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Abstract

In this paper, we shall give a way to construct a graded Lie algebra L(g,p, V,V, By) from a
standard pentad (g, p, V, V, By) which consists of a Lie algebra g which has a non-degenerate
invariant bilinear form By and g-modules (p, V) and ¥V ¢ Hom(V, F) all defined over a field
with characteristic 0. In general, we do not assume that these objects are finite-dimensional.
We can embed the objects g, p, V, V into L(g, p, V, V, By). Moreover, we construct specific pos-
itively and negatively graded modules of L(g,p, V, V, By). Finally, we give a chain rule on the
embedding rules of standard pentads.

1. Introduction

A standard quadruplet is a quadruplet of the form (g,p,V, By), where g is a finite-
dimensional reductive Lie algebra, (o, V) a finite-dimensional representation of g and By
a non-degenerate symmetric invariant bilinear form on g all defined over the complex num-
ber field C, which satisfies the conditions that p is faithful and completely reducible and
that V does not have a non-zero invariant element. In [8], the author proved that any stan-
dard quadruplet (g, p, V, Bp) has a graded Lie algebra, denoted by L(g, p, V, By) = EBnEZ Vs
such that Vy ~ g, Vi =~ V and V_; ~ Hom(V,C) (see [8, Theorem 2.11]). That is, any
finite-dimensional reductive Lie algebra and its finite-dimensional faithful and completely
reducible representation can be embedded into some (finite or infinite-dimensional) graded
Lie algebra. We call a graded Lie algebra of the form L(g,p,V, By) the Lie algebra as-
sociated with a standard quadruplet. Some well-known Lie algebras correspond to some
standard quadruplet, for example, finite-dimensional semisimple Lie algebras and loop al-
gebras. Moreover, the bilinear form By can be also embedded into L(g, p, V, By), i.e. there
exists a non-degenerate symmetric invariant bilinear form on L(g, p, V, By) whose restriction
to VX V} coincides with By (see [8, Proposition 3.2]). By the way, H. Rubenthaler obtained
some similar results in [7] using the Kac theory in [2].

The first purpose of this paper is to extend the theory of standard quadruplets to the
cases where the objects are infinite-dimensional. For this, we need to consider pentads
(8,0, V,V, By) instead of quadruplets, where g is a finite or infinite-dimensional Lie al-
gebra, p : ¢® V — V a representation of g on a finite or infinite-dimensional vector
space V, V a g-submodule of Hom(V, F), By a non-degenerate invariant bilinear form on
g all defined over a field F' with characteristic 0. In general, we do not assume that B
is symmetric. We define the notion of standard pentads by the existence of a linear map
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O, : V®V — g satisfying By(a, P,(v ® ¢)) = {p(a ® v),¢) for any a € g, v € V and
¢ € V. A standard quadruplet (g, p, V, By) can be naturally regarded as a standard pentad
(g, p, V;Hom(V, C), By), and, thus, we can say that the notion of standard pentads is an ex-
tension of the notion of standard quadruplets. Then, by a similar argument to the argument in
[8], we can construct a graded Lie algebra from an arbitrary standard pentad (g, o, V, V, By)
denoted by L(g,p0,V, V, By) = @nez V. such that the objects g, p, V, V can be embedded into
it. We call such a graded Lie algebra a Lie algebra associated with a standard pentad. This
is the first main result of this paper. Of course, the graded Lie algebra associated with a
standard quadruplet (g, p, V, By) is isomorphic to the graded Lie algebra associated with a
standard pentad (g, o, V, Hom(V, C), By). Moreover, if the bilinear form By of (g, 0, V, V, By)
is symmetric, then By can be also embedded into L(g,p, V, V, By), i.e. there exists a non-
degenerate symmetric invariant bilinear form By on L(g,p, V,V, By) whose restriction to
Vo X Vp coincides with By.

When Bj is symmetric, we can expect that a Lie algebra of the form L(g, p, V, V, By) (not
necessary finite-dimensional) and its representation can be embedded into some graded Lie
algebra using B;. The second purpose is to construct positively graded modules and neg-
atively graded modules of L(g,p,V,V, By) which can be embedded into some graded Lie
algebra under some assumptions. In general, it is known that for any graded Lie algebra
[ = @n <z ln and lp-module U, there exists a positively (respectively negatively) graded
[-module such that the base space (respectively top space) is the given ly-module U (see
[9, Theorem 1.2]). In this paper, we shall try to construct such L(g,p, V, V, Bp)-modules
from a g-module (, U) using a similar way to the construction of a Lie algebra associated
with a standard pentad. Precisely, we inductively construct a positively (respectively neg-
atively) graded L(g,p, V.V, Bo)-module (&*,U"), U* = P, ., Uy (respectively (&, U"),
U = EBm <o Un) such that the “base space” U (respectively the “top space” Uy) is the
given g-module U. In general, the modules U* and U~ are infinite-dimensional. We shall
try to embed L(g, p, V, V, By) and its module of the form U* into some graded Lie algebra.
If we assume that By is symmetric and that U has a g-submodule " of Hom(U, F) such
that (g, 7, U, U", By) is a standard pentad, then we can embed the objects L(g, p, V, V, By) and
U™ into some graded Lie algebra. Precisely, under these assumptions, we have that a pen-
tad (L(a,p, V, V, Bo), 7+, U*, U, By) is also standard, and, thus, we can embed the objects
L(g,p,V,V, By), U*, U~ into the graded Lie algebra L(L(g, p, V, V, By),#*, U*, U'~, B;). In
this situation, we have a “chain rule” of the Lie algebras associated with a standard pentad.
This is the second main result of this paper.

This paper consists of three sections.

In section 2, we shall study the Lie algebras associated with a standard pentad. First,
in section 2.1, we define the notion of standard pentads (see Definition 2.2) and construct a
graded Lie algebra from a standard pentad (g,p,V,V,By), which is denoted by
L(g,p, V.V, By) = EB%Z V., (see Theorem 2.15). In section 2.2, we consider some properties
of Lie algebras of the form L(g, p, V. V, By) such that By is symmetric. In these cases, we can
also embed the bilinear form By into L(g,p, V, V, By), i.e. we can obtain a non-degenerate
symmetric invariant bilinear form on L(g, p, V, V, By) whose restriction to V X V; coincides
with By (see Proposition 2.18). Moreover, the Lie algebra L(g, p, V, V, By) can be character-
ized by the transitivity and the existence of such a bilinear form (see Theorem 2.20). Finally,
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we give two lemmas on derivations on L(g, p, V, V, By) (see Lemmas 2.37 and 2.38).

In section 3, we shall study positively and negatively graded modules of a Lie algebra
of the form L(g,p,V,V, By). First, in sections 3.1 and 3.2, we shall construct positively
graded L(g,p,V,V, Byp)-module and negatively graded L(g,p,V,V, By)-module from a g-
module (7, U), i.e. we shall give another proof of [9, Theorem 1.2] in the special cases
where the graded Lie algebra is of the form L(g,p, V,V, By). In section 3.1, we construct
a family of g-modules {U,},., (respectively {U,,},.,) from the pentad (g,p,V,V, By) and
the g-module (7, U) by induction. In section 3.2, we define a structure of positively (re-
spectively negatively) graded L(g,p, V,V, By)-module on U* := ®m20 U, (respectively
U = @m <o Un)- We call this positively (respectively negatively) graded module of
L(g,p, V, V, By) the positive extension (respectively negative extension) of U with respect
to (9,0, V, V, By) (see Theorems 3.12 and 3.14). These modules are transitive and charac-
terized by their transitivity (see Theorem 3.17). In sections 3.3 and 3.4, we try to con-
struct a standard pentad which contains a Lie algebra of the form L(g,p, V,V, By) and its
module of the form U*. For this, we need to assume that By is symmetric and that U is
embedded into some standard pentad (g, 7, U, U’, By). In section 3.3, for the g-submodule
U of Hom(U, F), we shall extend the canonical pairing U X U" to U* x U'~. Moreover,
in section 3.4, we shall construct the ®-map of (L(g,p, V,V, By), 7", U*,U'~, B,) from the
®-map of the pentad (g, 7, U, U, By) inductively. Consequently, under the assumptions that
(80,0, V,V,By) and (g, 7, U, U, By) are standard pentads and that their bilinear form By is
symmetric, we can embed the Lie algebra L(g, p, V, V, By) and its module U* into a standard
pentad (L(g, p, V, V, By), #*, U*, U'~, By). Finally, in section 3.5, we consider the graded Lie
algebra L(L(g,p,V, V, By), &+, U*, U ", B.) under the situation of sections 3.3 and 3.4. From
the constructions of L(g, o, V, V, By), U* and U'~, we can expect that this graded Lie algebra
is written using the data g, p, V, V, By and U, U". Indeed, we have the following result on the
structures of Lie algebras:

L(L(g,p, V.V, Bo), 7", U*, U, By) = L(g,p &7, V@ U,V & U, By)
up to grading. This is a chain rule in the theory of standard pentads (see Theorem 3.26).

Norartion 1.1. In this paper, we regard a representation p of a Lie algebralon V as a linear
map p : 1® V — V which satisfies that

p(la,b] ®v) = p(a® p(b ® v)) — p(b ® p(a ®v))
foranya,belandve V.

DermviTion 1.2. In this paper, we say that a Lie algebra [ is a Z-graded Lie algebra or
simply a graded Lie algebra if and only if there exist vector subspaces [, of [ for alln € Z
such that:

e (= 1, and [I,,1,] Clyyy forany n,m € Z,
e [is generated by [L; ® ) ® ;.
In general, we do not assume that each [, is finite-dimensional (cf. [2, Definition 1]).

Moreover, if [ satisfies the following two conditions, we say that 1 is transitive (see [2,
Definition 2]):

o forxel;,i >0, [x,1_1] = {0} implies x = 0,



536 N. Sasano
o forxel;,i <0, [x,1;] = {0} implies x = 0.

Derinition 1.3. In this paper, we say that a module (w™*, W), W = @mzo W,, (respectively
(@, W), W= EBm <0 W) of a graded Lie algebra @n 7 ln 1s positively graded (respectively
negatively graded) when @™ (I, ® W,,) € W,,, (respectively w ([, ® W,,,) € W,,,,) for
any n,m (cf. [9, Definition 0.1]), and, moreover, we say that a positively graded module
(w*, W) (respectively a negatively graded module (@™, W)) is transitive when the following
condition holds (cf. [9, Definition 1.1]):

forwe W,,m>1,@ (V_; ®w) = {0} implies w = 0
(respectively forw e W,,m < -1, @w (V) ® w) = {0} implies w = 0).

Nortation 1.4. In this paper, we denote the set of all natural numbers, integers and complex
numbers by N, Z and C respectively. We denote the set of matrices of size n X m (n,m € N)
whose entries are belong to a ring R by M(n,m; R), the unit matrix and the zero matrix of
size n by I, and O, respectively. Moreover, dy; stands for the Kronecker delta, Tr(A) stands
for the trace of a square matrix A.

2. Standard pentads and corresponding Lie algebras
2.1. Standard pentads. Let us start with the definitions of ®-map and standard pentads.

DeriniTioN 2.1 (@-map, cf. [8, Definition 1.9]). Let F be a field with characteristic 0. Let
g be a Lie algebra with non-degenerate invariant bilinear form By, p : g® V — V a repre-
sentation of g on a vector space V and V a g-submodule of Hom(V, F') all defined over F.
We denote the canonical pairing between V and Hom(V, F) by (-, -) and the canonical repre-
sentation of g on V by p. Then, if a pentad (g,p, V, V, By) has alinearmap @, : V®V — g
which satisfies an equation

2.1 By(a, (v ® ¢)) = (p(a®v), ) = —(v,0(a @ P))

forany a € g, v € V and ¢ € V, we call it a ®-map of the pentad (g, p, V, V, By). Moreover,
when a pentad (g, p, V, V, By) has a ®-map, we define a linearmap ¥, : V® V — g by:

(2.2) Bo(a, ¥p(¢ ®0)) = (v,0(a ® ¢)) = —(p(a @), $).
We call this map ¥, a ¥-map of (g,p, V, V, By).

In general, a pentad might not have a ®-map. If a pentad (g, p, V, V, By) has a ®-map, then
the equation (2.1) determines the linear map @, uniquely. Moreover, we have an equation

D, +¥,(p®0v) =0
foranyve Vand ¢ € V.

DeriniTion 2.2 (Standard pentads). We retain to use the notation of Definition 2.1. If a
pentad (g, p, V, V, By) satisfies the following conditions, we call it a standard pentad:

(2.3) the restriction of (:,-) to V X V is non-degenerate,
2.4) there exists a ®-map from V® V to g.
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Lemma 2.3. Under the notation of Definitions 2.1 and 2.2, we have the following claims:

(2.5)  if V is finite-dimensional, then a vector space V satisfying (2.3) coincides with
Hom(V, F),

(2.6)  if g is finite-dimensional, then any pentad (g, p, V, V, By) satisfies the condition
(2.4).

In particular, if both g and V are finite-dimensional, then any quadruplet (g, p, V, By) can be
naturally regarded as a standard pentad (g, p, V, Hom(V, F), By).

Proof. The claim (2.5) is clear. Let us show the claim (2.6). If g is finite-dimensional,
then the dual space of g can be identified with g. Precisely, if g is finite-dimensional, then
any linear map f : g — F corresponds to some element A € g such that

f(a) = By(a,A)

for any a € g. Thus, for any v € V and ¢ € V, there exists an element of g which corresponds
to a linear map g — F' defined by

a {pla®v),d).
It means that the pentad (g, p, V, V, By) has the ®-map. m]

RemARk 2.4. If V is infinite-dimensional, then a submodule V of Hom(V, F) satisfying
the condition (2.3) does not necessary coincide with Hom(V, F).

Remark 2.5. In general, a Lie algebra g and its module (p, V) might not have a g-
submodule V ¢ Hom(V, F) and a bilinear form By such that a pentad (g,p,V, V, By) is
standard.

ExampLE 2.6. Let g = s[,(C), K be the Killing form on g and £(g) = C[t,1"!] ® g be the
loop algebra (see [3, Ch.7]). Let K be a bilinear form on L(g) defined by:

Ke"®X,1"®Y) := 8pimoK(X, Y).

Clearly, the bilinear form K, is non-degenerate and invariant. Thus, we can regard £(g)
itself as a £(g)-submodule of Hom(L(g), C) via the non-degenerate invariant bilinear form
K. Then, a pentad (L(g), ad, £(g), L(g), K ), where ad stands for the adjoint representation,
is standard. In fact, we have the condition (2.3) clearly, and, we can identify the bracket
product £(g) X L£(g) — L(g) with the ®-map of (L(g), ad, L(g), L(g), K. ), denoted by (D;d.
However, a pentad (L(g), ad, £(g), Hom(L(g), C), K) is not standard since it does not
have the ®-map. In fact, if we assume that this pentad might have the ®-map, denoted by

@2, and put
1 0 0 1 0 0
Ho 2=(0 _1), X() = (0 0), Y() = (1 O)EQ,

¢y, € Hom(L(9),C), (" ® X, ¢y,) := K(¥o,X),

then an element CDﬁd((l ® Xo) ® ¢y,) € L(g) satisfies the equation
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(2.7 K (1" ® Ho, ©2,((1 ® Xo) ® ¢y,)) = ([" ® Hy, 1 ® Xol, py,)

= (1" ® 2Xo, ¢,)

= K(Yp,2Xo)

=8
for any n € Z. The Lie algebra £(g) does not have an element satisfying (2.7) for any n € Z,
and, thus, the pentad (£(g), ad, £(g), Hom(L(g), C), K;) does not have the ®-map.

On the ®-map and W-map of a standard pentad, we have similar properties to ones of the
®-map and W-map of a standard quadruplet (see [8]).

Proposition 2.7. The ®-map and the Y-map of a standard quadruplet (g,p, V.V, By) are
homomorphisms of Lie modules. (cf. [8, Proposition 1.3]).

Proof. We can prove it by the same way to [8, Proposition 1.3]. |

Derinition 2.8. Let (9,0, V, V, By) be a standard pentad. For each element v € V and
¢ € V, we define linear maps ®,,, € Hom(V, g) and ¥,, ; € Hom(V, g) by:

q)p,v(lyl’) = q)p(v ® l//), ‘Pp,qb(u) = \Pp(‘p ® ”)
for any u € V and ¢ € V. Moreover, we define the following linear maps:

(I)Z .V — Hom(V, g) \I'; : Y — Hom(V, g)

[V el q)p,v’ ¢ = \PP’¢

To simplify, we denote @, () and ¥, 4(u) by v(yy) and ¢(u) respectively.
DeriniTion 2.9. Let (g, 0, V, V, By) be a standard pentad. Put Vj := g, V) := Vand V_; :=
V and denote the canonical representations of g on Vy and V. by py and p.;. We define
homomorphisms of g-modules py and gg by:
poVi®Vy—=V
vy ®a —pia®u),
qo:V_19Vy — V_i
$-1®b > —p_1(b®¢_y).
Moreover, we define homomorphisms of g-modules p; and ¢g_; by:
p1:Vi®V, - Hom(V_y, V})
v1 ®@up = (-1 = p1(V1(-1) ® u) — pr(u1(n-1) vy)),
qd-1 ZV_1 ® V—l 4 Hom(Vl, V_l)
$-1®Y-1 = (&1 o p_1(9-1(ED) QY1) — p-1(W-1(£1) ® P-1)),
where v1(1-1) € Vp and ¢_; (&) € V) stand for ®,, (7-1) and ¥, 4_, (£1) respectively.
Moreover, suppose that i > 2 and there exist g-modules (p;—1, V;—1) and (o_;+1, V_;+1) and
homomorphisms of g-modules p;_; : Vi®V;,_; > Hom(V_{,V;_)and g_;1; : Vo1 ®V_;y; —

Hom(Vy, V_i1). Then, we put V; := Im p;_;, V_; := Im g_;;; and define linear maps p;, g—;
by:
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pi:Vi®V; > Hom(V_1,V))
v1 @ u; = (-1 = pi(L1(M-1) @ u;) + pi-1(v1 B ui(n-1))),
g-i : Vo1®V_j —» Hom(V,, V_))
$-1 @Y > (&1 p-i(P-1(51) ®Y-i) + q-iv1(P-1 ®Y—i(£1))),
where u;(n-1) € Vi—1 and ¥_;(&1) € V_;1 are the images of n_; and &; via u; and ¢ _; re-
spectively. Then, the linear maps p; and ¢g_; are homomorphisms of g-modules (cf. [8,
Proposition 1.10]). We denote the images of p; and g_; by V;;; and V_;_; and the canoni-
cal representations of g on Vi1 and V_;_; by p;;1 and p_;_; respectively. Thus, inductively,

we obtain g-modules V, and representations p, of g on V, for all n € Z. We call V, the
n-graduation of (g,p, V,V, By).

Remark 2.10. For any v; € V) and ¢_; € V_;, we have
P11 ®v)(n-1) = p1(i(-1) ®v1) — p1(V1(M-1) ®vy) = 0,
g-1(p-1 ® ¢_1)(&1) = p-1(P-1(€1) ® 1) — p_1(p-1(£E1) ® p_1) = 0.

In general, we do not assume that p and o are surjective, i.e. we do not assume that
Vi =1Im pg and V_; = Im ¢o. In particular cases where these linear maps are surjective, we
have the following proposition.

Proposition 2.11. Ifp : g®V — Vando : §®V — V are surjective, then (D; and
‘I’; are injective, and, thus, V and V can be regarded as g-submodules of Hom(V_y, Vyy) and
Hom(Vy, Vy) respectively.

Proof. To show this proposition, we use the condition (2.3). Let us show that the linear
map @7 is injective. We take an arbitrary element v € V which satisfies that ®,,, = 0. Then
we have

(2.8) 0 = Bo(a, ©p,(¢) = (p(a®v), ) = —(v,0(a ® ¢))
for all a € g and ¢ € V. By the condition (2.3) and the assumption that o is surjective, we
have that v = 0. Therefore, we obtain that @7 is injective. Similarly, we can show that ¥ is
injective. o
DerintTioN 2.12. We define the following bilinear maps
o Ta s Vox Vi = Vi [ ly s Vix Vi = Viery [l s Vo X Vi = Vi

by:

Lao, 21y = pulao ® 2a),

1 Pu(x1®2z,) (n2>0)

[x1, 20l 1=

~2a(x1) (n<-1)°

[y L2 ]_1 o _Zn(y—l) (I’l 2 1)
ST gy ®2,) (< 0)
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where ag € Vo, x1 € Vi, y_1 € V_1 and z, € V,,. Note that z,(x;) stands for ¥, (x;) when
n = —1 and the image of x; via z, € Hom(Vy, V,,41) when n < —2. Moreover, fori > 1, we
define the following bilinear maps

i+1 ., —i—1 .
['7 ]ZF . Vi+1 X Vn - Vi+n+1, ['a ']nl . V—i—l X Vn - V—i+n—1

by:

(2.9) [pix1 ® z), wa i =[xy, [zi, wall Vi — [z [0, waly 1l
(x1eVi,zieViw, €V,)

and

(2.10) [9-i(y—1 ® w_p),wu ], =l lw_i w12, = [w=is [y—1wal, 1

-1 €V, w_;€V_jw, €Vy)

inductively. Then the bilinear maps (2.9) and (2.10) are well-defined. It can be shown by
the same argument to the argument of [8, Propositions 2.5 and 2.6]. Consequently, we can
define a bilinear map [-, ]}, : V,, X V,, = V4, for any n,m € Z.

Derinition 2.13. For a standard pentad (g, p, V, V, By), we denote a direct sum of its n-
graduations by L(g, p, V, V, By), i.e.

Lis,p, V, V, By) := ) Vi

nez

Moreover, we define a bilinear map [-, -] : L(g,p, V, V, Byp) X L(g,p0, V.V, By) — L(g,p,V, V,
By) by

2.11) (%5 Y] = [Xns Y1y,
forany n,m € Z, x, € V, and y,,, € V..
Proposition 2.14. This bilinear map [-, -] satisfies the following equations
(2.12) [x,y] + [y, x] = 0,
(2.13) [x, [y, 211 + [z [x, y1] + [y, [z, x]] = O
forany x,y,z € L(g,p,V, V, By).

Proof. We can prove it by the same argument to the argument of [8, Propositions 2.9 and
2.10]. |
As a corollary of Proposition 2.14, we have the following theorem immediately.

Theorem 2.15 (Lie algebra associated with a standard pentad). Let (g,p0,V,V, By) be a
standard pentad over a field F with characteristic 0. Then the vector space L(g,p,V,V, By) =
@nez V. is a graded Lie algebra with a bracket product |-, -] defined in Definition 2.13. We
call this graded Lie algebra the Lie algebra associated with (g, o, V, V, By) (cf. [8, Theorem
2.11)).

Remark 2.16. Note that we can prove Theorem 2.15 without the assumption that the
bilinear form By is symmetric.
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Note that Vy = g and that the Vy-modules Vy, V), V_; are isomorphic to g, V, V re-
spectively. In this sense, we can say that the objects g, (o, V), (0, V) can be embedded into
L(g,p, V.V, Bo).

In particular, when p and o are faithful and surjective, we have a similar result on the
structure of a graded Lie algebra of the form L(g, p, V, V, By) to the result which is obtained
by H. Rubenthaler in [7, Proposition 3.4.2]. We can show the following proposition by
Proposition 2.11 immediately.

Proposition 2.17. Let (g,p,V,V, By) be a standard pentad. If bothp : g® V — V and
0 :8Q® Y — V are faithful and surjective, then the graded Lie algebra L(g,p,V,V, By) is
transitive.

2.2. Standard pentads with a symmetric bilinear form. In the previous section, we
proved that for any standard pentad (g, p, V, V, By), there exists a graded Lie algebra such
that g, p, V and V can be embedded into it. In this section, we discuss cases where By is
symmetric. In these cases, we can also embed By into L(g,p, V, V, By) and we can obtain
some useful properties.

Proposition 2.18. Let (g,p,V,V, By) be a standard pentad such that By is symmetric. We
define a symmetric bilinear form By on L(g,p, V, V, By) inductively as follows:

Bi(a,b) = Bo(a,b),
Bi(v, ) = (v, ¢),
B(pi(v1 ® u), qg-i(¢p-1 ®Y—)) = Br(ui, [q-i(d-1 ® Y—i), v1]),
Br(Xn,ym) = 0
foranya,be Vo,veV,¢peV,i>lLveV,d_1e€V_,ueVy,y_,€V_,nmelZ,

n+m+0, x, € V,andy,, € V,. Then By is a non-degenerate symmetric invariant bilinear
form on L(g,p, V, V, By) (cf. [8, Proposition 3.2]).

Proof. Note that it is clear that the restriction of B; to Vo XV and V| X V_; is well-defined.
Let us show the well-definedness of By on V, X V_,. For any vy, u; € Vy and ¢_1, 1 € V_y,
we have

(2.14) Br(ui, [g-1(¢-1 @ Y—1),v1]) = Br(uy, [[¢-1, 011, ¥-11 + [¢-1, -1, 011D
= up, [[g-1, 1], ¥—1] + [P-1, [Y-1, 011D
= Bo([9-1, v1], -1 (u1)) — Bo([y—1, 1], ¢-1(u1))
= Bo([p-1, v1], -1 (u1)) — Bo(p-1(u1), [¥-1,01])
(by the assumption that By is symmetric)
= Bo([v1, ¢-1], ur(-1)) — Bo(ur(¢-1), [v1, 1)
= ([lv1, ¢-11, un] + [o1, [ur, ¢-111, 0-1)
= Br([p1(v1 @ u1), ¢-11,¢-1).
I

Thus, ifv},...,vll,ul,...,ull € Vi and ¢1_1,...,¢’il,1,//1_1,...,1,//il € V_; satisfy equations

I k
Dipwieu) =0, > g ey ) =0,
s=1 t=1
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then

1 1
D B}, [ga(@ @ w),0iD) = D Bullpi (o] ®u}), 611,u1) =0,
s=1

s=1

k
Z B (u, [q—1(¢t_1 ® 9-//_1), Ul]) =0
t=1

for any v;,u; € V) and ¢_j,¥_; € V_j, that is, we have the well-definedness of By on
Vo x V_. This By |y,xv_, 1s g-invariant. Moreover, by a similar argument, we have the well-
definedness of B, on V;xV_; for each i > 3 by induction (see [8, section 1.2]). Consequently,
we can show the well-definedness of B; on the whole L(g,p, V,V, By) and that B; is non-
degenerate symmetric invariant by the same argument as the argument in [8, section 1.2 and
Proposition 3.2]. m|

REMARK 2.19. We need the assumption that By is symmetric to show that the bilinear form
By is L(g,p, V, V, By)-invariant. Precisely, we need this assumption to show an equation

Br(v1, [¢-1,a]) = BL([v1,¢-1], @)
forany a € Vo, v, € Vi, 91 € V_.

Under the assumption that By is symmetric, the graded Lie algebra is characterized by the
existence of such a bilinear form. The following is a proposition concerning the “universal-
ity” and “uniqueness” of Lie algebras associated with a standard pentad with a symmetric
bilinear form.

Theorem 2.20. Ler £ = @nez L, be a graded Lie algebra which has a non-degenerate
symmetric invariant bilinear form Be. If & and Bg satisfy the following conditions, then
a pentad (L, ad, &1, L_1, Bo le,xe,) is standard and 2 is isomorphic to L(£g,ad, &1, L4,

By lggxg,):
(2.15) Lint = [L, 4] 8 = [8y, L] forall i 2 1,
(2.16) the restriction of Be to £; X £_; is non-degenerate for any i > 0,

where ad stands for the adjoint representation of £ on itself (cf. |8, Proposition 3.3]).

Proof. First of all, let us check that the pentad (29, ad, £, 2_, Be |g,xg,) 1S standard.
By (2.16), we can obtain that Bg |g,x¢, 1S non-degenerate and that £; and ¥_; satisfy the
condition (2.3). It is easy to show that we can identify the restriction of the bracket product
[,-]of £to £ X &_; — ¥ with the ®-map of the pentad (Lo, ad, 1, £L_1, Be |g,xg,). Thus,
the condition (2.4) holds.

We denote the n-graduation of (£g,ad, €1, 21, Be |g,xg,) by (), for any n € Z and
a bilinear form on L(¥¢, ad, £, £_, Be |g,xg,) obtained in Proposition 2.18 by (B)e. Let
oo : (%) — Loand 04 1 (L):1 — L4 be the identity maps respectively. Then the linear
maps o and o satisfy the following equations:

(2.17) [oo(@), os1(x21)] = o21([a, x21]),
(2.18) [o1(x1), o1 (x-1)] = oo([x1, x-1])
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for any a € () and x; € (¥).;. Indeed, the equation (2.17) is clear, and, we have

(2.19)
Bo(oo(b), [o1(x1), o-1(x-1)]) = Be([o0(D), o1(x1)], 07-1(x-1)) = Be(o1([D, x1]), 0-1(x-1))
= (B)e([b, x1], x_1) = (B)e(b, [x1, x_1]) = Be(oo(b), oo([x1, x-1]))

for any b € (8)y. Thus, we can obtain the equation (2.18).

For each i > 1, we define linear maps 041 : (¥);31 = Lppand oy @ ({)_p — Ly
by:
(2.20) i1 - pilx1 ® 7)) - [01(x1), 0i(z0)],
(2.21) O—i-1 & q-i(x-1 ®2-) P [o-1(x-1), 0-i(z-7)]

for any x.; € (¥):; and z4; € (¥)4; inductively. Note that it follows from (2.17) that the
linear maps 0| and o—; on p(g ® V) and o(g ® V) defined by the same equations as (2.20)
and (2.21) where i = 0 coincide with the identity maps respectively. We can prove that the
linear maps o, (n € Z) are well-defined and satisfy

(2.22) [oo(a), on(zn)] = ou(la, 24D,
(2.23) [o21(x21), 00 (z0)] = Opa1([X21, 20])

forany n € Z, a € (), x+1 € (¥):1 and z, € (L), by a similar argument to the argument of
[8, Proposition 3.3]. Then a linear map o : L(£y,ad, &1, £_1, Be |g,xg,) — £ defined by

(2.24) 0 (2n) = Tn(2Zn),

wheren € Z and z,, € (L), C L(£o,ad, £1, £_1, Bg |g,x¢,), 1s an isomorphism of Lie algebras.
We can also prove this by a similar argument to the argument of [8, Proposition 3.3]. |

As a corollary of Theorem 2.20, we can say that the theory of standard pentads is an
extension of the theory of standard quadruplets.

Proposition 2.21. Let (g,p,V, By) be a standard quadruplet (see [8, Definition 1.9]).
Then the Lie algebra L(g,p,V, By) associated with (g,p,V, By) (see [8, Theorem 2.11]) is
isomorphic to the Lie algebra L(g, p, V, Hom(V, C), By).

DeriNtTION 2.22. Let (g',p', Vl,V',B(')) and (gz,pz, V2, V2, BS) be standard pentads. We
say that these pentads are equivalent if and only if there exists an isomorphism of Lie alge-
bras 7 : g' — g2, linear isomorphisms o : V! — V2, ¢ : V! — V? and a non-zero element
¢ € F such that

(2.25) o(p' (@ ®x") = p*(r(a") ® o (x")),
(2.26) s(o'(a' ®y") = o*(x(a") ® s(y")),
(2.27) Lyt = (o), s,

(2.28) Bj(a',b") = cBj((a"), 7(b"))

Ve vl y' € V' and (.,-) stands for the pairing between V' and V'

(i = 1,2). We denote this equivalence relation by

where a',b! € g!, x

(2.29) (6", 0", VL, V!, By) = (6%, 0%, V2, V2, BY).
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Remark 2.23. Note that if V is finite-dimensional, then linear isomorphisms 7, o sat-
isfying (2.25) induce a linear isomorphism from V! = Hom(V', F) to V*> = Hom(V?, F)
satisfying (2.26) and (2.27).

Proposition 2.24. [f standard pentads (gl,pl,Vl,vl,B(l)) and (gz,pz,Vz,Vz,B(Z)) are
equivalent, then the Lie algebras associated with them are isomorphic, i.e. we have

(2.30) L(s'.p", V', V", B)) = L(a®,p*, V*, V*, BY)
(cf. |8, Proposition 3.6]).

Proof. We denote the n-graduation of (¢’ p', V', V', B)) by V}, (i = 1,2) for all n € Z and
the bilinear forms on L(g', o', V', V', Bj) defined in Proposition 2.18 by B} (i = 1,2). Under
the notation of Definition 2.22, we define linear maps o := 7 : Vé - Vg, o = %o’ :
Vll — V12 ando_; :=¢: V! | V%l. Then, these linear maps oy and o4 satisfy the same

equations as (2.17) and (2.18). In fact, the equation (2.17) is clear, and, we have
By(oo(ag), [ (x)), o1y D) = Bi (o1 ([ags 1D, o-1(yL)))

1 1
= ;Bi([aé,x%],yll) = ;B})(a(ﬁ, [x1, 4", ]) = Bi(oo(ag), oo(lx], ¥, 1))

for any a(') € Vé, x} € Vll and yl_l € Vll. Thus, we have the equation (2.18). Then, by the

same argument as the argument in proof of Theorem 2.20, we can construct an isomorphism
of Lie algebras from L(gl,pl, v pl, B(l]) to L(gz,pz, V2,2, B(Z)). O

RemMark 2.25. The converse of Proposition 2.22 is not true. In fact, we have an example
of two non-equivalent pentads such that the corresponding Lie algebras are isomorphic (see
[8, pp. 398-399]).

DeriNiTioN 2.26. Let (¢!, p', V!, V!, B) and (9%, 0, V*, V2, B}) be standard pentads. Let
p' @ p? and o' @ o? be representations of ' ® g% on V! @ V2 and V! @ V? defined by:
(' Bmp*)(a',a) @', v") = (p'(a' ®@v").p*(d ® 1)),
@' D', )@ (@', 6%) = (o' (b ®¢"), 0’ (B’ ® ¢°))
where a',b' € g/, v' € VI, ¢' € V' (i = 1,2). Let B(l) @ Bg be a bilinear form on g' @ g defined
by:
(2.31) (By ® By)((a',a?), (b, b)) := Bi(a', b") + Bi(da?, b?)
where a', b’ € ¢’ (i = 1,2). Then, clearly, a pentad (g' ®g°, p' mp?, V'@ V2, V'@)V?, B(I)EBB%) is

also a standard pentad. We call it a direct sum of (g',p', V', V!, B)) and (4%, p*, V2, V2, B})
and denote it by (g',p', V!, V!, B}) @ (6%, p*, V2, V2, BY).

Proposition 2.27. Let (a',p', V!, V', B}) and (¢%,p*, V*, V?, B}) be standard pentads.
Then the Lie algebra L((s', p', V', V', B)®(g?, p*, V2, V%, BY)) is isomorphic to L(g', p", V',
V!, By) ® L(g*, p*, V2, V2, BY) (cf. [8, Proposition 3.9]).

Proof. We retain to use the notation of Proposition 2.24. Then, we have the following
Z-grading of L(g', p', V!, V!, B)) ® L(g*, p*, V*, V?, B}):
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(232) L( 1 1 Vl vl B] L 2 2 2 v2 32 _ 1 2
N g’p’ ’ > 0)ea (9 ap ,V, ’ 0)— (Vn®Vn).
nez

By Theorem 2.20, we have our claim. m|

Derinition 2.28. Let (g,p, V, V, Bp) be a standard pentad. We say that (g,p0,V, V, By) is
decomposable if and only if there exist standard pentads (a, pq, V4, Va, Bo.a) and (b, py, Vi, Vs,
By) such that
(2.33) (dim a + dim V,)(dim b + dim V;) # 0,

(234) (gsp’ ‘/9 v’ BO) = (a’pa, v(l’ va, BO,(I) @ (b’ pbv Vb, vb’ BO,b)-

If (g, 0, V, V, By) is not decomposable, we say that (g, 0, V, V, By) is indecomposable.

DermniTion 2.29. Let (g,p, V. V, By) be a standard pentad. We say that (9,0, V, V, By) is
reducible if and only if there exist an ideal a of g and g-submodules V, and V, of V and V
satisfying that:

(2.35) 0}V, @adV, CV®addV,
(2.36) p(a®V),p(g®V,) C Vyand o(a® V), 0(a ® V,) C V,,
(2.37) D, (V@ V), D,(VRV,) Ca.

And, we say that (g, 0, V, V, By) is irreducible if and only if it is not reducible.
Remark 2.30. If a standard pentad is irreducible, then it is indecomposable.

Proposition 2.31. Let (9,0, V,V, By) be an irreducible standard pentad. Then the repre-
sentations p : g®V = V,0:9®V — V and the O-map ©, : V® V — g are surjective.

Proof. If o(g® V)@ ®,(V®V)®p(g®V) = {0}, it follows that dim V = dimg = dimV =0
from the assumption that (g, o, V, V, By) is irreducible. In particular, we have o(¢®V) =V =
{0and p(g®@ V) =V = {0}. If o(g @ V) & D,(V® V) ® p(g ® V) # {0}, since it satisfies the
conditions (2.36) and (2.37), we have o(g® V) @ P,(VR V) D p(a® V)=V g V. O

Proposition 2.32. Let (g,p,V,V, By) be an irreducible standard pentad whose repre-
sentation p is faithful and denote the Lie algebra associated with it by L(g,p,V,V, By) =
@n o7 V- Let N (respectively M) be an integer such that Vi is not {0} (respectively V_y
is not {0}). Then for any non-zero element zy € Vy (respectively w_y € V_y), there exists
an element x; € V| such that [x1,zy] # O (respectively y_, € V_y such that [y_, w_p] # 0)
(cf. 18, Proposition 3.11]).

Proof. When N < —1, we have our claim by Propositions 2.11, 2.17 and 2.31. When N =
0, we have our claim by the assumption that p is faithful. Assume that N > 1, Vy,; # {0}
and put ay := {ay € Vy | [x1,ay] = 0 for any x; € Vi} and a, := {a, € V,, | [x1,a,] € ay41
for any x; € V;} for n < N — 1 inductively. Then q, is a Vjy-submodule of V,, for each n,
ie. [Vo,a,] C a,, and, we have that [V.;,a,] C a,+; for any n € Z (see [8, the proof of
Proposition 3.11]). In particular, a_; ® ag @ a; satisfies the conditions (2.36) and (2.37). If
a1 ®ag®a; = V&gV, then we have ay = Vy and a contradiction to the assumption that
Vn+1 # {0}. Thus we have a; = {0}, and, thus, a; = {0}, ..., ay = {0} by the transitivity of
L(g,p,V, V, By). Similarly, we have our result for M such that V_y,_; # {0}. m]
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Proposition 2.33. Let (9,0, V,V, By) be an irreducible standard pentad whose represen-
tation p is faithful. If the Lie algebra L(g,p,V, V, By) is finite-dimensional, then L(g,p,V, V,
By) is simple (cf. [8, Proposition 3.12]). Moreover, if (g9,p,V,V, By) is defined over C
and L(g,p,V, "V, By) is a finite-dimensional simple Lie algebra, then a triplet (g,p, V) corre-
sponds to some prehomogeneous vector space of parabolic type (see [8, Theorem 3.13]).

Proof. We can show this by Proposition 2.32 and the same argument to the argument of
[8, Proposition 3.12 and Theorem 3.13]. O
A prehomogeneous vector space of parabolic type (abbrev. a PV of parabolic type) is a PV
which can be obtained from a Z-graded finite-dimensional semisimple Lie algebra. PVs of
parabolic type are classified by H. Rubenthaler (see [4, 5, 6]).

ExampiE 2.34. Let m > 2 and g = g[;(C) & s1,,(C), p = A a representation of g on C™"
defined by

Ai((a,A)®v):=av+Av (a€qglj,Aesl,,veV),

By = k,, a bilinear form on g defined by

kn((a,A), (@, A")) = nf_ 1aa’ +Tr(AA") (a,d’ € gl;,A,A” € sl,).
m

Then, a pentad (g, p, V,Hom(V,C), By) = (gl; & sl,, A;,C",C", k) is a standard pentad
which has a (m? + 2m)-dimensional graded simple Lie algebra L(gl; ® sl,,, A1, C",C", k) =
V_1® Vo ® V) (see [8, Example 1.14]). This Lie algebra L(gly & sl,,, A1, C",C™", k) is
isomorphic to sl,,.;. Indeed, from the classification of PVs of parabolic type (see [4, 5, 6])
and the dimension of L(g, p, V, Hom(V, C), By), it is isomorphic to sl .

ExampLE 2.35. Put g := g[;(C) ® g[;,(C) ® sl,(C), V := C*> = M(2,1;C), Y := C? and
define representations p : g® V = V,0:g® V — V by:

p((a,b,A)®v) :=bv+Av, o((a,b,A)® ¢) := —bp —'A¢

for any (a,b,A) € g,v € V, ¢ € V. We can identify V with Hom(V, C) via the following
bilinear map (-, -)y : VXV — C defined by:

<U7 ¢>V = tv(p‘
Let By be a bilinear form on g defined by:
3 1
Bo((a,b,A),(d’,b',A)) := Zaa’ +bb" + E(ab' +a’'b) + Tr(AA").

Then, a pentad (g, p, V, V, By) is a standard pentad whose ®-map is given by:

3 1
D,(v® ) = (=g, §’v¢, v'e - Etv¢12)-

The Lie algebra L(g,p,V,V, By) is isomorphic to gl; @ sl;. Indeed, if we put g‘l/ = C-
(1,0,0,), g% := C- (=3,1,0,) @ sy, then we have

L(3,p, V.V, Bo) = L((8y 0 lg1- 10}, 10}, Bo lgiq1) @ (870 Iz » ViV, Bo | )
=g, @ Loy, 0 |-V, Vo Bo lpsg) ~ gy @ V@ gy 0V
~ gl; ®sl3
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from Example 2.34. Moreover, under this identification, the bilinear form B; on L(g%,, 0 |ng ,
V.V, By |2y ) is given by Br(A, A”) = Tr(AA’) (A, A’ € sl3). In fact, if we put

goXa%

— 1 0 2
h:= (0,0,(0 _1)) € g7,

then By(h, h) = 2. On the other hand, we can obtain Tr(ad 4 ad h) = 12, where ad stands for
the adjoint representation of L(g%,, Jol Igzv , V.V, By Igzv xg2)s by a direct calculation. Since any
non-degenerate invariant bilinear form on sl is a scalar multiple of the Killing form, we can
obtain that B; is 1/6 times the Killing form of sl3, i.e. B,(A, A") = Tr(AA").

Proposition 2.36. Let (g,0,V,V, By) be a standard pentad whose representation p is
faithful. Under this assumption, the pentad (g,p,V,V, By) is irreducible if and only if the
Lie algebra L(g,p,V,V, By) does not have a non-zero proper graded ideal.

Proof. Assume that (g, 0, V, V, By) is reducible. Under the notation of Definition 2.29,
we put a_; := V,, ap := a, a; := V,. Moreover, we put q, := [V},q,-1] for all n > 2 and
ay = [V_1, qu41] for all m < =2 inductively. Then a direct sum U := @” <7 0y 18 @ nON-Zero
proper graded ideal of L(g,p,V,V, By). In fact, by the assumption that [V}, a;] C a;y; for
any —1 < i, j,i + j < 1, we can easily show that [V, A], [V.;, A] € A by induction. Since
L(g,p,V, V, By) is generated by Vj and V., we have [L(g,p, V, V, By), U] c A. Thus, A is a
graded ideal. Since {0} #a_1 ®ag®a; S VS gV, we have {0} # A C L(g,p, V, V, By).

Conversely, assume that (g, p, V, V, By) is irreducible. Let b = ), .-(b N V,) be a non-zero
graded ideal of L(g,p,V,V, By) and put b, := b N V,. Then, by Proposition 2.32, we can
obtain that by # {0}. In fact, since b # {0}, there exists an integer n € Z and a non-zero

element z,, € b,. For example, if n > 1, then there exist n elements yll, ...,y € V_y such
that [y",,[---, [yl_l, Zal -+ 1] € by \ {0}. Since b_; &by @ b; satisfies the conditions (2.36) and
(2.37), it coincides with V_; & V @ V1, and, thus, b = L(g,p, V. V, By). m]

The following lemmas are to construct a derivation on L(g, p, V, V, By). They are used in
Theorem 3.26.

Lemma 2.37. Let (g,p,V,V, By) be a standard pentad, L(g,p,V,V,By) = 691162 V, be
the Lie algebra associated with it. Let a; : V; — V; (i = 0, £1) be linear maps which satisfy

(2.38) aiyj([a;, bj]) = [ai(a;), b;] + [a;, aj(D))]

forany =1 < i, j,i+ j < 1and elements a; € V;, b; € V;. Then, there exists a linear map
a: L(g,p,V,V,By) — L(a,p,V, V, By) such that « is a derivation on L(g,p, V,V, By) and its
restriction to V; (i = 0, £1) coincides with «;.

Proof. First, let us construct linear maps «; : V; — V; for all i € Z by induction. Leti > 1
and assume that the integer i satisfies the condition that we have linear maps «; : V; — V;
for all 0 < j < i which satisfy the following equations:

aj(lao, bjl) = [ao(ao), b;] + [ao, aj(b))],
aj([x1,bj-1]) = [a1(x1), bj-1] + [x1,@;-1(D;j-1)],
@j-1([y-1,b;]) = [a-1(y-1), b;] + [y-1,a;(b))]

forany 0 < j <i,ap € Vo, x1 € Vi,y_1 € V_1,bj € Vyand bj_; € V;_;. By the assumption
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(2.38), when i = 1 the given linear maps ay, @ satisfy these equations. Then we define a
linear map ;4 : Viy1 — Vigg by:

(2.39) @ir1([x1, b:]) := [a1(x1), bi] + [x1, @i(bi)]
for any x; € V) and b; € V;. Let us check the well-definedness of «;,;. In fact, for any
y_1 € V_1, x; € Vi and b; € V;, we have
(2.40)  [y-1, [a1(x1), bil + [x1, @i(B)]] = [y-1, [@1(x1), D]l + [y-1, [x1, @i(D)]]

= [[y-1, a1(xD)], bil + [a1(x1), [y-1, bill + [[y-1, 1], @i(Di)] + [x1, [y-1, @i(bi)]]

= [ao(ly-1, x1D), bil = [[a-1(y-1), x11, bi] + [a1(x1), [y-1, Dil]

+ [ly-1, x1], @i(D)] + [x1, @i-1([y-1, biD] = [x1, [@-1(y-1), bil]
= ai([[y-1, x11, bi]) + @i([x1, [y-1, bill) — [@-1(y-1), [x1, bil]
= ai([y-1, [x1, bilD) = [@-1(y-1), [x1, bill.

Thus, if x}, .. .,xl1 €V, and bl.l, e, bﬁ € V; satisfy lezl[x‘f,bf] = 0, then we have
I
D lyon [ (), b1 + [, (b)) = 0
s=1

for any y_; € V_;. Therefore, we have Zﬁ:l([al(xf),bf] + [x], @i(b))]) = 0 and the well-
definedness of a;;1. Moreover, @, satisfies the following equations:

(2.41) @iv1([ao, bis1]) = [ao(ao), biv1] + [ao, @is1(bis1)],
(2.42) @iv1([x1, bi]) = [a1(x1), bi] + [x1, i(b)],
(2.43) @i([y-1,bis1]) = la_1(y-1), bis1] + [y-1, @ip1(bis1)]

for any ag € Vg, x1 € Vi, y_1 € V_1, b; € V; and b1 € V4. In fact, for any ay € Vo, x1 € V4,
and b; € V;, we have
(244)  ain(lao, [x1, 61D = @iri([lao, x11, bil) + @is1([x1, [ao, bil])

= [ai([ao, x11), bil + [[ao, x1], ai(b)] + [1(x1), [ag, bill + [x1, @i([ao, bi])]

= [[ao(ao), x11, bi] + [[aog, a1 (x)], bl + [[ao, x1], @i(b;)]

+ [a1(x1), [ao, bill + [x1, [@o(ao), bill + [x1, [ao, i(D)]]

= [ao(ao), [x1, bill + [ao, [a1(x1), bill + [ao, [x1, @i(bi)]]

= [ao(ao), [x1, bill + [ao, @iv1([x1, Di])].
Thus, we can obtain the equation (2.41). The equation (2.42) is clear. The equation (2.43)
follows from (2.40). Thus, inductively, we can obtain linear maps «; for all i > 0, and,

similarly, we can construct linear maps @_; : V_; — V_; for all i > 0. Consequently, we have
linear maps @, : V,, = V,, for all n € Z which satisfy

(2.45) ay([ao, b,]) = [ao(ao), byl + [ag, @,(by)],
(2.46) Wpe1([x1, b,]) = [@1(x1), by ] + [x1, @4 (Dy)],
(247) Cyn—l([y—l’bn]) = [a—l(y—l)’bn] + [y—l’ an(bn)]

forany ayg € Vo, x; € Vi,y-1 € V_1and b, € V,,.



LIE ALGEBRAS AND THEIR MODULES 549

We define a linear map « : L(g,p, V,V, By) — L(g,p, V, V, By) by:
(2.48) a(ay) = ay(a,)

for any n € Z and a,, € V,,. Then « is a derivation of Lie algebras. In fact, we can show the
following equation

(249) oz([an, bm]) = [a’(an)’ bm] + [ay, a(bm)]

for any n,m € Z, a, € V, and b,, € V,, by the equations (2.45), (2.46), (2.47) inductively.
O

Lemma 2.38. Let (g,p0,V,V, By) be a standard pentad and « be a derivation on L(g, p,V,
VY, By). If a satisfies the equation

(2.50) Bp(a(2), w) = =BL(z, ®(w))

foranyz =z, €V, (n =0,%x1)and w € L(g,p,V, V, By), then we have the same equation
forany z,w € L(g,p, V.V, By).

Proof. We argue our claim in the cases where z = z, € V, for some n and prove it by
induction on n. Suppose that n > 0. If n = 0, 1, then our claim follows from the assumption.
Suppose that n > 2. Then, by the induction hypothesis, we have

Br(a([x1, zp-1]), w) = Br([a(x1), zu-1], w) + Br([x1, @(2,-1)], w)
= =B(zn-1, [a(x1), w]) = B(a(z4-1), [x1, w])
= —Br(zs-1, [a(x1), w]) + Br(zp-1, @([x1, W]))
= Br(zu-1, [x1, @(w)])
= —B([x1, 2p-1], @(w))
for any x; € Vi, z,-1 € V,-1. Since V,, = [V}, V,_1], we have our claim for n. Thus, by

induction, we have our claim for all n > 0. Similarly, we can show our claim for n < —1.
O

3. Graded modules of L(g,0,V,V, By)

3.1. A construction of vector spaces U and U~. As mentioned in section 1, the pur-
pose of this and the next section is to construct a positively graded module and a negatively
graded module of L(g,p, V, "V, By) from a given g-module U, which will be denoted by U+
and U~. First, we construct U* and U~ as vector spaces by induction.

DerintTion 3.1. Let (g,p0, V, V, By) be a standard pentad and L(g,p,V, V, By) = @nEZ V.,
be the Lie algebra associated with it. Let 7 : ¢ ® U — U be a representation of g = Vj on
a vector space U over F'. We put Uy = Uy := U, nj = m, := m and define linear maps
rg :VieU; - Hom(V_,Uj)and ry : V_; ® Uy — Hom(Vy, Uy)) by:

(3.1) ry 1 Vi®Uj — Hom(V_y, Uy)

x1 ®@up = (-1 71y ([n-1, %11 ® up)),
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(3.2) ry - Vai®@ Uy, —» Hom(Vy, Uy)
Y-1®ug = (&1 = my([£1,y-1] ® up)).

Proposition 3.2. The maps r{ and ry are homomorphisms of g-modules.

Proof. We prove for rj. For any elements a € g, x; € Vi,17-1 € V_; and ug € Uy, we have
ro(la, x11® ug + x1 ® w5 (a @ up))(1-1) = 7y (-1, [a, X111 ® o) + 75 ([n-1, X1]1 ® 75 (a ® o))
my([a, [n-1, X111 ® uo) — my ([[a, 711, X111 ® up) + 7y ([17-1, X1]1 ® 75 (a ® up))

o (a ® my ([17-1, X1]1 ® o)) — my ([[a, -1, x111 ® uo)
o (a® (rg (x1 ® u)(17-1))) — 1y (x1 ® up)([a, n-11).

Thus r; is a homomorphism of g-modules. Similarly, we can prove that r; is a homomor-

phism of g-modules. o
It follows from Proposition 3.2 that the linear spaces U := Im rjj and U~, := Im r; have
the canonical g-module structures. We denote these canonical representatlons by #1 and
n_, respectively. Moreover, we inductively construct g-modules Uy, U7, ... by using the

following proposition.

Proposition 3.3. Assume that there exist g-modules (w*, W"), (w™, W™) and g-module
homomorphisms A* : Vi @ W* - Hom(V_{, WY and 1~ : V_; ® W~ — Hom(V,, W™). We
put W+ := Im A, W* := Im A~ and denote the canonical representations of g on them by
@t and @~ respectively. Then the following linear maps are g-module homomorphisms:

(3.3) AV, @ W = Hom(V_;, W)
X0 - (o - (o x]@07) + AT (x @ DT (-1))),
(3.4) AV, @ W™ = Hom(Vy, W)

Y1 = (&1 = & ([§1,y-1 1@ D7) + A (y-1 ® D™ (£1))).
Proof. We can prove it by a similar argument to the argument of [8, Proposition 1.10].
Take any elements a € g, x; € V}, 7—; € V_; and " € W*. Then we have
A (@, x 1@ D7) + A% (1 @ & (@@ B)))(-1)
=& (-1, [a, x] N @ D7) + A7 ([a, x1 1 ® D (17-1))
+ & (-1, 1] @& (@@ ™)) + A7 (x1 ® (& (@ ®D7)(1-1)))
=& ([a, -1, x1 1@ 0") + & ([n-1, 11 ] ® T (@ ® D)) + A" ([a, 1] ® D" (17-1))
+ A (@@ (@@ (n-1)) - &' (la, 1], x1 1@ D) — 17 (x1 @ D™ ([a, n-11))
=& (@@ (N-1,x1190")) + & (a® A" (x1 @ D" (17-1)))
=& ([[a, 711, x11® D7) = A" (x1 ® D ([a,7-11))
=& (@@ (x @ d")(n-1) - 1T (x ® d*)([a,n-1]).

Thus, A* is a homomorphism of g-modules. By the same way, we can prove that A~ is also
a g-module homomorphism. |

DeriniTion 3.4. Suppose that j > 1 and there exist g-modules (77 JRE ;f_l), (njj 1 UZ 1)

and homomorphisms of g-modules rjf1 Vi® U;.:l — Hom(V_4, rl) and P Voa®
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U, — Hom(V;, U:j+1). Put U;T :=Im r;T_l and UZ,:=Imr_,,. Then we define linear
maps r;T and r_; by:
(3.5) r;.’ Vi® U;T — Hom(V}, U;T)
xi®u; = (o (-l ®u;) + i (x @ u;(-1)),
(3.6) r; Vo ®UZ; — Hom(Vy, UZ))

y-1®u_; - (& o ([ y-1]1®u”)) + 12, (-1 ®uZ(£1))).

Then, by Proposition 3.3, r;T and r_ jare homomorphisms of g-modules. We denote by U ;;1
and U :j_l the images of r;T and r~ i and the canonical representations of g on U;.’H and U :j_l
by 7r;f+1 and iy respectively. Moreover, we put

Ufj =1{0}, U; :={0}

for j > 1. We denote the zero representations of g on U* ; and U; by nfj and m; for all
J = 1. Thus, inductively, we obtain g-modules (7, U,}), (r;,, U,,) for all m € Z. Under these
notation, we define linear spaces U* and U~ by:

3.7) o =Puy. 0 =Pu;.

mez mezZ

Throughout this paper, we use these notation.

3.2. A construction of representations of L(a,p,V,V, By) on U* and U~. In this sec-
tion, we define L(g, p, V, V, By)-module structures on vector spaces U* and U~ constructed
in (3.7). For this, we start with the following definition.

DerintTion 3.5. We define the following linear maps:

Tom:Vo®U, - U,, ni,:VieU,—U, i, Vaeu, -» U,

m+1°
by:
(3.8) Tom@®uy) =, (a®u,) (meZ),
. . re(xy®uy) (m=>0)
(3.9) (1 ® ;) = { : ey’
. o Jumy-) (m=1)
(3.10) 7yt @ 1) = {0 o)

where a € Vo, x; € Vi, y_1 € V_; and u, € U;.
By the above definition, we can obtain the following proposition.
Proposition 3.6. Under the above notation, we have the following equations:
(3.11) ﬂ;r,m([xl ,al@uy) = ﬂim(xl ® ﬂg’m(a Qu,)) — ”8,,n+1 (a® n}r’m(xl ®u,)),
(3.12) 7y, (y-1,ad ®u,) =’y ,(y-1 ® 15, (a @ uy)) — 15, (@@L, (Y1 ®uy,)),
(3.13) 7y, (i ent, -1 ®u,)) =y, ([x1,y-11®@uy) + 72, (Y1 @7y, (X1 ® uy)).

Proof. Let us show (3.13). The equations (3.11) and (3.12) can be shown similarly. If
m < —1, then (3.13) is clear. If m = 0, then the left hand side equals to 0. For the right hand
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side, we have

moo([x1, y-11® uo) + 1% (y—1 ® 7} (X1 ® up))

=y ([x1, y—11 @ ug) + rg (x1 ® ug )y-1) = ny([x1, y-11 @ ug) + 75 ([y-1, x1]1 @ ug) = 0.

Thus we have (3.13) when m = 0. For m > 1, the equation (3.13) follows from definition.
|

Derinttion 3.7. We define the following linear maps for i > 1 inductively:

(3.14) bl Vi ® U,; - U”

i+1,m i+m+1
pi(x1 ® ) Qu) ﬂ;””m(xl @7}, (zi ®u,,)) — anH(Zi ® nI“’m(xl ®uh)),
(3.15)
miim Ve @ Uy > UL,

q-iy-1 @ w_) @ u,, > 1ty (Y1 @7l (0 @ Up))
A (W O T (1 B ).

Note that the linear maps rj . 77, defined in Definition 3.5 satisfy the same equations

as (3.14) and (3.15) in the cases where i = 0 by Proposition 3.6. Fori > 1, we must show the
well-definedness of Definition 3.7. To prove it, let us show the following two propositions.

Proposition 3.8. (The well-definedness of 7T;'+Lm given in (3.14)) Suppose that i > O.

Suppose that the linear map ”Zm defined in (3.14) is well-defined for any m € Z and satisfies
the following equations:

(3.16) 7@ ® 7, (@ ® 1) = 7t (a.2] ® ul) + 7, (0 ® 7y, (a ® 1)),

G17) m,@ent o ®u,) =1,z y-11®u,) + 17y, (y-1 71}, (2 ® uy)).

Ifxi,...,xl1 eV andzil,...,zf € V; satisfy le:l pi(x] ® z}) = 0, then we have

1
(3.18) D o] ® (2 ® ) = 7y ® 7], (6] @) = O

s=1
forallm € Z and u;}, € U,}. In particular, we can obtain the well-definedness of the linear
L \.m defined in (3.14) for any m € Z. Moreover, the linear maps JT?;_Lm (m € Z) satisfy
the following equations:

map ©

(3.19) Y emi (@ ® Ty (i1 ® )
=1 ezl @ uy) + 1ty (ziv1 ® 7, (a ® uy)),
(3.20) ﬂ;.Lm_1(Zi+l ® ﬂtl’m(!/—l ® u:—n))

= ﬂ':m([ziﬂ’ y-11® ”;:,) + 7TJ_r1,i+m+1(y—1 ® 7T,-++1,m(Zi+1 ® ”;:,))

Proof. We argue by induction on i. For i = 0, our claim follows from Proposition 3.6.
Suppose that i > 1. We fix i and argue (3.18) by induction on m. First, if m < —1, then the
equation (3.18) is clear. If m > 0, then we have
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(3.21)
T e W © 7, (0 @77, (i @ uy)) = 7, (2 @ L, (X1 ® 1y )
= 70 e (Y1, X1 @ 77, (@ @ ) + 7Y gy (1 @7 (o1 ® 7, (2 @ 1))
=Tt (-1, 2] @ 77, (01 @ 10)) = 77, (@ @ Ty (Y1 ® 7, (X1 ® 14)))
= ”(J;,i+m([y—1’ xi]® ”Zm(zi ® uy,)) + ﬂ-{—,i+m—1(x1 ® 7Ti+—1,m([!/—1, zl®u))
+ Y e (X1 @ T (@ ® 7L (Y1 @ 1,))) = 7y g (-1, 2] @ 1, (1 @ 1))
- @@y, (-1, 11 ®uy)) — 77, (i ® 7T, (x1 @7y (y_1 ® uyp)))
=7, (y-1, 0],z @ uy) + 1, ([x1, [y-1, 2]l © uyy)
+ 7TT,5+m—1(X1 ® ﬂZm—l(Zi ® ﬂi1,m(y—1 ® u,,))) — ﬂ:m(zi ® ﬂ;r,m_l(xl ® ﬂ'tl’m(y_l ®uh)))
=7, ([y-1, [x1, 2] ® uy,)

A e (1 O, (@At (Y ®uy ) — 7}, (i ®n, (i @l (Y1 ®u,,)))

forany x; € Vi, z; € Vi, y_1 € V_; and u}}, € U,;,. By the induction hypotheses on i and m, if
we take elements xi, e, xl1 € V| and z,.l, e zf € V; satisfying le:l pi(x] ®z}) = 0, then we
have
(3.22)
I
Z 7, (X1, 21, y-11®u,) = 0 (by the induction hypothesis on i),
s=1

(3.23)
!

D O i (8] @7, (& ® T,y @ UL) = 7}, (5 @7, (] @77, (g1 @ 1)

s=1

=0 (by the induction hypothesis on m).

Thus, we have

I
B24) DA U1 O, (6 © T2 @ 1)) = 7 (3 @ 7T, (] @117)) = 0

s=1
from (3.21). Since i + m + 1 > 1, we can obtain that

(3.25)
1

D 6] @77, (2 @ Pt (Yt @ 1)) = 7y (& @Y, (31 @ P (1 @ 141, 1))

s=1

=0ecU"

i+m+

, € Hom(V_;, U7, ).

+m

Therefore we can obtain the well-definedness of the linear map ﬂi:[ L Vi ® U, — U;:rm 1
given in (3.14) for any m.

In order to complete the proof, we must show the equations (3.20) and (3.19). Let us
show (3.20). Under the above notation, for any m € Z, we have

ﬂai+m+1 (a® 7T,~++1,m(Pi(X1 ®z)®u,))

= ﬂ-a—,i+m+1(a ® 7.[--1'—,l'+m(x1 ® ﬂ-;,—m(zi ® MI;))) - ”5,i+m+1(a ® ﬂ-;,—m+l(zi ® 7.[--1'—,m(x1 ® M;:l)))

= n;"l,rm([a, x1] ® 17,,,(zi ® uy,)) + 7rii+m(x1 ® ngﬁm(a ® 7}, (2 ®u,)))
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i@zl @7, (1 @ uy)) — 77,12 ® 1 0 (@@ 7y, (X1 ® 1y)))
=1 imla, x1] @7, (i @ uy)) + ) 1, (1 @ 1) ([a, 2] @ uyy)
+ 7rii+m(x1 ®n;,(zi® ﬂg’m(a Qu,))) — 71';:m+1([a, z]l ® ﬂf’m(xl Qu,))
- anH(Zi ® nf’m([a, xi]®ut)) — nzmﬂ(zi ® ”T,m(xl ® ng’m(a ®u)))
=1 e, x1l, 2l ® uy) + 1ty (s [a, 2]l @ uy) + 7y, (61, 2] © 7, (a @ uy,))
=1 e, pi(xs ® )] @ uy) + 77,y (pi(x) ® 2) @ 7y, (a ® uy)).
Thus we have (3.20). The equation (3.19) follows from (3.21). This completes the proof.
O

Proposition 3.9. (The well-definedness of n*. given in (3.15)) Suppose that i > O.

—i—1,m

Suppose that the linear map ﬂ'ti’m defined in (3.15) is well-defined for any m € Z and satisfies
the following equations:

(3.26)
ﬂg’_Hm(a ® ﬂfi’m(w_l- Qu,)) = ﬂfl.’m([a, w-i1®u,)+ ﬂfi’m(a)_,- ® ﬂg’m(a Qu,)),
(3.27)
T ®my, (x @uy)) =1t ((wo, x]@u,) + a7, (@t (W ®u,)).

Ifyl_l, e ,yl_l e V_i and wli, .. .,wl_l. € V_; satisfy Zi:l q-i(y’, ® W) = 0, then we have

]
(328) D\ i @7 @ @) — (@ ®nt (1 @) =0
s=1

forallm € Z and u}, € U}. In particular, we can obtain the well-definedness of the linear
map n*,_, . defined in (3.15) for any m € Z. Moreover, the maps n*,_, = (m € Z) satisfy the
following equations:
(3.29) Ty _ismer(@® L, (Wi ®uy))

= a0 ia]1®u,) +nt

(3.30) T (Woic @ 77, (X1 ®@uy )

iim(W-ic1 ® 7y, (a®uy)),

_ .t
- n-—i,m

(lwict, x))®@uy) + 7y (1 @7, (W1 @ uy)).

Proof. If i = 0, then our claim immediately follows from the definition. Suppose that
i > 1. We fix i and discuss by induction on m. If m < 0, the equation (3.28) is clear. Suppose
that m > 1. Then, forany x; € Vi, y_1 € Vo, w_; € V;andu; € U’ |, we have
(3.31)
Ty i1 @7 (0o ® 7,y (X1 ® Uy, 1))
-l (went (y e, (x1®u, )
=15 @@ (o xi ] ®uy, )
+1 e n (et (wi®u, )
—nl (i@, (y-1, x1] ®u,_,))
—nl (W ®ny, (@l (Y1 ®u,_ )

= 7Tt1,_lq.m(y—l ® ﬂii+1’m_1([w—i’ x1]® u:n—l)) - ﬂti,m_l(w—i ® ﬂa’m_l([y—la x1]® u:n—l))
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+ 7y (-, xil@ 7, (0o @ uy, )
7T (1T 1 ® T, (0 ®u, )
— 1wl xil®nt,  (y_1 ®uy_)))
— 7 _iema (X1 @ (W @, (Yot ® Uy, )
=1 o (Hw-ix1 Ly l@u,_ )+, ((ly-1, 0], w0l ®u,_))
7 a1 ®T Y @7, (0o @y, )))
T pema (1@, S(w @t (Y1 ®uy, )
=10 (-1 w0l x11®u,,_)
+ 7 a1 T Y @7, (Wi @y, )
T iema (1 @7 (W@t (Yo ®u,, 1))

By the induction hypotheses on i and m, if we take elements y' ,...,y" € V_jand ', ...,
W', € V_; satisfying 3)._| g_i(y*, ® w*,) = 0, then we have

m

I
(3.32) Z 7l (), 0], x11®u,, ) =0 (by the induction hypothesis on i),
s=1

l
(333) D 0 a1 @7 i (1 © 7, (@0 @11, )

s=1
T i1 ® 7 (0@t (Y1 ®u, 1)) =0

(by the induction hypothesis on m).

Thus, we have

I
(3.34) D iyt @ (@ 81, (1 @ 1)

s=1

—nl i ent iy ey, (xi®u, 1)) =0

from (3.31). Since 7T1+’m_1 :Vi® U, | — U, is surjective, we can obtain the equation (3.28).
Therefore we can obtain the well-definedness of the linear map nfl._l’m Vo Ul -
U?,,,., givenin (3.15) for any m.

The equation (3.29) can be shown by a similar way to the proof of Proposition 3.8. More-
over, the equation (3.30) follows from (3.31). m|

DeriniTion 3.10. By the above propositions, Propositions 3.8 and 3.9, we define a linear
map 7* : L(g,p, V,V,By) @ U" — U™ by:
7 (20 ® yy,) := 70y (20 © U,
where n,m € Z, z, € V, and u, € U;,.
This linear map 7" satisfies the following equations:

a,z,] ®uy) =7 (a @A (2, @ u,,)) — (2, @7 (a ® uy,)),
X1,2,] ® ”;:—1) = 7~T+(X1 ® ﬁ+(zn ® I/l;l)) - ﬁ'+(zn ® ﬁ'+(x1 ® u;:l)),

(Y-1.2] @ uy) = A (Y1 @A (2, @ uy,)) = A (2, ® T (y-1 ® 14,))

7 (1
7l

N
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forany n,m e Z,a € Vo, x; € Vi, y-1 € V_1,z, € V, and i, € U. Moreover, we have the
following proposition on 7*.

Proposition 3.11. The map 7" satisfies the following equation:
(3.35) A(xylouw =a"xat(yeu) -7 (y @ (x ®u))
for any x,y € L(g,p, V, V, By) and u* € U*.

Proof. To prove our claim, it is sufficient to show the case where x = z, € V,, for some
n € Z. We argue by induction on n.

Assume that n > 0. For n = 0, 1, our result has been shown. For n > 2. We can assume
that z,, = p,—1(x; ® z,-1) for some x; € V| and z,,_; € V,_; without loss of generality. Then,
by the induction hypothesis, we have

7 ([pa-1(x1 ® 20-1)s yl @ u™) = 77 ([x1, (201, yll @ UT) = 7 ([2-1, [x1, yll @ U™)
=770 @A ([20-1, Y] @ U")) = A ([2p-1, Yyl ® A" (X1 ® u™))
— T (@ @7 ([x, yl @ u™)) + 77 ([x1, Yl ® A (21 ® ™))
= @A (2,1 T (YR uM) — A (X @7 (Y® A (241 @ UM)))
TN (21 @AW T (x1 @ u™))) + AT (Y ® (2,1 ® A (x1 @ u™)))
— T (G @ (X T (Y@ uU)) + A (2,1 @A (Y@ (x1 ® ™))
+ A ®T (Y ®T (-1 ®@U))) — A (YA (X1 ® T (251 ®u™)))
=7 @A (21 @A (YO U)) = AT (21 @A (X1 T (Y@ u™)))
— A YA (X @A (Zyo1 QuN))) + T (Y@ T (201 @ T (X1 @ UM)))
=" (x, z-] @A Yo uh)) -7 Y@ ([x1, 2011 @ U™))
=T (P11 ® 2, ) @A (W@ u™)) = T (Y @ T (puoi (X1 ® 20m1) @ u™)).
Thus, we have our result for any n > 0.

Similarly, we can obtain our result for any n < —1. This completes the proof. |
From Proposition 3.11, we have the following theorem.

Theorem 3.12. The vector space U = @, . Ut = @, U has a structure of a
positively graded L(g,p, V,V, By)-module whose representation is i*. We call the module
7+, U*) the positive extension of U with respect to a standard pentad (g, p, V, V, By). (This
is a special case of [9, Theorem 1.2].)

By the same argument, we can obtain a negatively graded Lie module of L(g, p, V, V, By).
Derinition 3.13. We define the following linear maps:

om:Vo®U, - U, =n,:VieU,—-U,

metr Ty Va®U, = U,
by:

(3.36) o nla®u,) = m,(a®u,),

(3.37) A ®un) = (m > 0)
' LT ) ms 1)



LIE ALGEBRAS AND THEIR MODULES 557

(3.38) - awu) =10 (m=>1)
. T _ u =
L =L ryo ®u) (m<0)

wheremeZ,ae Vy, x; € Vi,y_1 € V_yandu,, € U,

Theorem 3.14. The vector space U~ = P, , U, = D,
negatively graded L(g,p, V,V, By)-module whose representation is #~. We call the module
(7=, U™) the negative extension of U with respect to a standard pentad (g, p, V, V, By). (This
is a special case of [9, Theorem 1.2].)

U,, has a structure of a

Note that an arbitrary module of L(g, p, V, V, By) is not necessary written in the form of
U* or U~. For example, the adjoint representation of a loop algebra L(sl,, ad, sly, sy, Ky,) =
L(sL(C)) =C[t,t '] ®sL(C) = @n o7 Ct" ® sy, where Ky, is the Killing form of slp, cannot
be written in the form of positively or negatively graded module. Indeed, L(sl,(C)) does not
have a non-zero element which commutes with any element of the form t ® X or ' ® X
(X € shy).

Proposition 3.15. Under the notation of Theorems 3.12 and 3.14, L(g,p,V,V, By)-
modules U* and U~ have the following properties:

(3.39)  U" and U™ are transitive,
(3.40)  U* and U™ are L(g,p, V, V, Bo)-irreducible if and only if U = Uy = Uy is

g-irreducible.

(This is a special case of [9, Theorem 1.1].)

Proof. By the definition, we can show (3.39) immediately.

Let us show (3.40). Assume that U is an irreducible g-module. Let W be an arbitrary non-
zero L(g, p, V, V, By)-submodule of U*. Then we have that W N Ug # {0} (cf. [9, Corollary
1.2]). In fact, take a non-zero element w € W. Then there exist integers 0 < m; < --- < my
andw, eWnU,,...,w, € WNU, suchthatw =w, +---+w, . Since U™ is transitive,
we can take y{l,...,y’_"f € V_; such that 0 # fr+(yl1 @ty ®w---) e WnU;.
By the assumption that U is irreducible, we have W N U; = U. Since U™ is generated by
U = Uy and Vj, Vy, we have that W coincides with U™.

Conversely, assume that U* is an irreducible L(g, p, V, V, Bp)-module. Take a non-zero
g-submodule W of U. Then a submodule W of U* which is generated by Vp, Vi, W is a non-
zero L(g,p, V, V, By)-submodule of U*. Thus, W = U*, and, in particular, W = WnU; = U.
Similarly, we can show (3.40) for the negative extension U~. |

ExampLE 3.16. We retain to use the notations of Example 2.35. Put U := C and define a
representation 7 : g ® U — U by:
n((a,b,A)®u) := au

for any u € U. Then, the positive extension U* of U with respect to (g,p, V, V, By) is 3-
dimensional irreducible representation of L(g,p,V,V,By) = V_1 @ Vo ® V| = gl; & sl;5. In
fact, foranyv e Vi =V, ¢ € V_; =V and u € U, we have

3 1
A PRF (W@ uU) = -7 (D ®P) ®u) = —n((—"ve, E’vg&, v'p — 5'1}(1512) ® u) = 'vou.
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Thus, the element 7* (v ® u) can be identified with uv € Vi = V via (-, -)y, in particular, U I’
18 2-dimensional. Moreover, we have

APt @7 (v u))

= -7 ((-"v'¢, %tv'gb, v — %’v'qblz) QA WU+ @A (@7 (v® 1))
=7 W¢-v@u) -7 (vp- v @u) + 7" (0 ® Vu) + (V' ® ‘vpu)
=0

for any v,v’ € Vi, ¢ € V_; and u € U. Therefore, the positive extension U* = UjeUfisa
3-dimensional irreducible representation (see Proposition 3.15).

The positive and negative extensions of U are characterized by the transitivity.

Theorem 3.17. Let (g,p, V,V, By) be a standard pentad. Let (nr,U) = (, ®m20 u,)
(respectively (w, V") = (@, EBm <0 U .)) be a positively graded Lie module (respectively
a negatively graded Lie module) of L(a,p,V,V, By). If the L(g,p,V, "V, By)-module (rr, U)
(respectively (@, U")) is transitive and generated by Vo, Vi and U, (respectively generated
by Vo, Vo1 and U')), then U is isomorphic to the positive extension of U, with respect to
(8,0, V; V, By) (respectively U’ is isomorphic to the negative extension of U, with respect to
(8,0, V, V, By)). (This is a special case of [9, Theorem 1.2].)

Proof. We denote the positive extension of U,, with respect to (g, 0, V, V, By) by

U, =Pw;

m>0

and the canonical representation of L(g, p, V, V, By) on Q: by 7*. Note that W) =U,. We
let 7o : (U); — U, be the identity map on (U)] = U,, and define linear maps 7; : (U)] — U,
by

Ti(r;—_](xl ®ﬂ;—_1)) 1= m(xy ®Ti—l(ﬂ;—_]))

fori > 1 and any x; € V; and u/, € (U);, inductively. These 7;’s are well-defined and
satisfy the following equation:

(3.41) Tiyj @ (a; @ ul)) = nla; ® Ti(u)))

for j = 0,+1 and any a; € V;, u € (U)]. Let us show it by induction on i. It is clear that
the equation (3.41) holds when i = 0 and j = 0, —1. In order to show the equation (3.41) for
i =0and j =1, let us show that 7; is well-defined. Take an arbitrary element y_; € V_j,
then we have

(3.42)  n(y-1 ® m(x; @ To(uy))) = 7([y—1, x1]1 @ To(ug)) + m(x1 @ (Y- @ To(uy))))
= 1([y-1, 211 @ To(uy)) = 7@ ([y-1, 11 @ uy)) = 0@ (y-1 ® 1y (x1 ® uy))).

Thus, if x}, .. .,xl1 € V; and ygl, ... ,ggl € (U)] satisfy 21:1 ry(x] ® ug®) = 0, then we have

/
> x(y1 ©(x} 7o) = 0

s=1
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for any y_; € V_;. Since (x, U) is transitive, it follows that Zﬂ:l m(x] ® To(g{;s)) = 0, and,
thus, we have the well-definedness of 7;. By the equation (3.42), we can obtain the equation
(3.41) wherei =0 and j = 1.

Let i > 1 and assume that 7y, ..., 7; are well-defined and that 7; satisfies the equation
(3.41) for j = 0,—1. Then for any y_; € V_;, we have

(3.43) a(y—1 @ m(x; @ Ti(u)))) = a(ly-1, x11 @ 7,(w)) + 7(x; @ 7(y—1 @ 7;(1})))
= 1@ (-1, 211 @ u)) + @ (x1 ®T (y-1 @ u})))
=7(@ (Y1 @7 (x1 ®u)))) = (@ (y-1 ® ry (x1 ® u)))).

Thus, by the same argument to the argument of the case where i = 0 and j = 1, we have the

well-definedness of 7;,1, i.e. 7; satisfies satisfies the equation (3.41) for j = 1, and that 7;;;

satisfies the equation (3.41) for j = —1. Moreover, by a similar argument to the argument of

(3.43), we have that 7, satisfies the equation (3.41) for j = 0. Therefore, by induction on i,

we can obtain the well-definedness of 7; and the equation (3.41) foralli > Oand j = 0, £1.
We define a linear map 7 : E;r — U by

(3.44) (W) = 1)

forany i > 0 and u € (U)!. This 7 is an isomorphism of L(g,p, V,V, By)-modules. In
fact, by the assumption that U is generated by Vi and U,, we have the surjectivity of 7.
Moreover, by the equation (3.41) in the cases where i > 1 and j = —1 and the definition of
7o and the transitivity of the positive extension of E;, we have the injectivity of 7. Thus,
T is bijective. Moreover, since L(g,p,V,V, By) is generated by Vj, V.1, it follows that T
is a homomorphism of L(g, p, V, V, Bp)-modules from the equation (3.41). Therefore U is
isomorphic to E; as L(g,p, V, V, By)-modules.

By the same argument, we can prove our claim for (@, V). O
As an application of Theorem 3.17, we have the following proposition.

Proposition 3.18. Let (g,0,V, V, By) be a standard pentad and U, W (respectively U, W)
be g-modules. Then the positive extension of U & W (respectively the negative extension of
U @ W) with respect to (g, p, V, V, By) is isomorphic to a direct sum of positive extensions of
U and W (respectively negative extensions of U" and W) with respect to (g,p, V, V, By), i.e.

(/UGD?W/)Jr ~U*e W' (respectively (m)‘ ~U"@eW).

3.3. A pairing between (7*, U*) and (&, U). Inthe previous section, we constructed
positively and negatively graded L(g,p, V, V, By)-modules. Next, let us try to embed these
modules into some graded Lie algebra. For this, we need to embed L(g,p,V,V, By) and
(7%, U") into some standard pentad. However, as mentioned in Remark 2.5, the objects
L(g,p, V, V, Bp) and U+ might not have a submodule of Hom(U *, F) and a bilinear form on
L(g,p, V, V, By) satisfying the conditions (2.3) and (2.4). In the present and the next sections,
we only consider the cases where By is symmetric and U has a submodule " ¢ Hom(U, F)
such that (g, , U, U", By) is standard. Then, we can show that a pentad (L(g, 0, V, V, By), #*,
U*, U -, B,) is standard. First, in this section, we consider the negative extension U~ of U
and construct a non-degenerate invariant bilinear form U* x U~ — F under the assumption
(2.3) inductively (cf. [9, Remark 1.4]). In the next section, we shall construct the ®-map of
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the pentad (L(g, p, V, V, By), #*, U, U"~, By).

DeriNtTiON 3.19. Let (7%, U*) and (&, U'"), U" € Hom(U, F) be g-modules such that the
restriction of the canonical pairing (-,-)o : U X U’ — F is non-degenerate, and, let U* and
U~ be the positive and negative extensions of U and U respectively. We define a bilinear

map (-, -)8 by:
(3.45) (0 Ug x Uy > F

(ug, wy) = (s, wydo.
Moreover, for i > 1, we define a bilinear map (:, -)i_l. by:

(3.46)
(N UF XU, - F
(i (@ up ), 1 (Y-1 @ W) = —T (Yo ® 1 (X1 @ U y)), w_yy, l—_l-le—]
inductively.
The well-definedness of Definition 3.19 can be obtained by the following proposition.

Proposition 3.20. Let j > 0. Assume that the bilinear map -, -){ i defined in (3.46) is
well-defined and satisfies the following equations:

(3.47) @ @ud),w )+ 7 @ew ) =0,

G4  (F G @F (Uil = G F (4 @F (- Oul ),
) VI B L TR Y7 U O R )

3.49 Y @ut )y =] e

( ) @ (1 ®ui_y) w_J),] {O (j=0)

forany a € g = Vo C L(g,p, V. V,By), x1 € Vi, y_; € V_y, ”}r—l € U;'r—l’ u; € UJJ'r and
w_; € U'__j. Then the bilinear map -, ~)J_' J;il defined in (3.46) is also well-defined and satisfies
the following equations:

350)  (Fraoul)w Y+l F@euw ) =0,

j+1

(3.51) <7~T+(y—l ®7~T+(xl ®u]+'+1))a w:j_1>j+1 = <u;+1,7~7_(x1 R (Y-1 ® w:j—l)»—j—l

—j-1

(352) @ neuDw M =@l mew]; ),

for any a € g = VO - L(gep7‘/9v730)) X1 € Vl) y-1 € V—l» M}— € U;—) u;+1 € U;—+1 and
wo; ;€ U_‘j_l.

Proof. First, we let j = 0. It is clear that (-, ->8 satisfies (3.47) and (3.49). Let us show that
(-, -)8 satisfies (3.48). Indeed, under the above notation, we have

(3.53) (7 (y-1 ® 7" (x; @ u)), wo)y = ([y—1, x1]1 @ 1), wo)y = ug, 7 ([x1,y-11 ® wo))y
=(ug, 7 (01 ® A (y-1 ® w)))g-

Thus, the bilinear map (-, -)8 satisfies the assumptions of Proposition 3.20.
Next, let us show that the bilinear map (-, -)1_1 is well-defined. Take arbitrary natural
numbers v, € N and elements x!,....x0 € Vi, ul',....ul” € UL, y',....0", € Voy,
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-1

Wy

—H - . .
,oe-,wy € Uy satisfying

v

M
Dirqeuy =0, Y @ eu’)=0.

s=1 t=1

Then, forany y_; € V_1, w; € Uy, x; € Vi and uj € Uy, we have

(3.54) O 50 @ uy -, gl =0,

s=1

and, by the equation (3.53), we have
H K
(3.55) Dt @ ud) ) wy Yy = D g g (0 @ wy ) = 0.

=1 t=1

By (3.54) and (3.55), we can obtain that -, -){1 is well-defined.
Let us consider properties of (-, -)171. By (3.53), we have that , -)11 satisfies

(3.56) <ﬁ'+(x1 ® M(J)r), w:1>£1 = _<u3a (X ® w:1)>£1

forany x; € Vi, ul € Uj and w”, € U7, i.e. (, ->£1 satisfies the equation (3.52). Moreover,
(-, -)1_1 satisfies the equations (3.50) and (3.51). In fact, for all a € Vy, x; € V|, y_1 € V_y,
uy € Uy and wy, € Uy, we have
(3.57) (7 (a@rj(xi®uy). ry(y-1 @ Wy, = (& (y-1 @7 (a @ 7 (x1 ® uy))), wy )y
= ~(@ (@@ (-1 @7 (1 ®uy))) wy o + (A ([a,y-1 1@ 7" (1 ® 1), wy g
= @Y1 ©F (1 @ up)), T (a @ wy))p — (F* (1 @ ug), 7™ ([, y1 1 @ wy)L,
= (" (1 @u)), T (Y ®F (a@wy))! | — (& (01 ®ug), 7 ([a,y—1] ®wy))! |
= —(ry (1 @ uf). 7 (@@ ry(y-1 ® wy))HL,.
Thus (-, '>£1 satisfies (3.50). And, from (3.56) and (3.57), we have

(3.58) F o @7 (1 @ u)), wl )
= (@ (y-1, 1@ ul), w DL + @ (0 @A (Y1 ®up)), w )
=~ 7 (- a1 @ wI )L = @ (o @ U 7 (a @ wl))g
= i 7 (e 1@ wi )Ly + il 7 (g @7 (x @wl)))L
= (Ul ( ®7 (y1 @w ),
forany x; € Vi,y_1 € V1, uj € Uy andw”, € U™,. Thqs (-, -)ll satisfies (3.51).
We let j > 1. Suppose that the bilinear map (-,-)’ i is well-defined and satisfies the

equations (3.47), (3.48) and (3.49). Let us show the well-definedness of (-, >]:;£1 Take

arbitrary natural numbers v,u € N and elements xj,...,x] € Vi, u;’l,...,u}“v e U,
yloooyt eV, w:’jl, ) ..,w:’j’.J € Uy satisfying

v 1
(3.59) Dt eu) =0, Y @ ew)=0.

o =1
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Then, by the equation (3.48) and the same argument to the argument of (3.54) and (3.55),
we have the following equations:

(3.60) <Z e @ ul )y, wo ) Z<r+<x1 ®up. ) w =
s=1 t=1
Thus, we have that the bilinear map (-, ~){ J;l_l is well-defined.
From the equation (3.48), we have

(3.61) @ eu)),w Y =~ 7 ew )

for any x; € Vi, u}“ € U;T and w_j_; € U’_‘j_l. We can show that the bilinear map (-, )J_J;l_l
satisfies the equation (3.52) from the equation (3.61) and that it also satisfies the equations
(3.50) and (3.51) by the same argument to the argument of the case where j = 0. ]
By Proposition 3.20, we can obtain pairings (-, Y i for all j > O inductively. Then, we can

define a pairing between (7*, U*) and (&, U").

DeriniTioN 3.21. We define a bilinear map (-,-) : U* x U~ — F by:

_ (ur,w— ', (n=m)
3.62 T Y=
(3-62) ity o) {0 (n # m)

forany n,m >0, u € U c U* andw=,, e U, C U'".
By Definition 3.19 and Proposition 3.20, we have that -, -) satisfies

(3.63) (F(zj@u"),w )y =—@" 7 (z;®D))

for j=0,+landanyz;j € V;, ii" € Ut, o~ eU-.

Proposition 3.22. The bilinear form {-,-y : U" x U~ — F is non-degenerate and
L(g,p, V, V, By)-invariant (cf. [9, Definition 1.4 and Remark 1.4]).

Proof. First, let us show that the bilinez}r form (-, -) is non-degenerate. For this, it is
sufficient to show that the bilinear map (-, -)’ I U;r X U.; — F is non-degenerate for each
Jj = 0. We show it by induction on j. For j = 0, it follows that (-, -)8 is non-degenerate from

the assumption. For j + 1, we take an element ™, T € U;‘r+1 which satisfies (u};l, r- j(y_l ®

w )>J+1 =0 for any y_; € V_; and w_; € U_j. Then, we have
0=y @uwl YL = =@ o @ul, ) wl ) = =l (o), w )

By the induction hypothesis that (-, )J is non-degenerate, we can obtain that u RUSE
for any y_; € V_y, and, thus, we have u =0¢€ UJr ", € Hom(V_y, U+) Slmllarly, we
can show that an element w2, | € U’ . Wthh satlsﬁes <r+(x1 ® u+) w” 1)’_ = = 0 for any
x; € Vyand uf € U/ is 0 by (3.63). Summarlzlng the above argument we can obtain that
the map (-, -)j_' J;l_l is non-degenerate. Therefore, by induction, we can obtain that the bilinear
map (-,-) : U* x U'~ — F is non-degenerate.

Next, let us show that the bilinear map (-, -) is L(g, 0, V, V, By)-invariant. For this, it is
sufficient to show that the following equation holds:
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(3.64) @y @ u),w, Yol 4+l 7 (@, )Y, =0

forany jn€Z, x; € Vi, u, € U, and wZ,_; € U:n_j. We shall show it by induction on j.
Assume that j > 0. For j = 0, 1, the equation (3.64) follows from (3.63) immediately. For
j + 1, by induction hypothesis, we have

(3.65) (7" ([or, x;1 @ ), wi,_;_ )"

—n—j—1
~ ~ — +j+1 ~ ~ - +j+1
=@ (0 @7 (x; ®uy)), wl,,_ ;) — @ (e rt v @uy))w,_; )
- . _ i - . - 1
= —(7(xjQuy), T (01 ® w_n_j_l))r:;fj (I ®u,), T (x;@w ., )

= (up, A (x; @7 (1 ® D)) Uy, (0 @7 (x; ® W, )N
= —<I/l:l—, ﬁ'_([l)l, x]] ® w:n,];l))ﬁn

forany n € Z, x; € Vi, v; € V;, uy € Uy and wo, ;. € 7/':"7].71. Thus, by induction, we
can show the equation (3.64) for all j > 0. Similarly, we can obtain the equation (3.64)
for all j < 0. Thus, we have the equation (3.64) for all j € Z. Therefore the bilinear map
(,y: U x U~ = Fis L(a,p, V, V, By)-invariant. O
By Proposition 3.22, we can regard U~ as an L(g, 0, V.V, By)-submodule of Hom(U™, F).

3.4. The ®-map between (7", U*) and (&, U'"). We retain to assume that a pentad
(9,7, U, U, By) is standard and the bilinear form By is symmetric. As I proved in section
3.3, apentad (L(g,p, V, V, By), 7", U*, U, B,) satisfies the condition (2.3). Let us construct
the ®-map of the pentad (L(a, p, V, V, By), #*, U*, U~ B;) and show that it is standard.

DerntTion 3.23. Assume that pentads (g, o, V, V, By) and (g, 1, U, U", By) are standard and
that By is symmetric. We define a linear map d~)8 Us® Uy — Vpas:

(3.66) DYy ® wy) := Daug @ wy)

where x; € Vi, y_1 € V_1, u € Uj, wy € Uy and @, is the ®-map of (g,7, U, U, By).
Moreover, for each i > 0, we inductively define a linear map O U U — Vi
0 i+1 0
by:
(3.67) O (r (xy @ uh) @ wy) 1= [xy, O () ® wy)],
where x; € Vi, y_1 € Vo1, uf € U and w; € Uy .
Assume that an integer j > 0 satisfies a condition that we have linear maps <i>’ij Ul ®

UZ; — Vijforallk > 0. Then, for any k > 0, we define a linear map Ci)lij_l : U,':tX)U'_‘j_1 —
Vi—j-1 by:

(3.68) O @y @w)
_ . @2 g @ w ) (k = 0)
[y-1, D" (uf ®@w™ )] - P @ Y @up) @w™) (k= 1)

where y_1 € V_y, uf € U} and w_; € U’_‘j.
Consequently, we can define linear maps @’ i Ure UZ, = Vijforalli, j>0.

Proposition 3.24. The linear map (b’;j is well-defined and satisfies the following equa-
tion:
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(3.69) Br(a-it), (i)i_j(uzr ®w_ ;) = (A" (a-is; ®u;), w_;)
foranyi,j>0,a_,;€V_ i uf €U and w_, €U~

Proof. Let us show that the linear maps defined by the equations (3.66), (3.67) and (3.68)
satisfy our claim by induction. First, let us show that the linear map 5156“ (i 2 0) defined in
(3.67) is well-defined by induction on i. For i = 0, under the above notation, we have
(3.70)  Br(a-y, [x1, D(ug ® wy)) =Br(la-1, x1], Dy ® wy)) = (7" ([a—1, x1] @ ugy), wy)

=(rg (x1 ® ug)(a_1), wy) = (T (a1 ® ry (x1 ® ug)), wy)

] / +,1 +,0 + : I + (1S +,5y
foranya_) € V_y. Thus,if x|,..., x| € Viandu; ", ..., uy" € U] satisfy Iy ro (x]®uy™) =
0, then we have

!
3.71) D Bulay, [}, By @ wy)]) = 0

s=1

for any a_; € V_;. Since the restriction of B; to V_; X V| is non-degenerate, we have
I
(3.72) Dl B @ wg)] = 0,
s=1

and, thus, the map d~)(') is well-defined. The equation (3.69) follows from (3.70).
For i > 1, under the notation of (3.67), we have

(3.73) Br(a_i_1, [x1, ®)(ui @ wy)]) = Br([a—i-1, x1], Dh(u] ® wy))

= (@ ([a-i-1, 11 ® ), wy)

= (7" (a-i-1 @ X (x1 @ u))), wy) — (A (x1 @ A" (a-i-1 @ 7)), wyy)

= (F* (a1 ® rf (11 ® ), wy)
by the induction hypothesis for any a_;-; € V_,_;. Thus, by the same argument to the
argument of the case where i = 0, we have the well-definedness of d~>6+' and that d~)6+l
satisfies the equation (3.69). Therefore, by induction, we can obtain our claim on Cf)g” for
alli > 0.

Let us show that the linear maps defined in (3.68) are well-defined. We assume that an
integer i > 0 satisfies the condition that we have linear maps ok i U,j ® U~ = Vi forall
k > 0 which satisty the equation (3.69). When i = 0, it has been shown that this assumption
holds. Then, we can show the well-definedness of the linear maps ®* | (k = 0) by induction

on k. When k = 0, we can show that (i)(l] is well-defined and satisfies (3.69) by a similar
argument to the argument of (3.67). When k > 1, we have

(3.74) Br(a—ke1, ly-1, Buf ® wy)] — O (7 (y-1 @ u)) @ wy))
= Br([ake1, y—1], D(uf ® wy)) = Brla—ier, B & (y-1 ® uf) ® wy))
= (@ ([agsr, Y11 @ u), wy )y — (A (g1 @ T (y—1 @ uy)), wy)
= —(A (Y1 T (a—gs1 ® uy)), wy)

= (T (a1 Qu), T (y—1 @ wy)) = (A" (a—kr1 @ uy), 1y (y-1 @ wy))
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for any k£ > 1 and a_z+1 € V_41 under the notation of (3.68). Thus, by a similar argument
to the argument of (3.67), we have the well-definedness of ®* , for all k > 1 and that ol .
satisfies the equation (3.69). For i > 1, by the same argument to the argument of the case
where i = 0, we have the well-definedness of ®* .y forall k > 0 and that 0lg ., satisfies the
equation (3.69). Thus, by induction, we have linear maps ®" i for all 7, j > 0 which satisfies
the equation (3.69). This completes the proof. O

As a corollary of Propositions 3.22 and 3.24, we have the following theorem.

Theorem 3.25. Let (g,p,V,V, By) and (g, 7, U, U", By) be standard pentads and assume
that By is symmetric. Then a pentad (L(g,p,V,V, By), 7", o+, v, By) is also a standard
pentad whose ®©-map, denoted by (i);;, is defined by:

(3.75) Oru; @w”)) = (uf ®@w))

foranyi, j> 0, u € U and w- j € U, where ol j is the linear map defined in Definition
3.23.

3.5. Chain rule. Under the assumptions of sections 3.3 and 3.4, let us construct the Lie
algebra associated with a standard pentad of the form (L(g, 0, V, V, By), 7%, U*,U"~, By). To
find the structure of the Lie algebra L(L(g, 0, V, V, By), 7", U*, U"~, Br), we give the follow-
ing theorem.

Theorem 3.26 (chain rule). Let (g,p,V,V, By) and (g, 7, U, U", By) be standard pentads.
Assume that By is symmetric. Then a pentad (L(g,p,V,V, By), 7", U+, 77'_,BL) is also a
standard pentad and the Lie algebra associated with it is isomorphic to L(g,p ® n,V &
UYaeU,By), i.e. we have

(3.76) L(L(g,p, V., V, B), 7", U*, U™, B,) ~ Lg.p@n, VO U,V U, By)
as Lie algebras up to grading.

Proof. Note that the pentad (g, p® 7, VO U, VO U, By) is a standard pentad whose ®-map
®,qr s given by:

(I)p@ﬂ((v, u) ® (¢, y¥)) = (Dp(v ®P) + Pr(u®Y)

where v € V, ¢ € YV, u € U, ¢y € U and ®, and O, are the ®-maps of the pentads
(8,0, V,V, By) and (g, 7, U, U", By) respectively. It has been already shown in Theorem 3.25
that the pentad (L(g,p, V,V, By), 7", U*, U, B,) is standard. We denote the n-graduations
of (8,p,V,V, By) and (L(a, p, V, V, By), 7+, U*, U=, B) by V,, and (U"),, i.e.

BT L@ V.V.B) =D Ve LLig.p, V.V, Bo). 7", U, T, Br) = (0.
nez mez
Moreover, we denote (U*); and (U*)_; by:
(3.78) @ =Pui. @) =Pr
>0 j=0

Denote a bilinear form on L(L(g, p, V, V, By),#*, U*, U'~, B;) defined in Definition 2.18 by
B;. By Lemmas 2.37 and 2.38, we can define derivations a and 8 on L(L(g, p, V, V, By), #*,
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U*, U™, By) which satisfy

(3.79) a(vy) = v, o)) = i,  aw;)=—jw_, P(i,) = mi,
and
(3.80) B1(a(2), @) + BL(Z, a(@)) = BL(BR), ®) + BLZ.B@)) = 0

for any n,m € Z, i, j 2 0, v, € Vo, uf € U € (U™, w2, € U, € (UF)-y, iy, € (U
and Z,w € L(L(g,p,V,V,By),7#*,U", U, By). Since L(L(g,p,V,V,By),7*,U", U, By) is
generated by L(g, p, V, V, By) and (U*). and since L(g, p, V, V, By) and (U*). are generated
by Vo, Vi1, U = U§ and U" = Uy, we have that L(L(g,p, V., V, By), 7", U+, U~,By) is
generated by Vj, V.1, Uj and U} Put

Wom = {X € L(L(s,p, V.V, Bo), %", U, U™, B) | a(X) = nX, B(X) = mX|

for any n,m € Z. Then we can easily show that all eigenvalues of @ and S are integers
by induction and that [W,m), Win]l € Wesimen. Thus, we can obtain the following Z-
grading of L(L(g,p,V,V, By), 7", U*, U, B,) induced by the eigenspace decomposition of
yi=a+p:
L(L(g, p, V; V, Bo), 7", U*, U™, BL) = (P Woum).
k€eZ n+m=k

If we put W) := {Y | y(X) = kf}, then we have W] = €@ . _ W, and, thus, we can
obtain the following Z-grading of L(L(g,p, V, V, By), #*, U™, U, BL):

L(L(g, p, V, V. Bo), 7", U*, U™, B) = (H W],

keZ

In particular,
(3.81) Wy=Vo, Wi=VieU;, W =V, elj.

We can easily show that W), = [W],W]], W’ | = [WY,W’ ] for all k > I and that the
restriction of By to Wg X Wzk is non-degenerate for any k € Z from (3.80). Therefore, by
Theorem 2.20, we have the isomorphism (3.76). ]

ExampLE 3.27. We retain to use the notations of Examples 2.35 and 3.16. Put U" := C
and define a representation @w : ¢ ® U” — U and a bilinear map (-, )y : U X U" — C by:

w((a,b,A)Q@w) := —aw, (u,w)y := uw.

We can identify U" with Hom(U, C) via (-, -)y. Then pentads (L(g, p, V, V, By),#*, U+, U,
Bp)and (g, p®nm, Ve U, V& U, By) are standard. Let us show that the Lie algebra L(g, o ®
Ve UV aelU,B))is isomorphic to sly. Put elements

5 3 1

4 4

N—

-1
Hy = -3 , Hy: 4 -1 , Hp:= -1 € sly.
4 4 2 |

=l
4 4 2

FNT

Then we can obtain a Z-grading of sl; by the eigenspace decomposition of ad Hy:
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2
(3.82) sly = @ L (= (X e sly | [Ho, X] = iX)).

i=—2

In particular,

a 0 0 0

o = ggoAO a,beC,Aeglz,a+b+Tr(A)=0’2911@911@5[2’
00
0O u 0 O 0 0 00

[ = 8 8 13 12)2 u,v,0peCyp, 1= 'g (;)1 8 0 W, d1,¢, € C
00 0 O 0 ¢ 0 0

Then, we have that [y ~ CH, ®CH, ®sl, and that the restriction of a bilinear form 7, defined
by T(X, X") := Tr(XX") (X, X" € sly), to [ X |y satisfies:

3 1
T liyxi, ((a,b,A),(d’,b',A")) = Zaa’ +bb" + E(ab' +a’'b) + Tr(AA"),

where a,a’ € CHy, b,b’ € CH,, A, A’ € sl,. Thus, we can easily show that the grading (3.82)
and the Killing form of sls, denoted by Ky, satisfy the assumptions of Theorem 2.20 and
that a pentad (lp, ad, [1, [_, K¢, |i,x1,) 1S equivalent to (g, p®n, VO U, VO U, By) (cf. [4, 5, 6,
the theory of prehomogeneous vector spaces of parabolic type]). Thus, by Theorems 2.20
and 3.26, we have

L(L(3,p, V, V, Bo), #*, U, U",B) =~ L(g,p®nm, Vo U,V U, By) = sly.

In this case, we can directly check that the Lie algebra L(L(g, p, V, V, By), #*, U™, U, B;)
is isomorphic to sl using Examples 2.34, 2.35 and 3.16. In fact, by the results of Examples
2.35 and 3.16, we have that the pentad (L(g, p, V, V, By), &+, U+, U,By)is equivalent to the
pentad (gl & sl3, Ap, C3,C3, k3), which is defined in Example 2.34. Thus, we have that the
Lie algebra L(L(g, p, V, V, By), #*, U*, U'~, B;) is isomorphic to sly.
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