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The lines 19-28 “Our first result is ...... boundary in [16]” on the page 675 of [2] are
corrected into:

“Denote by g the Riemannian metric 1
2 dα(·, J·) + α ⊗ α on M, see [2, (2.1)] for precise

constructions. Let N(L) be the normal bundle of L with respect to g, and let Γ(N(L))W be the
set of all V ∈ Γ(N(L)) that are the deformation vector fields to normal deformation through
special Legendrian submanifolds with boundary confined in W. Our first result is

Theorem 0.1. Let (M, J, α, ε) be a contact Calabi-Yau manifold, and L be a connected
compact special Legendrian submanifold with nonempty boundary ∂L inside a scaffold W of
codimension two. Then the moduli spaceM(L,W) has at most dimension dim H1(L;R) + 1
near L; moreover Γ(N(L))W is a vector space of dimension at most dim H1(L;R) + 1.

This is similar to Butsher theorem [1].”
The original Theorem 1.1 in [2] is incorrect since Example 2.7 in [2] provided an coun-

terexample to it as pointed out by Georgios Dimitroglou Rizell in his review MR3272612 in
MathSciNet. The reason of the incorrectness of Theorem 1.1 was caused by incorrect Propo-
sition 3.3 in [2]. In order to give a correct version of the latter, the following replacements
are needed.

(iii) and (iv) in [2, Lemma 3.1] should be, respectively, changed into:
(iii) (t, x, v, s1, s2) ∈ φ(U )⇒ (t, x, v, 0, 0) ∈ φ(U ),
(iv) for any nowhere zero smooth section V : W → ξ′⊥|W , φ can be required to satisfy
φ∗(V(p)) = ∂

∂s1

∣∣∣∣
φ(p)

for any p ∈ ∂L, where (s1, s2) are the coordinate functions of

R
2.

The metric “ĝ := ρg1 + (1 − ρ)g” in line 20 of [2, page 684] is replaced by

ĝ := ρg1 + (1 − ρ)g.
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The metric in (3.16) of [2, page 685] is replaced by

ĝ =

n−1∑
k,l=0

(g|W)kldzk ⊗ dzl + ds1 ⊗ ds1 + ds2 ⊗ ds2.(3.16)

Proposition 3.3 in [2] should be changed into:

Proposition 3.3. Let L be a compact Legendrian submanifold with boundary of the contact
manifold (M, α), and let W be a codimension two scaffold for L. Denote by N̂(L) the normal
bundle of L with respect to ĝ. For p ∈ ∂L, suppose that V̂ ∈ N̂p(L) satisfies the boundary
condition: (dα)p(N(p), V̂) = 0. Then V̂ ∈ TpW, and V̂ − α(V̂)Rα(p) cannot be in TpL if it is
not zero.

A detailed proof of this result was given in [3]. Correspondingly, the content of the
original Remark 3.5 in [2] needs to be changed, see Remark 3.5 in [3]. Hence the related
sentence below [2, Claim 2.6] “The Neumann boundary condition implies α(V |∂L) = 0, see
Remark 3.5.” should be deleted.

Acknowledgements. We would like to thank Dr. Georgios Dimitroglou Rizell and anony-
mous referee for carefully checking and valuable suggestions on this corrected version.
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