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Abstract
We prove that there exists a positive integer�n depending only onn such that

for every smooth projectiven-fold of general typeX defined over complex numbers,jmKX j gives a birational rational map fromX into a projective space for everym��n. This theorem gives an affirmative answer to Severi’s conjecture.
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1. Introduction

Let X be a smooth projective variety and letKX be the canonical bundle ofX.
X is said to be a general type, if there exists a positive integer m such that the pluri-
canonical systemjmKXj gives a birational (rational) embedding ofX. The following
problem is fundamental to study projective varieties of general type.

PROBLEM. Find a positive integer�n depending only onn such that for every
smooth projectiven-fold X, jmKXj gives a birational rational map fromX into a pro-
jective space for everym ≧ �n.

2000 Mathematics Subject Classification. 14J40, 32J18.



724 H. TSUJI

If X is a projective curve of genus≧ 2, it is well known thatj3KXj gives a projec-
tive embedding. In the case thatX is a smooth projective surface of general type,
E. Bombieri showed thatj5KXj gives a birational rational map fromX into a projec-
tive space ([3]). But for the case of dimX ≧ 3, very little is known about the above
problem.

The main purpose of this article is to prove the following theorems in full gen-
erality.

Theorem 1.1. There exists a positive integer�n which depends only on n such
that for every smooth projective n-fold X of general type defined over complex num-
bers, jmKXj gives a birational rational map from X into a projective space for every
m ≧ �n.

Theorem 1.1 is very much related to the theory of minimal models. It has been
conjectured that for every nonuniruled smooth projective variety X, there exists a pro-
jective variety Xmin such that
1. Xmin is birationally equivalent toX,
2. Xmin has onlyQ-factorial terminal singularities,
3. KXmin is a nefQ-Cartier divisor.
Xmin is called a minimal model ofX. To construct a minimal model, the minimal
model program (MMP) has been proposed (cf. [15, p.96]). The minimal model pro-
gram was completed in the case of 3-folds by S. Mori ([19]).

The proof of Theorem 1.1 can be very much simplified, if we assume the exis-
tence of minimal models for projective varieties of generaltype and has been trieated
in [35]. The proof here is modeled after the proof in [35] by using the theory of AZD
originated by the author ([27, 28]).

The major difficulty of the proof of Theorem 1.1 is to find “a (universal) lower
bound” of the positivity of KX. In fact Theorem 1.1 is equivalent to the following
theorem.

Theorem 1.2. There exists a positive number Cn which depends only on n
such that for every smooth projective n-fold X of general type defined over complex
numbers,

�(X, KX) := n! � lim
m!1 m� dim X dim H0(X, OX(mKX)) ≧ Cn

holds.

We note that�(X, KX) is equal to the intersection numberK n
X for a minimal projective

n-fold X of general type. In Theorems 1.1 and 1.2, the numbers�n and Cn have not
yet been computed effectively.
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The relation between Theorems 1.1 and 1.2 is as follows. Theorem 1.2 means that
there exists a universal lower bound of the positivity of canonical bundle of smooth
projective variety of general type with a fixed dimension. Onthe other hand, for a
smooth projective variety of general typeX, let us consider the lower bound ofm
such thatjmKXj gives a birational embedding. Such a lower bound depends on the
positivity of KX on certain subvarieties which appear as the strata of the filtrations as
in [31, 1] (cf. Section 3.1).

The positivity of KX on the subvarieites can be related to the positivity of the
canonical bundles of the smooth models of the subvarieties via the subadjunction theo-
rem due to Kawamata ([11]). We note that for a smooth projective varietyX of general
type there exists a nonempty open subsetU0 in countable Zariski topology such that
for every x 2 U0, any subvariety containingx is of general type.

The organization of the paper is as follows. In Section 2, we review the basic
techniques to prove Theorems 1.1 and 1.2.

In Section 3, we prove Theorems 1.1 and 1.2 without assuming the existence of
minimal models for projective varieties of general type. Here we use the AZD (cf. Sec-
tion 2.2) of KX instead of minimal models. And we use the subadjunction theorem
(Theorem 2.24) and the positivity theorem (Theorem 2.30) due to Kawamata.

In Section 4, we discuss the application of Theorems 1.1 and 1.2 to Severi-Iitaka’s
conjecture.

In this paper all the varieties are defined overC.
This is the continuation of the paper [35] and is a transcription of the latter half

of [34].
After the completion of this work (seemath.CV/0409318), I saw the paper

“Boundedness of pluricanonical maps of varieties of general type”, math.AG/0504327
written by C. Hacon and J. McKernan. And very recently the following two papers ap-
peared and proved the same result in this paper and [34].

C. Hacon and J. McKernan:Boundedness of pluricanonical maps of varieties of generaltype,
Invent. Math.166 (2006), 1–25.
S. Takayama:Pluricanonical systems of varieties of general type, Invent. Math.165 (2006),
551–587.

Their proofs follow the strategy and the arguments in this paper and [34, 35] as they
admitted in their papers. As in this paper, in their proofs, the crucial tool is the exten-
sion theorem of sections of multi adjoint bundles from the subvariety to the ambient
variety (cf. Theorems 2.24 and 2.25 below).

The only difference between their proofs and the one in here is that the extension
theorem is from a divisor in their proofs, while in my proof the extension is from a
subvariety of arbitrary codimension. In fact the main ingredient in their articles are
the extension theorems for multi log canonical forms and arevery much similar to the
subadjunction theorem in this paper (Theorem 2.25) including its proof (they employed
the same argument of Siu). The rest of the papers are essentially the same as [35]
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except that their proofs are written in algebro geometric languages.

2. Preliminaries

In this section, we shall summerize the basic analyic tools to prove Theorems 1.1
and 1.2 by transcripting the proof of Theorems 1.1 and 1.2 assuming MMP ([35]).

2.1. Multiplier ideal sheaves and singularities of divisors. In this subsection,
we shall review the relation between multiplier ideal sheaves and singularities of divi-
sors. Throughout this subsectionL will denote a holomorphic line bundle on a com-
plex manifold M.

DEFINITION 2.1. A singular hermitian metrich on L is given by

h = e�' � h0,

where h0 is a C1-hermitian metric onL and ' 2 L1
loc(M) is an arbitrary function on

M. We call ' the weight function ofh with respect toh0.

The curvature current2h of the singular hermitian line bundle (L, h) is defined by

2h := 2h0 +
p�1��̄',

where ��̄ is taken in the sense of a current. TheL2-sheafL2(L, h) of the singular
hermitian line bundle (L, h) is defined by

L2(L, h)(U ) :=
�� 2 0(U , OM (L))

�� h(� , � ) 2 L1
loc(U )

	
,

whereU runs over the open subsets ofM. In this case there exists an ideal sheafI(h)
such that

L2(L, h) = OM (L)
 I(h)

holds. We callI(h) the multiplier ideal sheafof (L, h). If we write h as

h = e�' � h0,

whereh0 is a C1 hermitian metric onL and ' 2 L1
loc(M) is the weight function, we

see that

I(h) = L2(OM , e�')

holds. For' 2 L1
loc(M) we define the multiplier ideal sheaf of' by

I(') := L2(OM , e�').
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EXAMPLE 2.2. Letm be a positive integer. Let� 2 0(X,OX(mL)) be the global
section. Then

h :=
1j� j2=m =

h0�
hm

0 (� , � )
�1=m

is a singular hemitian metric onL, whereh0 is an arbitraryC1-hermitian metric on
L (the righthand side is ovbiously independent ofh0). The curvature2h is given by

2h =
2�p�1

m
(� ),

where (� ) denotes the current of integration over the divisor of� .

DEFINITION 2.3. L is said to be pseudoeffective, if there exists a singular her-
mitian metrich on L such that the curvature current2h is a closed positive current.

Also a singular hermitian line bundle (L, h) is said to be pseudoeffective, if the
curvature current2h is a closed positive current.

Let m be a positive integer andf�i g a finite number of global holomorphic sections
of mL. Let � be aC1-function on M. Then

h := e�� � 1P
i j�i j2=m

defines a singular hermitian metric onL. We call such a metrich a singular hermitian
metric onL with algebraic singularities. Singular hermitian metrics with algebraic sin-
gularities are particulary easy to handle, because its multiplier ideal sheaf of the metric
can be controlled by taking a resolution of the base scheme

T
i (�i ).

Let D =
P

ai Di be an effectiveQ-divisor on X. Let �i be a section ofOX(Di )
with divisor Di respectively. Then we define

I(D) : = I

 X
i

ai log hi (�i , �i )

!

and call it the multiplier ideal sheaf of the divisorD, wherehi denotes aC1-hermitian
metric ofOX(Di ) respectively. It is clear thatI(D) is independent of the choice of the
hermitian metricsfhi g.

Let us consider the relation betweenI(D) and singularities ofD.

DEFINITION 2.4. Let X be a normal variety andD =
P

i di Di an effective
Q-divisor such thatKX + D is Q-Cartier. If � : Y! X is a log resolution of the pair
(X, D), i.e., � is a composition of successive blowing ups with smooth centers such
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that Y is smooth and the support off �D is a divisor with normal crossings, then we
can write

KY +��1� D = ��(KX + D) + F

with F =
P

j ej E j for the exceptional divisorsfE j g, where��1� D denotes the strict
transform ofD. We call F the discrepancy andej 2 Q the discrepancy coefficient for
E j . We regard�di as the discrepancy coefficient ofDi .

The pair (X, D) is said to have onlyKawamata log terminal singularities(KLT)
(resp. log canonical singularities(LC)), if di < 1 (resp.≦ 1) for all i and ej > �1
(resp.≧ �1) for all j for a log resolution�: Y! X. One can also say that (X, D) is
KLT (resp. LC), or KX + D is KLT (resp. LC), when (X, D) has only KLT (resp. LC).
The pair (X, D) is said to be KLT (resp. LC) at a pointx0 2 X, if (U , DjU ) is KLT
(resp. LC) for some neighbourhoodU of x0.

The following proposition is a dictionary between algebraic geometry and theL2-method.

Proposition 2.5. Let D be a divisor on a smooth projective variety X. Then
(X, D) is KLT, if and only if I(D) is trivial (= OX).

The proof is trivial and left to the reader. To locate the co-support of the multiplier
ideal the following notion is useful.

DEFINITION 2.6. A subvarietyW of X is said to be acenter of log canonical
singularitiesfor the pair (X, D), if there is a birational morphism from a normal variety� : Y! X and a prime divisorE on Y with the discrepancy coefficiente ≦ �1 such
that �(E) = W.

The set of all the centers of log canonical singularities is denoted byCLC(X, D). For
a point x0 2 X, we defineCLC(X, x0, D) := fW 2 CLC(X, D) j x0 2 Wg. We quote
the following proposition to introduce the notion of the minimal center of logcanoical
singularities.

Proposition 2.7 ([12, p.494, Proposition 1.5]). Let X be a normal variety and
D an effectiveQ-Cartier divisor such that KX + D is Q-Cartier. Assume that X is
KLT and (X, D) is LC. If W1, W2 2 CLC(X, D) and W an irreducible component of
W1 \W2, then W2 CLC(X, D). This implies that if(X, D) is LC but not KLT, then
there exists the unique minimal element of CLC(X, D). Also if (X, D) is LC but not
KLT at a point x0 2 X, then there exists the unique minimal element of CLC(X, x0, D).

We call these minimal elements theminimal center of LC singularitiesof (X, D) and
the minimal center of LC singularities of(X, D) at x0 respectively.
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2.2. Analytic Zariski decomposition. To study a pseudoeffective line bundle
we introduce the notion of analytic Zariski decompositions. By using analytic Zariski
decompositions, we can handle a pseudoeffective line bundle, as if it were a nef line
bundle.

DEFINITION 2.8. Let M be a compact complex manifold and letL be a line
bundle onM. A singular hermitian metrich on L is said to be ananalytic Zariski
decomposition(AZD in short), if the followings hold.
1. 2h is a closed positive current,
2. for everym ≧ 0, the natural inclusion

H0(M, OM (mL)
 I(hm))! H0(M, OM (mL))

is isomorphim.

REMARK 2.9. If an AZD exists on a line bundleL on a smooth projective va-
riety M, L is pseudoeffective by the condition 1 above.

Theorem 2.10 ([27, 28]). Let L be a big line bundle on a smooth projective va-
riety M. Then L has an AZD.

As for the existence for general pseudoeffective line bundles, now we have the follow-
ing theorem.

Theorem 2.11 ([6, Theorem 1.5]). Let X be a smooth projective variety and let
L be a pseudoeffective line bundle on X. Then L has an AZD.

Although the proof is in [6], we shall give a proof here, because we shall use it after-
ward.

Let h0 be a fixedC1-hermitian metric onL. Let E be the set of singular hermit-
ian metric onL defined by

E =

�
h; h : lowersemicontinuous singular hermitian metric onL,

2h is positive,
h

h0
� 1

�
.

Since L is pseudoeffective,E is nonempty. We set

hL = h0 � inf
h2E

h

h0
,

where the infimum is taken pointwise. The supremum of a familyof plurisubharmonic
functions uniformly bounded from above is known to be again plurisubharmonic, if we
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modify the supremum on a set of measure 0 (i.e., if we take the uppersemicontinuous
envelope) by the following theorem of P. Lelong.

Theorem 2.12 ([17, p.26, Theorem 5]). Let f't gt2T be a family of pluri-
subharmonic functions on a domain� which is uniformly bounded from above on ev-
ery compact subset of�. Then = supt2T 't has a minimum uppersemicontinuous
majorant  � which is plurisubharmonic. We call  � the uppersemicontinuous enve-
lope of  .

REMARK 2.13. In the above theorem the equality =  � holds outside of a set
of measure 0 (cf. [17, p.29]).

By Theorem 2.12, we see thathL is also a singular hermitian metric onL with2hL � 0. Suppose that there exists a nontrivial section� 2 0(X, OX(mL)) for some
m (otherwise the second condition in Definition 2.8 is empty).We note that

1j� j2=m
gives the weight of a singular hermitian metric onL with curvature 2�m�1(� ), where
(� ) is the current of integration along the zero set of� . By the construction we see
that there exists a positive constantc such that

h0j� j2=m � c � hL(�)
holds. Hence

� 2 H0(X, OX(mL)
 I1(hm
L ))

holds. In praticular

� 2 H0(X, OX(mL)
 I(hm
L ))

holds. This means thathL is an AZD of L.

REMARK 2.14. By the above proof (see (�)) we have that for the AZDhL con-
structed as above

H0(X, OX(mL)
 I1(hm
L )) ' H0(X, OX(mL))

holds for everym, whereI1(hm
L ) denotes theL1-multiplier ideal sheaf, i.e., for every

open subsetU in X,

I1(hm
L )(U ) :=

�
f 2 OX(U )

�� j f j2(hL=h0)m 2 L1
loc(U )

	
,
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whereh0 is a C1-hermitian metric onL.

Entirely the same proof as that of Theorem 2.11, we obtain thefollowing corollary.

Corollary 2.15. Let (L, h0) be a singular hermitian line bundle on a compact
Kähler manifold(X, !). Suppose that

E(L, h0) :=
�' 2 L1

loc(X)
�� ' ≦ 0, 2h0 +

p�1��̄' ≧ 0
	

is nonempty. Then if we define the function'P 2 L1
loc(X) by

'P(x) := supf'(x) j ' 2 Eg (x 2 X).

Then h:= e�'P � h0 is a singular hermitian metric on L such that
1. 2h ≧ 0.
2. H0(X, OX(mL)
 I1(hm)) ' H0(X, OX(mL)
 I1(hm

0 )) holds for every m≧ 0.

We call h an AZD of (L, h0). This is a slight generalization of the notion of AZD’s
of pseudoeffective line bundles.

REMARK 2.16. In Corollary 2.15,E(L, h0) is nonempty, if there exists a pos-
itive integer m0 and � 2 H0

�
X, OX(m0L) 
 I1�hm0

0

��
such thathm0

0 (� , � ) ≦ 1. In
this case

' :=
1

m0
log hm0

0 (� , � )

belongs toE(L, h0).

2.3. The L2-extension theorem. Let M be a complex manifold of dimensionn
and let S be a closed complex submanifold ofM.

Then we consider a class of continuous function9 : M ! [�1, 0) such that
1. 9�1(�1) � S,
2. if S is k-dimensional around a pointx, there exists a local coordinate system
(z1, : : : , zn) on a neighbourhood ofx such thatzk+1 = � � � = zn = 0 on S\U and

sup
UnS

�����9(z)� (n� k) log
nX

j =k+1

jzj j2
����� <1.

The set of such functions9 will be denoted by℄(S)1.

1This condition is used only to define the residue volume form.We shall define the residue volume
forms for more general singular volume forms later. And the extension theorem also holds for the
generalized residue volume forms by the same proof as in [23,Theorem 4].
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For each9 2 ℄(S), one can associate a positive measuredVM [9] on S as the
minimum element of the partially ordered set of positive measuresd� satisfying

Z
Sk

f d� ≧ lim
t!1 2(n� k)v2n�2k�1

Z
M

f � e�9 � �R(9,t) dVM

for any nonnegative continuous functionf with supp f ⋐ M. Here Sk denotes the
k-dimensional component ofS, vm denotes the volume of the unit sphere inRm+1 and�R(9,t) denotes the characteristic funciton of the set

R(9, t) = fx 2 M j �t � 1< 9(x) < �tg.
Let M be a complex manifold and let (E, hE) be a holomorphic hermitian vector

bundle overM. Given a positive measured�M on M, we shall denoteA2(M, E,hE,d�M )
the space ofL2 holomorphic sections ofE over M with respect tohE andd�M . Let S
be a closed complex submanifold ofM and letd�S be a positive measure onS. The
measured submanifold (S, d�S) is said to be a set of interpolation for (E, hE, d�M ),
or for the sapceA2(M, E, hE, d�M ), if there exists a bounded linear operator

I : A2(S, EjS, hE, d�S)! A2(M, E, hE, d�M )

such that I ( f )jS = f for any f 2 A2(S, EjS, hE, d�S). I is called an interpolation
operator. The following theorem is crucial.

Theorem 2.17 ([23, Theorem 4]). Let M be a complex manifold with a contin-
uous volume form dVM , let E be a holomorphic vector bundle over M with C1-fiber
metric hE, let S be a closed complex submanifold of M, let 9 2 ℄(S) and let KM

be the canonical bundle of M. Then (S, dVM (9)) is a set of interpolation for(E 

KM , hE 
 (dVM )�1, dVM ), if the followings are satisfied.
1. There exists a closed set X� M such that

(a) X is locally negligble with respect to L2-holomorphic functions, i.e., for any
local coordinate neighbourhood U� M and for any L2-holomorphic function f
on U n X, there exists a holomorphic functioñf on U such that f̃ jU n X = f .
(b) M n X is a Stein manifold which intersects with every component of S.

2. 2hE ≧ 0 in the sense of Nakano,
3. 9 2 ℄(S) \ C1(M n S),
4. e�(1+�)9 �hE has semipositive curvature in the sense of Nakano for every� 2 [0, Æ]
for someÆ > 0.
Under these conditions, there exists a positive constant C and an interpolation operator
from A2(S, E
 KM jS, h
 (dVM )�1jS, dVM [9]) to A2(M, E
 KM , h
 (dVM )�1.dVM )
whose norm does not exceed C� Æ�3=2. If 9 is plurisubharmonic, the interpolation
operator can be chosen so that its norm is less than24�1=2.
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REMARK 2.18. In Theorem 2.17,C can be taken independent of (E, hE) (note
that if C depends on (E, hE), the statement of Theorem 2.17 does not make sense).
This is the same phenomena that in Ohsawa-Takegoshi extension theorem ([22, p.197,
Theorem]),C is independent of the plurisubharmonic weight function.

The above theorem can be generalized to the case that (E, hE) is a singular hermit-
ian line bundle with semipositive curvature current (we call such a singular hermitian
line bundle (E, hE) a pseudoeffective singular hermitian line bundle) as was remarked
in [23].

Lemma 2.19. Let M, S, 9, dVM , dVM [9], (E, hE) be as inTheorem 2.17.Let
(L, hL ) be a pseudoeffective singular hermitian line bundle on M. Then (S, dVM [9])
is a set of interpolation for

�
KM 
 E 
 L, dV�1

M 
 hE 
 hL
�
.

Let A be an ample line bundle on the complex manifoldM such that there ex-
ists a section� 2 H0(M, OM (L)) whose zero locusH = f� = 0g contains the all the
singularities of the subvarietyS. Let 9 : M n H ! [�1, 0) such that
1. 9�1(�1) � Sn H ,
2. if Sn H is k-dimensional around a pointx, there exists a local coordinate system
(z1, : : : , zn) on a neighbourhood ofx such thatzk+1 = � � � = zn = 0 on S\U and

sup
UnS

�����9(z)� (n� k) log
nX

j =k+1

jzj j2
����� <1.

Let dVM be a continuous volume form onM. Then we may define a volume form
dVM [9] on Sn H . We shall extenddV[9] trivially to a singular volume form onS
and denote it again bydVM [9]. The following corollary is the immediate consequence
of Theorem 2.17.

Corollary 2.20. Let M be a complex projective manifold with a continuous vol-
ume form dVM , let E be a holomorphic vector bundle over M with C1-fiber metric
hE, let S be a subvariety of M, let 9 be the function as above and let KM be the
canonical bundle of M. Then(S, dVM [9]) is a set of interpolation for(E
 KM , hE

(dVM )�1, dVM ), if the followings are satisfied.
1. 2hE ≧ 0 in the sense of Nakano,
2. 9 2 C1(M n (S[ H )),
3. e�(1+�)9 �hE has semipositive curvature in the sense of Nakano for every� 2 [0, Æ]
for someÆ > 0.
Under these conditions, there exists a constant C and an interpolation operator from
A2(S, E
KM jS, h
 (dVM )�1jS, dVM [9]) to A2(M, E
KM , h
 (dVM )�1.dVM ) whose
norm does not exceed C� Æ�3=2. If 9 is plurisubharmonic, the interpolation operator
can be chosen so that its norm is less than24�1=2.
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The above corollary can be also generalized to the case that (E, hE) is a singular
hermitian line bundle with semipositive s curvature current as was remarked in [23].

2.4. A construction of the function Ψ. Here we shall show the standard con-
struction of the function9 in Theorem 2.17. LetM be a smooth projectiven-fold and
let S be ak-dimensional (not necessary smooth) subvariety ofM. Let U = fU
 g be a

finite Stein covering ofM and let
�

f (
 )
1 , : : : , f (
 )

m(
 )

	
be a generator of the ideal sheaf

associated withS on U
 . Let f�
 g be a partition of unity which subordinates toU .
We set

9 := (n� k)
X

 �
 �

 
m(
 )X
l=1

�� f (
 )
l

��2!.

Then the residue volume formdV[9] is defined as in the last subsection. Here the
residue volume formdV[9] of a continuous volume formdV on M is not well de-
fined on the singular locus ofS. But this is not a difficulty to apply Theorem 2.17
or Lemma 2.19, since there exists a proper Zariski closed subset Y of X such that
(X � Y) \ S is smooth (see Corollary 2.20).

2.5. Volume of pseudoeffective line bundles.To measure the positivity of big
line bundles on a projective variety, we shall introduce thenotion of volume of a pro-
jective variety with respect to a big line bundle.

DEFINITION 2.21. Let L be a line bundle on a compact complex manifoldM
of dimensionn. We define thevolumeof M with respect toL by

�(M, L) := n! � lim
m!1 m�n dim H0(M, OM (mL)).

With respect to a pseudoeffective singular hermitian line bundle (for the definition of
pseudoeffective singular hermitian line bundles, see the last part of Section 2.3), we
define the volume as follows.

DEFINITION 2.22. ([29]) Let (L, h) be a pseudoeffective singular hermitian line
bundle on a smooth projective varietyX of dimensionn. We define thevolume of X
with respect to(L, h) by

�(X, (L, h)) := n! � lim
m!1 m�n dim H0(X, OX(mL)
 I(hm)).

A pseudoeffective singular hermitian line bundle (L, h) is said to be big, if�(X, (L, h)) >
0 holds.

We may consider�(X, (L, h)) as theintersection number(L, h)n. We also denote�(X, (L, h)) by (L, h)n. Let Y be a subvariety ofX of dimensiond and let�Y: Ỹ! Y
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be a resolution ofY. We define�(Y, (L, h)jY) as

�(Y, (L, h)jY) := �(Ỹ, ��Y(L, h)).

The righthand side is independent of the choice of the resolution � because of the
remark below. We also denote�(Y, (L, h)jY) by (L, h)d � Y.

REMARK 2.23. Let us use the same notations in Definition 2.22. Let� : X̃! X
be any modification. Then

�(X, (L, h)) = �(X̃, ��(L, h))

holds, since

��(OX̃(K X̃)
 I(��hm)) = OX(KX)
 I(hm)

holds for everym and

lim
m!1 m�n dim H0(X, OX(mL)
 I(hm))

= lim
m!1 m�n dim H0(X, OX(mL + D)
 I(hm))

holds for any Cartier divisorD on X. This last equality can be easily checked, ifD
is a smooth irreducible divisor, by using the exact sequence

0! OX(mL)
 I(hm)! OX(mL + D)
 I(hm)! OD(mL + D)
 I(hm)! 0.

For a generalD, the equality follows by expressingD as a difference of two very
ample divisors.

2.6. A subadjunction theorem. Let M be a smooth projective variety and let
(L, hL ) be a singular hermitian line bundle onM such that2hL ≧ 0 on M. We assume
that hL is lowersemicontinuous. This is a technical assumption so that a local potential
of the curvature current ofhL is plurisubharmonic.

Let m0 be a positive integer. Let� 2 0(M,OM (m0L)
I1(h)) be a global section.
Let � be a positive rational number≦ 1 and let S be an irreducible subvariety ofM
such that (M, �(� )) is LC (log canonical) but not KLT (Kawamata log terminal) on
the generic point ofS and (M, (�� �)(� )) is KLT on the generic point ofS for every
0< � � 1. We set

9S = � log hL (� , � ).

Suppose thatS is smooth for simplicity (if S is not smooth, we just need to take an
embedded resolution to apply Theorems 2.24, 2.25 below). Weshall assume thatS is
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not contained in the singular locus ofhL , where the singular locus ofhL means the
set of points whereh is +1. Let dV be aC1-volume form onM.

Then as in Section 2.3, we may define a (possibly singular) measure dV[9S] on
S. This can be viewed as follows. Letf : N ! M be a log resolution of (X, �(� )).
Then as in Section 2.4, we may define the singular volume formf �dV[ f �9S] on the
divisorial component off �1(S) (the volume form is identically 0 on the components
with discrepancy> �1). The singular volume formdV[9S] is defined as the fibre
integral of f �dV[ f �9S] (the actual integration takes place only on the components
with discrepancy�1). Let d�S be aC1-volume form onS and let' be the function
on S defined by

' := log
d�S

dV[9S]

(dV[9S] may be singular on a subvariety ofS, also it may be totally singular onS).
Suppose that there exists an AZDhS of

�
KM + dLjS, e�' � �dV�1 � hd

L

���
S

�
.

Theorem 2.24 ([33, Theorem 5.1]). Let M, S,9S, hS be as above. Suppose that
S is smooth. Let d be a positive integer such that d> �m0. Then every element of
A2
�
S, OS(m(KM + dL)),

�
dV�1 � hd

L

���
S � hm�1

S , dV[9S]
�

extends to an element of

H0(M, OM (m(KM + dL))).

As we mentioned as above the smoothness assumption onS is just to make the state-
ment simpler. And it may be worthwhile to note that the weightfunction ' is not
necessary whendV[9S] is locally L1 on S and hL is bounded onS.

Theorem 2.24 follows from Theorem 2.25 below by minor modifications (cf. [33]).
The main difference is the fact that the residue volume formdV[9S] may be singular
on S (cf. Corollary 2.20). But this does not affect the proof, since in theL2-extension
theorem (Theorem 2.17) we do not need to assume that the manifold M is compact.
Hence we may remove suitable subvarieties so that we do not need to consider the
pole of dV[9S] on S (but of course the pole ofdV[9S] affects theL2-conditions).

Theorem 2.25. Let M be a projective manifold with a continuous volume form
dV, let L be a holomorphic line bundle over M with a C1-hermitian metric hL with
semipositive curvature2hL , let S be a compact complex submanifold of M, let9S: M! [�1, 0) be a continuous function and let KM be the canonical bundle of M.
1. 9S 2 ℄(S) \ C1(M n S) (As for the definition of℄(S), seeSection 3.2),
2. 2hL �e�(1+�)9S ≧ 0 for every� 2 [0, Æ] for someÆ > 0.
Then every element of H0(S, OS(m(KM + L))) extends to an element of
H0(M, OM (m(KM + L))).
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For the completeness we shall give a simple proof of Theorem 2.25 (hence also The-
orem 2.24) under the additional conditions:

CONDITION. 1. KM + L is big.
2. Bsjm(KM + L)j does not containS for somem> 0.
3. There exists a Zariski open neighbourhoodU of the generic point ofS in M such
that jm(KM + L)j gives an embedding ofU into a projective space for every sufficiently
large m.

The reason why we put these conditions is that we only need Theorems 2.24 and 2.25
under this condition. More precisely we need to consider a little bit more general case
that hL is a singular hermitian metric with semipositve curvature current on M and
dV[9] is singular onS. But as we have already mentioned above the singularity of
dV[9] does not change the proof. And the singularity ofhL will be managed in Re-
mark 2.28 below.

Let us begin the proof of Theorem 2.25 under the above additional conditions. Let
M, S, L be as in Theorem 2.25. Letn denote the dimension ofM and let k denote
the dimension ofS. Let hS be a canonical AZD ([28]) ofKM + LjS. By Kodaira’s
lemma (cf. [14, Appendix]), there exists an effectiveQ-divisor B on M such thatKM +
L � B is ample. By the above conditions, we may takeB such that SuppB does
not contain S. In fact by the conditions, we see that for an ample line bundle H ,jm(KM + L)� H j is base point free on the generic point ofS. Then we may takeB to
be the 1=m-times a general member ofjm(KM + L)�H j. We shall assume that SuppB
does not containS.

Let a be a positive integer such that
1. A: = a(KM + L � B) is Cartier,
2. AjS�KS ia ample andOS(AjS�KS)
Mk+1

x is globally generated for everyx 2 S.
Let hM be a canonical AZD ofKM + L and let hA be a C1 hermitian metric onA.
We shall define a sequence of the hermitian metricsfh̃mg (m ≧ 1) inductively by: h0 =
hA and

K̃ m := K (M, A + m(KM + L), dV�1 � hL � h̃m�1, dV),

h̃m :=
1

K̃ m
,

whereK
�
M, A+m(KM +L), dV�1 �hL � h̃m�1, dV

�
is the Bergman kernel ofA+m(KM +

L) with respect to the singular hermitian metricdV�1 � hL � h̃m�1 and the volume form
dV, i.e.,

K (M, A + m(KM + L), dV�1 � hL � h̃m�1, dV) =
X

j

���̃ (m)
j

��2,

where
��̃ (m)

j

	
is a complete orthonormal basis ofH0(M,OM (A+m(KM +L))
I(h̃m�1))
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with respect to the inner product

(�̃ , �̃ 0) :=
Z

M
�̃ � ¯̃� 0 � (dV�1 � hL � h̃m�1) � dV

where �̃ , �̃ 0 2 H0(M, OM (A + m(KM + L)) 
 I(h̃m�1)). We use the similar notations
for Bergman kernels hereafter.

Every h̃m is a singular hermitian metric onA + m(KM + L) with semipositive cur-
vature current by definition.

Lemma 2.26. For every m≧ 0, there exists a positive constant Cm such that

h̃mjS ≦ Cm � hAjS � hm
S

holds.

Proof. We shall prove the lemma by induction onm. For m = 0 , the existence of
C0 is trivial by the definition ofh̃0. Suppose that the inequality holds for somem�1 ≧
0 and a positive constantCm�1. Then by theL2-extension theorem, Theorem 2.17
implies that there exists a bounded interpolation operateor:

Im : A2(S, A + m(KM + L)jS, (dV�1 � hL )jS � h̃m�1jS, dV[9S])

! A2(M, A + m(KM + L), (dV�1 � hL ) � h̃m�1, dV)

whose operator norm is bounded from above byC � Æ�3=2, where C is the positive
constant in Theorem 2.17. Hence by the induction assumption, we see that there exists
a bounded interpolation operator:

I 0m : A2(S, A + m(KM + L)jS, (dV�1 � hL )jS � (hAjS � hm�1
S ), dV[9S])

! A2(M, A + m(KM + L), (dV�1 � hL ) � h̃m�1, dV)

whose operator norm is bounded from above byCm�1 �C � Æ�3=2. Let K (S, A+m(KM +
L)jS, (dV�1 �hL �hA)jS �hm�1

S , dV[9S]) denote the Bergman kernel ofA+m(KM + L)jS
with respect to the singular hermitian metric (dV�1 � hL � hA)jS � hm�1

S and the volume
form dV[9S] (defined asK (M, A + m(KM + L), dV�1 � hL � h̃m�1, dV) above). Then
since for everyx 2 S

K̃ m(x) = supfj�̃ (x)j2; �̃ 2 A2(M, A + m(KM + L), dV�1 � hL � hm�1, dV), k�̃k = 1g,
and

K
�
S, A+ m(KM + L)jS, (dV�1 � hL � hA)jS � hm�1

S , dV[9S]
�
(x)

= sup
�j� (x)j2;� 2 A2

�
S, A+ m(KM + L)jS, (dV�1 � hL � hA)jS � hm�1

S , dV[9S]
�
, k�k = 1
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hold (cf. [16, p.46, Proposition 1.3.16]), we see that thereexists a positive constantC
such that

K̃ mjS ≧ (C � Æ�3=2)�1 �C�1
m�1 � K �S, A + m(KM + L)jS, (dV�1 � hL � hA)jS � hm�1

S , dV[9S]
�

holds onS. Since there exists a positive constantC1 such that

dV�1 � hL ≦ C1 � hS

holds, we see that

K̃ mjS ≧ (C � Æ�3=2)�1 � C�1
m�1 � C�1

1 � K (S, A + m(KM + L)jS, hAjS � hm
S , dV[9S])(℄)

holds. By the choice ofA, we see that there exists a positive constantCS (independent
of m, although this fact is not used in the proof) such that

K (S, A + m(KM + L)jS, hAjS � hm
S , dV[9S]) ≧ CS � (hAjS � hm

S)�1([)
holds. This can be verified as follows. SinceAjS � KS is ample, we see that there
exists aC1-hermitian metrichA=S on AjS such that the hermitian metricdV[9S] �hA=S
on AjS� KS has strictly positive curvature everywhere onS.

Let x be a point onM and f�A,qg a basis ofH0(S, OS(AjS� KS)
Mk+1
x ). Then

in Theorem 2.17 (see also Lemma 2.19), taking9 to be

9x :=
k

k + 1
log

X
q

dV[9S] � hA=S(�A,q, �A,q),

and (E, hE) to be

(AjS� KS + m(KM + L)jS, dV[9S] � hA=S � hm
S),

by Theorem 2.17 and Lemma 2.19, we have a bounded interpolation operator:

Im,x: A2(x, A+m(KM + L)jx, hA=S�hm
S jx, Æx)! A2(S, A+m(KM + L), hA=S�hm

S , dV[9S]),

whereÆx is the Dirac measure atx. We note that by the definition of9x and the fact
that OS(AjS� KS)
Mk+1

x is globally generated, log9x has singularity only atx and
the operator norm of theIm,x is less than or equal toC � k3=2 by Theorem 2.17, where
C is the positive constant in Theorem 2.17. Hence we see that

K (S, A + m(KM + L)jS, hA=S � hm
S , dV[9S]) ≧ C�1 � k�3=2 � (hA=S � hm

S)�1

holds by the basic property of Bergman kernels (cf. [16, p.46, Proposition 1.3.16]). We
note thathA=S is quasi-isometric tohAjS, i.e., there exists a positive constantCA,S> 1
such that

C�1
A,S � hA=S ≦ hAjS ≦ CA,S � hA=S
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holds onS. Then this implies that

K (S, A + m(KM + L)jS, hAjS � hm
S , dV[9S]) ≧ C�1

A,S � C�1 � k�3=2 � (hAjS � hm
S)�1

holds onS. This is the desired estimate ([) with CS = C�1
A,S � C�1 � k�3=2.

Combining (℄) and ([), we see that

K̃ mjS ≧ (C � Æ�3=2)�1 � C�1
m�1 � C�1

1 � CS � (hAjS � hm
S)�1

holds onS. Then by the definition of̃hm, we see that

h̃mjS ≦ (C � Æ�3=2) � C1 � C�1
S � Cm�1 � hAjS � hm

S

holds. Hence we complete the proof of Lemma 2.26 by inductionon m.

By the definition of A, we may consider the metrichA as a singular hermitian
metric ĥA on a(KM + L). Also we may consider̃hm as a singular hermitian metric on
ĥm on (a + m)(KM + L). Then by Lemma 2.26, we have the following lemma.

Lemma 2.27. Let hM be the AZD of KM + L as above. For every m≧ 0, there
exist a positive constant C0m depending on m and a positive constant C independent of
m such that

ha+m
M jS ≦ C0

m � ĥmjS ≦ Cm+1ĥAjS � hm
S

hold.

By Lemma 2.27, we see that

(1) hM ≦ (C0
m)1=(a+m) � ĥAj1=(a+m)

S � hm=(a+m)
S

holds.
Let us fix an arbitrary nonnegative integerl . Then sincehS is an AZD of KM +LjS,

�
I
�
ĥAjl=(a+m)

S � h(m=(a+m))l
S

�	1
m=1

is an increasing sequence of ideal sheaves onS contained inI(hl
S). Let �, � be a

weight functions ofh(m=(a+m))l
S and ĥAjl=(a+m)

S with respect to (the powers of)dV�1 �hL jS
respectively. By Hölder’s inequality we see that for a holomorphic function f on an
open setV in S,

Z
V

e�� � e�� � j f j2 dV[9S] ≦
�Z

V
e�p� � j f j2 dV[9S]

�1=p � �Z
V

e�q� � j f j2 dV[9S]

�1=q
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holds, where

p :=

�
1 +

1

l

��
1 +

m

a

�
, q =

p

p� 1
.

Since

e�p� � (dV�1 � hL jS)l+1 = hl+1
S

holds, this implies that there exists a positive integerml depending onl such that

I
�
ĥAjl=a+ml

S � h(ml =(a+ml ))l
S

� � I
�
hl+1

S

�
holds. Hence by (1), we see that

I
�
hM jlS� � I

�
hl+1

S

�
holds onS. We note that sincehS is an AZD of (KM + L)jS,

A2�S, (l +1)(KM +L)jS, hl+1
S ,dV[9S]

�' A2�S, (l +1)(KM +L)jS,dV�1 �hL jS�hl
S,dV[9S]

�
holds. Using this equality, by Theorem 2.17 (and Lemma 2.19)in Section 2.3, we see
that every element of

A2�S, (l + 1)(KM + L)jS, dV�1 � hL jS � hl
S, dV[9S]

�
can be extended to an element of

A2�M, (l + 1)(KM + L), dV�1 � hL � hl
M , dV

�
.

Sincel is an arbitrary nonnegative integer, we complete the proof of Theorem 2.25.

REMARK 2.28. The above proof also works for the case thathL is a singular
hermitian metric with semipositive curvature current, if we assume the following con-
ditions:
1. (KM + L, dV�1 � hL ) is big.
2. Bsjm(KM + L, dV�1 � hL )j1 does not containS for somem> 0.
3. There exists a Zariski open neighbourhoodU of the generic point ofS in M such
that jm(KM + L, dV�1 � hL )j1 gives an embedding ofU into a projective space for
every sufficiently largem.
Here jm(KM + L, dV�1 � hL )j1 denotes the linear systemjH0(M, OM (m(KM + L)) 

I1(hm

L ))j. In this case we need to take an AZDhS of the singular hermitian line bun-
dle (KM + L, dV�1 � hL )jS. Noting Remarks 2.14 and 2.16, by Corollary 2.15 there
exists an AZDhS of (KM + L, dV�1 � hL )jS.
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REMARK 2.29. The full proofs of Theorems 2.24 and 2.25 can be obtained sim-
ilar line as the above proof. But they require more detailed estimates. One may ob-
tain a simple proof by the parallel argument to that of [24], replacing the use of the
Ohsawa-Takegoshi extension theorem by the use of Theorem 2.17. The proof presented
here is similar to the argument in [25]. Anyway the proof is completely parallel to the
proof of the invariance of plurigenera.

2.7. Positivity result. The following positivity theorem is the key to the proof
of Theorems 1.1 and 1.2.

Theorem 2.30 ([11, p.894, Theorem 2]). Let f : X ! B be a surjective mor-
phism of smooth projective varieties with connected fibers. Let P =

P
Pj and Q =P

l Ql be normal crossing divisors on X and B respectively, such that f�1(Q) � P
and f is smooth over Bn Q. Let D =

P
d j Pj be a Q-divisor on X, where dj may be

positive, zero or negative, which satisfies the following conditions:
1. D = Dh + Dv such that f: Supp(Dh)! B is surjective and smooth over Bn Q,
and f(Supp(Dv)) � Q. An irreducible component of Dh (resp. Dv) is called horizonta
(resp. vertical).
2. d j < 1 for all j .
3. The natural homomorphismOB ! f�OX(d�De) is surjective at the generic point
of B.
4. KX + D �Q f �(KB + L) for someQ-divisor L on B.
Let

f �Ql =
X

j

wl j Pj

d̄ j :=
d j +wl j � 1wl j

if f (Pj ) = Ql

Æl := maxfd̄ j ; f (Pj ) = Ql g
1 :=

X
l

Æl Ql

M := L �1.

Then M is nef.

REMARK 2.31. In Theorem 2.30, the condition:d j < 1 is irrelevant for every
D j with f (D j ) � Q by a trivial reason. In fact in this case, if we replaceD by
D0 := D�� f �Q and replaceL by L 0 := L��Q for a sufficiently large positive rational
number�, D0 =

P
d0j D j satisfies the condition:d0j < 1 for all j .

Here the meaning of the divisor1 may be difficult to understand. So I would like
to give an geometric interpretation of1. Let X, P, Q, D, B, 1 be as above. LetdV
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be a C1-volume form onX. Let � j be a global section ofOX(Pj ) with divisor Pj .
Let k� j k denote the hermitian norm of� j with respect to aC1-hermitian metric on
OX(Pj ) respectively. Let us consider the singular volume form

� :=
dVQ

j k� j k2d j

on X. Then by taking the fiber integral of� with respect to f : X! B, we obtain a
singular volume form

R
X=B � on B, where the fiber integral

R
X=B � is defined by the

property that for any open setU in B,

Z
U

�Z
X=B

�� =
Z

f �1(U )
�

holds. We note that the condition 2 in Theorem 2.30 assures that
R

X=B � is contin-
uous on a nonempty Zariski open subset ofB. Also by the condition 4 in Theo-
rem 2.30, computing the differentiald f , we see thatKX + D is numerically f -trivial

and
�R

X=B ���1
is a C0-hermitian metric on theQ-line bundle KB +1. Thus the di-

visor 1 corresponds exactly to singularities (poles and degenerations) of the singular
volume form

R
X=B � on B.

3. Proofs of Theorems 1.1 and 1.2

In this section we shall prove Theorems 1.1 and 1.2 simultaneously. The proof is
almost parallel to the one assuming MMP ([35]), if we replace the minimal model by
an AZD (analytic Zariski decomposition) of the canonical line bundle.

3.1. Construction of a filtration. Let X be a smooth projectiven-fold of gen-
eral type. Leth be an AZD ofKX constructed as in Section 2.2. We may assume that
h is lowersemicontinuous by Theorem 2.12. This is a technicalassumption so that a
local potential of the curvature current ofh is plurisubharmonic. This is used to re-
strict h to a subvariety ofX (if we only assume that the local potential is only locally
integrable, the restriction is not well defined). We set

XÆ = fx 2 X j x =2 BsjmKXj and8jmKX j is a biholomorphism

on a neighbourhood ofx for somem ≧ 1g.
We set

�0 := (KX, h)n = �(X, (KX, h)) = �(X, KX).

For the notations (KX, h)n, �(X, (KX , h)) and�(X, KX) see Definitions 2.22 and 2.21.
The last equality holds, sinceh is an AZD of KX. We note that for everyx 2 XÆ,
I(hm)x ' OX,x holds for everym ≧ 0 (cf. [28] or [6, Theorem 1.5]).



744 H. TSUJI

Let x, x0 be distinct points onXÆ. In this subsection we shall prove the following
porposition.

Proposition 3.1. Let x and x0 be distinct points on XÆ. Then there exists a fil-
tration:

X = X0 � X1 � � � � � Xr � Xr +1 = x or x0
of X by a strictly decreasing sequence of subvarietiesfXi gr +1

i =0 for some r (depending
on x and x0), effectiveQ-divisors

D0, : : : , Dr

which areQ-lineraly equivalent to KX and invariants:

�0, �1, : : : , �r 2 Q+,

n =: n0 > n1 > � � � > nr (ni = dim Xi , i = 0, : : : , r )

and

�0, �1, : : : , �r (�i = �(Xi , (KX, h)jXi ), i = 0, : : : , r )

with the estimates

�i ≦
ni

ni
p

2
ni
p�i

+ Æ (0 ≦ i ≦ r ),

whereÆ is a fixed positive number less than1=n and �i is defined inductively by:

�i = inf

(
� > 0

�����
 

X,
i�1X
j =0

(� j � " j )D j + �Di

!
is KLT at neither x nor x0

)
,

where "0, : : : , "i�1 are small positive rational numbers which can be taken arbitrar-
ily small. Here each filter Xi (1 ≦ i ≦ r ) is the minimal center of log canonical

singularities of
�
X,
Pi�2

j =0(� j � " j )D j + �i�1Di�1
�

at x or x0 (if i = 1, we considerPi�2
j =0(� j � " j )D j = 0).

"0, : : : , "i�1 will be specified during the construction of the filtration. We shall begin
the contruction.

Lemma 3.2. We set

Mx,x0 = Mx �Mx0 ,
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whereMx, Mx0 denote the maximal ideal sheaves of the points x, x0 respectively. Let" be positive number strictly less than1. Then

H0
�

X, OX(mKX)
 I(hm) �Md np�0(1�")m= np2e
x,x0 � 6= 0

holds for every sufficiently large m.

Proof. First we note that sincex, x0 2 XÆ, h is bounded from above atx and x0
by the construction ofh (cf. Theorem 2.11). In particularI(hm)x = OX,x andI(hm)x0 =
OX,x0 hold for everym ≧ 0. Let us consider the exact sequence:

0! H0
�

X, OX(mKX)
 I(hm) �Md np�0(1�")m= np2e
x,x0 �! H0(X, OX(mKX)
 I(hm))

! H0
�

X, OX(mKX)
 I(hm)
OX=Md np�0(1�")m= np2e
x,x0 �

.

We note that

n! � lim
m!1 m�n dim H0(X, OX(mKX)
 I(hm)) = �0

holds by the definition of�0.
On the other hand, we see that

n! � lim
m!1 m�n dim H0

�
X, OX(mKX)
 I(hm)
OX=Md np�0(1�")m= np2e

x,x0 �
= �0(1� ")n < �0

hold, sinceI(hm)x = OX,x and I(hm)x0 = OX,x0 hold for everym ≧ 0.
By the above inequalities and the exact sequence, we complete the proof of Lem-

ma 3.2.

Let " be a positive number less than 1 as in Lemma 3.2. Let us take a sufficiently
large positive integerm0 such that

H0
�

X, OX(m0KX)
 I(hm0) �Md np�0(1�")m0= np2e
x,x0 � 6= 0

as in Lemma 3.2 and let

�0 2 H0
�

X, OX(m0KX)
 I(hm0) �Md np�0(1�")m0= np2e
x,x0 �

be a general nonzero element. We set

D0 :=
1

m0
(�0)
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and

h0 :=
1j�0j2=m0

(see Example 2.2 in Section 2.1 for the meaning of 1=j�0j2=m0). We define the positive
number�0 by

�0 := inff� > 0 j (X, �D0) is KLT at neitherx nor x0g,
where KLT is short for of Kawamata log terminal (cf. Definition 2.4).

Let � : Y! X be a log resolution of (X, D) and for � > 0 let

KY +��1� (�D) = ��(KX + �D) + F(�),

where F(�) denotes the discrepancy depending on�. Then �0 is the infimum of�
such that the discrepancyF(�) has a component whose coefficient is less than or equal
to �1. Hence by the construction�0 is a rational number.

Since
�Pn

i =1 jzi j2��n
is not locally integrable aroundO 2 Cn, by the definition of

D0, we see that

�0 ≦
n n
p

2
n
p�0(1� ")

holds. About the relation between the KLT conditions and themultiplier ideal sheaves,
please see Section 2.1.

Let Æ be the fixed positive number as above and let us make" > 0 sufficiently
small so that

�0 ≦
n n
p

2
n
p�0

+ Æ
holds. Then one of the following two cases occurs.

CASE 1. For every sufficiently small positive number�, (X, (�0� �)D0) is KLT
at both x and x0.

CASE 2. For every sufficiently small positive number�, (X, (�0� �)D0) is KLT
at exactly one ofx or x0, say x.

We define the next stratumX1 by

X1 := the minimal center of log canonical singularities of (X, �0D0)

at x (cf. Section 2.1).

If X1 is a point, we stop the construction of the filtration. Suppose that X1 is not
a point.
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Case 1 divides into the following two cases.
CASE 1.1. X1 passes through bothx and x0.
CASE 1.2. X1 passes through only one ofx and x0, say x.
First we shall consider Case 1.1. We define the positive number �1 by

�1 := �(X1, (KX, h)jX1).

Then sincex, x0 2 XÆ, �1 is positive.
For the later purpose, we shall modifyh0 so that X1 is the only center of log

canonical singularities of (X, �0D0) at x. Let us take an effectiveQ-divisor G such
that KX � G is ample by Kodaira’s lemma (cf. [14, Appendix]). By the definition of
XÆ, we may assume that the support ofG contains neitherx nor x0. In fact this can be
verified as follows. LetH be an arbitrary ample divisor onX. Then by the definition
of XÆ, jbKX � H j is base point free atx and x0 for every sufficiently largeb. Fix
such ab and take a memberG0 of jbKX � H j which contains neitherx nor x0. Then
we may takeG to be b�1G0.

Let a be a positive integer such thatA := a(KX�G) is a very ample Cartier divisor
such thatOX(A) 
 IX1 is globally generated. Let�1, : : : , �e 2 H0(X, OX(A) 
 IX1)
be a set of generators ofOX(A)
 IX1 on X. Then if we replaceh0 by

1�j�0j2�Pe
i =1 j�i j2��1=(m0+a) ,

it has the desired property. If we takem0 very large (in comparison witha), we can
make the new�0 arbitrary close to the original�0. Hence we may assume that the
estimate

�0 ≦
n n
p

2
n
p�0

+ Æ
still holds after the modification. Let us set

n1 := dim X1.

The proof of the following lemma is identical to that of Lemma3.2.

Lemma 3.3. Let "0 be a positive rational number less than1. Let x1, x2 be dis-
tinct regular points of X1 \ XÆ. Then for every sufficiently large positive integer m

H0
�

X1, OX1(mKX)
 I(hmjX1) �Md n1
p�1(1�"0)m= n1

p
2e

x1,x2

� 6= 0

holds.
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Let x1, x2 be two distinct regular points ofX1 \ XÆ. Let m1 be a positive integer
such that

H0
�

X1, OX1(m1KX)
 I(hm1jX1) �Md n1
p�1(1�"0)m= n1

p
2e

x1,x2

� 6= 0

as in Lemma 3.3 and let

� 01,x1,x2
2 H0

�
X1, OX1(m1KX)
 I(hm1jX1) �Md n1

p�1(1�"0)m= n1
p

2e
x1,x2

�
be a nonzero element.

We shall extend the singular hermitian metric 1=j� 01,x1,x2
j2=m1 of KXjX1 to a singular

hermitian metric onKX with semipositive curvature current after a modification.
As before by Kodaira’s lemma ([14, Appendix]) there is an effective Q-divisor G

such thatKX �G is ample. By the definition ofXÆ, we may assume that the support
of G contains neitherx nor x0 as before. Letl1 be a sufficiently large positive integer
which will be specified later such that

L1 := l1(KX � G)

is Cartier. LethL1 be a C1-hermitian metric onL1 with strictly positive curvature.
Let � be a nonzero section inH0(X, OX(L1)). We set

9 := �0 � log
h

h0
.

Let dV be a C1-volume form onX. We note that the residue volume formdV[9]
on X1 may have poles along some proper subvarieties inX1. By taking l1 sufficiently
large and taking� properly, we may assume thathL1(� , � ) � dV[9] is nonsingular on
X1 in the sense that the pullback of it to a nonsingular model ofX1 is a bounded
form. Then by applying Lemma 2.19 forS = X1, 9 = �0 log(h=h0),

(E, hE) =
�
(d1 +�0e)KX, hd1+�0e�,

and

(L, hL ) =
�
(m1� d�0e � 2)KX + L1, h(m1�d�0e�2)
 hL1

�
,

we see that

� 01,x1,x2

 � 2 H0

�
X1, OX1(m1KX + L1)
 I(hm1jX1) �Md n1

p�1(1�"0)m1= n1
p

2e
x1,x2

�
extends to a section

�1,x1,x2 2 H0(X, OX((m1 + l1)KX)).



PROJECTIVE VARIETIES OF GENERAL TYPE II 749

We note that even thoughdV[9] may be singular onX1, we may apply Lemma 2.19,
because there exists a proper Zariski closed subsetB of X such that the restric-
tion of dV[9] to (X � B) \ X1 is smooth. Of course the singularity ofdV[9] af-
fects the L2-condition. But this has already been managed by the boundedness of
hL1(� , � ) � dV[9].

Taking l1 sufficiently large, we may and do assume that there exists a neighbour-
hood Ux1,x2 of fx1, x2g such that the divisor (�1,x1.x2) is smooth onUx1,x2 n X1. This
can be verified as follows. Let us takel1 sufficiently large so thatOX(L1)
Mn+1

y is
globally generated for everyy 2 X. Let us fix y and letf�1, : : : , �Ng be a set of basis
of H0(X, OX(L1)
Mn+1

y ). Then

hL1,y := h1=(n+1)
L1

�
 

1PN
j =1 j� j j2

!n=(n+1)

is a singular hermitian metric ofL1 with strictly positive curvature current. Since
OX(L1)
Mn+1

y is globally generated, we see thatOX=I(hL1,y) has isolated support at
y. By Nadel’s vanishing theorem [20, p.561], this implies that for every y 2 XÆ n X1,

H1(X, OX(mKX + L1)
 I(h�0
0 � hm�1��0)
My) = 0

holds. Hence for everyy 2 XÆ n X1, we may modify theL2-extension of� 01,x1,x2

 �

so that the extension has any prescribed value aty, if we take l1 is sufficiently large.
We may takel1 to be independent ofy 2 XÆ n X1. Then by Bertini’s theorem we
may find a neighbourhoodUx1,x2 of fx1, x2g such that the divisor (�1,x1.x2) is smooth
on Ux1,x2 n X1.

We set

D1(x1, x2) :=
1

m1 + l1
(�1,x1,x2).

Let X1,reg denote the set of regular points onX1. We may construct the divisorsfD1(x1, x2)g as an algebraic family over (X1,reg� X1,reg) n 1X1 where1X1 denotes
the diagonal ofX1 � X1. This construction is possible, since we may takeL1 in-
dependent ofx1, x2 2 X1,reg. Letting x1 and x2 tend to x and x0 respectively, we ob-
tain a Q-divisor D1 on X which is (m1 + l1)�1-times a divisor of a global holomorphic
section

�1 2 H0(X, OX((m1 + l1)KX)).

By the construction, we may and do assume that there exists a neighbourhoodUx,x0 offx, x0g such that (�1) is smooth onUx,x0 n X1.
Let "0 be a positive rational number with"0 < �0. And we define the positive

numbers�1(x1, x2) and �1 by

�1(x1, x2) := inff� > 0 j (�0� "0)D0 + �D1(x1, x2) is KLT at neitherx1 nor x2g
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and

�1 := inff� > 0 j (�0� "0)D0 + �D1 is KLT at neitherx nor x0g
respectively. For every positive number�, (�0� "0)D0 + (�1��)D1 is KLT at x or x0,
say x. Then we shall define the proper subvarietyX2 of X1 by

X2 := the minimal center of log canonical singularities of

(X, (�0� "0)D0 + �1D1) at x.

We shall estimate�1. We note thatm1 is independent ofl1 in the extension of� 01,x1,x2

 � .

Lemma 3.4. Let Æ be the fixed positive number as above, then we may as-
sume that

�1 ≦
n1

n1
p

2
n1
p�1

+ Æ
holds, if we take"0, l1=m1 and "0 sufficiently small.

To prove Lemma 3.3, we need the following elementary lemma.

Lemma 3.5 ([31, p.12, Lemma 6]). Let a, b be positive numbers. Then

Z 1

0

r 2n1�1
2�

r 2
1 + r 2a

2

�b dr2 = r 2n1=a�2b
1

Z r�2a
1

0

r 2n1�1
3�

1 + r 2a
3

�b dr3

holds, where

r3 =
r2

r 1=a
1

.

Proof of Lemma 3.3. First suppose thatx, x0 arenonsingular pointson X1. Then
we may setx1 = x, x2 = x0, i.e., we do not need the limiting process to define the
divisor D1. Let (z1, : : : , zn) be a local coordinate system on a neighbourhoodU of x
in X such that

U \ X1 = fq 2 U j zn1+1(q) = � � � = zn(q) = 0g.
We setr1 =

�Pn
i =n1+1 jz1j2�1=2 and r2 =

�Pn1
i =1 jzi j2�1=2. Fix an arbitraryC1-hermitian

metric hK on KX. Then there exists a positive constantC such that

k�1k2 ≦ C
�
r 2

1 + r
2d n1

p�1(1�"0)m1= n1
p

2e
2

�
(?)
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holds on a neighbourhood ofx, where k k denotes the norm with respect tohm1+l1
K .

We note that there exists a positive integerM such that

k�0k�2 = O(r�M
1 )

holds on a neighbourhood of the generic point ofU \ X1, wherek k denotes the norm
with respect tohm0

K . Let us apply Lemma 3.4 by taking

a =

�
n1
p�1(1� "0) m1

n1
p

2

�
.

Then by Lemma 3.4 and the estimate (?), we see that for every

b > n1�
n1
p�1(1� "0)m1= n1

p
2
� .

k�1k produces a singularity greater than equal tor 2n1=a�b
1 , if we average the singularity

in terms of the volume form inz1, : : : , zn1 direction. Hence by Proposition 2.5, we
have the inequality:

�1 ≦
�

m1 + l1
m1

�
n1

n1
p

2
n1
p�1(1� "0) + m1"0.

Taking "0, l1=m1 and "0 sufficiently small, we obtain that

�1 ≦
n1

n1
p

2
n1
p�1

+ Æ
holds.

If x or x0 is a singular point onX1, we need the following lemma.

Lemma 3.6. Let ' be a plurisubharmonic function on1n � 1. Let 't (t 2 1)
be the restriction of' on 1n � ftg. Assume that e�'t does not belong to L1loc(1n, O)
for any t 2 1�.

Then e�'0 is not locally integrable at O2 1n.

Lemma 3.5 is an immediate consequence of theL2-extension theorem [22, p.20, The-
orem]. Using Lemma 3.5 and Lemma 3.4, lettingx1! x and x2! x0, we see that

�1 ≦ lim inf
x1!x,x2!x0 �1(x1, x2)

holds.



752 H. TSUJI

Next we consider Case 2. The remaining case Case 1.2 will be considered later.
In Case 2, for every sufficiently small positive number�, (X, (�0��)D0) is KLT at x
and not KLT atx0. In Case 1.2, instead of Lemma 3.2, we use the following simpler
lemma. We defineX1 as before.

In this case, instead of Lemma 3.2, we use the following simpler lemma.

Lemma 3.7. Let "0 be a positive number less than1 and let x1 be a smooth
point on X1. Then for a sufficiently large m> 1,

H0�X1, OX1(mKX)
 I(hmjX1) �Md n1
p�1(1�"0)me

x1

� 6= 0

holds.

Let us take a general nonzero element� 01,x1
in

H0�X1, OX1(m1KX)
 I(hm1jX1) �Md n1
p�1(1�")m1e

x1

�
,

for a sufficiently largem1. Using Lemma 3.6, letl1 be as in Lemma 3.3 and let�
be a general nonzero section inH0(X, OX(L1)), where L1 is the line bundle as in
Lemma 3.3. By Lemma 3.3, we may extend�1,x01 
 � to a section

�1,x1 2 H0(X, OX((m1 + l1)KX)).

As in Case 1.1, takingl1 sufficiently large, we may assume that there exists a neigh-
bourhoodUx1 of x1 such that (�1,x1) is smooth on aUx1 n X1. We set

D1(x1) =
1

m1 + l1
(�1,x1).

Let X1,reg denote the regular locus ofX1. We may construct the divisorsfD1(x1)g as
an algebraic family overX1,reg. Letting x1 tend tox, we obtain aQ-divisor D1 on X

which is (m1 + l1)�1-times a divisor of a global holomorphic section

�1 2 H0(X, OX((m1 + l1)KX)).

By the construction, we may and do assume that there exists a neighbourhoodUx of
x such that (�1) is smooth onUx n X1. Let "0 be a sufficiently small positive rational
number with"0 < �0 such that (�0 � "0)D0 is not KLT at x0 (this is possible because
we are considering Case 2).

And we define the positive numbers�1(x1) and �1 by

�1(x1) := inff� > 0 j (�0� "0)D0 + �D1(x1) is not KLT at x1g.
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and

�1 := inff� > 0 j (�0 � "0)D0 + �D1 is KLT at neitherx nor x0g
respectively. The definition of�1 is the same as in Case 1.1. But we note that
(�0 � "0)D0 is already not KLT atx0. We shall estimate�1. The proof of the fol-
lowing lemma is similar to that of Lemma 3.3.

Lemma 3.8. Let Æ be the fixed positive number as above. Then we may as-
sume that

�1 ≦
n1

n1
p�1

+ Æ
holds, if we take"0, l1=m1 and "0 sufficiently small.

This estimate is better than Lemma 3.3. Then we may define the proper subvarietyX2

of X1 as the minimal center of log canonical singularities of (X, (�0 � "0)D0 + �1D1)
at x or x0 as we have definedX1.

Lastly in Case 1.2 the construction of the filtration reducesto Case 2 as follows.
In Case 1.2,X1 does not pass throughx0. Hence in this case the minimal center of LC
singularitiesX0

1 at x0 does not pass throughx. One may reduce Case 1.2 to Case 2,
by “strengthening” the singularity ofD0 along X0

1 as follows.
Let a1 be a sufficiently large positive integer such that

H0(X, OX(a1KX)
 IX0
1
) 6= 0.

Let � 0 be a general nonzero section ofH0(X, OX(a1KX) 
 IX0
1
). We note that there

exists an effectiveQ-divisor G on X such thatKX�G is ample andx is not contained
in SuppG as we have seen before. Hence if we takea1 sufficiently large, we may
assume that the divisor (� 0) does not containx. In this case instead of�0, we shall use� e

0
� 0, taking a positive integere large. LetD0
0 := (m0e+a1)�1(� e

0
� 0). Let us define
a positive rational number�00 for (X, D0

0) similar to �0. Then by the construction of� 0, then the minimal center of LC singularities of (X, �00D0
0) at x is X1 and (X, �00D0

0)
is not LC at x0. Also we can make�00 arbitrary close to�0 by taking e sufficiently
large. Hence we may assume that�00 satisfies the same estimate:

�00 ≦
n n
p

2
n
p�0

+ Æ
as �0. And we may continue the construction of the filtration. In this way we can
reduce Case 1.2 to Case 2.

In any case we construct the next stratumX2 as the minimal center of log canon-
ical singularities of (X, (�0 � "0)D0 + �1D1) at x. If X2 is a point, then we stop the



754 H. TSUJI

construction of the filtration. IfX2 is not a point, we continue exactly the same pro-
cedure replacingX1 by X2. And we continue the procedure as long as the new center
of log canonical singularities (X1, X2, : : : ) is not a point. As a result, for any distinct
pointsx, x0 2 XÆ, inductively we construct a strictly decreasing sequence of subvarieties

X = X0 � X1 � � � � � Xr � Xr +1 = x or x0
and invariants:

�0, �1, : : : , �r ,

"0, "1, : : : , "r�1,

n > n1 > � � � > nr (ni = dim Xi , i = 1, : : : , r ),

and

�0, �1, : : : , �r (�i := �(Xi , (KX, h)jXi ))

depending on small positive rational numbers"0, : : : , "r�1, large positive integers
m0, m1, : : : , mr , positive integers 0 =:l0, l1, : : : , lr ,

�i 2 H0(X, OX((mi + l i )KX)) (i = 0, : : : , r ),

Di =
1

mi + l i
(�i ) (i = 0, : : : , r ),

etc.
By Nadel’s vanishing theorem ([20, p.561]) we have the following lemma.

Lemma 3.9. For every positive integer m> 1 +
Pr

i =0 �i , 8jmKX j separates x and
x0. And we may assume that

�i ≦
ni

ni
p

2
ni
p�i

+ Æ
holds for every0 ≦ i ≦ r .

Proof. Fori = 0,1,: : :,r , let hi be the singular hermitian metric onKX defined by

hi :=
1j�i j2=(mi +l i )

,

where we have setl0 = 0. Using Kodaira’s lemma ([14, Appendix]), let us take an
effective Q-divisor G on X such thatKX � G is ample as before. As before we may
assume that SuppG contains neitherx nor x0. Let h0G be a C1-hermitian metric on
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the Q-line bundleKX �G with strictly positive curvature. LetG =
P

k gkGk be the ir-
reducible decomposition ofG aand let�Gk be a global holomorphic section ofOX(Gk)
with divisor Gk. Then

hG := h0G �
 Y

k

1j�Gk j2gk

!

is a singular hermitian metric ofKX with strictly positive curvature current.
Let m be a positive integer such thatm > 1 +

Pr
i =0 �i as above. Let"G be a

positive number such that

"G < m� 1�
 

r�1X
i =0

(�i � "i ) + �r

!
.

We set

� :=
r�1X
i =0

(�i � "i ) + �r + "G.

hx,x0 =

 
r�1Y
i =0

h�i�"i
i

!
� h�r

r � hm�1�� � h"G
G .

Then we see thatI(hx,x0 ) defines a subscheme ofX with isolated support aroundx or
x0 by the definition of the invariantsf�i g’s and the fact that SuppG contains neitherx
nor x0. By the construction the curvature current2hx,x0 is strictly positive onX. Then
by Nadel’s vanishing theorem ([20, p.561]) we see that

H1(X, OX(mKX)
 I(hx,x0 )) = 0

holds. Hence

H0(X, OX(mKX))! H0(X, OX(mKX)
OX=I(hx,x0 ))
is surjective. Since by the construction ofhx,x0 , Supp(OX=I(hx,x0 )) contains bothx
and x0 and is isolated at least at one ofx or x0. Hence by the above surjection, there
exists a section� 2 H0(X, OX(mKX)) such that

� (x) 6= 0, � (x0) = 0

or

� (x) = 0, � (x0) 6= 0

holds. This implies that8jmKX j separatesx and x0. The proof of the last statement is
similar to that of Lemma 3.3.
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3.2. Estimate of the degree. To relate�0 and the degree of pluricanonical im-
ages ofX, we need the following lemma.

Lemma 3.10. If 8jmKX j is a birational rational map onto its image, then

deg8jmKX j(X) ≦ �0 �mn

holds.

Proof. Let p : X̃! X be the resolution of the base locus ofjmKXj and let

p�jmKXj = jPmj + Fm

be the decomposition into the free partjPmj and the fixed componentFm. We have

deg8jmKX j(X) = Pn
m

holds. Then by the ring structure ofR(X, KX), we have an injection

H0(X̃, OX̃(�Pm))! H0(X, OX(m�KX)
 I(hm�))
for every � ≧ 1, since the righthand side is isomorphic toH0(X, OX(m�KX)) by the
definition of an AZD. We note that sinceOX̃(�Pm) is globally generated oñX, for
every � ≧ 1 we have the injection

OX̃(�Pm)! p�(OX(m�KX)
 I(hm�)).
Hence there exists a natural homomorphism

H0(X̃, OX̃(�Pm))! H0(X, OX(m�KX)
 I(hm�))
for every � ≧ 1. This homomorphism is clearly injective. This implies that

�0 ≧ m�n � �(X̃, Pm)

holds by the definition of�0. Since Pm is nef and big onX, we see that

�(X̃, Pm) = Pn
m

holds. Hence

�0 ≧ m�n � Pn
m

holds. This implies that

deg8jmKX j(X) ≦ �0 �mn

holds.
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3.3. Use of the subadjunction theorem. Let

X = X0 � X1 � � � � � Xr � Xr +1 = x or x0
be the filtration ofX as in Section 3.1.

Lemma 3.11. Let Wj be a nonsingular model of Xj . For every Wj ,

�(Wj , KWj ) ≦

 & 
1 +

j�1X
i =0

�i

!'!n j � � j

holds, where� j = (KX, h)n j � X j as in Section3.1 (we note that�(Wj , KWj ) depends
only on Xj ).

Proof. Let us set

� j := " j�1 +
j�1X
i =0

(�i � "i ).

Let Di denote the divisorm�1
i (�i ) and we set

D : =
j�1X
i =1

(�i � "i )Di + " j�1D j�1.

Let � : Y! X be a log resolution of (X, D) which factors through an embedded res-
olution $ : Wj ! X j of X j . By the modification as in Section 3.1, we may assume
that there exists a unique irreducible componentF j of the exceptional divisor with dis-
crepancy�1 which dominatesX j . Let

� j : F j ! Wj

be the natural morphism induced by the construction. We set

��(KX + D)jF j = KF j + G.

We may assume that the support ofG is a divisor with normal crossings. Then all the
coefficients of the horizontal componentGh of G with respect to� j are less than 1
becauseF j is the unique exceptional divisor with discrepancy�1.

Let dV be aC1-volume form on theX. Let 9 be the function defined by

9 := log

 
h� j � j� j�1j2" j�1=m j�1 � j�1Y

i =0

j�i j2(�i�"i )=mi

!
.
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Then the residue ResF j (��(e�9 �dV)) of ��(e�9 �dV) to F j is a singular volume form
with algebraic singularities corresponding to the divisorG. Since every coefficient of
Gh is less than 1, there exists a nonempty Zariski open subsetW0

j of Wj such that

ResF j (��(e�9 � dV)) is integrable on��1
j (W0

j ).

Then the pullback of the residuedV[9] of e�9 � dV (to X j ) to Wj is given by
the fiber integral of the above singular volume form ResF j (��(e�9 � dV)) on F j , i.e.,

$ �dV[9] =
Z

F j =Wj

ResF j (��(e�9 � dV))

holds. By Theorem 2.30, we see that (KF j + G)���j (KWj +1) is nef, where1 is the
Q-divisor defined as in Theorem 2.30. We note thatKF j + G is Q-linear equivalent to
(1 + � j )��KX by the construction. Hence we see that (1 +� j )$ �KX � (KWj + 1) is
nef and

(2) �(Wj , KWj ) ≦ �(Wj , (1 +� j )$ �(KXjX j )�1)

holds.
Let e be a positive integer such thate � 1 is an integral divisor. Let�e�1 be a

meromorphic section ofOWj (e �1) with divisor e �1. Then we may consider thee-th
root �1 of �e�1 as a multivalued meromorphic section of theQ-line bundleOWj (1)
with divisor 1. Let h1 be aC1-hermitian metric on theQ-line bundleOWj (1), i.e.,
h1 is the e-th root of a C1-hermitian metric on the line bundleOWj (e � 1). Then
h1(�1, �1) is a single valued funtion onWj .

Let us recall the interpretation of the divisor1 in Section 3.7. LetdVWj be a
C1-volume form onWj . We note that in the above definition of the function9, we
have usedh� j instead ofdV�� j . Hence we see that there exists a positive constantC
such that

(3) $ �dV[9] =
Z

F j =Wj

ResF j (��(e�9 � dV)) ≦ C � $ �(dV � h)�� j

h1(�1, �1)
� dVWj

hold.
We may assume that� j is not an integer without loss of generality. In fact this

can be satisfied, if we perturb"0, : : : , " j�1 or �0, : : : , � j�1. And passing to the lmit,
the general case follows. This condition is to assure the inequality d1 + � j e > 1 + � j

and this inequality corresponds to the condition:d > �m0 in Theorem 2.24. We note
that for every positive integerm, every global holomorphic section ofmKX is bounded
with respect tohm. Then since the curvature current2h is semipositive in the sense
of current, applying Theorem 2.24 (see also Remark 2.28 for the selfcontainedness),
we have the interpolation:

A2
�
Wj , m(d1 +� j e)$ �KX, $ ��dV�1 � hd� j e � hm�1j j �

, $ �dV[9]
�

! H0(X, OX(m(d1 +� j e)KX)),
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where' is the weight function as in Theorem 2.24 defined by

' := log
dVWj$ �dV[9]

and hj j is an AZD of ((1 +d� j e)KXjX j , e�' � (dV�1 � hd� j e)jX j ). By (3), we see that

(4) $ �(e�' � dV�1 � h� j jX j ) ≦ C � h1(�1, �1)�1 �$ �(dV�(1+� j )jX j )

holds. We note that1 may not be effective. Hence a priori the element ofA2
�
Wj ,

m(d1 + � j e)$ �KX, $ ��dV�1 � hd� j e � hm�1j j �
, $ �dV[9]

�
may have pole along the de-

generate locus (zero locus) of$ �dV[9]. But this cannot occur by the existence of
the extension and the birational invariance of plurigenera. As in the remark below, we
also may reduce the proof to the case that1 is effective.

Since (1 +� j )$ �(KXjX j ) � (KWj + 1) is nef by Theorem 2.30 (This is nothing
but the main part of the proof of Kawamata’s subadjunction theorem [11, Theorem 1].
Then the proof of [11, Theorem 1] follows from the observation that$�1 is effective),
by using Theorem 2.30 (the condition 3 in Theorem 2.30 is verified as in [11]), noting
the equalitydV[9] = e�' �dVWj , the inequalities (2), (4) and the existence of the above
interpolation imply that

�(Wj , KWj ) ≦ n j ! � lim
m!1 m�n j dim ImagefH0(X, OX(m(d1 +� j e)KX))

! H0(X j , OX j (m(d1 +� j e)KX))g
holds. Here we have used the fact that for any pseudoeffective divisors M1, M2 on
a smooth projective varietyV such thatM1 � M2 is pseudoeffective, the inequality:�(V , M1) ≧ �(V , M2) holds (the proof is trivial and left to the reader).

Since every element ofH0(X, OX(m(d1 + � j e)KX)) is bounded onX with re-
spect tohm(d1+� j e) (cf. Remark 2.14). In particular the restriction of an element of
H0(X, OX(m(d1 +� j e)KX)) to X j is bounded with respect tohm(d1+� j e)jX j . Hence by
the existence of the above interpolation, we have that

(5) �(Wj , KWj ) ≦ �(X j , (d1 +� j e)KX, hd1+� j e)jX j )

holds. This is the only point where Theorem 2.24 is used.
By the trivial inequality

� j ≦
j�1X
i =0

�i .

we have that

�(Wj , KWj ) ≦

 &
1 +

j�1X
i =0

�i

'!n j

(KX, h)n j � X j
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holds by the definition of (KX, h)n j � X j . This is the desired inequality, since� j =
(KX, h)n j � X j holds by the definition of� j .

REMARK 3.12. In the above proof, the divisor1 on Wj may not be effective.
But it is clear that$�1 is effective (cf. the proof of [11, Theorem 1]). If we replace
X j by Wj and X by the the ambient space of the embedded resolution$ : Wj ! X j ,
we may reduce the above proof to the case thatX j is already smooth. In this case we
may assume that1 is effective.

Now we shall complete the proofs of Theorems 1.1 and 1.2.
Suppose that Theorem 1.2 holds for every projective varieties of general type of

dimension< n, i.e., there exist positive constantsfC(k) (k < n)g such that for every
smooth projectivek-fold Y of general type

�(Y, KY) ≧ C(k)

holds. LetX be a smooth projective variety of general type of dimensionn. Let U0 be
a nonempty open subset ofX with respect tocountable Zariski topologysuch that for
everyx 2U0 there exist no subvarieties of nongeneral type containingx. Such a setU0

surely exists, since there exists no dominant family of subvarieties of nongeneral type
in X. In fact if such a dominant family exists, then this contradicts the assumption
that X is of general type. Then if (x, x0) 2 (U0 � U0) n 1X, the stratumX j as in
Section 3.1 is of general type for everyj by the definition ofU0. By Lemma 3.10
and the definition ofC(n j ), we see that

(6) C(n j ) ≦

 & 
1 +

j�1X
i =0

�i

!'!n j � � j

holds for Wj . Since

(7) �i ≦
ni
p

2ni

ni
p�i

+ Æ
holds for every 0≦ i ≦ r by Lemma 3.8, combining (5) and (6), we see that

1
n j
p� j

≦

 
2 +

j�1X
i =0

ni
p

2ni

ni
p�i

!
� C(n j )

�1=n j

holds for every j ≧ 1.
Using the above inequality inductively, we obtain the following lemma.
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Lemma 3.13. Suppose that�0 ≦ 1 holds. Then there exists a positive constant
C depending only on n such that for every(x, x0) 2 (U0�U0) n1X the corresponding
invariants f�0, : : : , �r g and fn1, : : : , nr g depending on(x, x0) (r may also depend on
(x, x0)) satisfies the inequality:

2 +

&
rX

i =0

ni
p

2ni

ni
p�i

'
≦
�

C
n
p�0

�
.

We note thatfn1, : : : , nr g is a strictly decreasing sequence and this sequence has only
finitely many possibilities. By Lemmas 3.8 and 3.11 we see that for

m :=

�
C

n
p�0

�
,

jmKXj separates points onU0. HencejmKXj gives a birational embedding ofX.
Then by Lemma 3.9, if�0 ≦ 1 holds,

deg8jmKX j(X) ≦ Cn

holds. Also

dim H0(X, OX(mKX)) ≦ n + 1 + deg8jmKX j(X)

holds by the semipositivity of the1-genus ([7]). Hence we have that if�0 ≦ 1,

dim H0(X, OX(mKX)) ≦ n + 1 +Cn

holds.
Since C is a positive constant depending only onn, combining the above two

inequalities, we have that there exists a positive constantC(n) depending only onn
such that

�0 ≧ C(n)

holds.
More precisely we argue as follows. LetH be the union of the irreducible com-

ponents of the Hilbert scheme of projective spaces of dimension ≦ n + Cn and the
degree≦ Cn. By the general theory of Hilbert schemes ([8, exposé 221]),H con-
sists of finitely many irreducible components. LetH0 be the Zariski open subset ofH
which parametrizes irreducible subvarieties. Then there exists a finite stratification of
H0 by Zariski locally closed subsets such that on each stratum,there exists a simul-
taneous resolution of the universal family on the stratum. We note that the volume of
the canonical bundle of the resolution is constant on each stratum by [32, 21]. Hence
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there exists a positive constantC(n) depending only onn such that

�(X, KX) ≧ C(n)

holds for every projectiven-fold X of general type by the degree bound as above. This
completes the proof of Theorem 1.2.

Now let us prove Theorem 1.1. Then by Lemmas 3.8 and 3.11, we see that there
exists a positive integer�n depending only onn such that for every projectiven-fold X
of general type,jmKXj gives a birational embedding into a projective space for every
m ≧ �n. This completes the proof of Theorem 1.1.

4. The Severi-Iitaka conjecture

Let X be a smooth projective variety. We set

Sev(X) := f( f , [Y]) j f : X! Y dominant rational map andY is of general typeg,
where [Y] denotes the birational class ofY. By Theorem 1.1 and [18, p.117, Propo-
sition 6.5] we obtain the following theorem.

Theorem 4.1. Sev(X) is finite.

REMARK 4.2. In the case of dimY = 1, Theorem 4.1 is known as Severi’s the-
orem. In the case of dimY = 2, Theorem 4.1 has already been known by K. Maehara
([18]). In the case of dimY = 3, Theorem 4.1 has recently proved by T. Bandman and
G. Dethloff ([2]).
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