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Let R be a ring. We have studied rings whose projective modules have

the extending property of simple modules in [3] and [5]. In this note, we shall
further study those rings when R is an artinian ring and give some relations

between those rings and mini-injectivity (see §1).
If R is a QF-ring [8], every projective has the extending property of direct

decompositions of the socle [3]. In order to characterize artinian rings with
above property, we have defined the condition (** 2) in [3]. We shall introduce

new concepts: (weakly) mini-injective module and (weakly) uni-injective module.
We shall show, for a left and right artinian ring R, that R is a QF-ring if and only

if R is mini-injective as a both left and right jR-module and if and only if R is
uni-injective as a right ^-module and right QF-2. When R is right artinian, we
shall show that the above extending property for right Λ-projectives is valid if

and only if R is right QF-2 and right R mini-injective.
We can consider the dual property, namely the lifting property of simple

modules. However, when R is right artinian, every Λ-projective P has the

lifting property of simple modules and further the lifting property of direct

decompositions of P/J(P) [5], where J(P) is the Jacobson radical of P.

I Definitions

Throughout this note, R is a ring with identity and every module M is a
unitary right /?-module. We shall denote the Jacobson radical, an injective enve-

lope and the socle of M by J(M), E(M) and S(M), respectively. If for any

simple (resp. uniform) submodule A of M there exists a (completely indecom-

posable) direct summand Ml of M such that S(M1)=A (resp. A is an essential

submodule of MI), then we say that M has the extending property of simple modules
(resp. uniform submodules). Futhermore, if for any direct decomposition of

S(M): S(M)=Σ ®Aa (resp. any independent set of uniform submodules Ba

such that 2 ®B<χ is essential in M) there exists a direct decomposition M=

Σ ΘMα, of M such that S(Ma,)—Aa (resp. Ba is an essential submodule in Ma)

for all a^Iy then we say that M has the extending property of direct decompositions
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of S(M) (resp. direct sum of uniform submodules).

In this note, we consider only artinian rings and so from now on we under-
stand that a ring R is always right artinian. We note that most results in this

note are true for left and right perfect rings. Let

be the standard decomposition, namely the e{j are primitive idempotents and

ejjR^βnRy CjiR^enR if ί=Φ= j. If S(e{1R) is simple for each /, then we say R
is right QF-2 [3] and [9]. lit E(R) is right Λ-pojective, R is called a right QF-3
ring [7] and [9]. Finally if ei}R is a serial module for each /, we call R a right

generalized unίserίal ring [8] and [5],

First we shall generalize the concept of injectivity. Let M be an Λ-module
and / a right ideal in R. We take an -R-homomorphism / of / to M. Put
M!—im/ and consider a diagram:

0 >I-?-+R

\fh'//
Ml /,' h

wψ \ί
M

We shall introduce two conditions.
(I) There exists h e Hom^ (R, M) such that hi=f.
(II) There exists either h^HomR(R) M) or h'<=HomR(M, R) such that

hi=f or if~1=h' \ M1 provided/ is an monomorphism.

If M satisfies (I) (resp. (II)) for every minimal right ideal / in R and any

/ in HomΛ(7, Λί), we say R is right (resp. weakly) minί-injective. Similarly if

M satisfies (I) (resp. (II)) for every uniform right ideal / in R and any / in

Hom^/, M), then we say M is right (resp. weakly) uni-injective.
It is clear that every injective is uni-injective and uni-injective is mini-

injective. The converse is not true in general (see Example 5 below). Every

semi-simple module is weakly mini-injective, but not mini-injective. If R is
a right QF-2 ring, every uni-injective is injective (see the proof of 7)—>1) in

Theorem 13 below).

2 Mini-injective modules

We shall study some elementary properties of the mini-injective modules.

From the definitions and the standard argument [1], we have

Proposition 1. Let M be an R-module and M=Ml®M2. Then
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1) M is mini-injective (resp. unί-injective) if and only if so is ecah M{.
2) If M is weakly mini-injective (resp. weakly uni-injective), then so is each

M,,

Theorem 2. Let R be a right artinian ring and M an R-module. Then M
is mini-injective (resp. uni-injective) if and only if any minimal (resp. uniform)
right ideal I in e{R and any f in Hom^(/,M), / is extendable to an element in
HomR(eiRi M), where e^ runs through all primitive idempotents.

Proof. "If" part. First we take a minimal right ideal / in Λ=Σ
i = l

Let / be in Horn^ (7, M) and π^ : R-^e^R projection. We may assume /t =
τti(I) =t= 0 for i < some / and /; = 0 for j > t. Since π^I is an monomorphism,

put/i^:/^!/)"1. Then there exists Fl in HomR(e1Ry M) such that F1\I1=f1 by

the assumption. Put Fj=Q (<^HomR(eΊRy M)) for j Φ 1 and F= Σ Fi Let x

be in / and *= Σ **(*). Then F(x) = 'ΣίFiπ1(oc)=f(π1\I)-lπ1(x)=f(x). If
ι = l

/ is uniform, Q ker (TT, 1 /)=0 implies that some πι \ I is an monomorphism. Hence,

we can use the same argument in this case, too.

3 Self mini-injective rings

Let R be a right artinian ring. We assume that every idempotent in this

note is always primitive and we denote it by e. We put R/J= R and e means the
residue class of e in R, where J=J(R).

First we shall study the extending property for Λ-projectives.

Theorem 3. Let R be right artinian. Then
1) Every projective has the extending property of simple modules if and only

if R is right QF-2 and R is weakly mini-injective as a right R-module (cf. [3],
Theorem 2).

2) Every projective has the extending property of direct decompositions of the
socle if and only if R is right QF-2 and mini-injective as a right R-module.

Proof. 1) We assume that every projective has the extending property of

simple modules. Then R is right QF-2. Let R= Σ 0£,J? with e^ primitive

and let n^R^e^R be the projection. We take two minimal right ideals Kλ
ti

and K2 and assume/: Kl-^K2 is an isomorphism. We assume K^ Σ ® ̂ ;,/ωι
y=ι

where /f; ω = ̂ /ωO^ίJ^O. Since /ίV(ί )^^ι for all ί,y, from [6], Corollary 8
we can find minimal one among e^R with respect to the order <* in [6], say

ej(0R=e1R and ί=l. We consider pk=πkfπϊl : In->ekR. If &$ {2(1), 2(2), •••,

2(t2)} , />*=0. Hence, since eλR is minimal, there exists Fk e HomΛ (e^ ekR)
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such that Fk\In=pk by [6]. Corollary 8. Put //= (Σ Fk)π^ Horn* (R, R).
k = l

Then h \ #ι=((Σ ^*)̂ ι) I ̂ ι=(Σ **/) I Kr=f If *e minimal one above £,(ί)#

is equal to Cj^R, we take/"1 in the above. Then we can find λ'eHomje(.R, R)
such that h'\K2=f~l. The converse is clear from [6], Corollary 8.

2) We can similarly show it by making use of [6], Corollary 20 instead of
Corollary 8.

Let S(Λ)=i] 05,- and the 5, simple. If 5̂ 5,- for any Φl, S, is called
ι = l

isolated. From the similar argument to the above we have

Theorem 3' Let R be as above. Then R has the extending property of direct
decompositions of the socle (resp. of simple modules) as a right R-module if and only
if R is right QF-2 and (I) (resp. (II)) is satisfied for non-isolated minimal right
ideals.

For the uni-injective case, we have

Theorem 4. Let R be right artinian. Then
1) Every protective has the extending property of uniform submodules if and

only if R is right QF-2 an d weakly uni-injective as a right R-module.
2) Every projectίve has the extending property of direct sums of uniform sub-

modules if and only if R is right QF-2 and uni-injective as a right R-module.

Proof. First we note that every uniform submodule in a projective module
P is finitely generated. Let P=Σ ®P* and Pa^ei(a)R and U a uniform sub-

module. Let τΦObein U. Thtnx=-^pa.ιpa.^Pai. Hence, t/nΣ®^,*0

ί = 1 ί = 1

and so U (Ί Σ 0 PB = 0. Accordingly, U is isomorphic to a submodule of
„ r-l*i)

Σ (&Par Furthermore, U^π^U) for some /, where π^: P^>Pai is the projec-

tion. Therefore, we can apply the same argument given in the proof of Theorem
3 by making use of [6], Theorems 10 and 22.

Next we shall study self (resp. weakly) mini-injective rings.

Theorem 5. Let R be right artinian and mini-injective as a right R-module.
Then

1) If e1Rε&e2R, no minimal submodule in e±R is isomorphic to any minimal
one in e2R.

2) S(^1Λ)~^1jΓ
Λ and every minimal submodule in e±R is isomorphic to one

another.
3) r(/)3l(/) and J=Z(R).

Where J=](R), the ^ are primitive ίdempotents, v(J) = {x e R \ Jx — 0} and
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l(J)= {χ<=Ξ R I xj=0} . Z(R) is the right singular ideal of R.

Proof. Let e^R^βzR and /, a minimal right ideal in e{R for /=!, 2. If

/2, there exist j in e2Re1=e2Jel and # in ^/e2 such that I2=ylί9 /ι=#/2 by
the assumption. Hence, Ii=%yll and zy^J, which is a contradiction. There-
fore, {/,}?-! is the representative set of minimal Λ-modules. Let S be a minimal
right ideal in ejϊ. Then S must be isomorphic to I1 from the above. Let
*JΓ*ΦO and ejk+1=0. We take a minimal right ideal K in ^/fe. Since K^S,
there exists Λ; in elRel such that S=xK^eJk. Hence, S(elR)=e1J

k. We
have obtained 1) and 2).
3) We take Iλ in S(^Λ). Let Il = xR and #£<?!#. Now Jx^^ejx =

m ί = 1

zlβijβix. If βjRfyeiR, ejJe1xR=Q by 1). If e^R^e^R, we take # in ^Ifey
ί = l

which induces an isomorphism of βjR to eJR. Then zejJe1xRc^e1Je1xR=Q by 2).
Hence, eJe1xR=0. Therefore, Jx=0 and l(7)=S(J?j?)cr(J). Furthermore,
Z(R)= {χCΞ:R\xl(J)=Q} 2/ and so Z(/)— /, since every ideal properly contain-
ing J contains a projective submodule.

Proposition 6, Let R be a right artinian ring. Then R is mini-injective as
a right R-module if and only if R is weakly mini-injective as a right R-module and

Proof. "If" part. We assume Iι^I2 for minimal right ideals 7, in />, I2.
Then there exists an element x in either e^Re? or e2Rel which induces an isomor-
pism between /t and 72. Hence, x&J by the assumption. Therefore, x in-
duces an isomorphism between eλR and e2R. Accordingly, 7? is mini-injective
for Hom^^ /Z, ejR)=ejRei. The converse is clear from Theorem 5.

Similarly to the above

Proposition 7. Let R be right artinian. Then R is uni-injective as a right
R-module if and only ifR is weakly uni-injective as a right R-module and

Proof. Since uni-injective is mini-injective, the 'Only if" part is clear
from Theorem 5. Let C7f be a uniform submodule of e^R and /: U1-^U2 a
homomorphism. If ker / Φ 0, / is extendable to an element in HomΛ (eji, e2P) by
the assumption. We assume ker/=0. We know from Proposition 6 that R is

mini-injective as a right Jf?-module. Hence, e1R^e2R by Theorem 5. Therefore,
/ and f~l are extendable to elements in HomΛ (e JR^ e2R) and Hom^(^2jR, l̂?),
respectively. Thus R is uni-injective by Theorem 2.

The author can not find an artinian ring which is self mini-injective but not

self uni-injective

We consider algebras over a field.
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Proposition 8. Let K be a field and R a K-algebra with finite dimension.

If R is mini-injective as a right R-module, then R is right QF-2.

Proof. Let Iγ be a minimal right ideal in ^Λ, where el is primitive. We

assume I^e2R. Since /i^i/*1 and ^J*!*1 — 0, each element in eλRβι gives
an element in HomR(Ily ^jR) (=HomΛ(/1, 8(̂ 1?)) via the left multiplication and

HomΛ(/!, elR)=elPel as a ίΓ-niodule by the assumption. Put I1=xe2R and

consider an isomorphism/ of I± by setting f(x)=xa for a^e2Re2. Then / is

extendable to an element in Hom^^J?, e±R) by the assumption. Hence, xa=bx

for some b in e-JR&\. This relation gives us a ^-monomorphism of e2'Re2' to

Hence, [e^e^. K]^[e2Re2: K]. Repeating those arguments, we obtain

a chain of primitive idempotents ely e2, ••*, e/, ••• such that a minimal right ideal

7, in e/R is isomorphic to ei+1'R and [e/Re/: K]^[ei+1'Rei+1': K]. We may

assume e/R^e/R for some i<j. Then 7i_1«e/JfZ«£//2»7y_1. Hence, £,_//?«

ej_ιR by Theorem 5. Therefore, eiR^e^R for some A. Accordingly,

: K]=[e2'Re2': K\=[ek'Rek'ι K]. Hence, Hom^, e1R)=e2Re2\ Let 5 be

a minimal right ideal in .̂R. Then there exists b in ^jRβx such that bI1=S by

the assumption. However, since Hom^^, e1R) = e2Re2 as above, there exists

a in e2Re2 such that bx—xa. Hence, S=bI1 = bxR — χaR^Il. Therefore,
S(^/?) is simple.

REMARK. If End^(^jR) is given by the multiplication of the central elements

in R for each idempotent ?, Proposition 8 is valid for such artinian rings from
the above proof.

Proposition 9. Let R be a K-algebra as above. We assume [eRe: K]=

[e'Re': K] for any primitive idempotents e and e'. Then every protective has the
extending property of simple modules (resp. direct decompositions of the socle) if and

only if R is right QF-2 and if S(elR)^S(e2R)9 either eJίSfaR) = S(e2R) or
elRS(e2R)=S(e1R) (resp. e2RS(e1R)=S(e2R))ί where the e{ are primitive.

Proof. "If" part. Since R is right QF-2, eJe1S(e1R)=0. Hence, 71=

S(^/?) is a left ^/Z^-module. We assume I^eJR and so

Since Iι is a left έΊΛ^-module, each element x in e1Re1 induces an element in

EndΛ(/j) by the left multiplication. Now, [eJKe^ K]=[e2Re2: K] from the

assumption. Hence, we may assume EndΛ(/1) = β1lZ l̂. Let I3=S(e3R) and

/3«/!. If £3̂ /1 = /3, yl\= /3 for some y e eJRe^ Then g:Il-^I3 given by setting
g(x) =yχ x e /L is an isomorphism. Let / be any isomorphism of /! to 73. Then

Hence, f(x)=yzx for some z in e^Re^ Therefore, / is
extendable to an element in Hom^^JR, e3R). Thus, every projective has the

extending property of simple modules (resp. direct decompositions of the socle)
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by [3], Theorem 2 (resp. [6], Corollary 20).

Since the extending property is preserved by Morita equivalence, if R\J is a
simple ring, we may assume R is a local ring.

Proposition 10. Let R be a right artinίan and local ring. Then every pro-
jectίve has the extending property of uniform submodules if and only if R is a QF-

ring.

Proof. If R has the extending property, R is right QF-2. Since every

projective is a direct sum of copies of R, R is a QF-ring by [6], Theorem 10.

Proposition 11. Let R be a right artinίan and local ring. We assume that
every monomorphίsm of R/J into itself as a field is an isomorphism. Then every
projective has the extending property of simple modules (and hence of direct decom-
positions of the socle) if and only if R is right QF-2.

Proof. "If" part. Since R is local QF-2, S(R)=I is a unique minimal
right ideal and a left ideal in R. Let I=xR. Then since y/=0, for any ele-

ment a in R, there exists b in R such that ax=xb. Hence, the correspondence
σ: a->b gives us a monomorphism of R into R. Therefore, σ is onto by the
assumption, which means that R is right mini-injective. Accordingly, every
projective has the extending property of direct decompositions of the socle by

Theorem 3.

Finally we shall give an additional result to [5].

Proposition 12. Let R be a right artinian, generalized unίserial and right
QF-3 ring. Then every R-projective module has the extending property of simple
modules.

Proof. Let S(R)= Σ 05,- and Si=S(eiR). We assume S1^S2^ ^Si
i = l

and Sj^Si for j>i. Since R is right QF-3, E^) is isomorphic to some ekR.
Hence, epR is isomorphic to some submodule of ekR for p^ί. Now ekR is
serial and injective by the assumption. Hence, each submodule of ekR is a
character submodule and Endjj(*SΛ) is extendable to EndR(ekR). Therefore,
every Λ-projective has the extending property of simple modules by [3], Theorem

2.

4 QF-rings

We shall give some characterizations of QF-rings in terms of extending
property of projectives.

Theorem 13. Let R be left and right artinian. Then the following condi-
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tions are equivalent.
1) R is a QF-ring.
2) Every right (and left) R-projective has the extending property of direct

decompositions of the socle.
3) Every right R-projective has the extending property of direct decomposi-

tions of the socle and r(/) cz 1 (J).
4) Every right R-injective E has the lifting property of direct decompositions

ofE/J(E) and R is a right QF-2 (see [4]).
5) R is right and left QF-2 and mini-injective as a right R-module.

6) R is mini-injective as a left and right R-module.
7) R is uni-injective as a right R-module and right QF-2.

Proof. l)->2)~7), 2)-^l) and 5)->l). They are clear from Theorems 3
and 5, [2], Theorem 3, [3], Theorem 2 and [8],
3)->l). It is sufficient to show that R is left QF-2 ,since R is right QF-2 and
Λ-mini-injective by Theorem 3. We take a unique minimal right ideal x^R in
eλR. We may assume xl e e^Re^ as the proof of Proposition 8. Since r(/) Ξ2 !(/),
y#1 = 0. Hence, Rxλ is semi-simple. On the other hand, since Rx1=Re1xly

Rxl is a minimal left ideal in Re2'. Let Rx2 be another minimal one in Re2 and

x2ξΞeJRe2'. Then S(e1R)=xJt^R^x2R==S(e^'R) since r(7)cl(J) by the
assumption. Hence, eλR « e3'R by Theorem 5. Noting that xλR is minimal, we
obtain an isomorphism /: x^R-^x^t with f(xι)=x2. f is extendable to an element
y^HoπιR(e1Rί e3'R) by [6], Corollary 20. Hence, x2=yxλ and so Rx2=Rxlf The
above correspondence el->e2

t gives a permutation of the set foil J"1 by Theorem
5. Hence, R is left QF-2.

4)-»l). We know from [2], Theorem 3 that there exists the representative set
{eiiRlenAjj}$mι *fc\ of indecomposable injectives. Since R is artinian, κ(ί)=l for
all ί by [4], Theorem 2. e^R is uniform by the assumption. Hence, Έ(enR)^
eJ 1R/eJιAjl for some j. We consider a diagram, where ek=ekl, Ak=Akl and φ is
the natural epimorphism:

0 > e{R > E(βiR)« ejR\ejAj

φ ^*-'*''

Since βiR/efAi is injective, we obtain an epimorphism h: βjR/βjA;->£,jR/£,yίt.
Hence, i~j and ^,^4t = 0. Since κ(i)=l for all i,p = n. Therefore, R =

Σ Σ Θ^ίf-R is self injective as a right JR-module.
ίti ^i ; J &

6)—>1). We assume that R is self mini-injective. Let xR be a minimal right ideal
in eiR, where eλ is primitive. Then xR=xe2R and x€ΞeιRe2. Since Jx = Q

by Theorem 5, Λtf is minimal in Re2 as above. Therefore, for any element b
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in elRel there exists a in e^ReJ such that bx=xa as the proof of Proposition 8
for 1? is left mini-injective. Again using the same argument, we know xR=
S(^Λ). Hence, R is QF-2. Therefore, R is a QF-ring by Theorem 5 and

[8].
7)—>1). We shall show that R is self-injective as a right .R-module. We can use

the standard argument [1]. Let / be a right ideal in R and/eHom^ (/,/?).

We can find a maximal one among the set of extensions of/by Zorn's Lemma,

say (/0,/0:10-*R). We assume /0ΦΛ. Then there exists a primitive idempotent
e such that e&I0. Put K=eRΓ\IQ and Il=I0+eR. We take an extension/!
of f0\K from the assumption. We put g(x)=fo(xι)+fι(er), where #re/0 and
r^R. Then^eHom^/!, R), which contradicts the assumption of /0. Hence,

I0=R and R is self-injective.

Theorem 14. Let R be a K-algebra with [R: K]<oo. Then the following

conditions are equivalent.

1) R is a QF-ring.

2) R is mini-injective as a right R-module and r(/)=!(/).
3) R is uni-injective as a right R-module.

Proof. It is clear from Proposition 8 and Theorem 13.

5 Examples

Let K be a field.

1. Put

Then HomΛ(S(^22^)> S^T?)) is not extendable to Hom/?(^22JR, e^R). Hence, R
is right generalized uniserial, but does not have the extending property of simple
modules as a right JR-module (cf. Proposition 12).

2. We shall give an example, where artinian and right self mini-injective
rings are not right QF-2 in general. Let x be an indeterminate and Q a field.
Put L—Q(x) and K= Q(x2). Then we have an isomorphism σ of L onto K and
[L: K]=2. Let R = Ll®Lu be a left vector space over L. We put (Lu)2=Q
and ul=σ(l)u for /eL. Then jR is a ring and [R: L]=2 as a left L-module

and [R: L]=3 as a right L-module. Hence, R is a left and right artinian ring.
J=Lu contains minimal right ideals Ku and xKu. Let / be a minimal right

ideal in/. Then I=aL\ a=lu and EndR(Ku)=K. Therefore, R is self right
mini-injective (and uni-injective). We note that EndΛ(/) as a left Λ-module 3

{the right multiplications of R} and Λ is left QF-2. Furthermore, 1? satisfies the
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conditions in Theorem 5 as a left /?-module. However, 1? is not left mini-
injective (cf. Theorems 13 and 14).

In case of QF-rings, right artinian and right self-injective rings satisfy
the same conditions on the left side. However, this fact is not true for self
mini-injective rings from this example.

3. Let K and L be as in Example 2. Put

R= \0 L.

Then R is right weakly mini-injective. However R is not right QF-2 and hence
not right mini-injective. e22R is weakly uni-injective, but not mini-injective.
(cf. Proposition 8).

4. Put

Then R is weakly mini-injective but not weakly uni-injective for /: enR->euJ
2

is not extendable.
5. Put

iK uK+vK K\
R=\0 K K\

\0 0 Kl

and e12(uk1+vk2)e23k3=e13(k1k3+k2k3) for k^K. Then e^R is mini-injective. On
the other hand, enR contains two isomorphic uniform modules (0, uK3 K),
(Q,vK,K). The above isomorphism is not extendable to an element in

(enR, euR). Hence euR is not uni-injectcetve.
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