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Abstract
The order of a vector bundle is the smallest positive integer n such that the vector bundle’s

n-fold self-Whitney sum is trivial. Since 1970’s, the order of the canonical vector bundle over
configuration spaces of Euclidean spaces has been studied by F.R. Cohen, R.L. Cohen, N.J.
Kuhn and J.L. Neisendorfer [4], F.R. Cohen, M.E. Mahowald and R.J. Milgram [6], and S.W.
Yang [17, 18]. And the order of the canonical vector bundle over configuration spaces of
closed orientable Riemann surfaces with genus greater than or equal to one has been studied
by F.R. Cohen, R.L. Cohen, B. Mann and R.J. Milgram [5]. In this paper, we study the order
of the canonical vector bundle over configuration spaces of projective spaces as well as of the
Cartesian products of a projective space and a Euclidean space.

1. Introduction

1. Introduction
Let ξ be a vector bundle and let ξ⊕n be its n-fold Whitney sum. If there exists a positive

integer n such that ξ⊕n is trivial, then we say that ξ has finite order. In this case, the smallest
such n is called the order of ξ, denoted by o(ξ).

Let M be a path-connected m-dimensional manifold without boundary, m ≥ 2. Given
a positive integer k, the configuration space F(M, k) is the space of all k-tuples of distinct
points in M. The symmetric group on k-letters, denoted by Σk, acts on F(M, k) from the left
by

σ(x1, x2, · · · , xk) = (xσ(1), xσ(2), · · · , xσ(k)), σ ∈ Σk.

This action is free and induces a covering map from F(M, k) to F(M, k)/Σk. The associated
vector bundle of this covering map is

ξM,k : Rk −→ F(M, k) ×Σk R
k −→ F(M, k)/Σk

where Σk acts on Rk by permuting the coordinates from the right.
Since 1970’s, the order of the canonical vector bundle over configuration spaces of man-

ifolds has been extensively studied (cf. [4, 5, 6, 11, 17, 18]). For a positive integer t, let ρ(t)
be the number of positive integers less than or equal to t that are congruent to 0, 1, 2 or 4
mod 8. In 1978, F.R. Cohen, M.E. Mahowald and R.J. Milgram [6] initiated the study of the
order of the canonical vector bundle over configuration spaces of manifolds, and they proved
in [6, Theorem 1.2] that the order of ξR2,k is 2. Later, [6, Theorem 1.2] was generalized from
the case of the plane to the case of higher dimensional Euclidean spaces. It is proved by
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S.W. Yang [17] in 1981, F.R. Cohen, R.L. Cohen, N.J. Kuhn and J.L. Neisendorfer [4] in
1983 and the present author [11] in 2016 that the order of ξRm,k is

am,k = 2ρ(m−1)
∏

3≤p≤k, p prime

p[ m−1
2 ].

Moreover, generalizing [6, Theorem 1.2] from the case of the plane to the case of closed ori-
entable Riemann surfaces with genus greater than or equal to one, F.R. Cohen, R.L. Cohen,
B. Mann and R.J. Milgram [5, Proposition 1.1] proved in 1989 that for any closed orientable
Riemann surface S whose genus is greater than or equal to one, both ξS ,k and ξS \{point},k have
order 4. Let S m be the m-sphere. Recently, we proved in [11, Theorem 1.1] that the order of
ξS m,k is either am,k or 2ρ(m)−ρ(m−1)am,k; and generalizing [5, Proposition 1.1] from the case of
Riemann surfaces with genus greater than or equal to one to the case of S 2, we also proved
in [11, Theorem 1.1] that if k is even, then the order of ξS 2,k is 4.

In this paper, we study the order of the canonical vector bundle over configuration spaces
of projective spaces as well as of the Cartesian products of a projective space and a Euclidean
space. Let RPm be the projective space of dimension m. In Theorem 1.1, we give some
estimations for the order of ξRPm,k. In particular, the order of ξRP2,k is a multiple 4. In
Theorem 1.4, we give some estimations for the order of ξRPm×Rn,k, n ≥ 1. As a particular
case, if n is congruent to 3 mod 8, then the order of ξRP2×Rn,k is an+2,k. Throughout this
paper, all maps are assumed to be continuous and all manifolds are assumed to be finite
CW-complexes.

Let k ≥ 2 and let N(m) be the smallest integer N such that RPm can be embedded into
RN . The main results of this paper are listed as below.

Theorem 1.1 (Main Result I). The order of ξRPm,k is divisible by am,k and divides

2ρ(N(m)−1)
∏

3≤p≤k, p prime

p[ m
2 ].

Moreover, the order of ξRPm,k is divisible by 2am,k if one of the followings happens: (i) m = 2;
(ii) m = 4, k = 2; (iii) m = 8, k = 2.

It follows from Theorem 1.1 immediately that the order of ξRP2,k is divisible by 4 and
divides 4

∏
3≤p≤k, p prime p.

Corollary 1.2. Let m be odd and r be an integer greater than or equal to ρ(N(m) − 1).
Then the order of (ξRPm,k)⊕2r

is
∏

3≤p≤k, p prime

p
m−1

2 .

Corollary 1.2 follows from the first assertion of Theorem 1.1 immediately.

Corollary 1.3. Let s ≥ 2. Then the order of ξ∐s RPm,k over the configuration space of the
disjoint union of s-copies of RPm is divisible by 2am,k if m = 4 or 8.

Corollary 1.3 follows from the second assertion of Theorem 1.1.

Theorem 1.4 (Main Result II). Let m be even and let n be odd. Then the order of ξRPm×Rn,k

is divisible by am+n,k and divides
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2ρ(N(m)+n−1)
∏

3≤p≤k, p prime

p
m+n−1

2 .

Suppose n is congruent to 3 mod 8. Then as a particular case of Theorem 1.4, the order
of ξRP2×Rn,k is an+2,k.

Corollary 1.5. Let m be even, n be odd and r be an integer greater than or equal to
ρ(N(m) + n − 1). Then the order of (ξRPm×Rn,k)⊕2r

is
∏

3≤p≤k, p prime

p
m+n−1

2 .

Corollary 1.5 follows from Theorem 1.4 immediately.
Finally, as by-products of the above results, we will give some periodicity properties of

the k-adic constructions in the last section of this paper.

2. On the order of the canonical vector bundle and the k-adic construction

2. On the order of the canonical vector bundle and the k-adic construction
In this section, we review some lemmas about the order of the canonical vector bundle

over configuration spaces as well as its relation to the k-adic construction.

Lemma 2.1. The order of ξM,2 is a power of 2.

Proof. By the Whitney embedding theorem, we can embed M into R2m+1. Then ξM,2 is a
pull-back vector bundle of ξR2m+1,2 through the embedding. Hence o(ξM,2) divides o(ξR2m+1,2),
which is a power of 2. The lemma follows. �

Let p be a prime. We denote op(ξM,k) to be the largest integer of the form pl, l ∈ Z, that
divides o(ξM,k). We call op(ξM,k) the p-power of o(ξM,k).

Lemma 2.2. [5] For any prime p and any k ≥ p, op(ξM,k) ≤ op(ξM,p).

Proof. The proof follows from [5, p. 105]. �

The following lemma is a straight-forward generalization of [5, Lemma 2.1]. A detailed
proof can be found in [11, Proof of Lemma 2.2].

Lemma 2.3. [5, 11] Let M be a non-compact manifold. Then for any prime p and any
k ≥ p, op(ξM,k) = op(ξM,p).

For a topological space X with a non-degenerate base-point ∗, the labelled configuration
space (resp. the augmented labelled configuration space) is defined by

C(M; X) =
∐

k≥1

F(M, k) ×Σk Xk/ ≈

(resp. C∗(M; X) =
∐

k≥0

F(M, k) ×Σk Xk/ ≈)

where the equivalent relation ≈ is generated by

(m1, · · · ,mk; x1, · · · , xk) ≈ (m1, · · · ,mk−1; x1, · · · , xk−1)

if xk = ∗, and the space F(M, 0) is defined to be a base-point. In [1, 10], such spaces occur
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as models for mapping spaces. We call the space C(M; X) labelled configuration space for
the reason that X plays the role as a label attached to each configuration (m1,m2, · · · ,mk) in
F(M, k), k = 1, 2, · · · . The space C(M; X) is filtered by closed subspaces

Ck(M; X) =
k∐

j=1

F(M, j) ×Σ j X j/ ≈

with C0(M; X) defined to be the base-point and C1(M; X) defined to be the space (M∨S 0)∧X.
The inclusions of Ck−1(M; X) into Ck(M; X) are cofibrations [9, Theorem 7.1]. Their cofibres
are denoted by

Dk(M; X) = Ck(M; X)/Ck−1(M; X),

called the k-adic construction. There is a splitting (cf. [15, Proposition 2.4])

Σ∞C(M; X) � Σ∞
∞∨

k=1

Dk(M; X).

Hence the k-adic constructions are stable wedge summands of the labelled configuration
space.

The following lemma follows from an unpublished manuscript given by Professor Fred-
erick R. Cohen. A copy of the proof can be found in [11, Lemma 2.7 and Corollary 2.8].

Lemma 2.4. For any positive integer t, there is a homotopy equivalence

Σo(ξM,k)kt(Dk(M; X)) −→ Dk(M;Σo(ξM,k)tX).

3. On the (co)homology of configuration spaces

3. On the (co)homology of configuration spaces
In this section, we prove some lemmas about the (co)homology of configuration spaces.

Let M be a closed manifold. Let p be a prime. Let F be either the field Zp with p elements,
or the rational numbers Q.

3.1. (co)Homology of configuration spaces of projective spaces.
3.1. (co)Homology of configuration spaces of projective spaces. In this subsection,

we study the (co)homology of configuration spaces of RPm and prove Lemma 3.2 and
Lemma 3.4. Throughout this subsection, we assume that m is odd and n is even.

We define the graded algebra

(H∗(M;F); n) =
m⊗

q=0

⊗

βq

H∗(Ωm−qS m+n;F)(3.1)

where βq = dimF Hq(M;F) is the q-th Betti number. Each term H∗(Ωm−qS m+n;F) in (3.1) has
weights associated to its generators. Thus in the tensor product (3.1), we have an induced
filtration Fk(H∗(M;F); n) by weights. The filtration of (H∗(M;F); n) by weights agrees
with the filtration Ck(M; S n) of C(M; S n) via the following isomorphism (cf. [2, Theorem A,
Theorem B])

H∗(C(M; S n);F) � (H∗(M;F); n).

For any k ≥ 1, we let k(H∗(M;F); n) to be the quotient space
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Fk(H∗(M;F); n)/Fk−1(H∗(M;F); n).

The next theorem gives the homology of unordered configuration spaces of M.

Theorem 3.1. [2, Theorem C] There is an isomorphism of graded vector spaces

H∗(F(M, k)/Σk;F) � Σ−kn
k(H∗(M;F); n).

As a result of Theorem 3.1, the next lemma follows.

Lemma 3.2. If M is a rational homology sphere, then as graded vector spaces,

H∗(F(M, k)/Σk;Q) �

⎧⎪⎪⎨⎪⎪⎩
Q if i = 0 or m,

0 otherwise.

Proof. Since M is a rational homology sphere, H∗(M;Q) is isomorphic to H∗(S m;Q). It
follows with the help of Theorem 3.1 that as graded vector spaces,

H∗(F(M, k)/Σk;Q) � H∗(F(S m, k)/Σk;Q).

Consequently, with the help of the following fact (cf. [13, 14])

Hi(F(S m, k)/Σk;Q) =

⎧⎪⎪⎨⎪⎪⎩
Q if i = 0 or m,

0 otherwise,

the assertion follows. �

Remark 3.3. Since m is assumed odd, RPm is a rational homology sphere. Hence the
rational homology of the unordered configuration space of RPm is given by Lemma 3.2.

Let p be an odd prime. In [2, Section 4], a precise description for H∗(C(M; S n);Z2) as
well as its filtration was given in terms of Dyer-Lashof operations. In the following, we give
a precise description for H∗(C(M; S n);Zp) and its filtration.

Firstly, for each α ∈ Hq(M;Zp), we introduce a generator uα, and set its dimension and
weight as

• dimension: |uα| = |α| + n,
• weight: ω(uα) = 1.

Secondly, for each uα and index I = (ε1, i1, ε2, i2, · · · , εr, ir), ε j = 0 or 1 for each j =
1, 2, · · · , r, there is an additional generator given by Dyer-Lashof operations (with lower
indices) and Bockstein homomorphisms acting on uα

QIuα = βε1 Qi1β
ε2 Qi2 · · · βεr Qir uα

if the following condition hold (cf. [12, p.537]):
• 0 < i1 ≤ i2 ≤ · · · ≤ ir < n;
• ir has the same parity as |α| + n;
• the indices of two adjacent Qi’s have the same parity;
• the indices of two Qi’s separated by a β have opposite parity.

Such sequences of operations QI are called admissible. The dimension and weight of
QIuα are given inductively by

• dimension: |Qix| = p|x| + i(p − 1),
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• weight: ω(Qix) = ω(βQix) = pω(x).
Thirdly, all the generators uα and QIuα are subject to the following relations
• uα+β = uα + uβ,
• QIuα+β = QIuα + QIuβ,
• u2

α = 0 if |α| = m.
Then (H∗(M;Zp), n) can be described as the associative and commutative Zp-algebra

generated by all uα and QIuα.
As a result of the above description of (H∗(M;Zp), n), the next lemma follows.

Lemma 3.4. Let p be an odd prime. If M is a mod p homology m-sphere, then

Torp(Hk(F(M, p)/Σp;Z))(3.2)

=

⎧⎪⎪⎨⎪⎪⎩
Zp if k = 2s(p − 1), 1 ≤ s ≤ (m − 1)/2,

0 otherwise.

Proof. By Theorem 3.1 and the above description of (H∗(M;Zp), n),

H∗(F(M, p)/Σp;Zp) = ⊕(m−1)/2
s=1 (ZpQ2su0 ⊕ ZpβQ2su0)

⊕Zpup
0 ⊕ Zpumup−1

0 .

Here the dimensions of the generators are

|up
0 | = 0,

|umup−1
0 | = m,

|Q2su0| = 2s(p − 1),

|βQ2su0| = 2s(p − 1) − 1.

Moreover, since β2 = 0, we have

β(umup−1
0 ) = 0.

Consequently, by applying the Bockstein Spectral Sequence and the Universal Coefficient
Theorem for cohomology (cf. [17, Proof of (3.2)], [18, p.17]), we obtain (3.2). �

Remark 3.5. Since m is assumed odd and p is an odd prime, RPm is a mod p homology
m-sphere. Hence the p-torsion part of the integral cohomology of F(RPm, p)/Σp is given by
Lemma 3.4.

3.2. (co)Homology of configuration spaces of the Cartesian products of a projective
space and a Euclidean space.

3.2. (co)Homology of configuration spaces of the Cartesian products of a projective
space and a Euclidean space. In this subsection, we study the (co)homology of configura-
tion spaces of RPm ×Rn and prove Lemma 3.7 and Lemma 3.8. Throughout this subsection,
we assume that m is even and n ≥ 1 is odd.

We define the algebra


m+n(H∗(M;F); X) =

m+n⊗

q=0

⊗

βq

H∗(Ωm+n−qΣm+nX;F)(3.3)

where βq = dimFHq(M;F) is the q-th Betti number, and Ωm+n−qΣm+nX = ∗ if q > m + n.
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Each term H∗(Ωm+n−qΣm+nX;F) in (3.3) has weights associated to its generators. Hence
after taking tensor product, (3.3) is a filtered algebra. We denote the filtration of (3.3) by Fk,
k = 1, 2, · · · . We write m+n

k (H∗(M;Zp); X) for the Zp-module

Fk
m+n(H∗(M;F); X)/Fk−1

m+n(H∗(M;F); X).

Theorem 3.6. [15, Theorem B] There is an isomorphism of F-modules

H̃∗(C(M × Rn; X); F) �
∞⊕

k=1

Σ−2k


m+n
k (H∗(M;F);Σ2X).

By applying the filtrations, it follows from Theorem 3.6 that the graded vector space
H∗(F(M × Rn, k)/Σk;Q) only depends on the graded vector space H∗(M;Q). Moreover, for
any odd prime p, it is known (for example, [17, p.141]) that

H̃∗(F(Rm+n, p)/Σp;Q) = 0.

Consequently, we have the following lemma.

Lemma 3.7. There is an isomorphism of graded vector spaces

H∗(F(RPm × Rn, k)/Σk;Q) � H∗(F(Rm+n, k)/Σk;Q).

Moreover, if p is an odd prime, then

H̃∗(F(RPm × Rn, p)/Σp;Q) = 0.

The following lemma is obtained by setting M to be RPm and setting F to be Zp, p an odd
prime, in Theorem 3.6.

Lemma 3.8. Let p be an odd prime. Then

Torp(Hk(F(RPm × Rn, p)/Σp;Z))(3.4)

=

⎧⎪⎪⎨⎪⎪⎩
Zp if k = 2s(p − 1), 1 ≤ s ≤ (m + n − 1)/2,

0 otherwise.

Proof. Since m is assumed even, we have

H̃∗(RPm × Rn;Zp) � H̃∗(RPm;Zp)

= 0.

Hence it follows with the help of (3.3) that


m+n(H∗(RPm × Rn;Zp); X) = H∗(Ωm+nΣm+nX;Zp).(3.5)

By setting M to be RPm and setting X to be S 0 in Theorem 3.6, we have

H̃∗(C(RPm × Rn; S 0);Zp) � ⊕∞k=1Σ
−2k


m+n
k (Zp; S 2).(3.6)

It follows from [1, Example 13] and [9, Theorem 2.7] that Ωm+nS m+n+2 is weak homotopy
equivalent to C∗(Rm+n; S 2). Hence with the help of (3.5),
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
m+n
k (Zp; S 2)(3.7)

� Fk(H∗(Ωm+nS m+n+2;Zp))/Fk−1(H∗(Ωm+nS m+n+2;Zp))

� Fk(H∗(C∗(Rm+n; S 2);Zp))/Fk−1(H∗(C∗(Rm+n; S 2);Zp))

� H∗(Dk(Rm+n; S 2);Zp).

By [2, Section 1.6, Section 2.6], Dk(Rm+n; S 2) is the Thom space of ξ⊕2
Rm+n,k. It follows from

the Thom isomorphism that

H∗(F(Rm+n, k)/Σk;Zp) � Σ−2kH∗(Dk(Rm+n; S 2);Zp).(3.8)

Therefore, it follows from (3.6) - (3.8) that

H̃∗(C(RPm × Rn; S 0);Zp) �
∞⊕

k=1

H∗(F(Rm+n, k)/Σk;Zp).

By the filtration of the lengths of configurations, it follows that as graded vector spaces,

H∗(F(RPm × Rn, k)/Σk;Zp) � H∗(F(Rm+n, k)/Σk;Zp).(3.9)

In particular, we let k = p in (3.9). By applying an argument analogous to [17, Proposi-
tion 3.1 and Proposition 3.2], we obtain (3.4). �

4. Proof of Theorem 1.1

4. Proof of Theorem 1.1
In this section, we prove Theorem 1.1. In order to do this, we first prove the following

proposition.

Proposition 4.1. Let m be odd and let p be an odd prime. Then for any k ≥ p,

op(ξRPm,k) = p
m−1

2 .(4.1)

Proof. Let p be an odd prime and k ≥ p. Let K(−) denote the abelian group associated
with the abelian semi-group of isomorphism classes of complex vector bundles under the
Whitney sum operation and K̃(−) the reduced generalized cohomology group associated to
K(−). Then we have an Atiyah-Hirzebruch Spectral Sequence with E2-page

Ei, j
2 = Hi(F(RPm, p)/Σp; K j(∗)).(4.2)

This spectral sequence converges to a filtration of Ki+ j(F(RPm, p)/Σp) in the E∞-page.
Hence with the help of Lemma 3.2, the only differential whose domain and target are possi-
ble to have Z-summands at the same time is

dm : E0,2t
m −→ Em,2t−m+1

m , t ∈ Z.
Since m + (2t − m + 1) is odd, dm does not create new torsion parts of K0(F(RPm, p)/Σp).
Hence all the differentials of the spectral sequence do not create new torsion parts of
K0(F(RPm, p)/Σp), and the p-torsion part of (4.2), with i + j = 0, converges to

Torp(K0(F(RPm, p)/Σp)).

By the Atiyah-Hirzebruch Spectral Sequence and Lemma 3.4,

|Torp(K̃(F(RPm, p)/Σp))| ≤ p
m−1

2 .
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Thus it follows with the help of Lemma 2.2 that

op(ξRPm,k) ≤ op(ξRPm,p)(4.3)

= op(ξRPm,p ⊗ C)

≤ |Torp(K̃(F(RPm, p)/Σp))|
≤ p

m−1
2 .

On the other hand, since Rm can be embedded into RPm, it follows that

op(ξRPm,k) ≥ op(ξRm,k).(4.4)

Therefore, (4.1) follows from (4.3) and (4.4). �

Now we prove Theorem 1.1.
Proof of Theorem 1.1. Let p be an odd prime and k ≥ p. We first prove

op(ξRPm,k) = p[ m
2 ].(4.5)

When m is odd, Proposition 4.1 gives (4.5). When m is even, with the helps of the canonical
embedding of RPm into RPm+1, we have op(ξRm,k) ≤ op(ξRPm,k) ≤ op(ξRPm+1,k). Thus (4.5)
follows. On the other hand, since RPm can be embedded into RN(m), we have o2(ξRm,k) ≤
o2(ξRPm,k) ≤ o2(ξRN(m),k). Therefore, by (4.5), the first assertion of Theorem 1.1 follows.

To prove the second assertion of Theorem 1.1, we consider the following two cases.
Case 1. m = 2.
It follows from [3] or [7, Proposition 16] that

H1(F(RP2, k)/Σk;Z)(4.6)

= Bk(RP2)/[Bk(RP2), Bk(RP2)]

� Z2 ⊕ Z2

where Bk(RP2) is the k-stranded braid group of RP2. By the Universal Coefficient Theorem
and (4.6), there is no element of order 4 in H1(F(RP2, k)/Σk;Z4). Consequently, by a direct
computation, for any non-zero element x in H1(F(RP2, k)/Σk,Z2), we have x2 = S q1x =
βx � 0 where β is the Bockstein homomorphism associated to the short exact sequence
Z2 −→ Z4 −→ Z2. Therefore, with the help of [11, Lemma 3.5],

w(ξ⊕2
RP2,k) � 0.

Hence ξ⊕2
RP2,k is not trivial, and o2(ξRP2,k) ≥ 4. Finally, since N(2) = 4, it follows with the

help of the first assertion of Theorem 1.1 that o2(ξRP2,k) = 4.
Case 2. m = 4 or 8, k = 2.
With the help of [8, Theorem 2.2] or [16, p. 380], it follows from a direct computation

that the largest integer λ such that

[w1(ξRPm,2)]λ � 0

is λ = 2[log2 m]+1 − 1. Hence it follows that

w(ξ⊕2[log2 m]+1−1
RPm,2 ) = 1 + · · · + [w1(ξRPm,2)]2[log2 m]+1−1,
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which is non-trivial. This implies

o(ξRPm,2) ≥ 2[log2 m]+1.(4.7)

Since m = 4 or 8, we have 2am,2 = 2[log2 m]+1. It follows from (4.7) that the order of ξRPm,2

can be divided by 2am,2. �

Proof of Corollary 1.3. We observe that for any s ≥ 2, the order of ξ∐s RPm,k equals to
the smallest common multiple of o(ξRPm,t), 1 ≤ t ≤ k (cf. [11, Lemma 3.3]). Let m = 4 or
8. Since 2am,2 divides o(ξRPm,2) and am,k divides o(ξRPm,k), the smallest common multiple of
2am,2 and am,k divides the order of ξ∐s RPm,k. The corollary follows. �

5. Proof of Theorem 1.4

5. Proof of Theorem 1.4
In this section, we prove Theorem 1.4. In order to do this, we prove the next proposition

first.

Proposition 5.1. Let m be even, n be odd and p be an odd prime. Then for any k ≥ p,

op(ξRPm×Rn,k) = p
m+n−1

2 .(5.1)

Proof. Let p be an odd prime. Then we have an Atiyah-Hirzebruch Spectral Sequence
with E2-page

Ei, j
2 = Hi(F(RPm × Rn, p)/Σp; K j(∗)).(5.2)

This spectral sequence converges to a filtration of Ki+ j(F(RPm ×Rn, p)/Σp) in the E∞-page.
With the help of Lemma 3.7, there is no differential whose domain and target are possible
to have Z-summands at the same time. Hence all the differentials of the above spectral
sequence do not create new torsion parts of K0(RPm × Rn, p)/Σp), and the p-torsion part of
(5.2), with i + j = 0, converges to

Torp(K0(F(RPm × Rn, p)/Σp)).

Consequently, it follows from Lemma 3.8 that

|Torp(K̃(F(RPm × Rn, p)/Σp))| ≤ p
m+n−1

2 .

Hence for any k ≥ p,

op(ξRPm×Rn,k) ≤ op(ξRPm×Rn,p)(5.3)

≤ |Torp(K̃(F(RPm × Rn, p)/Σp))|
≤ p

m+n−1
2 .

On the other hand, since Rm+n can be embedded into RPm × Rn, we have

op(ξRPm×Rn,k) ≥ op(ξRm+n,k).(5.4)

Therefore, (5.1) follows from (5.3) and (5.4). �

Now we prove Theorem 1.4 and Corollary 1.5.
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Proof of Theorem 1.4. The order of ξRm+n,k divides the order of ξRPm×Rn,k. Since RPm ×
Rn can be embedded into RN(m)+n, we see that the order of ξRPm×Rn,k divides the order of
ξRN(m)+n,k. Hence o2(ξRPm×Rn,k) is divisible by 2ρ(m+n−1) and divides 2ρ(N(m)+n−1). With the help
of Proposition 5.1, Theorem 1.4 follows. �

6. Stable homotopy types of the k-adic construction

6. Stable homotopy types of the k-adic construction
With the help of the order of the canonical vector bundle over configuration spaces, the

stable homotopy types of Dk(M;ΣnX) exhibit a natural periodic behavior as n varies. In this
section, as by-products of our main results, we give the following propositions.

Proposition 6.1. Let X be a topological space with a non-degenerate base-point. Let m
be odd and r be an integer greater than or equal to ρ(N(m) − 1). Then

Σ(2r∏
3≤p≤k, p prime p

m−1
2 )kDk(RPm; X) � Dk(RPm;Σ2r∏

3≤p≤k, p prime p
m−1

2 X).

Proposition 6.1 follows from Corollary 1.2 and Lemma 2.4.

Proposition 6.2. Let X be a topological space with a non-degenerate base-point. Let m
be even, n be odd and r be an integer greater than or equal to ρ(N(m) + n − 1). Then

Σ(2r∏
3≤p≤k, p prime p

m+n−1
2 )kDk(RPm × Rn; X)

� Dk(RPm × Rn;Σ2r∏
3≤p≤k, p prime p

m+n−1
2 X).

Proposition 6.2 follows from Corollary 1.5 and Lemma 2.4.
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