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Abstract
We study parabolic, ridge and sub-parabolic curves on implicit surfaces defined by smooth

functions -equivalent to A−1 -singularity. To investigate ridge and sub-parabolic curves, we
present the local parameterizations of the implicit surfaces, and we show the asymptotic behav-
ior of the principal curvatures and directions by using the parameterization. We also present
height and distance squared functions on implicit surfaces in the appendix.

1. Introduction

1. Introduction
Let n denote the local ring of smooth function germs f : (Rn, 0) → R with the unique

maximal ideal n = {h ∈ n | h(0) = 0}. The group  of diffeomorphisms h : (Rn, 0) →
(Rn, 0) acts on n.(n, p) by f ◦ h−1, where (n, p) denotes the p-tuple of elements in n.
Two smooth function germs f , g : (Rn, 0) → (R, 0) are said to be -equivalent if there
exists h ∈  such that g = f ◦ h−1. Let X be a manifold and G a Lie group acting on X.
We call modality of a point x ∈ X under the action of G on X the least number m such that
a sufficiently small neighborhood of x may be covered by a finite number of m-parameter
families of orbits. The point x is said to be simple if its modality is 0. Arnold [1] has showed
that any -simple function germ is -equivalent to one of the following types:

Ak : ±xk+1
1 ± x2

2 + · · · ± x2
n, k � 1,

Dk : ±xk−1
1 + x1x2 ± x2

3 · · · ± x2
n, k � 4,

E6 : ±x4
1 + x3

2 ± x2
3 + · · · ± x2

n,

E7 : x3
1x2 + x3

2 ± x2
3 + · · · ± x2

n,

E8 : x5
1 + x3

2 ± x2
3 + · · · ± x2

n.

An A1-singularity is also known as a Morse or nondegenerate singularity. Here, a function
germ f : (Rn, 0) → (R, 0) has a Morse or nondegenerate singularity at 0 if its first partial
derivatives vanish at 0 and the determinant of the Hessian matrix  f does not vanish at 0.
The index of the Morse singularity 0 is the number of the negative eigenvalues of  f (0).

Singular points of implicit surfaces defined by functions f : (R3, 0) → (R, 0) having
Morse singularities of index 0 or 3 are isolated. Furthermore, an implicit surface defined by
a function f having a singularity of index 2 coincides with that of − f , which has a singularity
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of index 1. For this reason, when we study the geometry of implicit surfaces defined by
zero sets of functions having Morse singularities, it is natural to consider only in case that
the index of singularities is 1. In [5], lines of curvature on implicit surfaces with Morse
singular points of index 1 were investigated. In this paper, we study parabolic, ridge and
sub-parabolic curves on implicit surfaces defined by functions having Morse singularities of
index 1.

The parabolic curve on a surface in R3 is the locus of points where the Gaussian curvature
vanishes and divides the surface into the elliptic and hyperbolic regions. It is known that the
parabolic curve is the locus of points where the surface has A�2-contact with it tangent plane.
The parabolic curve on the surface is generically non-singular or there may be not parabolic
curve when the surface is a convex like an ellipsoid. However, parabolic curves on singular
surfaces have singularities. The parabolic curves on singular surfaces parameterized by
smooth maps with corank 1 singularities were studied in [10].

There are two asymptotic directions in the hyperbolic region, and there is a unique as-
ymptotic direction at parabolic points. A point at which the unique asymptotic direction
is tangent to the parabolic curve is called a cusp of Gauss. If the parabolic curve is non-
singular, then the image of this curve under the Gauss map is cusp at the cusp of Gauss.

The ridge curve of a surface in R3 was first studied in details by Porteous [11] as the
locus of points where the surface has A�3-contact with its focal sphere. It is also the locus of
points where one principal curvature has an extremum value along the corresponding line of
curvature. The locus of points where one principal curvature has an extremum value along
the other line of curvature is also important. This locus is called the sub-parabolic curve,
which was first studied in details by Bruce and Wilkinson [2] in terms of folding maps. It
is also the locus of points where the lines of curvature have geodesic inflections. Moreover,
it is known that the ridge and sub-parabolic curves correspond respectively to singular point
sets and parabolic curves of the focal set.

In section 2, we recall the ingredients of the differential geometry of implicit surfaces in
R

3 and the curvature formula of the implicit surfaces. In Section 3, we consider the parabolic
curves and cusps of Gauss on implicit surfaces with Morse singularity of index 1. In Sec-
tion 4, we present local parameterization of the surfaces and study ridge and sub-parabolic
curves on the surfaces. In appendix A, we introduce the families of height and distance
squared functions on implicit surfaces. Families of height and distance squared functions
are introduced by Thom and fundamental tools to study of the geometry of submanifolds.
Several authors studied the singularities of height and distance squared functions in order to
investigate the geometry of submanifolds in Euclidean and other spaces (see, for example,
[8, 9, 11]). Recently, in [4, 10] analyzing the singularities of these two functions are applied
to the investigation of the geometry of singular surfaces in R3.

This work is part of a project of an investigation of geometry of surfaces defined by zero
sets/fibers of functions having singularities supported by the FAPESP. The author would like
to express his sincere gratitude to Toshizumi Fukui and Farid Tari for fruitful discussions and
helpful comments.

2. Preliminaries

2. Preliminaries
Let f : R3 → R be a smooth function and let M be an implicit surface defined by the zero
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set of f , that is, M = {(x, y, z)| f (x, y, z) = 0}. Away from singular points, the unit normal
vector to M is given by N = ∇ f (x, y, z)/‖∇ f (x, y, z)‖. We denote the principal curvatures of
M by κ1 and κ2. The eigenvalues λi (i = 0, 1, 2) of dN are λ0 = 0, λ1 = −κ1 and λ2 = −κ2.
The principal directions u1 and u2 are the unit eigenvectors corresponding respectively to κ1

and κ2. We may assume that κ1 � κ2. We remark that a surface {(x, y, z)| − f (x, y, z) = 0}
defines the same surface as M but the orientation and the magnitude correlation for the
principal curvatures of {(x, y, z)| − f (x, y, z) = 0} are differ from those of M. The Gaussian
curvature K and mean curvature H of M are given by the following formulas:

K = −

∣∣∣∣∣∣ f (∇ f )T

∇ f 0

∣∣∣∣∣∣
‖∇ f ‖4 ,(2.1)

H =
(∇ f ) f (∇ f )T − ‖∇ f ‖2tr( f )

2‖∇ f ‖3 ,(2.2)

where  f is the Hessian matrix of f . Theses formulas appear, for example, in [6].
As mentioned in Introduction, we are interested in the case that the singular point of M is

of Morse type of index 1. Let f : (R3, 0) → (R, 0) be a smooth function germ, and suppose
it has a Morse singularity of index 1 at the origin. If g : (R3, 0)→ (R, 0) is singular at 0 then
g can be written as

g = a11x2 + 2a12xy + 2a13xz + a22y
2 + 2a23yz + a33z2 + +O(4).

The quadratic form g2 of g can be expressed as

g2 = xTAx,

where

x =
(
x y z

)T
, A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Real symmetric matrices are diagonalizable by orthogonal matrices, so there exists an or-
thogonal matrix P such that

P−1AP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where λi (i = 1, 2, 3) are the eigenvalues of A. If we set

x = PX, X =
(
X Y Z

)T
,

then we show that

g2 = XTPTAPX = XT P−1APX = λ1X1
2 + λ2X2

2 + λ3X3
2.

Hence, f can be written as

(2.3) f (x, y, z) = f2(x, y, z) +
n∑

m=3

fm(x, y, z) + O(n + 1)
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where

f2(x, y, z) =
x2

a2
1

+
y2

a2
2

− z2 (0 < a1 � a2), fm(x, y, z) =
∑

i+ j+k=m

ai jk xiy jzk.

3. Parabolic curves and cusps of Gauss

3. Parabolic curves and cusps of Gauss
Given an implicit surface M, we set

Pf = −
∣∣∣∣∣∣ f (∇ f )T

∇ f 0

∣∣∣∣∣∣ .
From (2.1), the parabolic set on M is the intersection between M and a set {(x, y, z)|Pf (x, y, z)
= 0}.

Theorem 1. Let f : (R3, 0) → (R, 0) be a smooth function with an A−1 -singularity at at
the origin. Then there are generically 0, 2, 4 or 6 parabolic curves of the implicit surface M
passing through the singularity.

Proof. We may assume that f is given by (2.3). Then we have

Pf =
16

a2
1a2

2

f2 +
16

a1
1a2

2

f2
(
(3a2

1a300 + a2
2a120 − a102)x

+ (a2
1a210 + 3a2

2a201 − a012)y + (a2
1a201 + a2

2a021 − 3a003)z
)
+ O(4).

Note that M and {(x, y, z)|Pf (x, y, z) = 0} have same tangent cone. Here, the tangent cone
of a set X ⊂ Rn at a point x consists of the limits of secants that pass through a sequence of
points xi ∈ X \ {x} converging to x. Under the condition (x, y, z) ∈ M, Pf is given by

Pf =
16

a2
1a2

2

(− f3 + O(4)) +
16

a1
1a2

2

(− f3 + O(4))
(
(3a2

1a300 + a2
2a120 − a102)x(3.1)

+ (a2
1a210 + 3a2

2a201 − a012)y + (a2
1a201 + a2

2a021 − 3a003)z
)
+ O(4),

= − 16
a2

1a2
2

f3 + O(4).

By substituting x = a1r cos s, y = a2r sin s, z = r into f and the above expression, we have

f = r3 f3(a1 cos s, a2 sin s, 1) + O(r4), Pf = − 16
a2

1a2
2

r3 f3(a1 cos s, a2 sin s, 1) + O(r4).

The vector (a1 cos s0, a2 sin s0, 1) (s0 ∈ [0, 2π)) is the tangent vector to the parabolic curve
M passing through the origin. Hence, to see the number of such parabolic curves, we need
to investigate the number of simple roots s ∈ [0, 2π) of f3(a1 cos s, a2 sin s, 1). To do this,
we prepare the following lemma:

Lemma 2. The function

f (s) =
n∑

k=0

k∑
i=0

ci,k−i cosi s sink−i s

has generically 2k (k = 0, 1, · · · n) simple roots s ∈ [0, 2π).
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Proof of Lemma 2. Let s ∈ [0, 2π). By substituting the relation

cos s = ± 1√
1 + tan2 s

, sin s = ± tan s√
1 + tan2 s

we set

f1 =
n∑

k=0

k∑
i=0

ci,k−i tank−i s
(1 + tan2 s)k/2

(s ∈ [0, π/2) ∪ (3π/2, 2π)),

f2 =
n∑

k=0

k∑
i=0

(−1)k ci,k−i tank−i s
(1 + tan2 s)k/2

(s ∈ (π/2, 3π/2)),

and g = f1 f2. Since tan(s ± π) = tan s, we have fi(s ± π) = fi(s) and g(s ± π) = g(π).
Moreover, since f1 and f2 are defined respectively in [0, π/2) ∪ (3π/2, 2π) and (π/2, 3π/2),
the number of roots of g is twice the number of roots of f , counting their multiplicity.

Let us investigate the number of roots of g. In case n = 2m (m � 1), we have g = g2
1 − g2

2,
where

g1 = c0,0 +

m∑
k=1

2k∑
i=0

ci,2k−i tan2k−i s
(1 + tan2 s)k

, g2 =

m∑
k=1

2k−1∑
i=0

ci,2k−1−i tan2k−1−i s
(1 + tan2 s)(2k−1)/2

.

We see

g1
1 − g2

2 =
1

(1 + tan2 s)m

⎛⎜⎜⎜⎜⎜⎜⎝c0,0(1 + tan2 s)m +

m∑
k=1

2k∑
i=0

ci,2k−i tan2k−i s(1 + tan2 s)m−k

⎞⎟⎟⎟⎟⎟⎟⎠
2

− 1
(1 + tan2 s)(2m−1)/2

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

k=1

2k−1∑
i=0

ci,2k−1−i tan2k−1−i s(1 + tan2 s)n−k

⎞⎟⎟⎟⎟⎟⎟⎠
2

=
1

(1 + tan2 s)2m

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝c0,0 +

m∑
k=1

c2k,0

⎞⎟⎟⎟⎟⎟⎠
2

+ · · · +
⎛⎜⎜⎜⎜⎜⎝c0,0 +

m∑
k=1

c0,2k

⎞⎟⎟⎟⎟⎟⎠
2

tan4m s

⎞⎟⎟⎟⎟⎟⎟⎠
− 1

(1 + tan2 s)2m−1

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ m∑

k=1

c2k−1,0

⎞⎟⎟⎟⎟⎟⎠
2

+ · · · +
⎛⎜⎜⎜⎜⎜⎝ m∑

k=1

c0,2k−1

⎞⎟⎟⎟⎟⎟⎠
2

tan4m−2 s

⎞⎟⎟⎟⎟⎟⎟⎠
=

1
(1 + tan2 s)2n

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝c0,0 +

m∑
k=1

c2k,0

⎞⎟⎟⎟⎟⎟⎠
2

−
⎛⎜⎜⎜⎜⎜⎝ m∑

k=1

c2k−1,0

⎞⎟⎟⎟⎟⎟⎠
2

+ · · ·

+

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝c0,0 +

m∑
k=1

c0,2k

⎞⎟⎟⎟⎟⎟⎠
2

−
⎛⎜⎜⎜⎜⎜⎝ m∑

k=1

c0,2k−1

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎠ tan4m s

⎞⎟⎟⎟⎟⎟⎟⎠ ,
and thus g has generically simple 4k (k = 0, 1, · · · , 2m) roots s ∈ [0, 2π). In case that n is
odd is similar. Hence, we complete the proof. �

Let us continue the proof of Theorem 1. Since

f3(a1 cos s, a2 sin s, 1) = a3
1a300 cos3 s + a2

1a2a210 cos2 s sin s + a1a2
2a120 cos s sin2 s

+ a3
2a030 sin3 s + a2

1a201 cos2 s + a1a2a111 cos s sin s + a2
2a021 sin2 s

+ a1a102 cos s + a2a012 sin s + a003
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is the polynomial in cos s and sin s of degree 3, by Lemma 2 we see that f3(a1 cos s, a2 sin s,
r) has generically 0, 2, 4 or 6 simple roots and we complete the proof. �

The normal curvature of M in the tangent direction u is given by

κn =
u f u

T

‖u‖2‖∇ f ‖
(see, for example, [7]). Hence, the equation of asymptotic directions of M is given by

(3.2) fxdx + fydy + fzdz = 0,
(
dx dy dz

)
 f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
dx
dy
dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0.

Proposition 3. Let u = u(x, y, z) be an asymptotic direction of M at a parabolic point p.
Then the point p is a cusp of Gauss if and only if 〈u,∇Pf 〉 = 0 at p.

Proof. Recall that the cusp of Gauss is a parabolic point at which the parabolic curve is
tangent to the unique asymptotic direction. Since u is tangent to M at p, u is tangent to the
parabolic set at p if and only if u is tangent to {(x, y, z)|Pf (x, y, z) = 0}, that is, 〈u,∇Pf 〉 = 0
at p, and the proof is completed. �

Theorem 4. Let f : (R3, 0) → (R, 0) be a smooth function with an A−1 -singularity at
the origin, and let u = u(x, y, z) be a vector in R3 satisfying (3.2) under the condition that
(x, y, z) ∈ {(x, y, z)|Pf (x, y, z) = 0}. Then generically the set M ∩ {(x, y, z)|C f (x, y, z) = 0}
consists locally of curves passing through the singularity whose number is same as the
number of parabolic curves passing through there, where C f = 〈u,∇Pf 〉. Moreover, the
branches are tangent to parabolic curves at the origin.

Proof. When fz � 0, we obtain

[dx : dy : dz] = [− f 2
y fxz + fx fy fyz + fy fz fxy − fx fz fyy :

fx fy fxz − f 2
x fyz + fx fz fxy − fy fz fxx : −2 fx fz fxy + f 2

y fxx + f 2
x fyy],

which satisfies (3.2) in case fz = 0. Hence, 〈u,∇Pf 〉 = 0 is equivalent to the conditions that

0 =
128
a8

1a8
2

(
a4

2(a2
2a201 − 3a003)x4 − a2

1a2
2a111x3y + a2

1a4
2(a2

2a120 − 3a102)x3z

+ a2
1a2

2(a2
1a201 + a2

2a021 − 6a003)x2y2 − a2
1a4

2(3a2
1a201 + a2

2a021)x2z2

− a2
1a4

2(2a2
1a210 − 3a2

2a030 + 3a012)x2yz − a4
1a2

2a111xy3 − 2a4
1a4

2a111xyz2

+ a4
1a2

2(3a2
1a300 − 2a2

2a120 − 3a102)xy2z − a4
1a4

2(3a2
1a300 + a2

2a120)xz3

+ a4
1(a2

1a201 − 3a003)y4 + a4
1a2

2(a2
1a201 − 3a012)y3z − a4

1a2
2(a2

1a201 + 3a2
2a021)y2z2

− a4
1a4

2(a2
1a210 + 3a2

2a030)z4) + O(5).

By substituting x = a1r cos s, y = a2r sin s, z = r into the above equation, we have

(3.3) 0 = − 384
a4

1a4
2

f3(a1r cos s, a2r sin s, 1)r4 + O(r5).
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By a similar argument on parabolic curves, we show that near the origin M∩{(x, y, z)|C f (x, y,
z) = 0} consists of generically 0, 2, 4 or 6 smooth curves passing through the origin and the
curves tangent to parabolic curves at the origin. �

4. Ridge and sub-parabolic curves

4. Ridge and sub-parabolic curves
We consider a function f : (R3, 0)→ (R, 0) written as (2.3) and a map

(4.1) ϕ : S 1 × (R, 0)→ (R3, 0), ϕ(s, r) = (a1r cos s, a2r sin s, z(s, r)),

satisfying f (a1r cos s, a2r sin s, z(s, r)) = 0. The map ϕ is the local parameterization of the
implicit surface f = 0 and z(s, r) can be written as

(4.2) z(s, r) = r + c2(s)r2 + c3(s)r3 + O(r4),

where

c2(s) =
1
2

f3(a1 cos s, a2 sin s, 1),

c3(s) =
1
2

f4(a1 cos s, a2 sin s, 1) − 1
8

f3(a1 cos s, a2 sin s, 1)(a3
1a300 cos3 s

+ a2
1a2a210 cos2 s sin s + a1a2

2a120 cos s sin2 s + a3
2a030 sin3 s − a2

1a201 cos2 s

− a1a111 cos s sin s − a2
2a021 sin2 s − 3a1a102 cos s − 3a2a012 sin s − 5a003).

We remark that c2(s) and c3(s) are the third and sixth degree polynomial in cos s and sin s,
respectively.

We consider a curve α(s, r) = 0 on S 1 × (R, 0) which satisfies α(s0, 0) = 0 and αs(s0, 0) �
0. Then the curve α = 0 can be locally parameterized by γ(r) = (s(r), r) with γ(0) = (s0, 0)
and γ′(0) = (−αr(s0, 0)/αs(s0, 0), 1). Since the Jacobian matrix of ϕ is given by

Jϕ(s0, 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 a1 cos s0

0 a2 sin s0

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
ϕ(γ(r)) is a space curve, on the surface f (x, y, z) = 0, tangent to the vector (a1 cos s0,

a2 sin s0, 1) at the origin.
Since

ϕs = (−a1r sin s, a2r cos s, c′2(s)r2 + O(r3)),(4.3)

ϕr = (a1 cos s, a2 sin s, 1 + 2c2(s)r + O(r2)),(4.4)

the coefficients Ẽ, F̃ and G̃ of the first fundamental form of ϕ are expressed respectively as
follows:

Ẽ(s, r) = r2(E0(s) + O(r)),

F̃(s, r) = r(F0(s) + O(r)),

G̃(s, r) = G0(s) +G1(s)r + O(r2),

where



714 M. Hasegawa

E0 =a2
2 cos2 s + a2

1 sin2 s, F0 = − (a2
1 − a2

2) cos s sin s,

G0 =1 + a2
1 cos2 s + a2

2 sin2 s, G1 =4c2(s).

From (4.3) and (4.4), we have

ϕs × ϕr =(−a2r cos s + a2(c′2(s) sin s − 2c2(s) cos s)r2 + O(r3),

− a1r sin s − a1(2c2(s) sin s + c′2(s) cos s)r2 + O(r3), a1a2r),

and we obtain

‖ϕs × ϕr‖2 =(a2
1a2

2 + a2
2 cos2 s + a2

1 sin2 s)r2

+ (4c2(s)(a2
2 cos2 s + a2

1 sin2 s) + 2c′2(s)(a2
1 − a2

2) cos s sin s)r3 + O(r4).

Hence the unit normal vector Ñ of ϕ can be written as

Ñ =
1
As

(a2 cos s, a1 sin s, −a1a2)

+
1
A3

s

(
a2

1a2(a2
2c2(s) cos s − (1 + a2

2)c′2(s) sin s),

a1a2
2(2a2

1c2(s) sin s + (1 + a2
1)c′2(s) cos s),

a1a2(2c2(s)(a2
2 cos2 s + a2

1 sin2 s) + (a2
1 − a2

2)c′2(s) cos s sin s)
)
r + O(r2),

where As =

√
a2

1a2
2 + a2

2 cos2 s + a2
1 sin2 s. Since

ϕss = (−a1r cos s,−a2r sin s, c′′2 (s)r2 + O(r3)),

ϕrs = (−a1 sin s, a2 cos s, 2c′2(s)r + O(r2)),

ϕrr = (0, 0, 2c2(s) + 6c3(s)r + O(r2)),

the coefficients l̃, m̃ and ñ of the second fundamental form of ϕ are expressed respectively
as follows:

l̃(s, r) = r(l0(s) + O(r)),

m̃(s, r) = r(m0(s) + O(r)),

ñ(s, r) = n0(s) + n1(s)r + O(r2),

where

l0 = −a1a2

As
, m0 = −

a1a2c′2(s)
As

, n0 = −2a1a2c2(s)
As

,

n1 =
1
A3

s

(
2a1a3

2(2c2(s)2 − 3c3(s)) cos2 s

+ 2a1a2(a2
1 − a2

2)c2(s)c′2(s) cos s sin s + 2a3
1a2(2c2(s)2 − 3c3(s)) sin2 s + 6a3

1a3
2
)
.

By using above expressions, we show that the Gaussian curvature K̃ and mean curvature H̃
of ϕ are expressed respectively as follows:

K̃ =
1
r

(
2a1a2c2(s)

As
+ O(r)

)
,
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H̃ =
1
r

⎛⎜⎜⎜⎜⎜⎝−a1a2(1 + a2
1 cos2 s + a2

2 sin2 s)

A3
s

+ O(r)

⎞⎟⎟⎟⎟⎟⎠ .
Moreover, the principal curvature κ̃1 and κ̃2 can be written respectively as follows:

κ̃1 = H̃ +
√

H̃2 − K̃ = k10(s) + k11(s)r + O(r2),

κ̃2 = H̃ −
√

H̃2 − K̃ =
1
r

(k20(s) + O(r)),

where

k10 =
n0

G0
, k11 = − 1

G3
0l0

(
G0(G1l0 − 2F0m0)n0 + F2

0n2
0 +G2

0(m2
0 − l0n1)

)
,

k20 =
G0l0

E0G0 − F2
0

.

We note that κ̃1 and κ̃2 are, respectively, the maximal and minimal principal curvatures of ϕ.
The vectors (m̃ − κ̃iF̃)∂s + (−̃l + κ̃iẼ)∂r (i = 1, 2) are along the principal direction corre-

sponding to κ̃i. Set ξ̃i = m̃ − κ̃iF̃ and η̃i = −̃l + κ̃iẼ, the principal directions

ũi =
1√

Ẽξ̃2
i + 2F̃ξ̃iη̃i + G̃η̃2

i

(̃
ξi
∂

∂s
+ η̃i

∂

∂r

)

can be expressed as follows:

ũ1 = (ξ10(s) + O(r))
∂

∂s
+ (η10(s) + O(r))

∂

∂r
,(4.5)

ũ2 =
1
r

(ξ20(s) + O(r))
∂

∂s
+ r(η20(s) + O(r))

∂

∂r
,(4.6)

where

ξ10 =
F0n0 −G0m0

G3/2
0 l0

, η10 =
1√
G0

, ξ20 =
1√
E0
, η20 =

F2
0

G2
0

√
E0
.(4.7)

(From (4.5), (4.6) and (4.7), the vector ũ1 can be extensible near (s, 0) ∈ S 1 × (R, 0). More-
over, the vector r̃u2 can be extensible near (s, 0) ∈ S 1 × (R, 0) even if ũ2 is not.)

Theorem 5. Let f : (R3, 0)→ (R, 0) be a smooth function having an A−1 -singularity at at
the origin, and let the eigenvalues of  f (0) with same sign be different from each other.

(1) There are at most 20 ridge curves relative to the maximal principal curvature of M
passing through the origin. On the other hand, there are 4 ridge curves relative to
the minimal principal curvature of M passing though the origin.

(2) There are at most 14 sub-parabolic curves relative to the maximal principal curva-
ture of M passing through the origin. On the other hand, there is no sub-parabolic
curve relative to the minimal principal curvature of M passing through the origin.

Proof. Without loss of generality, we may assume that f is given by (2.3). Then M can be
locally parameterized by (4.1), (4.2). Hence, by the expressions of the principal curvatures
κ̃i and principal directions ũi, the directional derivatives of κ̃i in ũ j are given by follows:
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Dũ1 κ̃1 = k′10ξ10 + k11η10 + O(r)(4.8)

=
3a2

1a2
2

G7/2
0 As

((
4c2(s)2(1 + a2

1 cos2 s + a2
2 sin2 s + (a2

1 − a2
2) cos2 s sin2 s)

+ 4(a2
1 − a2

2)c2(s)c′2(s) cos s sin s(1 + a2
1 cos2 s + a2

2 sin2 s)

− (2c3(s) − c′2(s)2)(1 + a2
1 cos2 s + a2

2 sin2 s)2)) + O(r)

Dũ2 κ̃2 =
1
r2 (k′20ξ20 + O(r))(4.9)

=
1
r2

(
a1a2(a2

1 − a2
2)

E1/2
0 A5

s

(
2(1 + a2

1)(1 + a2
2) +G0

)
cos s sin s + O(r)

)

Dũ1 κ̃2 =
1
r2 (−k20η20 + O(r)) =

1
r2

⎛⎜⎜⎜⎜⎜⎝a1a2G1/2
0

A3
s
+ O(r)

⎞⎟⎟⎟⎟⎟⎠ ,(4.10)

Dũ2 κ̃1 =
1
r

(k′10ξ20 + O(r))(4.11)

=
1
r

⎛⎜⎜⎜⎜⎜⎝− a1a2

2E1/2
0 G2

0A3
s

(
2c2(s)(a2

1 − a2
2)
(−2 + a2

2 + a2
1(1 + 4a2

2)

−3(a2
1 − a2

2) cos s
)

cos s sin s + c′(s)G0A2
s

)⎞⎟⎟⎟⎟⎟⎟⎠ .
From (4.8), the numerator of Dũ1 κ̃1(s, 0) is the polynomial of degree 10 in cos s and sin s. It
follows that the number of simple roots s ∈ [0, 2π) of Dũ1 κ̃1(s, 0) = 0 is at most twenty, that
is, the ridge curves relative to ũ1 intersects with r = 0 in S 1 × (R, 0) at most twenty points.
Moreover, from (4.9), the ridge curves relative to ũ2 intersects with r = 0 at four points. If
s0 ∈ [0, 2π) is a simple root of Dũ1 κ̃1(s, 0), that is, Dũ1 κ̃1(s, r) = 0 intersects with r = 0 at
(s0, 0), then the ridge curves relative to ũ1 passes through the origin and is tangent to the
vector (a1 cos s, a2 sin s, 1) there. The other ridge is similar, and we complete the proof of
(1). The proof of (2) is similar to that of (1), and will be omitted. �

Appendix A. Height and distance squared functions on implicit surfaces

Appendix A. Height and distance squared functions on implicit surfaces
In this section, we introduce the height and distance squared functions on implicit sur-

faces.
Let f : R3 → R be a smooth function, and let ∇ f (x) � 0. First, we consider the height

functions on implicit surfaces. We define a family of functions on an implicit surface M by

Hu : R3 × R × S 2 → R, (x, λ, u) �→ 〈x, u〉 + λ f (x)

and hu(x, λ) = Hu(x, λ, u).

Theorem 6. (1) ∇hu = 0 at (x0, λ0) if and only if x0 is a point on M (i.e., f (x0) = 0),
λ0 = ±1/‖∇ f (x0)‖ and u = λ∇ f (x0) = ±N(x0).
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(2) ∇hu = 0 and det(hu) = 0 at (x0, λ0) if and only if x0 is a parabolic point on M,
λ0 = ±1/‖∇ f (x0)‖ and u = ±N(x0).

(3) ∇hu = 0, rank(hu) = 3 and rank(Jψh) < 4 at (x0, λ0) if and only if x0 is a cusp of
Gauss of M, λ0 = ±1/‖∇ f (x0)‖ and u = ±N(x0), where ψh : R3 × R → R5 defined
by ψh(x, λ) = (∇hu(x, λ), det(hu)(x, λ)).

(4) ∇hu = 0 and rank(hu) = 2 if and only if x0 is a flat umbilic of M, λ0 = ±1/‖∇ f (x0)‖
and u = ±N(x0).

Proof. We have ∇hu = (u + λ∇ f , f ). The assertion (1) is immediately deduced from this.
The Hessian matrix of hu is given by

hu =

(
λ f (∇ f )T

∇ f 0

)
.

It follows from (2.1) that

det(hu) = −λ2‖∇ f ‖4K = −λ2Pf ,

which establishes the assertion (2).
By a suitable rotation in R3 if necessary, we can take the z-axis as the normal direction to

M at a point x0. So we may assume that fx(x0) = fy(x0) = 0 and fz(x0) � 0. Suppose that
∇hu(x0) = 0. Then we have λ0 = ±1 and

hu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ0 fxx λ0 fxy λ0 fxz 0
λ0 fxy λ0 fyy λ0 fyz 0
λ0 fxz λ0 fyz λ0 fzz fz

0 0 fz 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ at (x0, λ0).

It turns out that hu is of rank 3 (resp. 2) at (x0, λ0) if and only if fxx fyy − f 2
xy = 0 and

( fxx, fxy, fyy) � (0, 0, 0) (resp. fxx = fxy = fyy = 0) at x0.
Let us consider the case rank(hu) = 2. A point x0 is a flat umbilic if and only if K =

H = 0 at x0. Straightforward calculations show that

(A.1) K =
fxx fyy − f 2

xy

f 2
z

, H = − fxx + fyy

2
√

f 2
z

at x0,

and thus x0 is a flat umbilic if and only if fxx = fxy = fyy = 0 at x0. We complete the proof
of (4).

Let us prove (3). Suppose that rank(hu) = 3 at (x0, λ0). Since fxx fyy − f 2
xy = 0 and

( fxx, fxy, fyy) � (0, 0, 0) at x0, there exist a non-zero real number s and a pair of real numbers
(ξ, η) � (0, 0) such that

(A.2)
(

fxx(x0) fxy(x0)
fxy(x0) fyy(x0)

)
= s

(
η2 −ξη
−ξη η2

)
.

Now we have
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Jψh =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0 fxx λ0 fxy λ0 fxz 0
λ0 fxy λ0 fyy λ0 fyz 0
λ0 fxz λ0 fyz λ0 fzz fz

0 0 fz 0
λ2

0(Pf )x λ2
0(Pf )y λ2

0(Pf )z 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
at (x0, λ0).

Since fz(x0) � 0, rank(Jψh) < 4 at (x0, λ0) if and only if

rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0sη2 −λ0sξη 0 0
−λ0sξη λ0sξ2 0 0

0 0 0 fz
0 0 fz 0

λ2
0(Pf )x λ2

0(Pf )y 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 4 at x0,

which is equivalent to the condition that∣∣∣∣∣∣ η
2 −ξη

(Pf )x (Pf )y

∣∣∣∣∣∣ =
∣∣∣∣∣∣ −ξη ξ2

(Pf )x (Pf )y

∣∣∣∣∣∣ = 0 at x0,

Hence, straightforward calculations show that rank(Jψh) < 4 at (x0, λ0) if and only if

(A.3) fxxx(x0)ξ3 + 3 fxxy(x0)ξ2η + 3 fxyy(x0)ξη2 + fyyy(x0)η3 = 0.

From (3.2), the asymptotic direction (dx, dy, dz) at f (x0) is given by

dz = 0, fxxdx2 + 2 fxydxdy + fyydy2 = 0.

If follows from (A.2) that (ξ, η, 0) is the asymptotic direction at f (x0). The point f (x0) is
a cusp of Gauss if and only if the parabolic curve is tangent to the asymptotic direction at
f (x0), namely, 〈(ξ, η, 0),∇Pf 〉 = 0 at x0. Simple calculation shows that this condition is
equivalent to (A.3), and (3) is proved. �

We conclude from this theorem that hu can be considered as the height function on implicit
surfaces.

Next, we consider the distance squared functions on implicit surfaces. We set a family of
functions on M by

Dp : R3 × R \ {0} × R3 → R, (x, λ, p) �→ ‖x − p‖2 + λ f (x),

and we define dp(x, λ) = Dp(x, λ, p).

Theorem 7. (1) ∇dp = 0 at (x0, λ0) if and only if f (x0) = 0 and p = x0+λ0∇ f (x0)/2.
(2) ∇dp = 0 and det(dp) = 0 at (x0, λ0) if and only if f (x0) = 0, p = x0 + λ0∇ f (x0)/2

and λ0 = 2/(‖∇ f (x0)‖κi(x0)).
(3) ∇dp = 0, rank(dp) = 3 and rank(Jψd ) < 4 at (x0, λ0) if and only if x0 is a ridge point

of M with respect to κi, p = x0 + λ0∇ f (x0)/2 and λ0 = 2/(‖∇ f (x0)‖κi(x0)), where
ψd is a map ψd : R3 × R→ R5 defined by ψd(x, λ) = (∇d(x, λ), det(dp)(x, λ)).

(4) ∇dp = 0 and rank(dp) = 2 if and only if x0 is an umbilic of M, p = x0+λ0∇ f (x0)/2
and λ0 = 2/(‖∇ f (x0)‖κi(x0)).

Proof. We have ∇dp(x, λ) = (2(x − p) + λ∇ f (x), f (x)), which prove the assertion (1).
Now we write det(dp) = H0 + H1λ + H2λ

2. Straightforward calculations show that
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(A.4) H0 = −4‖∇ f ‖2, H1 = 4‖∇ f ‖3H, H2 = −‖∇ f ‖4K.

From these relations we have

det(dp) = −4‖∇ f ‖2 + 4‖∇ f ‖3Hλ − ‖∇ f ‖4Kλ2

= − 1
‖∇ f ‖4λ2

⎛⎜⎜⎜⎜⎜⎝
(

2
‖∇ f ‖λ

)2

− 2H
(

2
‖∇ f ‖λ

)
+ K

⎞⎟⎟⎟⎟⎟⎠ .
Since the principal curvatures are the roots of κ2−2Hκ+K = 0, the condition that det(dp) =
0 holds if and only if 2/(‖∇ f ‖λ) = κi, and the assertion (2) follows this.

By the same reason as in the proof of Theorem 6, we may assume that fx = fy = 0 and
fz � 0 at x0. Suppose that ∇dp(x0, λ0) = 0. Then we have

dp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 + λ0 fxx λ0 fxy λ0 fxz 0
λ0 fxy 2 + λ0 fyy λ0 fyz 0
λ0 fxz λ0 fyz 2 + λ0 fzz fz

0 0 fz 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ at (x0, λ0).

Since fz(x0) � 0, rank(dp) = 3 (resp. 2) if and only if rank(A) = 1 (resp. 0), where

A =
(
2 + λ0 fxx(x0) λ0 fxy(x0)
λ0 fxy(x0) 2 + λ0 fyy(x0)

)
.

Let us consider the case rank(A) = 0. From (A.1), we have

H2 − K =
( fxx − fyy)2 + 4 f 2

xy

4 f 2
z

at x0,

and thus f (x0) is an umbilic if and only if fxx = fyy and fxy = 0 at x0, in which case
the common principal curvature is given by κ(x0) = − fxx(x0)/‖ fz(x0)‖. On the other hand,
rank(A) = 0 if and only if fxx(x0) = fyy(x0), fxy(x0) = 0 and

λ0 = − 2
fxx(x0)

=
2

‖∇ f (x0)‖κ(x0)
,

and the assertion (4) is proved.
Now we turn to (3). By a suitable rotation in R3 if necessary, we can take (0, 0, 1) as the

unit normal vector to M at f (x0). So we may assume that fx = fy = 0 and fz > 0 at x0.
Suppose that ∇dp = 0 and rank(dp) = 3 at (x0, λ0). Then the point f (x0) is not an umbilic.
From the proof of (4), we have fxx(x0) � fyy(x0). Loss of generality, we may assume that
fxx > fyy at x0. Since rank(A) = 1, we show that(

2 + λ0 fxx(x0) λ0 fxy(x0)
λ0 fxy(x0) 2 + λ0 fyy(x0)

)
(A.5)

=
2

‖∇ f (x0)‖κi(x0)

(‖∇ f (x0)‖κi(x0) + fxx(x0) fxy(x0)
fxy(x0) ‖∇ f (x0)‖κi(x0) + fyy(x0)

)

=
2

‖∇ f (x0)‖κi(x0)

(
η2 −ξη
−ξη ξ2

)

holds for some (ξ, η) � (0, 0). Now the principal directions ui = (dx, dy, dz) are given by
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〈∇ f , ui〉 = 0, (DN + κiI3)ui = 0,

where I3 is the 3×3 identity matrix. Since fx = fy = 0 and fz > 0 at x0, ui is given by dz = 0
and

1
‖∇ f (x0)‖

(‖∇ f (x0)‖κi(x0) + fxx(x0) fxy(x0)
fxy(x0) ‖∇ f (x0)‖κi(x0) + fyy(x0)

) (
dx
dy

)
=

(
0
0

)
.

From (A.5) and the above equality we see (ξ, η) = (dx, dy). We shall prove the case λ0 =

2/(‖ f (x0)‖κ1(x0)) and omit the proof for the case λ0 = 2/(‖ f (x0)‖κ2(x0)). By a suitable
rotation around the z-axis, we can take (1, 0, 0) as the principal direction u1, and thus we
may assume that fxy(x0) = 0. Then we have

λ0 = − 2
fxx(x0)

and κ1(x0) = − fxx(x0)
fz(x0)

.

Since Jϕd at (λ0, x0) is given by

Jψd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + λ0 fxx λ0 fxy λ0 fxz 0
λ0 fxy 2 + λ0 fyy λ0 fyz 0
λ0 fxz λ0 fyz 2 + λ0 fzz fz

0 0 fz 0
(dp)x (dp)y (dp)z (dp)λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −2 fxz/ fxx 0
0 2( fxx − fyy)/ fxx −2 fyz/ fxx 0

−2 fxz/ fxx −2 fyz/ fxx 2( fxx − fzz)/ fxx fz
0 0 fz 0

(dp)x (dp)y (dp)z (dp)λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

rank(Jψd ) < 4 if and only if

2( fxx(x0) − fyy(x0))
fxx(x0)

(
(dp)x − (dp)λ

1
fz(x0)

(
−2 fxz(x0)

fxx(x0)

))

=
4 fz(x0)( fxx(x0) − fyy(x0))(3 fxx(x0) fxz(x0) − fxxx(x0) fz(x0))

fxx(x0)2 = 0.

Meanwhile, the necessary and sufficient condition for the point f (x0) to be a ridge point
with respect to κ1 is

(A.6) 〈u1,∇κ1(x0)〉 = dxκ1x(x0) + dyκ1y(x0) + dzκ1z(x0) = 0.

Since fz > 0 and fxx > fyy at x0, (A.1) implies that

(H −
√

H2 − K)(x0) = − fxx(x0)
fz(x0)

= κ1(x0).

Since u1 = (dx, dy, dz) = (1, 0, 0), it follows that (A.6) is equivalent to

∂

∂x
(H −

√
H2 − K)(x0) =

3 fxx(x0) fxz(x0) − fxxx(x0) fz(x0)
fz(x0)2 = 0,

and we complete the proof. �
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We conclude from this theorem that dp can be considered as the distance squared function
on implicit surfaces.

We denote the discriminant of det(dp)(x, λ) with respect to λ by Δ(x). We have the
following criterion for umbilics of M in terms of Δ (cf. [3, Theorem 3.3]).

Theorem 8. A point x on M is an umbilic on M if and only if Δ(x) = 0.

Proof. Let us write det(dp) = H0 + H1λ + H2λ
2. Then Δ = H2

1 − 4H0H2. A point on a
surface is an umbilic if and only if H2 − K = 0 at the point. By using (A.4), we have

H2 − K =
(
− H1

4‖∇ f ‖3
)2

−
(
− H2

‖∇ f ‖4
)
= −4(H2

2 − 4H0H2)
H0

3 ,

and we complete the proof. �
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