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Abstract
We study parabolic, ridge and sub-parabolic curves on implicit surfaces defined by smooth
functions R-equivalent to A|-singularity. To investigate ridge and sub-parabolic curves, we
present the local parameterizations of the implicit surfaces, and we show the asymptotic behav-
ior of the principal curvatures and directions by using the parameterization. We also present
height and distance squared functions on implicit surfaces in the appendix.

1. Introduction

Let &, denote the local ring of smooth function germs f : (R",0) — R with the unique
maximal ideal M,, = {h € &,|h(0) = 0}. The group R of diffeomorphisms 4 : (R",0) —
(R",0) acts on M,,.E(n, p) by f o h™', where £(n, p) denotes the p-tuple of elements in &,.
Two smooth function germs f,g : (R",0) — (R,0) are said to be R-equivalent if there
exists & € R such that g = f o h~!. Let X be a manifold and G a Lie group acting on X.
We call modality of a point x € X under the action of G on X the least number m such that
a sufficiently small neighborhood of x may be covered by a finite number of m-parameter
families of orbits. The point x is said to be simple if its modality is 0. Arnold [1] has showed
that any R-simple function germ is R-equivalent to one of the following types:

Ay e+ 20, k>,

Dk:ixll‘_1+x1x2ix§---+x2 k >4,

R S )
Eg:®x|+x;£x5+ X,

.3 3 2 2
E7:xixo+x; x5+ %X

L5 3.2 2
Eg:xi+x,xx3+--%x,

- 'n

An A -singularity is also known as a Morse or nondegenerate singularity. Here, a function
germ f : (R",0) — (R, 0) has a Morse or nondegenerate singularity at O if its first partial
derivatives vanish at 0 and the determinant of the Hessian matrix H; does not vanish at 0.
The index of the Morse singularity O is the number of the negative eigenvalues of H#(0).

Singular points of implicit surfaces defined by functions f : (R3,0) — (R,0) having
Morse singularities of index O or 3 are isolated. Furthermore, an implicit surface defined by
a function f having a singularity of index 2 coincides with that of — f, which has a singularity
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708 M. HASEGAWA

of index 1. For this reason, when we study the geometry of implicit surfaces defined by
zero sets of functions having Morse singularities, it is natural to consider only in case that
the index of singularities is 1. In [5], lines of curvature on implicit surfaces with Morse
singular points of index 1 were investigated. In this paper, we study parabolic, ridge and
sub-parabolic curves on implicit surfaces defined by functions having Morse singularities of
index 1.

The parabolic curve on a surface in R is the locus of points where the Gaussian curvature
vanishes and divides the surface into the elliptic and hyperbolic regions. It is known that the
parabolic curve is the locus of points where the surface has A,-contact with it tangent plane.
The parabolic curve on the surface is generically non-singular or there may be not parabolic
curve when the surface is a convex like an ellipsoid. However, parabolic curves on singular
surfaces have singularities. The parabolic curves on singular surfaces parameterized by
smooth maps with corank 1 singularities were studied in [10].

There are two asymptotic directions in the hyperbolic region, and there is a unique as-
ymptotic direction at parabolic points. A point at which the unique asymptotic direction
is tangent to the parabolic curve is called a cusp of Gauss. If the parabolic curve is non-
singular, then the image of this curve under the Gauss map is cusp at the cusp of Gauss.

The ridge curve of a surface in R* was first studied in details by Porteous [11] as the
locus of points where the surface has As3-contact with its focal sphere. It is also the locus of
points where one principal curvature has an extremum value along the corresponding line of
curvature. The locus of points where one principal curvature has an extremum value along
the other line of curvature is also important. This locus is called the sub-parabolic curve,
which was first studied in details by Bruce and Wilkinson [2] in terms of folding maps. It
is also the locus of points where the lines of curvature have geodesic inflections. Moreover,
it is known that the ridge and sub-parabolic curves correspond respectively to singular point
sets and parabolic curves of the focal set.

In section 2, we recall the ingredients of the differential geometry of implicit surfaces in
R3 and the curvature formula of the implicit surfaces. In Section 3, we consider the parabolic
curves and cusps of Gauss on implicit surfaces with Morse singularity of index 1. In Sec-
tion 4, we present local parameterization of the surfaces and study ridge and sub-parabolic
curves on the surfaces. In appendix A, we introduce the families of height and distance
squared functions on implicit surfaces. Families of height and distance squared functions
are introduced by Thom and fundamental tools to study of the geometry of submanifolds.
Several authors studied the singularities of height and distance squared functions in order to
investigate the geometry of submanifolds in Euclidean and other spaces (see, for example,
[8, 9, 11]). Recently, in [4, 10] analyzing the singularities of these two functions are applied
to the investigation of the geometry of singular surfaces in R>.

This work is part of a project of an investigation of geometry of surfaces defined by zero
sets/fibers of functions having singularities supported by the FAPESP. The author would like
to express his sincere gratitude to Toshizumi Fukui and Farid Tari for fruitful discussions and
helpful comments.

2. Preliminaries

Let f : R® — R be a smooth function and let M be an implicit surface defined by the zero
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set of f, that is, M = {(x,y, 2)| f(x,y,z) = 0}. Away from singular points, the unit normal
vector to M is given by N = Vf(x,y,2)/[IVf(x,y, 2)|l. We denote the principal curvatures of
M by «; and «;,. The eigenvalues 4; (i = 0,1,2) of dN are 49 = 0, 4; = —«; and A = —«>.
The principal directions v; and v, are the unit eigenvectors corresponding respectively to «;
and ;. We may assume that «; > «,. We remark that a surface {(x,y,z)| — f(x,y,z) = 0}
defines the same surface as M but the orientation and the magnitude correlation for the
principal curvatures of {(x,y,z)| — f(x,y,z) = 0} are differ from those of M. The Gaussian
curvature K and mean curvature H of M are given by the following formulas:

Hy (VH'
2.1 P\
=y TTNAR
. T _ 2
(2.2) o= OO - IVl tr(Hf)’
2IVAIR

where H is the Hessian matrix of f. Theses formulas appear, for example, in [6].

As mentioned in Introduction, we are interested in the case that the singular point of M is
of Morse type of index 1. Let f : (R?,0) — (R, 0) be a smooth function germ, and suppose
it has a Morse singularity of index 1 at the origin. If g : (R, 0) — (R, 0) is singular at O then
g can be written as

g= a11x2 + 2a15xy + 2a13xz + a22y2 + 2ay3yz7 + a33z2 ++0(4).
The quadratic form g, of g can be expressed as
gr = xTAx,
where

ay ap ags
T
xz(x y Z) . A=lan axn ax]|.
ai3 a3 das3
Real symmetric matrices are diagonalizable by orthogonal matrices, so there exists an or-
thogonal matrix P such that

4 0 0
P'AP=10 A, 0],
0 0 A

where A; (i = 1,2, 3) are the eigenvalues of A. If we set
T
x=PX, X=(X Y Z),
then we show that
g» = XTPTAPX = XTP'APX = 1, X2 + L,Xo? + 13X52.

Hence, f can be written as

(2.3) f&59,9) = hOuy, D+ D fuly,2) + 00+ 1)
m=3



710 M. HASEGAWA

where

(3]
(i8]

X
f2(x,!/aZ) = ) +
aj

I\JQN | S

- (O<a;<a), folt,y,2)= Z apx'y’?

i+ j+k=m

3. Parabolic curves and cusps of Gauss

Given an implicit surface M, we set

Hy (VHT

Pr==lvr o

From (2.1), the parabolic set on M is the intersection between M and a set {(x, y, 2)|Pf(x,y, 2)
= 0}.

Theorem 1. Let f : (R?,0) = (R, 0) be a smooth function with an A7 -singularity at at
the origin. Then there are generically 0, 2, 4 or 6 parabolic curves of the implicit surface M
passing through the singularity.

Proof. We may assume that f is given by (2.3). Then we have

16 16
P = == fr+ = f((Bajasn + ayain — aip)x
a1a2 1a2

2 2 2 2
+ (ajazio + 3asa201 — api2)y + (ajazo + asami — 3apn3)z) + O(4).

Note that M and {(x,y, 2)IPf(x,y,z) = 0} have same tangent cone. Here, the tangent cone
of a set X C R" at a point x consists of the limits of secants that pass through a sequence of
points x; € X \ {x} converging to x. Under the condition (x,y,z) € M, Py is given by

16 16
(3.1 Pr = ——(=fs + O@4) + (= fs + O@)(Baiaso + @ya10 — a102)x
aya; a,a;
+ (atazio + 3a3a201 — Go12)y + (@jax + azam: — 3aos)z) + O4),

16
=-—55+04).
a4

By substituting x = a;rcos s, y = ayrsins, z = rinto f and the above expression, we have

. 16 .
f= r3f3(a1 cos s, ay sin s, 1) + O(r), Py = —Wl":;fy,(a] cos s, ay sin s, 1) + O(r™).
aya;
The vector (a; cos sg, a; sin g, 1) (5o € [0, 27)) is the tangent vector to the parabolic curve
M passing through the origin. Hence, to see the number of such parabolic curves, we need
to investigate the number of simple roots s € [0, 27) of f3(a; cos s,a;sin s, 1). To do this,
we prepare the following lemma:

Lemma 2. The function

n

k
s) = ¢iricos’ ssin g
f( ) i,k—i

k=0 i=0

has generically 2k (k = 0, 1, - - - n) simple roots s € [0, 2m).
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Proof of Lemma 2. Let s € [0, 27). By substituting the relation

1 . tan s
CoOSs =+———— sins ==+

V1 + tan? s V1 +tan? s
we set

" .
,kltan ts

(1 + tan? s)k/2

(s €[0,7/2) U (3n/2,2n)),

u kc,k,tan i

(1 + tan? s)k/2

k
k
Z( (s € (x/2,3m/2),
k=0 i=0
and g = fif>. Since tan(s + 1) = tans, we have fi(s + 1) = fi(s) and g(s = 1) = g(n).
Moreover, since f; and f, are defined respectively in [0, 7/2) U (37/2,2r) and (n/2,37/2),
the number of roots of ¢ is twice the number of roots of f, counting their multiplicity
Let us investigate the number of roots of g. In case n = 2m (m > 1), we have g = g1 g%,
where
m 2k-1 2k—1—i

oo 4 Z Z Ci k- itan?* g Z Z Cipk—1-; tan s
T L (1 + tan? s)¢ ° £ L4 (1 + tan? 5)Ck-D/2”

We see

m

1 2 2 \m—k
— —c 1 +tan’ s +E Ec tan®*~" s(1 + tan® s
gy — 9, = (1 N tan2 S)m 00( ) i,2k—i ( )

2

m 2k—1
2—1-i 2 n—k
Cink—1—i tan s(1 + tan” s)
2 )@2m=1)/2 Z b
(1 + tan s) =
1 [( " ’
=T o Z €210 +(COO+ZCOZk] tan*"
(1 + tan- s) = =

2
1 —
(1 + tan2 5)2m! [( Cok— 10) ( CO,Zk-lJ tan*"% s

1 m 2 m 2
= Tranto? [c0,0+202k,0] —[Zczkw] +o
k=1

k=1
m 2 m 2
dm
+ (Co,o + ZC0,2k] - (Z C0,2k—]] tan™" s |,
k=1 k=1

and thus g has generically simple 4k (k = 0,1,---,2m) roots s € [0,27). In case that n is
odd is similar. Hence, we complete the proof. m|

Let us continue the proof of Theorem 1. Since

f3(ay cos s,ay sins, 1) = 0?0300 cos® s + a%azazlo cos® ssin s + alagalzo cos s sin’ s

+ agamo sin’ s + a%azm cos’ s + ajarai; cos ssin s + a%aogl sin’ s

+ ajappp CoOS s + ardapi2 sin s + anns
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is the polynomial in cos s and sin s of degree 3, by Lemma 2 we see that f3(a; cos s, a; sin s,
r) has generically 0, 2, 4 or 6 simple roots and we complete the proof. m|

The normal curvature of M in the tangent direction v is given by

vavT
Ky = —50—
oIV A£1]
(see, for example, [7]). Hence, the equation of asymptotic directions of M is given by
dx
(3.2) frdx + fydy + f.dz =0, (a’x dy dz) Hyldy|=0.
dz

Proposition 3. Let v = v(x, y, z) be an asymptotic direction of M at a parabolic point p.
Then the point p is a cusp of Gauss if and only if (v, VP;) = 0 at p.

Proof. Recall that the cusp of Gauss is a parabolic point at which the parabolic curve is
tangent to the unique asymptotic direction. Since v is tangent to M at p, v is tangent to the
parabolic set at p if and only if v is tangent to {(x, y, 2)|Ps(x,y,z) = 0}, that is, (v, VP;) = 0
at p, and the proof is completed. O

Theorem 4. Let f : (R3,0) — (R,0) be a smooth function with an A7 -singularity at
the origin, and let v = v(x,y,7) be a vector in R? satisfying (3.2) under the condition that
(x,4,2) € {(x,y,2|Pp(x,y,2) = 0} Then generically the set M N {(x,y,2)|Cr(x,y,2) = 0}
consists locally of curves passing through the singularity whose number is same as the
number of parabolic curves passing through there, where Cy = (v,VP). Moreover, the
branches are tangent to parabolic curves at the origin.

Proof. When f. # 0, we obtain

[dx :dy :dz] = [_fyzfxz + fxfyfyz + fyfzfxy - fxfzfyy :
fxfyfxz - fxzfyz + fxfzfxy - fyfzfxx : _2fxfzfxy + fyzfXX + fxzfyy],
which satisfies (3.2) in case f; = 0. Hence, (v, VP;) = 0 is equivalent to the conditions that

128
4, 2 4 29 3 2 4, 2 3
0 = <= (a3(@ya201 — 3app3)x” — ajazainx’y + aya;(@yaing — 3a102)x°'z
a
172

+ ajay(aiasy + asap — 6aon) Xy’ — aids(3aias + drdm1) Xz
- a%a‘zt(Za%azlo - 3a§a030 + 3a012)x2yz - a?a%amxf - Za?a;‘amxyzz
+ a?a§(3a%a3oo - 2a§a120 - 3a102)xy2z - a?ag(3a%a300 + a%algo)xz3
+dj(@ias — 3ages)y”* + alaz(ajanor — 3aon)y’z — dias(aiazor + 3azam)y’z”
- a‘l‘a;‘(afazlo + 3a§a030)z4) + 0(5).

By substituting x = ajrcos s, y = aprsin s, z = r into the above equation, we have

4
3.3) 0= —%ﬁ(dlrcos s,aprsins, Dt + O(P).
a

172
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By a similar argument on parabolic curves, we show that near the origin MN{(x, y, 2)|C(x, y,
z) = 0} consists of generically 0, 2, 4 or 6 smooth curves passing through the origin and the
curves tangent to parabolic curves at the origin. m|

4. Ridge and sub-parabolic curves
We consider a function f : (R3,0) — (R, 0) written as (2.3) and a map
4.1) @ STx(R,0) - (R3,O), @(s,r) = (ajrcos s,axrsin s, z(s, r)),

satisfying f(a;rcos s, ayrsins,z(s,r)) = 0. The map ¢ is the local parameterization of the
implicit surface f = 0 and z(s, r) can be written as

4.2) (s, r)=r+ cz(s)r2 + C3(s)r3 + 0(r4),
where

1
c(s) = §f3(a1 cos s,ap sin s, 1),

1 . 1 .
c3(s) = §f4(a1 cos s,asins, 1) — §f3(611 COS §,a, Sin s, 1)(afa300 cos® s
+ g2 2 osins + aid? in? s+ g3 s 32 2
ajansdaip COS™ $SIN S + A1d,A120 COS S SIS + A,rdp3p SIN™ S — djdao) COS™ S
. 2 ) .
—apajy) COS SSIN S — dyapp) S-S — 36110102 COS § — 361261012 s s — 56[003).
We remark that c,(s) and c3(s) are the third and sixth degree polynomial in cos s and sin s,
respectively.
We consider a curve a(s,7) = 0 on S' x (R, 0) which satisfies (s, 0) = 0 and (s, 0) #

0. Then the curve @ = 0 can be locally parameterized by y(r) = (s(r), r) with y(0) = (s¢,0)
and y’'(0) = (—a,(s9, 0)/a(sg,0), 1). Since the Jacobian matrix of ¢ is given by

0 ajcossg
J‘p(S(), 0) =|0 a sin S0 |»
0 1

©(y(r)) is a space curve, on the surface f(x,y,z) = 0, tangent to the vector (a; cos sg,
a sin sg, 1) at the origin.

Since
(4.3) @y = (—ayrsins, axrcos s, c’2(s)r2 +0@)),
4.4) @ =(ajcoss,aysins, 1 +2cy(s)r + o)),

the coefficients E, F and G of the first fundamental form of @ are expressed respectively as
follows:

E(s,r) = *(Eo(s) + O(r)),
F(s,r) = r(Fo(s) + O(r)),
G(s,1) = Go(s) + G1(s)r + O(F),

where
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_ 2.2 2.2 _ 2 2 .
Ey =a; cos” s +aj sin” s, Foy =—(aj —a;)cos ssin s,

Go =1+ a% cos’ s + a% sin’ s, G| =4cy(s).
From (4.3) and (4.4), we have
@5 X ¢ =(—azrcos s + ax(ch(s) sin s — 2¢,(s) cos s)r2 + 0(r3),
—ajrsins — a;(2cy(s) sin s + () cos s)r2 + 0(r3), ajarr),
and we obtain
I

llos X @ > =(atal + a3 cos® s + a? sin? s)r?

+ (4cz(s)(a§ cos® s + a% sin® s) + 2c'2(s)(af - a%) cos s sin $)r° + O(r4).
Hence the unit normal vector N of ¢ can be written as

— 1 .
N :A—(a2 cos s, apsins, —aiay)
S

1
+ A—%(a%az(aﬁcz(s) coss—(1+ a%)c’z(s) sin ),

alag(Za%cz(s) sins + (1 + a%)c’z(s) Cos ),

a1a2(2cz(s)(a§ cos® s + a% sin® 5) + (a% - a%)c’z(s) cos s sin s))r + o),

where A = \/a?aé + a2 cos? s + a? sin” s. Since
@ss = (—ajrcos s, —aprsin s, cg’(s)r2 +0()),
¢rs = (—ay sins, aycos s, 2c5(s)r + o)),
@ = (0, 0, 2¢2(s) + 6¢3(s)r + O(r)),

the coefficients 7, 7 and 77 of the second fundamental form of ¢ are expressed respectively
as follows:

(s, r) = r(lo(s) + O(r)),
m(s, r) = r(my(s) + O(r)),

(s, ) = no(s) + n(s)r + O(r),

a1 aaxcy(s) _2aya205()

INE s = — y = s
0 As mg As no As

1
n = E(Zalag(Zcz(s)z — 3c3(s)) cos® s
+ 2a1a2(a% - a%)cz(s)c’z(s) cos ssin s + 20?02(202(5‘)2 —3c3(s)) sin’ s + 6a?ag).

By using above expressions, we show that the Gaussian curvature K and mean curvature H
of ¢ are expressed respectively as follows:

7= 1 (261161262(S)
r A

+ 0(1’)),
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ajax(1 + a? cos? s + a sin® s)
3
A3

~ 1
H=—-|- +0)|.

r
Moreover, the principal curvature k; and «, can be written respectively as follows:

% = H+VH? = K = kio(s) + ki1 (s)r + O(F2),

%o = H- VI~ K = k() + 00,

where
kip = Go' ki = —G—(Go(Gllo — 2Fgmo)ng + Fing + Gi(mj — lony)),
Golyp
koo = -
EoGo - F?

We note that x; and «; are, respectlvely, the maximal and minimal principal curvatures of ¢.
The vectors (m — K,F )6 + ( 1+ K,E)a (z =1, 2) are along the principal direction corre-
sponding to k;. Set fl =m—%F and 7] n = —1+%E, the principal directions

_ 1 (~ d a)
Vi = —— — — fia— + Uy
\/ng +oFEm+Gp Y T

can be expressed as follows:

— 0 0
4.5) v = (§10(s) + O(I’))a— + (Mo(s) + O()
s or
— 1 0 0
(4.6) vy = —(&20(5) + O(r))— + r(n20(s) + O(r))—,
r os or
where
F()I’l() - G()I’I’l() 1 1 F(%
47 = T 35, [l— e — = .
4.7 10 G Mo N £20 VE. 120 GV,

(From (4.5), (4.6) and (4.7), the vector v; can be extensible near (s,0) € S' x (R, 0). More-
over, the vector 70, can be extensible near (s,0) € S! x (R, 0) even if v, is not.)

Theorem 5. Let f : (R?,0) — (R, 0) be a smooth function having an A7 -singularity at at
the origin, and let the eigenvalues of H(0) with same sign be different from each other.

(1) There are at most 20 ridge curves relative to the maximal principal curvature of M
passing through the origin. On the other hand, there are 4 ridge curves relative to
the minimal principal curvature of M passing though the origin.

(2) There are at most 14 sub-parabolic curves relative to the maximal principal curva-
ture of M passing through the origin. On the other hand, there is no sub-parabolic
curve relative to the minimal principal curvature of M passing through the origin.

Proof. Without loss of generality, we may assume that f is given by (2.3). Then M can be
locally parameterized by (4.1), (4.2). Hence, by the expressions of the principal curvatures
; and principal directions v;, the directional derivatives of x; in v; are given by follows:
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(4.8) Dy k1 = kjé10 + kiinio + O(r)

3a’a?
= o /lez ((4cz(s)2(1 + af cos? s + a% sin? s + (a% - a%) cos? s sin® s)
0 N

+ 4(a% - a%)cz(s)cé(s) cos ssin s(1 + a% cos® s + a% sin’ )

— (2¢3(s) = c4($)*)(1 + a? cos® s + a3 sin’ s)2)) +0(r)

1,
4.9) Dy, = ﬁ(kzofzo + O(r))
1 (a1ax(a® — a3) )
= ﬁ(Eé/iiA%z(z(l +a)(1 +a3) + Go) cos s sin s + O(r))
_ 1 1 (a1a:Gy?
(4.10) Dy i = = (=kaotoo + O(r)) = = | —5— + O(n |,
r r A3

4.11) Dy, K

1
;(k'lofzo +0()

1 aap ) ) 2 2 2
= — | ———————(2c2(8)(a7 — &) (-2 + a5 + a;(1 + 4a5)
r 2Eé/zGéA§( b S :

—3(a% - a%) COS §)Ccos s sin s + c'(s)GoAf)

From (4.8), the numerator of Dj (s, 0) is the polynomial of degree 10 in cos s and sin s. It
follows that the number of simple roots s € [0, 27) of Dy k1 (s,0) = 0 is at most twenty, that
is, the ridge curves relative to v; intersects with » = 0 in S' x (R, 0) at most twenty points.
Moreover, from (4.9), the ridge curves relative to v, intersects with r = 0 at four points. If
so € [0,27m) is a simple root of Dy «;(s,0), that is, D5 «1(s,r) = O intersects with r = 0 at
(50, 0), then the ridge curves relative to v; passes through the origin and is tangent to the
vector (aj cos s, ap sin s, 1) there. The other ridge is similar, and we complete the proof of
(1). The proof of (2) is similar to that of (1), and will be omitted. |

Appendix A. Height and distance squared functions on implicit surfaces

In this section, we introduce the height and distance squared functions on implicit sur-
faces.

Let f : R® — R be a smooth function, and let Vf(x) # 0. First, we consider the height
functions on implicit surfaces. We define a family of functions on an implicit surface M by

H,:R*XRxS? >R, (x,4,0) - (x,0) + Af(x)
and h,(x, 1) = Hy(x, A,0).

Theorem 6. (1) Vhy, = 0 at (xg, Ag) if and only if xq is a point on M (i.e., f(xy) = 0),
Ao = £1/|IVf(xo)ll and v = AV f(x0) = £N(xo).
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(2) Vh, = 0 and det(Hy,) = 0 at (xo, Ao) if and only if xg is a parabolic point on M,
Ao = £1/[[V f(x0)ll and v = £N(xo).

(3) Vhy, = 0, rank(H},) = 3 and rank(Jy,) < 4 at (xo, Ao) if and only if xq is a cusp of
Gauss of M, Ay = +1/||Vf(xo)|| and v = +N(x), where Y, : R? x R — R defined
by Y (x, 1) = (Vhy(x, 1), det(H,)(x, ).

(4) Vh, = 0 and rank(H},) = 2 if and only if x is a flat umbilic of M, 19 = £1/||V f(xo)l|
and v = +N(x).

Proof. We have Vi, = (v + AVf, f). The assertion (1) is immediately deduced from this.
The Hessian matrix of /4, is given by

_(AHp (VHT
" ‘(Vf 0 )

v

It follows from (2.1) that
det(Hy,) = —CIVfI'K = -2*Py,

which establishes the assertion (2).

By a suitable rotation in R? if necessary, we can take the z-axis as the normal direction to
M at a point xo. So we may assume that f.(xo) = f,(xo) = 0 and f.(xo) # 0. Suppose that
Vh,(xo) = 0. Then we have 1y = +1 and

/10f xx /IOf Xy ﬂof Xz 0

Hh _ /lOfxy /lofyy /IOfyz
’ /lOf Xz /lof yz /10]?2 fz
0 0 0

at (xo, Ao).

It turns out that 7, is of rank 3 (resp. 2) at (xo, o) if and only if fi f,, — f xz = 0 and
(frxs frgs fyy) # (0,0,0) (resp. fox = foy = fy = 0) at xo.

Let us consider the case rank(?,,) = 2. A point xq is a flat umbilic if and only if K =
H =0 at x(. Straightforward calculations show that

K = fxxfyy - xzy H _fxx + fl/.l/

(A.1) 7 , = at xo,
z 2 \/722
and thus xg is a flat umbilic if and only if fi, = fi, = f,, = 0 at xo. We complete the proof
of (4).
Let us prove (3). Suppose that rank(H,,) = 3 at (xo, o). Since fi fy, — ffy = 0 and
(fxx> frys fyy) # (0,0,0) at xo, there exist a non-zero real number s and a pair of real numbers

(&,n) # (0,0) such that

(A.2) (fxx(xo) fxy(xo)):s (,72 _é.;,])‘
=£n

fxy(xO) ﬁ/y(xO)

Now we have



718 M. HASEGAWA

/lOf XX /lOf Xy /lOf Xz 0
/lof Xy /lof yy /lof Yz 0
th = /10fxz AOfyz Aszz fz at (an /10)-
0 0 £ 0
APy AL(Pp)y, APy, O

Since f;(xo) # 0, rank(Jy,) < 4 at (xo, Ao) if and only if

Adosn>  =dosén 0 0
—Adosén  Aps&? 0 0
rank 0 0 0 f.|<4 atxog,
0 0 - 0
B(Pp)x A(Pp)y, 0 0
which is equivalent to the condition that
wo =én| _|~én &

= =0
Ppe Py " Pps Py,

Hence, straightforward calculations show that rank(Jy,) < 4 at (x¢, o) if and only if

(A3) FeerX0)E + 3 foxy (X0)EN + 3 fryyy (X0EN + fiy(x0)7” = 0.
From (3.2), the asymptotic direction (dx, dy, dz) at f(xp) is given by
dz=0, fodx*+2f,dxdy+ f,dy* =0.

If follows from (A.2) that (&, 7,0) is the asymptotic direction at f(xo). The point f(xg) is
a cusp of Gauss if and only if the parabolic curve is tangent to the asymptotic direction at
f(x0), namely, ((£,7,0),VPs) = 0 at xo. Simple calculation shows that this condition is
equivalent to (A.3), and (3) is proved. m|

We conclude from this theorem that /4, can be considered as the height function on implicit
surfaces.

Next, we consider the distance squared functions on implicit surfaces. We set a family of
functions on M by

Dy :RIXR\{0}xR* >R, (x,4,p) = llx - pl* + Af(x),
and we define d,(x, 1) = Dy(x, 4, p).

Theorem 7. (1) Vd, = 0at (x9, Ao) if and only if f(x9) = 0 and p = xo+AoV f(x0)/2.

(2) Vd, = 0 and det(Hg,) = 0 at (xo, o) if and only if f(xo) =0, p = x0 + AV f(x0)/2
and Ao = 2/(|IV f (x0)llki(x0)).

(3) Vdp =0, rank(H,,) = 3 and rank(Jy,) < 4 at (xo, Ao) if and only if X is a ridge point
of M with respect to k;, p = xo + AoV [f(x9)/2 and Ao = 2/(||V f(x0)llki(x0)), where
Yqisamap Yy : R xR — R’ defined by yrq(x, 1) = (Vd(x, 1), det(Hy, )(x, A)).

(4) Vd, = 0 and rank(Hg,) = 2 if and only if xo is an umbilic of M, p = xo+ AoV f(x0)/2
and Ao = 2/(||V f (x0)l|xi(x0)).

Proof. We have Vd,(x, 1) = (2(x — p) + AV f(x), f(x)), which prove the assertion (1).
Now we write det(H,,) = Ho + Hj4 + Hy22. Straightforward calculations show that
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(A4) Hy=-4|IVfI’, Hy=4IVfIPH, H,=-|VfI'K.
From these relations we have

det(Hy,) = —4IIVFI* + 4IVAIPHA - IV £l K A?

o]l
— O IVAR2 (VA VAl '

Since the principal curvatures are the roots of K> ~2H«k+K = 0, the condition that det(H,,) =
0 holds if and only if 2/(||V f]|1) = «;, and the assertion (2) follows this.

By the same reason as in the proof of Theorem 6, we may assume that f, = f, = 0 and
f: # 0 at xo. Suppose that Vd,(xo, Ag) = 0. Then we have

2+ /lOfxx /lOfxy /IOfxz 0

Hd _ /lofxy 2+ /lOfyy /lOfyz 0
’ /lof Xz /lof yz 2+ /lszz fz

0 0 I 0

Since f;(xo) # 0, rank(Hy,) = 3 (resp. 2) if and only if rank(A) = 1 (resp. 0), where

A= (2 + Aofex(x0)  Aofry(x0) )
/lofxy(xO) 2+ /l()fyy(xO) '

Let us consider the case rank(A) = 0. From (A.1), we have

_ (fxx _fyy)z +4 xzy

at  (xo, Ao).

2
H" - K 4fzz at xo,
and thus f(xo) is an umbilic if and only if f,, = f,, and f,, = 0 at xo, in which case
the common principal curvature is given by «(xg) = —fi(x0)/|[fz2(x0)||. On the other hand,
rank(A) = 0 if and only if f,(x0) = f,,(x0), fiy(x0) = 0 and
2 2
Ay =

fax(x0) IV (xo)llk(x0)’
and the assertion (4) is proved.

Now we turn to (3). By a suitable rotation in R? if necessary, we can take (0,0, 1) as the
unit normal vector to M at f(xp). So we may assume that f, = f, = 0 and f; > 0 at x,.
Suppose that Vd),, = 0 and rank(H,,) = 3 at (xo, Ag). Then the point f(xo) is not an umbilic.
From the proof of (4), we have f,(xo) # f,,(x0). Loss of generality, we may assume that
fex > fyy at xo. Since rank(A) = 1, we show that

2+ /lOfxx(xO) /IOfxy(xO) )
A.
(A-5) ( Aoful®)) 2+ dof(x0)
0 (||Vf(xo)||l<i(x0) + furlxo) Fuxo) )
V7 Geo)llka(xo) Fu(x0) 1V FGeo)liki(x0) + (o)

_ ;( m —-fn)
IV f (xo)llki(xo) \=én €
holds for some (£,77) # (0, 0). Now the principal directions v; = (dx, dy, dz) are given by
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<Vf’ vi) = O’ (DN + Kl'IS)vi = 07

where I3 is the 3 X 3 identity matrix. Since f; = f, = O and f; > 0 at x¢, v; is given by dz = 0
and

1 (va(xO)”Ki(xO) + fxx(xO) fxy(xO) )(dx) — (0)
IV f(xo)ll Jey(x0) IV f (xo)llki(x0) + fyy(x0)/\dy) \0)"

From (A.5) and the above equality we see (£,17) = (dx, dy). We shall prove the case 4y =
2/(lf (xo)llx1(x0)) and omit the proof for the case A9 = 2/(||f(xo)llk2(xp)). By a suitable
rotation around the z-axis, we can take (1,0, 0) as the principal direction v, and thus we
may assume that fy,(xo) = 0. Then we have

o= ™ M=
Since J,, at (4o, Xo) is given by
2+ /lOf XX /IOf Xy /lof Xz 0
/lOfxy 2+ /l()fyy /l()fyZ 0
Jl//d = /lOfxz /lOfyz 2+ /IOf%z fz
0 0 I 0
(Ha,)x  (Ha)y  (Ha): (Hg)a
0 0 _2fxz/fxx 0
0 2(fxx - fyy)/fxx _zfyz/fxx 0
= =2fx/ fax _zfyz/fxx 2(fex = S fax e ’
0 0 f 0
(Ha,)x (Ha,)y (Ha,): (Ha,)a

rank(J,,) < 4 if and only if
z(fxx(xO) - fyy(xO)) ((Hdp)x _ (Hdp)/l 1 (_ 2fxz(x0) ))

Jex(x0) J:(x0) \ frex(x0)
_ 4fz(x0)(fxx(x0) - fyy(xO))(3fxx(x0)fxz(xO) - fxxx(XO)fz(xO)) _
- fxx(x0)2 -
Meanwhile, the necessary and sufficient condition for the point f(xg) to be a ridge point
with respect to «; is

0.

(A.6) (v1, Vki(x0)) = dxki(x0) + dyki,(xo) + dzky;(x0) = 0.

Since f; > 0 and fy, > f,, at xo, (A.1) implies that

(H - VET = Boxg) = ~ 225 xy).
J:(x0)
Since v, = (dx,dy, dz) = (1,0,0), it follows that (A.6) is equivalent to
9 (H - VI~ K)(xq) = 3 ferX0)fie(X0) = frexlX0)fe(X0) _
ox fi(x0)?

and we complete the proof. |
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We conclude from this theorem that d), can be considered as the distance squared function
on implicit surfaces.

We denote the discriminant of det(Hg,)(x, 4) with respect to 4 by A(x). We have the
following criterion for umbilics of M in terms of A (cf. [3, Theorem 3.3]).

Theorem 8. A point x on M is an umbilic on M if and only if A(x) = 0.

Proof. Let us write det(H,,) = Ho + Hid + H>A%. Then A = Hf —4HyH;. A point on a
surface is an umbilic if and only if H?> — K = 0 at the point. By using (A.4), we have

’

HZ_KZ( H, )2_( H, ):_4(H22—4H0H2>

C4vAR) vl Ho?

and we complete the proof. m|

References

[1] V.I. Arnol’d: Normal forms for functions near degenerate critical points, the Weyl groups of Ay, Dy, E and
Lagrangian singularities, Funct. Anal. Appl. 6 (1972), 254-272.

[2] J.W. Bruce and T.C. Wilkinson: Folding maps and focal sets, Singularity theory and its applications, Part I
(Coventry, 1988/1989), 63-72, Lecture Notes in Math. 1462, Springer, Berlin, 1991.

[3] W. Che, J-C. Paul and X. Zhang: Lines of curvature and umbilical points for implicit surfaces, Comput.
Aided Geome. Design 24 (2007), 395-409.

[4] T. Fukui and M. Hasegawa: Fronts of Whitney umbrella — a differential geometric approach via blowing
up, J. Singlu. 4 (2012), 35-67.

[5] R. Garcia and J. Sotomayor: Lines of curvature near singular points of implicit surfaces, Bull. Sci. Math.
117 (1993), 313-331.

[6] R. Goldman: Curvature formulas for implicit curves and surfaces: Comput. Aided Geom. Design 22
(2005), 632-658.

[7]1 E. Hartmann: On the curvature of curves and surfaces defined by normalforms: Comput. Aided Geom.
Design 16 (1999), 355-376.

[8] S. Izumiya and T. Sano: Generic affine differential geometry of space curves, Proc. Roy. Soc. Edinburgh
Math. Sect. A 128 (1998), 301-314.

[9] S.Izumiya, D-H. Pei and T. Sano: The lightcone Gauss map and the lightcone developable of a spacelike
curve in Minkowski 3-space, Glasg. Math. J. 42 (2000), 75-89.

[10] R. Oset Sinha and F. Tari: Projections of surfaces in R* to R® and the geometry of their singular images,
Rev. Mat. Iberoam. 31 (2015) 33-50.
[11] LR. Porteous: The normal singularities of a submanifolds, J. Differential Geometry 5 (1971) 543-564.

Department of Information Science

Center for Liberal Arts and Sciences

Iwate Medical University

2—1-1 Nishitokuda, Yahaba-cho, Shiwa-gun
Iwate 028-3694

Japan

e-mail: mhase@iwate-med.ac.jp




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.53333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 150
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


