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Abstract
We obtain a finite generating set for the level 2 twist subgroup of the mapping class group of

a closed non-orientable surface. The generating set consists of crosscap pushing maps along
non-separating two-sided simple loops and squares of Dehn twists along non-separating two-
sided simple closed curves. We also prove that the level 2 twist subgroup is normally generated
in the mapping class group by a crosscap pushing map along a non-separating two-sided simple
loop for genus g ≥ 5 and g = 3. As an application, we calculate the first homology group of the
level 2 twist subgroup for genus g ≥ 5 and g = 3.

1. Introduction

1. Introduction
Let Ng,n be a compact connected non-orientable surface of genus g ≥ 1 with n ≥ 0 bound-

ary components. The surface Ng = Ng,0 is a connected sum of g real projective planes. The
mapping class group (Ng,n) of Ng,n is the group of isotopy classes of self-diffeomorphisms
on Ng,n fixing the boundary pointwise and the twist subgroup  (Ng,n) of (Ng,n) is the
subgroup of (Ng,n) generated by all Dehn twists along two-sided simple closed curves.
Lickorish [7] proved that  (Ng) is an index 2 subgroup of (Ng) and the non-trivial ele-
ment of (Ng)/ (Ng) � Z/2Z =: Z2 is represented by a “Y-homeomorphism”. We define
a Y-homeomorphism in Section 2. Chillingworth [1] gave an explicit finite generating set
for  (Ng) and showed that  (N2) � Z2. The first homology group H1(G) of a group G
is isomorphic to the abelianization Gab of G. The group H1( (Ng)) is trivial for g ≥ 7,
H1( (N3)) � Z12, H1( (N4)) � Z2⊕Z and H1( (Ng)) � Z2 for g = 5, 6. These results were
shown by Korkmaz [5] for g ≥ 7 and by Stukow [10] for the other cases.

Let Σg,n be a compact connected orientable surface of genus g ≥ 0 with n ≥ 0 boundary
components. The mapping class group (Σg,n) of Σg,n is the group of isotopy classes of
orientation preserving self-diffeomorphisms on Σg,n fixing the boundary pointwise. Let S
be either Ng,n or Σg,n. For n = 0 or 1, we denote by Γ2(S ) the subgroup of (S ) which
consists of elements acting trivially on H1(S ;Z2). Γ2(S ) is called the level 2 mapping class
group of S . For a group G, a normal subgroup H of G and a subset X of H, H is normally
generated in G by X if H is the normal closure of X in G. In particular, for X = {x1, . . . , xn},
if H is the normal closure of X in G, we also say that H is normally generated in G by
x1, . . . , xn. In the case of orientable surfaces, Humphries [3] proved that Γ2(Σg,n) is normally
generated in (Σg,n) by the square of the Dehn twist along a non-separating simple closed
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curve for g ≥ 1 and n = 0 or 1. In the case of non-orientable surfaces, Szepietowski [11]
proved that Γ2(Ng) is normally generated in (Ng) by a Y-homeomorphism for g ≥ 2.
Szepietowski [12] also gave an explicit finite generating set for Γ2(Ng). This generating set
is minimal for g = 3, 4. Hirose and Sato [2] gave a minimal generating set for Γ2(Ng) when

g ≥ 5 and showed that H1(Γ2(Ng)) � Z
(g3)+(g2)
2 .

We denote by 2(Ng) the subgroup of  (Ng) which consists of elements acting trivially
on H1(Ng;Z2) and we call 2(Ng) the level 2 twist subgroup of (Ng). Recall that  (N2) �
Z2 and Chillingworth [1] proved that  (N2) is generated by the Dehn twist along a non-
separating two-sided simple closed curve. 2(N2) is a trivial group because Dehn twists
along non-separating two-sided simple closed curves induce nontrivial actions on
H1(Ng;Z2). Let Aut(H1(Ng;Z2), ·) be the group of automorphisms on H1(Ng;Z2) preserving
the intersection form · on H1(Ng;Z2). Since the action of (Ng) on H1(Ng;Z2) preserves the
intersection form ·, there is the natural homomorphism from (Ng) to Aut(H1(Ng;Z2), ·).
McCarthy and Pinkall [8] showed that the restriction of the homomorphism to  (Ng) is
surjective. Thus 2(Ng) is finitely generated.

In this paper, we give an explicit finite generating set for 2(Ng) (Theorem 3.1). The
generating set consists of “crosscap pushing maps” along non-separating two-sided simple
loops and squares of Dehn twists along non-separating two-sided simple closed curves. We
review the crosscap pushing map in Section 2. We can see the generating set for 2(Ng) in
Theorem 3.1 is minimal for g = 3 by Theorem 1.2. We prove Theorem 3.1 in Section 3.
In the last part of Subsection 3.2, we also give the smaller finite generating set for 2(Ng)
(Theorem 3.14). However, the generating set consists of crosscap pushing maps along non-
separating two-sided simple loops, squares of Dehn twists along non-separating two-sided
simple closed curves and squares of Y-homeomorphisms.

By using the finite generating set for 2(Ng) in Theorem 3.1, we prove the following
theorem in Section 4.

Theorem 1.1. For g = 3 and g ≥ 5, 2(Ng) is normally generated in (Ng) by a crosscap
pushing map along a non-separating two-sided simple loop (see Figure 1).

2(N4) is normally generated in (N4) by a crosscap pushing map along a non-
separating two-sided simple loop and the square of the Dehn twist along a non-separating
two-sided simple closed curve whose complement is a connected orientable surface (see
Figure 2).

The x-marks as in Figure 1 and Figure 2 mean Möbius bands attached to boundary compo-
nents in this paper and we call the Möbius band the crosscap. The group which is normally
generated in (Ng) by the square of the Dehn twist along a non-separating two-sided sim-
ple closed curve is a subgroup of 2(Ng) clearly. The authors do not know whether 2(Ng)
is generated by squares of Dehn twists along non-separating two-sided simple closed curves
or not.

As an application of Theorem 1.1, we calculate H1(2(Ng)) for g ≥ 5 in Section 5 and we
obtain the following theorem.

Theorem 1.2. For g = 3 and g ≥ 5, the first homology group of 2(Ng) is as follows:

H1(2(Ng)) �

⎧⎪⎪⎨⎪⎪⎩ Z
2 ⊕ Z2 if g = 3,

Z
(g3)+(g2)−1
2 if g ≥ 5.
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Fig. 1. A crosscap pushing map along a non-separating two-sided simple
loop is described by a product of Dehn twists along non-separating two-
sided simple closed curves as in the figure.

Fig.2. A non-separating two-sided simple closed curve on N4 whose com-
plement is a connected orientable surface.

In this proof, we use the five term exact sequence for an extension of a group for g ≥ 5.
The authors do not know the first homology group of 2(N4).

2. Preliminaries

2. Preliminaries2.1. Crosscap pushing map.
2.1. Crosscap pushing map. Let S be a compact surface and let e : D′ ↪→ intS be a

smooth embedding of the unit disk D′ ⊂ C. Put D := e(D′). Let S ′ be the surface obtained
from S − intD by the identification of antipodal points of ∂D. We call the manipulation that
gives S ′ from S the blowup of S on D. Note that the image M of the regular neighborhood
of ∂D in S − intD by the blowup of S on D is a crosscap, where a crosscap is a Möbius
band in the interior of a surface. Conversely, the blowdown of S ′ on M is the following
manipulation that gives S from S ′. We paste a disk on the boundary obtained by cutting S
along the center line μ of M. The blowdown of S ′ on M is the inverse manipulation of the
blowup of S on D.

Let x0 be a point of Ng−1 and let e : D′ ↪→ Ng−1 be a smooth embedding of a unit
disk D′ ⊂ C to Ng−1 such that the interior of D := e(D′) contains x0. Let (Ng−1, x0) be the
group of isotopy classes of self-diffeomorphisms on Ng−1 fixing the point x0, where isotopies
also fix x0. Then we have the blowup homomorphism

ϕ : (Ng−1, x0)→(Ng)

that is defined as follows. For h ∈ (Ng−1, x0), we take a representative h′ of h which
satisfies either of the following conditions: (a) h′|D is the identity map on D, (b) h′(x) =
e(e−1(x)) for x ∈ D. Such h′ is compatible with the blowup of Ng−1 on D, thus ϕ(h) ∈(Ng)
is induced and well defined (c.f. [11, Subsection 2.3]).
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The point pushing map

j : π1(Ng−1, x0)→(Ng−1, x0)

is a homomorphism that is defined as follows. For γ ∈ π1(Ng−1, x0), j(γ) ∈(Ng−1, x0) is
described as the result of pushing the point x0 once along γ. Note that for x, y ∈ π1(Ng−1),
yx means yx(t) = x(2t) for 0 ≤ t ≤ 1

2 and yx(t) = y(2t − 1) for 1
2 ≤ t ≤ 1, and for elements

[ f ], [g] of the mapping class group, [ f ][g] means [ f ◦ g].
We define the crosscap pushing map as the composition of homomorphisms:

ψ := ϕ ◦ j : π1(Ng−1, x0)→(Ng).

For γ ∈ π1(Ng−1, x0), we also call ψ(γ) the crosscap pushing map along γ. Remark that for
γ, γ′ ∈ π1(Ng−1, x0), ψ(γ)ψ(γ′) = ψ(γγ′). The next two lemmas follow from the description
of the point pushing map (see [6, Lemma 2.2, Lemma 2.3]).

Lemma 2.1. For a two-sided simple loop γ on Ng−1 based at x0, suppose that γ1, γ2 are
two-sided simple closed curves on Ng−1 such that γ1 
 γ2 is the boundary of the regular
neighborhood N of γ in Ng−1 whose interior contains D. Then for some orientation of N, we
have

ψ(γ) = ϕ(tγ1 t
−1
γ2

) = tγ̃1 t
−1
γ̃2
,

where γ̃1, γ̃2 are images of γ1, γ2 to Ng by blowups respectively (see Figure 3).

Let μ be a one-sided simple closed curve and let α be a two-sided simple closed curve
on Ng such that μ and α intersect transversely at one point. For these simple closed curves
μ and α, we denote by Yμ,α a self-diffeomorphism on Ng which is described as the result of
pushing the regular neighborhood of μ once along α. We call Yμ,α a Y-homeomorphism (or
crosscap slide). By Lemma 3.6 in [11], Y-homeomorphisms are in Γ2(Ng).

Lemma 2.2. Suppose that γ is a one-sided simple loop on Ng−1 based at x0 such that γ
and ∂D intersect at antipodal points of ∂D. Then we have

ψ(γ) = Yμ,̃γ,

where γ̃ is a image of γ to Ng by a blowup and μ is a center line of the crosscap obtained
from the regular neighborhood of ∂D in Ng−1 by the blowup of Ng−1 on D (see Figure 4).

Fig.3. A crosscap pushing map along two-sided simple loop γ.

Remark that the image of a crosscap pushing map is contained in Γ2(Ng). By Lemma 2.1,
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Fig. 4. A crosscap pushing map along one-sided simple loop γ (Y-
homeomorphism Yμ,̃γ).

if γ is a two-sided simple loop on Ng, then ψ(γ) is an element of 2(Ng). We remark that
Y-homeomorphisms are not in  (Ng) (see [7]).

2.2. Notation of the surface Ng.
2.2. Notation of the surface Ng. Let ei : D′i ↪→ Σ0 for i = 1, 2, . . . , g be smooth

embeddings of unit disks D′i ⊂ C to a 2-sphere Σ0 such that Di := ei(D′i) and Dj are disjoint
for distinct 1 ≤ i, j ≤ g, and let xi ∈ Σ0 for i = 1, 2, . . . , g be g points of Σ0 such that xi is
contained in the interior of Di as the left-hand side of Figure 5. Then Ng is diffeomorphic to
the surface obtained from Σ0 by the blowups on D1, . . . ,Dg. We describe the identification of
∂Di by the x-mark as the right-hand side of Figure 5. We call the crosscap which is obtained
from the regular neighborhood of ∂Di in Σ0 by the blowup of Σ0 on Di the i-th crosscap.

We denote by N(k)
g−1 the surface obtained from Σ0 by the blowups on Di for every i � k.

N(k)
g−1 is diffeomorphic to Ng−1. Let xk;i be a simple loop on Ng based at xk for i � k as

Figure 6. Then the fundamental group π1(N(k)
g−1) = π1(N(k)

g−1, xk) of N(k)
g−1 has the following

presentation.

π1(N(k)
g−1) =

〈
xk;1, . . . , xk;k−1, xk;k+1, . . . , xk;g | x2

k;1 . . . x
2
k;k−1x2

k;k+1 . . . x
2
k;g = 1

〉
.

Fig.5. The embedded disks D1, D2, . . . , Dg on Σ0 and the surface Ng.

2.3. Notations of mapping classes.
2.3. Notations of mapping classes. Let ψk : π1(N(k)

g−1) →(Ng) be the crosscap push-

ing map obtained from the blowup of N(k)
g−1 on Dk and let π1(N(k)

g−1)+ be the subgroup of

π1(N(k)
g−1) generated by two-sided simple loops on N(k)

g−1 based at xk. By Lemma 2.1, we have

ψk(π1(N(k)
g−1)+) ⊂ 2(Ng). We define non-separating two-sided simple loops αk;i, j and βk;i, j on

N(k)
g−1 based at xk as in Figure 7 for distinct 1 ≤ i < j ≤ g and 1 ≤ k ≤ g. We also define

αk; j,i := αk;i, j and βk; j,i := βk;i, j for distinct 1 ≤ i < j ≤ g and 1 ≤ k ≤ g. We have the
following equations:
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Fig.6. The simple loop xk;i for 1 ≤ i ≤ k − 1 and xk; j for k + 1 ≤ j ≤ g on
N(k)
g−1 based at xk.

αk;i, j = xk;ixk; j for i < j < k or j < k < i or k < i < j,

βk;i, j = xk; jxk;i for i < j < k or j < k < i or k < i < j.

Denote the crosscap pushing maps ak;i, j := ψk(αk;i, j) and bk;i, j := ψk(βk;i, j). Remark that ak;i, j

and bk;i, j are contained in the image of ψk|π1(N(k)
g−1)+ . Let η be the self-diffeomorphism on Ng

which is the rotation of Ng such that η sends the i-th crosscap to the (i + 1)-st crosscap for
1 ≤ i ≤ g − 1 and the g-th crosscap to the 1-st crosscap as Figure 8. Then we have ak;i, j =

ηk−1a1;i−k+1, j−k+1η
−(k−1) and bk;i, j = η

k−1b1;i−k+1, j−k+1η
−(k−1) for each distinct 1 ≤ i, j, k ≤ g.

Fig.7. Two-sided simple loops αk;i, j and βk;i, j on N(k)
g−1 based at xk.

For distinct i1, i2, . . . , in ∈ {1, 2, . . . , g}, we define a simple closed curve αi1,i2,...,in on Ng as
in Figure 9. The arrow on the side of the simple closed curve αi1,i2,...,in in Figure 9 indicates
the direction of the Dehn twist tαi1 ,i2 ,...,in

along αi1,i2,...,in if n is even. We set the notations of
Dehn twists and Y-homeomorphisms as follows:

Ti, j := tαi, j for 1 ≤ i < j ≤ g,
Ti, j,k,l := tαi, j,k,l for g ≥ 4 and 1 ≤ i < j < k < l ≤ g,

Yi, j := Yαi,αi, j = ψi(xi; j) for distinct 1 ≤ i, j ≤ g.
Note that T 2

i, j and T 2
i, j,k,l are elements of 2(Ng), Yi, j is an element of Γ2(Ng) but Yi, j is not an
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Fig.8. The self-diffeomorphism η on Ng.

element of 2(Ng). We remark that ak;i, j = b−1
k;i, j = T 2

i, j for any distinct i, j, k ∈ {1, 2, 3} when
g = 3.

Fig.9. The simple closed curve αi1,i2,...,in on Ng.

3. Finite generating set for 2(Ng)

3. Finite generating set for 2(Ng)
In this section, we prove the main theorem in this paper. The main theorem is as follows:

Theorem 3.1. For g ≥ 3, 2(Ng) is generated by the following elements:

(i) ak;i,i+1, bk;i,i+1, ak;k−1,k+1, bk;k−1,k+1 for 1 ≤ k ≤ g, 1 ≤ i ≤ g and i � k − 1, k,
(ii) a1;2,4, bk;1,4, al;1,3 for k = 2, 3 and 4 ≤ l ≤ g when g is odd,

(iii) T 2
1, j,k,l for 2 ≤ j < k < l ≤ g when g ≥ 4,

where the indices are considered modulo g.

We remark that the number of generators in Theorem 3.1 is 1
6 (g3 + 6g2 + 5g− 6) for g ≥ 4

odd, 1
6 (g3 + 6g2 − g − 6) for g ≥ 4 even and 3 for g = 3.

3.1. Finite generating set for π1(N(k)
g−1)+.

3.1. Finite generating set for π1(N(k)
g−1)+. First, we have the following lemma:

Lemma 3.2. For g ≥ 2, π1(N(k)
g−1)+ is an index 2 subgroup of π1(N(k)

g−1).

Proof. Note that π1(N(k)
g−1) is generated by xk;1, . . . , xk;k−1, xk;k+1, . . . , xk;g. If g = 2,

π1(N(k)
g−1) is isomorphic to Z2 which is generated by a one-sided simple loop. Hence

π1(N(k)
g−1)+ is trivial and we obtain this lemma when g = 2.

We assume that g ≥ 3. For i � k, we have

xk;i = x−1
k;k−1 · xk;k−1xk;i.

Since xk;k−1xk;i = βk;i,k−1 ∈ π1(N(k)
g−1)+, the equivalence classes of xk;i and x−1

k;k−1 in π1(N(k)
g−1)/

π1(N(k)
g−1)+ are the same. We also have
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xk;k−1 = x−1
k;k−1 · x2

k;k−1.

Since x2
k;k−1 ∈ π1(N(k)

g−1)+, the equivalence classes of xk;k−1 and x−1
k;k−1 in

π1(N(k)
g−1)/π1(N(k)

g−1)+ are the same. Thus π1(N(k)
g−1)/π1(N(k)

g−1)+ is generated by the equivalence
class [xk;k−1] whose order is 2 and we have completed the proof of Lemma 3.2. �

N(k)
g−1 is diffeomorphic to the surface on the left-hand side (resp. right-hand side) of Fig-

ure 10 when g − 1 = 2h + 1 (resp. g − 1 = 2h + 2). We take a diffeomorphism which
sends xk;i for i � k and xk as in Figure 6 to xk;i for i � k and xk as in Figure 10 and identify

N(k)
g−1 with the surface in Figure 10 by the diffeomorphism. Denote by pk : Ñ(k)

g−1 � N(k)
g−1 the

orientation double covering of N(k)
g−1 as in Figure 11. Then Hk := (pk)∗(π1(Ñ(k)

g−1)) is an index

2 subgroup of π1(N(k)
g−1). Note that when g − 1 = 2h + 1, π1(Ñ(k)

g−1) is generated by yk;i for

1 ≤ i ≤ 4h, and when g − 1 = 2h + 2, π1(Ñ(k)
g−1) is generated by yk;i for 1 ≤ i ≤ 4h + 2, where

yk;i is two-sided simple loops on Ñ(k)
g−1 based at the lift x̃k of xk as in Figure 11. We have the

following Lemma.

Fig. 10. N(k)
g−1 is diffeomorphic to the surface on the left-hand side (resp.

right-hand side) of the figure when g − 1 = 2h + 1 (resp. g − 1 = 2h + 2).
We regard the above surface on the left-hand side as the surface identified
antipodal points of the boundary component, and the above surface on the
right-hand side as the surface attached their boundary components along the
orientation of the boundary.

Lemma 3.3. For g − 1 ≥ 1 and 1 ≤ k ≤ g,

Hk = π1(N(k)
g−1)+.

Proof. Note that π1(N(k)
g−1)+ is an index 2 subgroup of π1(N(k)

g−1) by Lemma 3.2. It is

sufficient for proof of Lemma 3.3 to prove Hk ⊂ π1(N(k)
g−1)+ because the index of Hk in

π1(N(k)
g−1) is

2 = [π1(N(k)
g−1) : Hk] = [π1(N(k)

g−1) : π1(N(k)
g−1)+][π1(N(k)

g−1)+ : Hk]

= 2 · [π1(N(k)
g−1)+ : Hk]
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if Hk ⊂ π1(N(k)
g−1)+.

We define subsets of π1(N(k)
g−1)+ as follows:

A := {xk; j+1xk; j, xk;k+1xk;k−1 | 1 ≤ j ≤ g − 1, j � k − 1, k},
B := {xk; jxk; j+1, xk;k−1xk;k+1 | 1 ≤ j ≤ g − 1, j � k − 1, k},

C :=
{ {x2

k;1} if k � 1,
{x2

k;2} if k = 1.

π1(Ñ(k)
g−1) is generated by yk;i. For i ≤ 2h when g − 1 = 2h + 1 (resp. i ≤ 2h + 1 when

g − 1 = 2h + 2), we can check that

(pk)∗(yk;i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xk;ρ(i+1)xk;ρ(i) if 2 ≤ i ≤ 2h and g − 1 = 2h + 1,
xk;gxk;g−1 if i = 1 and g − 1 = 2h + 1,
xk;ρ(i+1)xk;ρ(i) if 2 ≤ i ≤ 2h + 1 and g − 1 = 2h + 2,
xk;gxk;g−1 if i = 1 and g − 1 = 2h + 2,

and (pk)∗(yk;i) is an element of A, where ρ is the order reversing bijection from {1, 2, . . . , 2h}
(resp. {1, 2, . . . , 2h+ 1}) to {1, 2, . . . , g− 1} − {k}. Since if g− 1 = 2h+ 1 and g− 1 = 2h′ + 2,
we have

(pk)∗(yk;2h+1) =
{

x2
k;1 if k � 1,

x2
k;2 if k = 1,

(pk)∗(yk;2h′+2) =
{

x2
k;1 if k � 1,

x2
k;2 if k = 1,

(pk)∗(yk;2h+1) and (pk)∗(yk;2h′+2) are elements of C respectively (see Figure 12). Finally, for
i ≥ 2h + 2 when g − 1 = 2h + 1 (resp. i ≥ 2h + 3 when g = 2h + 2), we can also check that

(pk)∗(yk;i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xk;ρ′(i)xk;ρ′(i+1) if 2h + 2 ≤ i ≤ 4h − 1 and g − 1 = 2h + 1,
xk;g−1xk;g if i = 4h and g − 1 = 2h + 1,
xk;ρ′(i)xk;ρ′(i+1) if 2h + 3 ≤ i ≤ 4h + 1 and g − 1 = 2h + 2,
xk;g−1xk;g if i = 4h + 2 and g − 1 = 2h + 2,

and (pk)∗(yk;i) = xk;ρ′(i)xk;ρ′(i+1) is an element of B, where ρ′ is the order preserving bijection
from {2h+ 2, 2h+ 3, . . . , 4h} (resp. {2h+ 3, 2h+ 4, . . . , 4h+ 2}) to {1, 2, . . . , g− 1} − {k} (see
Figure 13). We obtain this lemma. �

By the proof of Lemma 3.3, we have the following proposition.

Proposition 3.4. For g ≥ 2, π1(N(k)
g−1)+ is generated by the following elements:

(1) xk;i+1xk;i, xk;ixk;i+1, xk;k+1xk;k−1, xk;k−1xk;k+1 for 1 ≤ i ≤ g − 1 and i � k − 1, k,
(2) x2

k;2 when k = 1,
(3) x2

k;1 when 2 ≤ k ≤ g.

We remark that xk;i+1xk;i = βk;i,i+1, xk;ixk;i+1 = αk;i,i+1, xk;k+1xk;k−1 = αk;k−1,k+1, xk;k−1xk;k+1

= βk;k−1,k+1 and Y2
i, j = Y2

j,i. Let G be the subgroup of 2(Ng) generated by ∪gk=1ψk(π1(N(k)
g−1)+).

The next corollary follows from Proposition 3.4 immediately.
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Fig.11. The total space Ñ(k)
g−1 of the orientation double covering pk of N(k)

g−1

and two-sided simple loops yk;i on Ñ(k)
g−1 based at x̃k.

Fig.12. The representative of x2
k;1 when k � 1 or x2

k;2 when k = 1.

Corollary 3.5. For g ≥ 2, G is generated by the following elements:

(i) ak;i,i+1, bk;i,i+1, ak;k−1,k+1, bk;k−1,k+1 for 1 ≤ k ≤ g, 1 ≤ i ≤ g − 1 and i � k − 1, k,
(ii) Y2

1, j when 2 ≤ j ≤ g,

where the indices are considered modulo g.

The simple loop x2
k;1 and x2

k;2 are separating loops. By the next proposition, π1(N(k)
g−1)+ is

generated by finitely many two-sided non-separating simple loops.

Proposition 3.6. For g ≥ 2, π1(N(k)
g−1)+ is generated by the following elements:

(1) xk;i+1xk;i, xk;ixk;i+1, xk;k+1xk;k−1, xk;k−1xk;k+1 for 1 ≤ i ≤ g and i � k − 1, k,
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Fig.13. The representative of xk; j xk; j+1 and xk;k−1xk;k+1 for j � k − 1, k.

(2) xk;2xk;4 when k = 1 and g − 1 is even,
(3) xk;1xk;4 when k = 2, 3 and g − 1 is even,
(4) xk;1xk;3 when 4 ≤ k ≤ g and g − 1 is even,

where the indices are considered modulo g.

Proof. When g − 1 is odd, since we have

x2
1;2 = x1;2x1;3 · x−1

1;3x−1
1;4 · x1;4x1;5 · · · · · x−1

1;g−1x−1
1;g · x1;gx1;2

and

x2
k;1 = xk;1xk;2 · x−1

k;2x−1
k;3 · xk;3xk;4 · · · · · x−1

k;g−1x−1
k;g · xk;gxk;1

for 2 ≤ k ≤ g, this proposition is clear.
When g − 1 is even, we use the relation

x2
k;1 . . . x

2
k;k−1x2

k;k+1 . . . x
2
k;g = 1.

For k = 1, we have

x2
1;2 = x1;2x1;4 · x1;4x1;5 · · · · · x1;gx1;2 · x1;2x1;3 · x1;3x1;2.

By a similar argument, we also have following equations:

x2
k;1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
2;1 = x2;1x2;4 · x2;4x2;5 · · · · · x2;gx2;1 · x2;1x2;3 · x2;3x2;1 if k = 2,

x2
3;1 = x3;1x3;4 · x3;4x3;5 · · · · · x3;gx3;1 · x3;1x3;2 · x3;2x3;1 if k = 3,

x2
k;1 = xk;1xk;3 · xk;3xk;4 · · · · · xk;k−1xk;k+1 · · · ·

·xk;gxk;1 · xk;1xk;2 · xk;2xk;1 if 4 ≤ k ≤ g.
We obtain this proposition. �

We remark that xk;1xk;g = βk;1,g, xk;gxk;1 = αk;1,g, x1;2x1;4 = α1;2,4, xk;1xk;4 = βk;1,4 for
k = 2, 3 and xk;1xk;3 = αk;1,3 for 4 ≤ k ≤ g. By the above remarks, we have the following
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corollary.

Corollary 3.7. For g ≥ 2, G is generated by the following elements:

(i) ak;i,i+1, bk;i,i+1, ak;k−1,k+1, bk;k−1,k+1 for 1 ≤ k ≤ g, 1 ≤ i ≤ g and i � k − 1, k,
(ii) a1;2,4, bk;1,4, al;1,3 for k = 2, 3 and 4 ≤ l ≤ g when g is odd,

where the indices are considered modulo g.

3.2. Proof of Main-Theorem.
3.2. Proof of Main-Theorem. First, we obtain a finite generating set for 2(Ng) by the

Reidemeister-Schreier method. We use the following minimal generating set for Γ2(Ng)
given by Hirose and Sato [2] when g ≥ 5 and Szepietowski [12] when g = 3, 4 to apply
the Reidemeister-Schreier method. See for instance [4] to recall the Reidemeister-Schreier
method.

Theorem 3.8. [2, 12] For g ≥ 3, Γ2(Ng) is generated by the following elements:

(1) Yi, j for 1 ≤ i ≤ g − 1, 1 ≤ j ≤ g and i � j,
(2) T 2

1, j,k,l for 2 ≤ j < k < l ≤ g when g ≥ 4.

Proposition 3.9. For g ≥ 3, 2(Ng) is generated by the following elements:

(1) Yi, jY1,2, Y2
i, j for 1 ≤ i ≤ g − 1, 1 ≤ j ≤ g and i � j,

(2) Y−1
1,2T 2

1, j,k,lY1,2, T 2
1, j,k,l for 2 ≤ j < k < l ≤ g when g ≥ 4.

Proof. Note that 2(Ng) is the intersection of Γ2(Ng) and  (Ng). Hence we have the
isomorphisms

Γ2(Ng)/(Γ2(Ng) ∩  (Ng)) � (Γ2(Ng) (Ng))/ (Ng) � Z2[Y1,2].

We remark that Γ2(Ng) (Ng) =(Ng) and the last isomorphism is given by Lickorish [7].
Thus 2(Ng) is an index 2 subgroup of Γ2(Ng).

Set U := {Y1,2, 1} and X as the generating set for Γ2(Ng) in Theorem 3.8, where 1 means
the identity element. Then U is a Schreier transversal for 2(Ng) in Γ2(Ng). For x ∈ Γ2(Ng),
define x as the element of U such that [x] = [x] in Γ2(Ng)/2(Ng). By the Reidemeister-
Schreier method, for g ≥ 4, 2(Ng) is generated by

B ={wu−1wu | w ∈ X±, u ∈ U, wu � U}
={Y±1

i, j Y1,2
−1

Y±1
i, j Y1,2, Y±1

i, j

−1
Y±1

i, j | 1 ≤ i ≤ g − 1, 1 ≤ j ≤ g, i � j}
∪ {T±2

1, j,k,lY1,2
−1

T±2
1, j,k,lY1,2, T±2

1, j,k,l

−1
T±2

1, j,k,l | 2 ≤ j < k < l ≤ g}
={Y±1

i, j Y1,2, Y−1
1,2Y±1

i, j | 1 ≤ i ≤ g − 1, 1 ≤ j ≤ g, i � j}
∪ {Y−1

1,2T±2
1, j,k,lY1,2, T±2

1, j,k,l | 2 ≤ j < k < l ≤ g},
where X± := X ∪ {x−1 | x ∈ X} and note that equivalence classes of Y-homeomorphisms
in Γ2(Ng)/2(Ng) is nontrivial. Since Y−1

1,2Y±1
i, j = (Y∓1

i, j Y1,2)−1 and Y−1
i, j Y1,2 = Y−2

i, j · Yi, jY1,2, we
have the following generating set for 2(Ng):

B′ ={Yi, jY1,2, Y2
i, j | 1 ≤ i ≤ g − 1, 1 ≤ j ≤ g, i � j}

∪ {Y−1
1,2T 2

1, j,k,lY1,2, T 2
1, j,k,l | 2 ≤ j < k < l ≤ g}.

By a similar discussion, 2(N3) is generated by
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B′ ={Yi, jY1,2, Y2
i, j | 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, i � j}.

We obtain this proposition. �

Let  be the group generated by the elements of type (i), (ii) and (iii) in Theorem 3.1.
Then  is a subgroup of 2(Ng) clearly and it is sufficient for the proof of Theorem 3.1 to
prove B′ ⊂ , where B′ is the generating set for 2(Ng) in the proof of Proposition 3.9.
By Corollary 3.7, we have ψk(π1(N(k)

g−1)+) ⊂  for any 1 ≤ k ≤ g. Thus Y2
i, j = ψi(x2

i; j) ∈
ψi(π1(N(i)

g−1)+) ⊂ . We complete the proof of Theorem 3.1 if Yi, jY1,2 and Y−1
1,2T 2

1, j,k,lY1,2 are
in .

Lemma 3.10. For g ≥ 4, Y−1
1,2T 2

1, j,k,lY1,2 ∈ .

Proof. Since Y−1
1,2T 2

1, j,k,lY1,2 = tY−1
1,2(α1, j,k,l), Y−1

1,2T 2
1, j,k,lY1,2 is a Dehn twist along the two-

sided simple closed curve as in Figure 14. Then we have a1;k,l(α1,2,k,l) = Y−1
1,2(α1,2,k,l)

and Y−2
1,2a1;2, ja1;k,l(α1, j,k,l) = Y−1

1,2(α1, j,k,l) for 3 ≤ j ≤ g and the local orientation of the
regular neighborhood of a1;k,l(α1,2,k,l) (resp. Y−2

1,2a1;2, ja1;k,l(α1, j,k,l)) and Y−1
1,2(α1,2,k,l) (resp.

Y−1
1,2(α1, j,k,l)) are different. Therefore we have

Y−1
1,2T 2

1,2,k,lY1,2 =a1;k,lT−2
1,2,k,la

−1
1;k,l,

Y−1
1,2T 2

1, j,k,lY1,2 =Y−2
1,2a1;2, ja1;k,lT−2

1, j,k,la
−1
1;k,la

−1
1;2, jY

2
1,2 for 3 ≤ j ≤ g.

By Corollary 3.7, a1;k,l, a1;2, j ∈ ψ1(π1(N(1)
g−1)+) ⊂ . We obtain this lemma. �

Fig.14. The upper side of the figure is the simple closed curve Y−1
1,2(α1,2,k,l)

on Ng and the lower side of the figure is the simple closed curve Y−1
1,2(α1, j,k,l)

on Ng for 3 ≤ j ≤ g.

Szepietowski [11, Lemma 3.1] showed that for any non-separating two-sided simple
closed curve γ, t2

γ is a product of two Y-homeomorphisms. In particular, we have the fol-
lowing lemma.

Lemma 3.11 ([11]). For distinct 1 ≤ i, j ≤ g,

Y−1
j,i Yi, j = Yj,iY−1

i, j =

⎧⎪⎪⎨⎪⎪⎩ T 2
i, j for i < j,

T−2
i, j for j < i.
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Lemma 3.12. For distinct 1 ≤ i, j ≤ g, T 2
i, j ∈ .

Proof. We discuss by a similar argument in proof of Lemma 3.5 in [12]. Let γi be the
two-sided simple loop on N(i)

g−1 for i = 3, . . . , g as in Figure 15. Then we have T 2
1,2 =

ψg(γg) · · ·ψ4(γ4)ψ3(γ3) (see Figure 15). Since γi ∈ π1(N(i)
g−1)+, each ψi(γi) is an element of 

by Corollary 3.7. Hence we have T 2
1,2 ∈ .

We denote by σi, j the self-diffeomorphism on Ng which is obtained by the transposition
of the i-th crosscap and the j-th crosscap as in Figure 16. σi, j is called the crosscap trans-
position (c.f. [9]). For 1 ≤ i < j ≤ g, put fi, j ∈(Ng) as follows:

f1,2 := 1,

f1, j := σ j−1, j · · ·σ3,4σ2,3 for 3 ≤ j ≤ g,
fi, j := σi−1.i · · ·σ2,3σ1,2 f1, j for 2 ≤ i < j ≤ g.

Then T 2
i, j = fi, jT 2

1,2 f −1
i, j = fi, jψg(γg) f −1

i, j · · · fi, jψ4(γ4) f −1
i, j · fi, jψ3(γ3) f −1

i, j . Since the action of
σi, j on Ng preserves the set of i-th crosscaps for 1 ≤ i ≤ g, fi, jψk(γk) f −1

i, j is an element of

ψk′(π1(N(k′)
g−1)) for some k′. By Corollary 3.7, we have fi, jψk(γk) f −1

i, j ∈  and we obtain this
lemma. �

Fig.15. T 2
1,2 is a product of crosscap pushing maps along γ3, γ4, . . . , γg.

Fig.16. The crosscap transposition σi, j.
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Finally, by the following proposition, we complete the proof of Theorem 3.1.

Proposition 3.13. For distinct 1 ≤ i, j, k, l ≤ g, Yk,lYi, j ∈ .

Proof. Yk,lYi, j is the following product of elements of .
(a) case (k, l) = (i, j):

Yk,lYi, j = Y2
i, j.

By Corollary 3.7, the right-hand side is an element of .
(b) case (k, l) = ( j, i):

Yj,iYi, j = Y2
j,i · Y−1

j,i Yi, j
Lem. 3.11
= (a) · T±2

i, j .

By Lemma 3.12, the right-hand side is an element of .
(c) case k = i and l � j:

Yi,lYi, j = ψi(xi;l)ψi(xi; j) = ψi(αi; j,l) = ai; j,l
Cor. 3.7∈ .

(d) case k � i and l = j:

Yk, jYi, j = Yk, jYk,i · Y−1
k,i Y−1

i,k · Yi,kYi, j = (c) · (b) · (c) ∈ .
(e) case k = j and l � i:

Yj,lYi, j = Yj,lY j,i · Y−1
j,i Yi, j

Lem. 3.11
= (c) · T±2

i, j
Lem. 3.12∈ .

(f) case k � j and l = i:

Yk,iYi, j = Yk,iY−1
i,k · Yi,kYi, j

Lem. 3.11
= T±2

i,k · (c)
Lem. 3.12∈ .

(g) case {k, l} ∩ {i, j} is empty:

Yk,lYi, j = Yk,lYk, j · Y−1
k, j Y

−1
k, j · Yk, jYi, j = (c) · (a) · (d) ∈ .

We have completed this proposition. �

By a similar discussion in Subsection 3.2 and Corollary 3.5, we obtain the following
theorem.

Theorem 3.14. For g ≥ 3, 2(Ng) is generated by following elements:

(i) ak;i,i+1, bk;i,i+1, ak;k−1,k+1, bk;k−1,k+1 for 1 ≤ k ≤ g, 1 ≤ i ≤ g − 1 and i � k − 1, k,
(ii) Y2

1, j for 2 ≤ j ≤ g,
(iii) T 2

1, j,k,l for 2 ≤ j < k < l ≤ g when g ≥ 4,

where the indices are considered modulo g.

Since the number of generators in Theorem 3.14 is 1
6 (g3+6g2−7g−12) for g ≥ 4 and 3 for

g = 3, the number of generators in Theorem 3.14 is smaller than the number of generators
in Theorem 3.1. On the other hand, by Theorem 1.2, the dimension of the first homology
group H1(2(Ng)) of 2(Ng) is

(
g
3

)
+
(
g
2

)
− 1 = 1

6 (g3 − g− 6) for g ≥ 4. The difference of them
is g2 − g − 1. The authors do not know the minimal number of generators for 2(Ng) when
g ≥ 4.
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4. Normal generating set for 2(Ng)

4. Normal generating set for 2(Ng)
The next lemma is a generalization of the argument in the proof of Lemma 3.5 in [12].

Lemma 4.1. Let γ be a non-separating two-sided simple closed curve on Ng such that
Ng − γ is a non-orientable surface. Then t2

γ is a product of crosscap pushing maps along
two-sided non-separating simple loops such that their crosscap pushing maps are conjugate
to a1;2,3 in (Ng).

Proof of Theorem 1.1. By Theorem 3.1, 2(Ng) is generated by (I) crosscap pushing maps
along non-separating two-sided simple loops and (II) T 2

1, j,k,l for 2 ≤ j < k < l ≤ g. When
g = 3, 2(Ng) is generated by T 2

1,2, T 2
1,3, T 2

2,3. Recall T 2
i, j = a−1

k;i, j when g = 3. Since Ng − αi, j

is non-orientable for g ≥ 3, ak;i, j is conjugate to ak′;i′, j′ in (Ng). Hence Theorem 1.1 is
clear when g = 3.

Assume g ≥ 4. For a non-separating two-sided simple loop c on N(k)
g−1 based at xk, by

Lemma 2.1, there exist non-separating two-sided simple closed curves c1 and c2 such that
ψ(c) = tc1 t

−1
c2

, where c1 and c2 are images of boundary components of regular neighborhood
of c in N(k)

g−1 to Ng by a blowup. Then the surface obtained by cutting Ng along c1 and c2

is diffeomorphic to a disjoint sum of Ng−3,2 and N1,2. Thus mapping classes of type (I) is
conjugate to a1;2,3 in (Ng). We obtain Theorem 1.1 for g = 4.

Assume g ≥ 5. Simple closed curves αi, j,k,l satisfy the condition of Lemma 4.1. Therefore
T 2

1, j,k,l is a product of crosscap pushing maps along non-separating two-sided simple loops
and such crosscap pushing maps are conjugate to a1;2,3 in (Ng). We have completed the
proof of Theorem 1.1. �

5. First homology group of 2(Ng)

5. First homology group of 2(Ng)
By the argument in the proof of Proposition 3.9, for g ≥ 2, we have the following exact

sequence:

1 −→ 2(Ng) −→ Γ2(Ng) −→ Z2 −→ 0,(5.1)

where Z2 is generated by the equivalence class of a Y-homeomorphism.
The level 2 principal congruence subgroup Γ2(n) of GL(n,Z) is the kernel of the natural

surjection GL(n,Z)� GL(n,Z2). Szepietowski [12, Corollary 4.2] showed that there exists
an isomorphism θ : Γ2(N3) → Γ2(2) which is induced by the action of Γ2(N3) on the free
part of H1(N3;Z). Since the determinant of the action of a Dehn twist on the free part of
H1(N3;Z) is 1, we have the following commutative diagram of exact sequences:

1 �� 2(N3)

θ|2(N3)

��

��

�

Γ2(N3)

θ

��

��

�

Z2

��

�� 1

1 �� SL(2,Z)[2] �� Γ2(2) det �� Z2 �� 1,

(5.2)

where SL(n,Z)[2] := Γ2(n)∩SL(n,Z) is the level 2 principal congruence subgroup of the in-
tegral special linear group SL(n,Z). By the commutative diagram (5.2), 2(N3) is isomorphic
to SL(2,Z)[2].

Proof of Theorem 1.2. For g = 3, the first homology group H1(2(N3)) is isomorphic
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to H1(SL(2,Z)[2]) by the commutative diagram (5.2). The restriction of the natural surjec-
tion from SL(2,Z) to the projective special linear group PSL(2,Z) to SL(n,Z)[2] gives the
following commutative diagram of exact sequences:

1 �� Z2[−E]

id
��

��

�

SL(2,Z)

��

��

�

PSL(2,Z)

��

�� 1

1 �� Z2[−E] �� SL(2,Z)[2] �� PSL(2,Z)[2] �� 1,

(5.3)

where E is the identity matrix and PSL(n,Z)[2] := SL(n,Z)/{±E} is the level 2 principal
congruence subgroup of PSL(2,Z). Since PSL(2,Z)[2] is isomorphic to the free group F2

of rank 2 and −E commutes with all matrices, the exact sequence in the lower row of Dia-
gram (5.3) is split and SL(2,Z)[2] is isomorphic to F2 ⊕ Z2. Thus H1(2(N3)) is isomorphic
to Z2 ⊕ Z2.

For g ≥ 2, the exact sequence (5.1) induces the five term exact sequence between these
groups:

H2(Γ2(Ng)) −→ H2(Z2) −→ H1(2(Ng))Z2 −→ H1(Γ2(Ng)) −→ H1(Z2) −→ 0,

where

H1(2(Ng))Z2 := H1(2(Ng))/
〈

f m − m | m ∈ H1(2(Ng)), f ∈ Z2
〉
.

For m ∈ H1(2(Ng)) and f ∈ Z2, f m := [ f ′m′ f ′−1] ∈ H1(2(Ng)) for some representative
m′ ∈ 2(Ng) and f ′ ∈ Γ2(Ng). Since H2(Z2) � H2(RP∞) = 0 and H1(Z2) � Z2, we have the
short exact sequence:

0 −→ H1(2(Ng))Z2 −→ H1(Γ2(Ng)) −→ Z2 −→ 0.

Since Hirose and Sato [2] showed that H1(Γ2(Ng)) � Z
(g3)+(g2)
2 , it is sufficient for the proof of

Theorem 1.2 when g ≥ 5 to prove that the action of Z2 � Γ2(Ng)/2(Ng) on the set of the
first homology classes of generators for 2(Ng) is trivial.

By Theorem 1.1, 2(Ng) is generated by crosscap pushing maps along non-separating
two-sided simple loops for g ≥ 5. Let ψ(γ) = tγ1 t

−1
γ2

be a crosscap pushing map along a non-
separating two-sided simple loop γ, where γ1 and γ2 are images of boundary components
of the regular neighborhood of γ in Ng−1 to Ng by a blowup. The surface S obtained by
cutting Ng along γ1 and γ2 is diffeomorphic to a disjoint sum of Ng−3,2 and N1,2. Since
g − 3 ≥ 5 − 3 = 2, we can define a Y-homeomorphism Y on the component of S . The Y-
homeomorphism is not a product of Dehn twists. Hence [Y] is the nontrivial element in Z2

and clearly Yψ(γ)Y−1 = ψ(γ) in Γ2(Ng), i.e. [Yψ(γ)Y−1] = [ψ(γ)] in H1(2(Ng)). Therefore
the action of Z2 on H1(2(Ng)) is trivial and we have completed the proof of Theorem 1.2.

�

Remark 5.1. When g = 3, we have the exact sequence

0 −→ H1(2(N3))Z2 −→ H1(Γ2(N3)) −→ Z2 −→ 0

by the argument in the proof of Theorem 1.2. Since H1(Γ2(N3)) � H1(Γ2(2)) � Z4
2, we

showed that the action of Z2 � Γ2(N3)/2(N3) on H1(2(N3)) is not trivial by Theorem 1.2
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when g = 3.
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