n finite 1 p finite 1
+ xoyPzr) =+ xeyPzy) -
(X )i (% )7
j=1 \a\’f‘\(fj};\’lﬂZZ q=1 \(XH‘\:};\FZZ

n—1 Y n finite 1 p finite 1

+y 2y YPzv) =+ YPzv) -
SR (Y r)pe( Y vr)
J=1 J=1 M B+ 22 q=1 |Bl+lv|=2

$(E o))

i=1 N [B[+]v]=2

for some constanC,. When P{’, P’ # 0 and p,0,7) € S1 N $1 NSNSy, it fol-
lows from Lemma 3.2, (1), Lemma 5.1, (1) and (3) that the cjeréP; + P;' + P]" +
P/"ATL: Gé’”"”}(x, Y,Z) — Gép"”}(x, Y, Z) is bounded. Moreover we have

(5.11) P+ P{'+ P+ PP AU < Aa(X. Y. D)UY

Next let us estimate nonlinear terms. Let

g yzu)= Y gapx YW
o181+ 20.r>2

be the Taylor expansion of x(y,z,u ) (recall thatx,(,z, ) g.(x,y,z,0) = 0).
Furthermore let us define the formal power setigéx, v, z, u) by

|g|(-x’ Y2, I/l) = Z |ga5»yr|xay627ur.
ol +] Bl +|v[20,r =2

i=

We may assume thdg|(x, y, z, u) converges in[[[Z,{x; € C; [xi| < K;} x[[j=1{y; €
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Ci |yl < Lj} x [Ilailzg € C; Jzg| < My} x {u € C; |u| < N} for some positive
constantsk; L; M, an& i( =1..,m; j=1...,n;9=1,...,p).
We remark the following: It holds that

8ulx, y, 2, u) = Z (r + 1)gapyreax*y 200",
o +]Bl+|v| >0 =1

and that

|gll|(xv ¥, Z, I/t) = Z (r + 1)|gaﬁv,r+l|xayﬁzvur
laf+|Bl+]y[>0r>1

m

converges in[[/L{x; € C; |x| < Ki} x [Tiaa{y; € C |yl < L} x [10aafzg
Ci Jz4l < My} x {u € C: |u] < N},

Now it follows from (5.4) and Lemma 3.3, (1) that iX;, < K; (i
L....m), Y, < L; (j = n) Z, < M, (g = L....p)
Gi»o ™ (x, v, z) and ||U||§’_);,‘,’;} < N/SC whereS = max{pi, 0,7, i = 1,.
mandj = 1...,.nandqg = 1...,p}, thengtk,y,z, A7 U(x,y,2)) belongs to
G({)”"”}(X, Y, Z). Moreover it holds that

c
m

— o,T 1 ,O,T
It v.2 470Gy, DI <Zlel (X7 2. SCIUIET)
(5.12)
|g|(1< LM SCIUIE) < +oc,

whereK =Ky, ..., Kn), L=(L1,...,Ly), M =My, ..., Mp).
Next by noting

1
o6, v, 2, u) — g(x, v, 2,8) = (1 — v) / g (. v, 2.0+ 0(u — v)) df
0

we see that ifX; < K; (i = 1,...,m), ¥Y; < L; (j =1...,n), 2, <M, (g =
L....p)and|[U[I7, (VI < Nj2Sc, then we have

(5.13)  [g(x.y. 2 AU, Y. 2) — g(x. vz ATV . D)
< U - VIE < clad (%, v 2 8 (W18 + v IT))

< W= VI x Clad (K. Lom Sc (Ul + VI

X.Y,.Z

Similarly it follows from (5.4) and Lemma 3.3, (2) thatif €G>} (x, (v, 2))
and |||U|||§(”((Y"Zg)} < N/SC, whereX ,Y ,Z andS are same as above, then we have
glx,y,z, A7 U(x, y,2)) € Gép (@} (x, (v, 2)), and that

(5.14) [[lg(x.y. 2. AW,y Q)IE < —|g|(X v.z.scllulli¥s”)
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1 s o, T
< Zlel(x. L Sl ")
< +oo.
Moreover if ||U[|757) VIS AY < N/2ScC, we have
(5.15) [llg(x.y. 2. AUy, 2)) — g(x. v, 2. ATV (e, y, ) 15
< W = VIS  Cled (x.v. 2. Sc (ISR + VIS

< I0 = VIER x Cleal (K. L M. Sc(MUNEEE + VIS ) )-

Under the above preparations let us take 0, X, Y andZ as follows: We take
€ > 0 such that

1 ~
(5.16) §|g|(1<, L,M,SCe) < ¢
and
(5.17) \gu|(K, L, M, 25C¢) < 1.

Since |g|(x, y, z,u) = O@?) and |g,|(x,y,z,u) = O(u), we can take such > 0.
Furthermore for this let us takeX ,¥ andZ such that the followings hold:
In the caseP;” = 0:

(5.18)  {Ax(X.Y.2)+ Ax(X. Y. 2)}e + 2ol 175 + —|g|(K L.M.SCe)<e
and
(5.19) AL(X, Y, Z)+ Ax(X, Y, Z) + C|g.|(K, L, M, 25C¢) < 1.

In the casepr,’ = 0:
(520)  {Ax(X.Y.2)+As(X. Y, Z)}e +|goll 3y + = IgI(K, L.M,SCe)<e
and
(5.21) AL(X, Y, Z)+ A3(X, Y, Z) + C|g.|(K, L, M, 25C¢) < 1.

In the caseP{, P{""" #0 and p,0,7) € S1NS1 N S| NSy

(522) {Ax(X, Y, 2)+AuX, Y, D)}e + |llgoll| V) +—|g|(1< L, M,SCe) < e
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and
(5.23) AL(X, Y, Z) + A4(X, Y, Z) + C|g.|(K, L, M, 2SC¢) < 1.

In the caseP{, P{"" #0 and p, 0, 7) € SN S1 NS, N SY:

(5.24)  {ALX.Y,2)+ Aa(X. Y, Z)}e +|goll ¢y + %lg|(1<, L.M,SCe) <«
and (5.23).

We can take suctk ¥ and Dby the fagi(0, O, 0) = 0 and the expressions of
AUX,Y, Z), Ax(X,Y, Z), As(X,Y, Z) and Ax(X, Y, Z).

In the caseP}” = 0 we see that it/ € G (x, (v, 2)) and |||U|||§f)i(y‘_";))} <
e, thenTU € G§* ™ (X, (v. 7)) and |||TU|| /7" < < by (5.5), (5.8), (5.14) and
(5.18). HenceT is well-defined as a mapping frtfhép’("’T)}(X, (Y, Z);¢) to itself.
Moreover by (5.5), (5.8), (5.15) and (5.19), we see ﬂ‘Tatf}({)‘."(”'T)}(X, (Y, 2);¢e) —
(N;ép’(”’T)}(X, (Y, Z);¢) is a contraction mapping. Similarly in other cases we caver
that 7 : G — G is well-defined and that it is a contraction mapping.

Therefore there exists a uniqu€ x,{,z 9 G which satisfiesTU X,y,z ) =
U(x,y,z). Lemma 3.1 implieJ A, y,z ¥ G1»27}. Henceu §, y,z ) =A"U(x, y,2)
also belongs taG{»> 7} and it is a solution of (5.1). The proof is completed. [

6. Unique existence of formal solution

Here we shall prove the unique existence of the formal smiuti

() Casem=0

We only consider Case (v), and assutne = 1. Let us considerginatien (4.1).
We may assume- f,(0, 0) = 1.
First we write the operatoP; as P1 = Qo — Q1, where

n—1

0
0Oo=1 +Z)’j+1a—, 01=0o0— P1.
= Yj

Let us define the vector spad¢ y,¢ [ ; ) which consists of homogeneolynomials
of degreel [(> 0) as follows:

H(y, z;1) = (the vector space spanned Ky’z7; (3,7) € N7, |B] +|y[=1}).
Lemma 6.1. For all / > 0 the linear operator

Qo: H(y, z;1) — H(y, z;1)
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is bijective.
Proof. Let us notice
n
00(y?27) = yPz7 + Zﬂjyﬁfej G,
j=1

where € =§;1,9;2,...,0;,) (0;;: Kronecker's delta) forj =1.., n.
Therefore by suitably arranging the basis Efy, { [ ; ), the matggresentation
of Qp becomes the following triangular matrix:

1*...*
1. %
1

~—_———
g{(B.MENP; |Bl+v|=I}

This completes the proof. O

Now in order to solve the equation (4.1) we set

u(y,2)=> w(y,2), golv,2)=Y galy, 2),
=1 1=1

whereu; §,z),g0(y,z) € H(y,z;I). Then we have the following recursion formula
for {Ml(y’ Z)}?Zol:

Qoux(y,z) = goy,2),
Qouz(y,z) = gozAy.z)

+ (homogeneous part of degree 2 @fiui(y, z) + g(v, z, u1(y, 2))),
Qous(y,z) = go3(y, z) + (homogeneous part of degree 3 of

O1(ua(y, 2) +uz(y, 2)) + 8y, z, ua(y, z) + u2(y, 2))),

Qoui(y,z) = gal(y.z)
+ (homogeneous part of degrée of

Q1(ur(y, )+ +u—1(y, 2)) + g(v, z, ua(y, 2) + - - - +wi-1(y, 2))),

Therefore by Lemma 6.1 we can obtafm,;(y, z)}/=, inductively and uniquely. This
completes the proof of the unique solvability for the ecuat{4.1).
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(I Case m>1

We only consider Case (i). Similarly to the previous case,assumek = 1. Let
us consider the equation (5.1).
We write the operatoP; as P1 = Qo — Q1, Where

m—1

QO_Z)\xl — fu(0, 0)+Z5x:+1 +Zyj+1 , Q1=0o0— P

Let us define the vector spadé x,{,z [ ; ) which consists of homogengolynomi-
als of degred as follows:

H(x,y,z;1)
= (the vector space spanned By®y”z”; (a, 8,7) € NP |a| +|3| + || = 1}).

Lemma 6.2. For all [ > 0 the linear operator
Qo: H(x,y,z;1) — H(x,y,z;1)
is bijective.
Proof. Let us notice

Qo(x“y"z7) = {X\-a — f.(0,0)} x*y"z"

m—1 ) ) n—1 e
_ m m ”+ n
+ E Siaix®S e(ly 7T+ E BixyP =& "Gz,
- =1

where €7 = (011012, 0) (0 = L....m) and & = (6;1,62,....0:) ( =
.,n). Therefore by suitably arranging the basis Bfx, £,z [ ; ), the iratepre-
sentation ofQo becomes the following triangular matrix:

Ao — £,(0,0) * e *
A-a® — £,(0,0)--- *

A-al? — £,(0,0)

where k = #{(«, 8,7) € N™**P; |a| + |8 + |y| =1}. The condition (Po2) implies that
this matrix is regular, which completes the proof. [l

Therefore similarly to the previous case, we can prove thigugnsolvability of
the equation (5.1) by using Lemma 6.2.
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