
Title BIM/CIMにおける情報共有を目的としたプロダクトモ
デルとデータベースの適合性に関する研究

Author(s) 四月朔日, 勉

Citation 大阪大学, 2017, 博士論文

Version Type VoR

URL https://doi.org/10.18910/67153

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

博士学位論文
　

BIM/CIMにおける情報共有を目的とした
プロダクトモデルとデータベースの

適合性に関する研究

四月朔日 勉
　

2017年 7月
　

大阪大学大学院工学研究科

目次

第 1章 序論 1

1.1 背景 . 1

1.1.1 BIM/CIMの状況 . 1

1.1.2 BIM/CIMにおける情報共有 . 2

1.2 目的 . 4

1.3 既往の研究 . 5

1.3.1 IFCプロダクトモデルの共有に関する研究 5

1.3.2 IFCプロダクトモデルのデータマネジメント技術に関する研究 5

1.3.3 NoSQLデータベースに関する研究 . 6

1.3.4 本研究の位置付け . 6

1.4 本論文の構成 . 7

1.5 表記法 . 9

参考文献 10

第 2章 IFCスキーマとプロダクトモデル 13

2.1 本章の概要 . 13

2.2 IFCスキーマの成り立ち . 13

2.3 IFCスキーマの特徴 . 14

2.3.1 オブジェクト指向 . 14

2.3.2 関係性 . 16

2.3.3 拡張性 . 18

2.4 IFCプロダクトモデル . 20

2.4.1 例 1: 5階建てビルディング . 21

2.4.2 例 2: 橋台 . 21

2.5 CIMにおける IFCスキーマ . 24

2.5.1 土木構造物のモデリング手法 . 25

2.5.2 IFC拡張スキーマへの対応 . 26

2.6 本章のまとめ . 26

i

目次

参考文献 28

第 3章 IFCスキーマとデータベース 31

3.1 本章の概要 . 31

3.2 リレーショナルデータベース . 31

3.2.1 関係モデル . 32

3.2.2 正規化 . 32

3.2.3 リレーショナルデータベースを用いたシステム開発における問題点 32

3.3 データベース開発の歴史 . 35

3.3.1 リレーショナル DBMSの普及 . 35

3.3.2 分散データベースと NoSQL . 35

3.4 非リレーショナル型データベース . 37

3.4.1 オブジェクト指向データベース . 37

3.4.2 キー・バリューストア . 37

3.4.3 カラム指向データベース . 38

3.4.4 ドキュメント指向データベース . 38

3.4.5 グラフデータベース . 39

3.5 本章のまとめ . 40

参考文献 41

第 4章 各種データベースによるプロダクトモデル管理手法の開発 43

4.1 本章の概要 . 43

4.2 データモデル変換手法 . 43

4.2.1 関係モデルへの変換 . 45

4.2.2 半構造データへの変換 . 47

4.2.3 プロパティグラフモデルへの変換 . 51

4.2.4 キー・バリューモデルへの変換 . 53

4.3 実験 . 54

4.3.1 実験対象データ . 55

4.3.2 実験 1：データ数に着目した実験 . 55

4.3.3 実験 2：階層数に着目した実験 . 57

4.4 考察 . 61

4.4.1 リレーショナル型 . 61

4.4.2 ドキュメント指向 . 62

4.4.3 グラフ型 . 62

4.5 本章のまとめ . 63

4.5.1 データモデル変換手法に関するまとめ . 63

ii

4.5.2 DBMSへの格納と取得性能に関するまとめ 64

参考文献 65

第 5章 グラフデータベースによるプロダクトモデル部分抽出手法の開発 67

5.1 本章の概要 . 67

5.2 部分抽出手法の開発 . 67

5.2.1 部分抽出アルゴリズム . 68

5.2.2 プロパティグラフモデルの検討 . 71

5.2.3 プロパティグラフモデルへの変換手法の改良 72

5.2.4 クエリの作成手法 . 72

5.3 検証 . 75

5.3.1 検証方法 . 76

5.3.2 結果 . 77

5.4 考察 . 78

5.5 本章のまとめ . 78

参考文献 80

第 6章 グラフ DBMSを用いた BIM/CIM情報共有システムの提案 81

6.1 本章の概要 . 81

6.2 情報共有システムを中心とした BIM/CIMの姿 81

6.2.1 現在の情報共有システム . 81

6.2.2 BIM/CIM情報共有システム . 82

6.2.3 システム構成 . 82

6.3 コストに関する検討 . 84

6.3.1 COCOMOモデル . 85

6.3.2 開発コストの比較検討 . 85

6.3.3 開発コストに関する考察 . 89

6.4 まとめ . 90

参考文献 91

第 7章 総括 93

7.1 結論 . 93

7.1.1 各章における検討結果のまとめ . 93

7.1.2 プロダクトモデルとデータベースの適合性に関する結論 94

7.2 今後の課題と展望 . 95

7.2.1 データマネジメント技術に関する課題 . 95

iii

目次

7.2.2 BIM/CIM情報共有システムに関する課題 95

7.2.3 今後の展望 . 96

謝辞 97

付録 A プログラムコード 99

A.1 csv→ obj変換プログラム . 99

A.2 Data Access Object (Java言語) . 101

付録 B 関係スキーマ（テーブル定義） 125

iv

第 1章

序論

1.1 背景
1.1.1 BIM/CIMの状況

従来は，建築物の設計，施工は 2 次元の設計図を用いて行なわれていたが，コンピュータグラ
フィックス技術の進歩と，コンピュータの処理能力の向上に伴ない，対象の建築物を 3 次元プロ
ダクトモデルで表現し，計画，設計，施工，維持管理のライフサイクル全体で利活用し生産性を
向上させる試みが，欧米や先進国で行なわれるようになってきた。この試みは，BIM (Building

Information Modeling)と呼ばれている。建築物を対象とした BIMに少し遅れて，道路や橋梁等
の土木構造物に関しても同様の試みがなされており，この試みは，BIM for Infrastracture，米国
では，CIM (Civil Integrated Management)と呼ばれている [1]．この概念図を図 1.1に示す．
日本国内においても，欧米や先進国に影響を受ける形で BIM への取り組みが始まった．2009

���

�����

	
�

�
�

�
�

�
�

�
�

�
�

図 1.1 BIM/CIMの概念図

1

第 1 章 序論

年の国土交通省による BIM導入宣言が契機となり，国土交通省発注案件に BIM発注が取り入れ
られるようになってきている。また，道路，橋梁等土木構造物の設計，施工，維持管理等に BIM

の手法を取り入れて生産性を上げる試みを，国土交通省が平成 24年度から CIM*1(Construction

Information Modeling)と称して開始している [2]．
英国では，BIMを段階的に導入できるように，BIMレベルチャート（図 1.2）が公表されてい
る [3]．このチャートは，BIM の成熟度が上がるにつれ，情報共有の手段が，紙 (Level 0) から，
ファイル (Level 1)，ファイルとローカルデータベース (Level 2)，ウェブ上で統合化されたシステ
ム (Level 3)へと変化していくことを表している．英国では，2016年までに Level 2，2025年まで
に Level3を達成するという目標で BIM/CIMを実施している [4]．このモデルは英国の BIMに特
化しているわけではなく一般的なモデルであり，日本における BIM/CIMもこのように進化して
いくと考えられる．現状では，日本は Level 0–1，最も BIM/CIMが進んでいる英国やフィンラン
ドでも Level 2であり，Level 3に達している国はない．

1.1.2 BIM/CIMにおける情報共有

BIMレベルチャートからも分かるように，全世界的に，BIM/CIMの当面の目標は，インター
ネットを介した関係者間における情報共有，および，共同作業を実現すること，であると言える．
しかしながら，BIM/CIMの対象である建築，建設分野には以下のような特徴があるため，他分野
における情報共有よりも実現が困難であると考える．

1. 共有対象となるデータ量が膨大であること
　 BIM/CIMでは，対象とする建築物，土木構造物のあらゆる情報を，3次元プロダクトモ
デル*2に集約して共有することを目指している．これには，建築物を構成する壁やドアの形
状はもちろんのこと，材料や型番等の属性も含まれるため，建築物，土木構造物のあらゆる
部材をモデル化することになり，プロダクトモデルのデータ量は非常に大きくなる．また，
対象となる建築物，土木構造物の寿命が長く，短いものでも 30年前後，長いものだと 100

年を越す場合もあり，ライフサイクルが進むほど多くのデータが発生し，それらがプロダク
トモデルに蓄積されるため，さらに肥大化することになる．

2. 様々な関係者間で共有する必要があること
　大規模な建築物，土木構造物を対象とする場合は，そのライフサイクルには，施主，発注
者，設計者，施工者を始めとした，非常に多くの関係者が関わる．日本では土木構造物のラ
イフサイクルの各フェーズに関わる作業は，国土交通省が民間企業に発注して実施される場

*1 米国における CIM と略語は同じであるが，元となる用語が異なる．しかし，両者のコンセプトや目的，主に用いる
手法はほぼ同様と捉えてかまわないと思われる．いずれにせよ，現在は，BIM，CIMは共にまだ過渡期であり，厳
密な定義が定まっているわけではない．単に CIM と表記した場合は，海外，日本国内の区別なく，“土木構造物を
対象とした BIM”の意味を表すものとする．

*2 プロダクトモデルは対象物の特徴を抽象化した概念を定義したもの（スキーマ）の意味で用いられる場合と，対象物
そのものをモデル化したもの（オブジェクト，またはインスタンスの集合）の意味で用いられる場合があるが，本論
では後者の意味で用いる．

2

1.1 背景

図 1.2 BIM レベルチャートと情報共有手法の関係（出典:A report for the Government

Construction Client Group）

合がほとんどであるため，単に多数の関係者が関わるだけでなく，様々な組織に属した関係
者が関わることにも留意する必要がある．

3. 様々な種類のデータを共有する必要があること
　 BIMの対象となる建築物のほとんどが，ビルや住宅等であるのと異なり，CIMでは，橋
梁，トンネル，道路，ダム等様々な土木構造物が共有対象となる．当然，土木構造物の種類
が異なれば部材の種類や取り得る属性の種類も異なるため，様々な種類のデータに対応せざ
るを得ず，システム化の難易度は高くなる．

このような背景から，BIM/CIMにおける共同作業を実現するには，組織の枠を超えた多数の関
係者間で，膨大なデータを含む様々な種類のプロダクトモデルを共有する必要があることが分か
る．これが，BIM/CIMにおける情報共有のあるべき姿であると考える（図 1.3）．

3

第 1 章 序論

���

������

�����

	
�

����	�

��

�����

���

図 1.3 BIM/CIMにおける情報共有のあるべき姿

1.2 目的
前節で示した，“BIM/CIMにおける情報共有のあるべき姿”を実現するためのシステム（以下，

BIM/CIM情報共有システムとする）の構築には，3次元グラフィックス，ネットワーク，データ
ベース等に関連した様々な技術が必要になるが，それらは各分野で十分に研究，実用化されてお
り，既存技術を組み合わせることにより BIM/CIM情報共有システムを実現することは，十分可
能であると考えられる．
しかしながら，共有対象となる建築物，土木構造物のプロダクトモデルには，ライフサイクル全
般で発生する膨大な量の情報が含まれることになるため，円滑な情報共有の実現には，巨大なプロ
ダクトモデルを効率良く取り扱う技術が必要になる．従って，BIM/CIM情報共有システムを実現
するためには，データマネジメント技術が最も重要であると考えた．
よって，本研究では，BIM/CIM情報共有システムを構築すること想定して，BIM/CIMで標準
的に用いられている IFC (Industry Foundation Classes) [5] と呼ばれるスキーマ*3で記述された
プロダクトモデル（以下，IFCプロダクトモデルとする）の格納に適切なデータベースとデータ構
造を明らかにすること，つまり，IFCプロダクトモデルとデータベースの適合性を明らかにするこ
とを主な目的とし，さらに，データベースに格納された IFCプロダクトモデルに対する，部分抽
出等のデータマネジメント手法を開発することも目的とする．

*3 モデルが取り得るデータ構造や，属性のデータ型や制約を定義したもの．

4

1.3 既往の研究

1.3 既往の研究
本研究に関連する既往の研究，または既往のシステムを挙げ，本研究の位置付けについて述べる．

1.3.1 IFCプロダクトモデルの共有に関する研究

前述したように，プロダクトモデルをネットワーク上で共有することは，BIM/CIMにおける作
業を著しく効率化すると考えられているため，IFCプロダクトモデルの共有に関する研究が，様々
な研究者によって行なわれている．
Farajらは，WISPERというシステムを開発するにあたり，IFCプロダクトモデルをObjectStore

[6]という商用オブジェクト指向 DBMS*4 (DataBase Management System)に格納している．そ
のため，IFCプロダクトモデルをオブジェクト指向プログラミング言語である Java言語によりオ
ブジェクト化したものを，データ変換せずに，そのまま DBMSに格納することが可能となってい
る [7]．また，足達は IFC Model Serverの開発において，IFCスキーマをデータベーススキーマ
に自動変換し，システム開発作業を効率化する手法を確立している [8]．これにより，リレーショ
ナル DBMSと XML DBMSの両方式が利用可能なシステムを実現している．これらは，IFCの
初期（2000年頃）の試みであるため，システム化自体を主目的としており，システムの性能やデー
タマネジメント技術に関してはそれほど着目していない．
近年では，Das らが Social BIMCloud [9] を，Beetz らが BIM Server [10] を開発している．

Social BIMCloudは Apache Cassandra [11]というカラム指向型 DBMSが使われており，また，
BIM Serverは Oracle Berkley DB [12]というキー・バリューストア DBMSが採用されている．
どちらも，NoSQLに分類される比較的単純なデータモデルを採用する DBMSであり，複雑なデー
タ構造を有する IFC プロダクトモデルを格納するため，内部のデータ構造に工夫を施している．
Das らは，Social BIMCloud で NoSQL DBMS を採用した理由として，リレーショナルデータ
ベースと異なり，格納データの構造を動的に変更可能である，スキーマレスなデータベースである
ことを挙げており，IFC プロダクトモデルの共有において，リレーショナルデータベースよりも
NoSQLの方にメリットが大きいことを示唆しているが，複数のデータベース方式の比較検討を実
施しているわけではない．

1.3.2 IFCプロダクトモデルのデータマネジメント技術に関する研究

Won らは IFC プロダクトモデルから必要な部分のみを抽出するアルゴリズムを考案してい
る [13]．また，Arthaudらは 2つのプロダクトモデルを比較し，各要素の変更，削除，追加，移
動，移動かつ変更を検出することに成功している [14]．しかしながら，これら研究は，ファイル

*4 本論では，実際に動作するソフトウェアを指す場合は DBMS (DataBase Management System)，データベース
方式や概念を指す場合はデータベースと記述する．

5

第 1 章 序論

ベースの IFCプロダクトモデルを対象としており，DBMSに格納されたモデルには適用しづらい．
BIM/CIM情報共有システムの実現には，IFCプロダクトモデルを DBMSに格納する必要がある
ため，DBMSに格納された状態で適用可能な，部分抽出や差分抽出といったデータマネジメント
技術を考案する必要がある．

1.3.3 NoSQLデータベースに関する研究

NoSQLデータベースに関しては様々な研究が行なわれているが，本論におけるデータベースの
利用目的はプロダクトモデルの格納であるため，NoSQLデータベースが取り扱うデータに着目し
て既往の研究や事例を整理する．
川谷らは，ドキュメント指向 DBMSであるMongoDB [15]を利用して，センサデータの蓄積を
実現している [16]．また，桑野は，株式会社サイバーエージェントが運営しているWebサービス
であるビグライフ*5でMongoDB を用いており，扱うデータの単位が大き過ぎないこと，読み込み
に対して書き込みが少ないこと，といった MongoDBが得意とするユースケースを明らかにして
いる [17]．
また，ソーシャルネットワークサービスである LinkedIn*6では，ユーザ同士の関係を保持，分析
するためにグラフ DBMSである Neo4j [18]が利用されている [19, 20]．
これらから，NoSQLデータベースは，比較的小さな構造のデータ（数個～多くとも数 100個程
度のインスタンスからなるデータ）を大量（数 100万～数億個）に処理するケースで利用されてい
ることが分かる．実施されている研究もそのようなケースを想定したものが多く，本研究が対象と
するプロダクトモデルのように，大きな構造のデータ（数 10万以上のインスタンスからなるデー
タ）を対象とした研究は見当たらない．

1.3.4 本研究の位置付け

前述したように，IFCプロダクトモデルの共有に関する研究では，リレーショナルデータベース
以外の様々な DBMSを使ったシステムが提案されている．BIM/CIMに関係のない一般的なシス
テム開発において，リレーショナル DBMSが採用される割合が大きいことを考えると，多くの研
究者が，IFCプロダクトモデルにリレーショナル DBMSは向いていない，と考えていると想像で
きるが，NoSQLを含めた様々なデータベース方式を比較検討した研究は見当たらない．
現時点において，NoSQLデータベースが利用されるケースは，前項で示したような，「小規模な
データを大量に処理する」ケースがほとんどであり，本論が目的としている， 建築物や土木構造
物等の大きな構造のデータを少量（数千～数万程度）処理するケースにおける研究は不十分である
と言える．
また，データマネジメント技術に関する研究では，ファイルベース，またはオンメモリ状態にお

*5 https://life.pigg.ameba.jp/

*6 https://www.linkedin.com/

6

1.4 本論文の構成

ける手法が論じられているに留まっており，DBMSに格納した状態でのデータマネジメント手法
は十分に研究されていない状況である．
よって，“IFCプロダクトモデルとデータベースの適合性を明らかにする”，という本研究の主目
的が達せられたとすれば，BIM/CIM情報共有システムにおけるデータベースレイヤーの構築手法
に一定の指針ができることになる．さらに，IFCプロダクトモデルを DBMSに格納した状態での
データマネジメント技術を研究し，部分抽出等のアルゴリズムを開発することにより，BIM/CIM

情報共有システムの機能面における利便性や処理性能を向上させることが可能になる．

1.4 本論文の構成
本論文は，図 1.4に示す通り，全 7章で構成されている．
第 1章では，本論文の研究背景と研究目的，既往の研究に対する位置付けについて述べた．
第 2章では，BIM/CIMで標準的に用いられている IFCスキーマと IFCスキーマによって記述
された IFCプロダクトモデルについて述べ，IFCプロダクトモデルのデータ構造の特徴を明らか
にする．
第 3章では，コンピューティングシステム開発におけるリレーショナルデータベース全盛の状況
から，他方式のデータベースである，XMLデータベースや NoSQLデータベースが開発された歴
史的経緯を示す．その後，各種データベースとそのデータモデルについて説明し，リレーショナル
データベースと他方式データベースとを対比することで，それぞれのデータベースの特徴を明らか
にする．
第 4章では，IFCプロダクトモデルを，第 3章で説明した主要なデータモデルに変換する手法を
考案する．さらに，実験を通して IFCプロダクトモデルを格納するのに適したデータベース方式
を明らかにする．
第 5章では，IFCプロダクトモデルの管理に，NoSQLの一種であるグラフデータベースを利用
した場合のデータマネジメント手法，特に部分抽出手法について論じる．さらに，グラフ DBMS

に IFC プロダクトモデルを格納し，実際に部分抽出処理が可能であることを検証する．
第 6章では，グラフデータベースを用いた BIM/CIM情報共有システムを提案し，システムの
開発コスト，メンテナンス性について考察する．
第 7章で，本研究の結論と今後の課題について述べる．

7

第 1 章 序論

�1� ��

� ��
� �	
�
��
�
� ������

�2� IFC�������������

�IFC������ !"
�IFC�����#$
�IFC��������
�CIM%&'(IFC����

�5�)*+��,-��%.(
��������/01234�56

�/01234�56

�78

�9:

�;�<

�6�)*+DBMS=>?@
BIM/CIMABCDE�FG�HI

�ABCDE�FG=JK�L@BIM/CIM�M
�N��%OP(7Q

�;�<

�7� RS

�T�

�UV�WX�YZ

�4� [\��,-��%.(
��������]^34�56

���,���_`34

�ab

�9:

�;�<

�3� IFC�������,-��

�cd�Eef���,-��

���,-��56�gh

�icd�Eef�j��,-��

図 1.4 本論文の構成
8

1.5 表記法

1.5 表記法
本論文では，IFCスキーマや IFCプロダクトモデルの図を UML (Unified Modeling Language)

[21] で表記することにする．UML には様々な図 (Diagram) が用意されているが，本論文で使用
するのは，クラス図 (Class Diagram) とオブジェクト図 (Object Diagram) である．それぞれの
表記法を，本論文内で使用するものに限って，図 1.5，図 1.6に示す [22]．

�����

<<���������	
>>

<<��������	
>> �� : ���

�����

������

���

���

���

図 1.5 UMLクラス図の表記法

�� = �

������� : �	
��
�
����������

���

図 1.6 UMLオブジェクト図の表記法

9

参考文献

[1] 矢吹 信喜: CIM入門, 理工図書, 2016

[2] 国土交通省: CIMの概要, http://www.mlit.go.jp/tec/it/pdf/cimnogaiyou.pdf (参照
2017/6/1)

[3] BIM Workfing Party: A report for the Government Construction Client Group, 2011,

http://www.bimtaskgroup.org/wp-content/uploads/2012/03/

BIS-BIM-strategy-Report.pdf (参照 2007/6/1).

[4] 矢吹 信喜: CIM入門, 理工図書, pp.181–183, 2016.

[5] buildingSMART International: Industry Foundation Classes IFC4 Official Release, 2013,

http://www.buildingsmart-tech.org/ifc/IFC4/final/html/ (参照 2017/6/1).

[6] Ignite Technologies: ObjectStore R⃝standard edition the database behind the

world’s most scalable applications, https://www.ignitetech.com/solutions/

information-technology/objectstore/ (参照 2017/6/1).

[7] I. Faraj, M. Alshawi, G. Aouad, T. Child, J. Underwood: An industry foundation classes

Web-based collaborative construction computer environment: WISPER, Automation in

Construction 10, pp.79–99, 2000.

[8] Yoshinobu Adachi, Outline of IFC Model Server Development Project, VTTTEC-ADA,

2001.

[9] Moumita Das, Jack CP Cheng, Srinath S Kumar: Social BIMCloud: a distributed cloud-

based BIM platform for object-based lifecycle information exchange, 2015.

[10] Jakob Beetz, Léon van Berlo, Ruben de Laat, Pim van den Helm: Bimserver.org ‒ an

Open Source IFC model server, Proceedings of the CIB W78 2010: 27 th International

Conference, 2010.

[11] Apache Software Foundation: What is Cassandra?, http://cassandra.apache.org (参
照 2017/6/1).

[12] Oracle: Oracle Berkley DB概要,

http://www.oracle.com/jp/database/berkeley-db/overview/index.html (参 照
2017/6/1).

[13] Jongsung Won, Ghang Lee: Algorithm for Efficiently Extracting IFC Building Elements

10

from an IFC Building Model, 2011.

[14] G. Arthaud, J. C. Lombardo: Automatic Semantic Comparison of STEP Product Models,

Innovations in Design & Decision support systems in Architecture and Urban Planning,

pp.447–463, 2006.

[15] MongoDB, Inc.: What is MongoDB?, https://www.mongodb.com/what-is-mongodb (参
照 2017/6/1).

[16] 川谷卓哉, 伊東栄典: プライベートクラウドを利用したセンサデータ蓄積基盤の試作, 情報処
理学会研究報告, 2014.

[17] 桑野章弘: CyberAgent における MongoDB, MongoDB Tokyo 2013, 2013, https:

//thinkit.co.jp/story/2013/12/27/4744?page=0%2C1 (参照 2017/6/28).

[18] Neo Technology, Inc.: Neo4j: The World’s Leading Graph Database,

https://neo4j.com/product/ (参照 2017/6/1).

[19] Neo Technology, Inc: Exploring LinkedIn in Neo4j, 2013, https://neo4j.com/blog/

exploring-linkedin-in-neo4j/ (参照 2017/6/28).

[20] Neo Technology, Inc: Neo4j Decreases Development Time-to-

Market for LinkedIn’s Chitu App, 2016, https://neo4j.com/news/

neo4j-decreases-development-time-market-linkedins-chitu-app/

(参照 2017/6/28).

[21] Object Management Group, 西原裕善（訳）: UML2.0仕様書 2.1対応, オーム社, 2006.

[22] Martin Fowler, 羽生田栄一（監訳）: UMLモデリングのエッセンス 第 3 版, 翔泳社, 2006.

11

第 2章

IFCスキーマとプロダクトモデル

2.1 本章の概要
第 1章において，BIM/CIMの当面の目標は，BIM/CIM情報共有システムを構築し，多数の関
係者間における情報共有を実現することである，と述べた．BIM/CIMで標準的に用いられている
IFCスキーマは，オブジェクト指向分析設計 (OOAD: Object-Oriented Analysis and Design) 手
法に基いて設計されていると考えられるが，オブジェクト指向分析設計が一般的に適用され，成果
が上がっている事例（主に，ソフトウェア開発や，企業における業務分析）とは多くの相違がある．
本章では，IFCスキーマ開発の経緯や特徴を述べ，さらに，IFCスキーマによって記述されたプ
ロダクトモデルの具体例を示す．それらにより，BIM/CIM情報共有システムが備えるべき機能と
IFC プロダクトモデルを対象とするデータ処理の問題点を明確にする．

2.2 IFCスキーマの成り立ち
前章で述べたように，BIM/CIM では建築物の 3 次元プロダクトモデルを IFC スキーマ
を用いて記述するのが一般的である．IFC は，国際的な標準化団体である buildingSMART

International [1] の活動により，2013 年に国際標準 ISO16739 [2] になっており，多くの 3 次元
CADが Part21ファイルフォーマット [3]による IFCプロダクトモデルの入出力をサポートして
いる．Part21 ファイルフォーマットは IFC プロダクトモデルを完全に記述できるため，IFC ス
キーマでプロダクトモデルを記述することにより，複数のシステム（現状では主に 3次元 CAD）
間でプロダクトモデルを交換することが可能となっている．
IFCスキーマは，図 2.1に示すように，順次更新されながら開発が進められたため，現時点では
複数の異なるバージョンのスキーマが存在している．実用化以前のバージョンが使われることはほ
ぼないが，デファクトスタンダードである IFC2x3 [4]，最新バージョンである IFC4 [5]でモデル
化されたプロダクトモデルは，両者共に流通している．さらに，今後，新たなバージョンが完成す
れば，そのバージョンでモデル化されたプロダクトモデルも流通することになるはずである．
図 2.2に，2016年に buildingSMART Standards Summit [6]で公表された IFCの将来構想を

13

第 2 章 IFCスキーマとプロダクトモデル

IFC1.0 IFC1.5 IFC2.0 IFC2x IFC2x2 IFC2x3 IFC4 IFC5

1997 1998 1999 2000 2003 2007 2013

������ �� ��	
�	 �
��� ����

図 2.1 IFC開発の歴史

IFC4 / ISO 16739

IFC Alignment 1.0 / 1.1

IFC Overall Architecture

so
u

n
d

fo

u
n

d
at

io
n

s

IFC
Rail

IFC
Road

IFC
Bridge

 Common Definitions WP 1 WP 1 WP 1

WP 2

WP 3

WP 2

WP 3

WP 2

WP 3

co
m

m
o

n

d
ef

in
it

io
n

s
Sp

e
ci

fi
c

ex
te

n
si

o
n

s

IFC5

IFC4.2

IFC4.1

図 2.2 IFCの将来構想（出典: InfraRoom Resolutions bSI autumn summit 2016 Jeju）

示す．IFC4では，主にビルや住居等の建築物をモデリングの対象としていたが，今後開発される
バージョンでは線形情報を含める予定となっており，さらに将来は，鉄道，道路，橋梁といった土
木構造物も対象に含まれる予定となっている．

2.3 IFCスキーマの特徴
2.3.1 オブジェクト指向

IFCスキーマは，汎用的なデータ仕様記述言語 (Formal Data Specification Language)である
EXPRESS [7,8]により記述されている．EXPRESS言語では，記述対象とする物体や概念をエン
ティティと呼んでおり，各エンティティ毎に属性を定義できる．エンティティが実体化し，属性に
具体的な値が与えられたものをインスタンスと言う．また，エンティティ間に継承*1関係を定義す

*1 継承先のエンティティが継承元の定義を引き継ぐこと．

14

2.3 IFCスキーマの特徴

ることや，制約*2を定義することが可能である．IFCスキーマでは，BIMの対象である建築物を
構成する壁，ドア等のあらゆる物の抽象概念がクラスとして定義されている。なお，このエンティ
ティという用語であるが，OOADにおけるクラスと同概念であり，クラスの方が一般的によく使
われているため，以下では，クラスと表記することにする．
オブジェクト指向は，オブジェクト指向プログラミング言語 (OOPL: Object Oriented Pro-

gramming Language) やオブジェクト指向データベース等様々に応用されているが，これらは，同
様にオブジェクト指向に基づいている IFCスキーマと親和性が高いため，BIM/CIM情報共有シ
ステムを構築する際に，これらを用いれば，比較的容易にシステム化できる可能性が高いと考えら
れる．しかしながら，EXPRESSとこれら言語やデータベースには，データ型や機能に相違がある
ため，その点に留意が必要になる．
例えば，オブジェクト指向モデリングでは，モデル化対象の静的な性質（属性）と動的な性質

（振る舞い）の両面から，モデルを定義していく．しかしながら，EXPRESS にはモデルの振る
舞いを定義する機能が存在しない*3．また，表 2.1–2.3に示すように，継承の方法，属性の宣言方
法，データ型に一般的な OOPLと相違がある．例えば，広く使われている OOPLである Java言
語 [10]を例に取って比較すると，以下の相違が見られる．

1. Javaでは，上位型であることを明示的に宣言する，つまり，自クラスの下位型を明示的に制
限することはできない．

2. Javaでは，表 2.2の意味を付与して，属性を宣言することはできない．
3. Javaでは，NUMBER, LOGICAL, DEFINED, SELECTに相当するデータ型は標準では
提供されていない．

しかしながら，システム開発を想定した場合は 1 が問題になることはない．なぜなら，IFC ス
キーマに新たにクラスを定義することはないからである．また，2と 3については，Javaの言語仕
様には存在しないが，プログラムコードを記述することによって同等の機能を実現することは可能
である．前述したように，EXPRESSはクラスの振る舞いを定義することができないため，OOPL

では必要とされないような，非常に詳細な属性の定義方法，及びデータ型が用意されていると考え
られる．

表 2.1 EXPRESSにおけるクラスの宣言子

����������	
�

�����
��� ���������������������

��!
��� ��������"������������

#!�
�#$
%�����
���

�������������&'()*+,-.��

��������

*2 インスタンスが取り得る状態を制限するための規則．
*3 過去には，OOPLにおけるメソッドに相当する機能を拡張する計画 [9] があったようだが，実現していない．

15

第 2 章 IFCスキーマとプロダクトモデル

表 2.2 EXPRESSにおける属性の宣言子

����������	
�

���
�� �������������������

������ �� �!"#$#$%&�'()���*+, ��

-�.
-�/0 ����12�3
45��

6�
76� ����8
45��

9:��� ���;<=*>? ��

表 2.3 EXPRESSにおけるデータ型

��

������	
��
 ������

��������
 ��

�����������
 ��

�����������
 ���

������ ��!��
 "#$#%&'()*+

,-.��
 ����
 "#/01$

23��
����4
 567�

8�������4
 ؅ଅขࠉ�ฅค����؉��

9:7������
 ;<=>?@AB:CD�EF'GH

IJJK��
��
 JLMNO*0PQRS�*T(U(VK

VK�����
 JLMNO*U(PQRS�*T(U(VK

WXYZYZ�������4
 [\]^_`=>?abc0�

ab��d�e���d
 fgh-i�'abj^klm�]cTn0=abc0�

�o�����	����� �
 pq'PQRS�*0V/?^abjrm�

st������!�
 L�'pqRDh-i�'abj'u^abjrm�

�vw����'h-i�

xy

h-i�

VKz

h-i�

pqRD

h-i�

{|

h-i�

2.3.2 関係性

IFCスキーマではインスタンス同士の関係性を示すためのクラスが多数定義されており，対象物
の構成要素同士の関係性を詳細に記述することが可能となっている．なお，各クラス名は “Ifc”で
始まり，関係 (Relationship) を示すクラスの場合はその次に “Rel”が付けられ，その次に関係が
記される．また，単語間にスペースは設けず，各単語の頭文字を大文字にする．また，関連元を示
す属性名は “Relating”で始まり，関連先を示す属性名は “Related”で始まる命名規則となってい
る．それらクラスの構成を UML [11]クラス図として記述したものを図 2.3に示す．また，例とし
て，ある建築物の 1階フロア (IfcBuildingStorey) の壁 (IfcWall)と柱 (IfcColumn)がコンクリー
トでできている様子を図 2.4に示す．
図 2.4 のように関連クラスを介在させて，インスタンス間の関係性を詳細に表現する手法は，

16

2.3 IFCスキーマの特徴

����������	
����

�������
������

�������������

���������	�
����

������������
�

�������������

���������

���	���	����

���������

���	���	�

���������

���	�	���	�

���������

���	��	��

���������

���	��	����

���������

���	��	����

�����������
��������

���������

���	��	���������

����������������	�������

���������

�������

���������	�
���������
�
���
	�

���������	�
�����	������

���������	�
�����
����

���������	�
��������
��!����

���������	�
��������	"��

���������	�
�����	�����
��

���������	�
����#����
��

���������	�
������	�
����	����
��

�������	������$�������

�������	�������	���	$������

�������	�������	���

�������	�������������������
"
�

�������	����������������$������

�������	����������������#�����

�������	���
���������
�����������

�������	"���%��
$�������

�������	"���������

������&
���$������

������&�	'�	���	�$�������

��������������
	���(�
�������

��������	�����$������

����������������������
�����������

��������(�����

���������"
���%�
��
�
�

�����������%	�����

������!	
��$������

�������

��
����

������)����

���������
���% ��	����
��

���������
���% � ��

�������	����������$�������

�������	������*
������
+
�
$�������

�������	������*
��$������
�
�

�������"���
�����	����
��

図 2.3 関係性を表わすクラスの構成（UMLクラス図）

17

第 2 章 IFCスキーマとプロダクトモデル

: IfcWall

: IfcRelAssociatesMaterial

Name = ������

: IfcMaterial

RelatedObjects

RelatingMaterial

: IfcColumn

RelatedObjects

Name = 1�

: IfcBuildingStorey

: IfcRelContainedInSpatialStructure

RelatingStructure

RelatedElements RelatedElements

図 2.4 IFCにおける要素間の関係性の表現（UMLオブジェクト図）

OOADにおいても，しばしば用いられる一般的な手法であるが，図 2.4の例では，単に，壁と柱に
材料が紐付いているということを表現しているに過ぎず，関連クラスを設けてモデルを複雑にする
ほどのメリットがないように見える（その他の関係性を示すクラスにおいても同様である）．IFC

スキーマのリファレンス [5]には，その辺の設計意図が記されていないが，プロダクトモデルをマ
シンリーダブルにすることを意図していると考えられる．
つまり，関連クラス（図 2.4における IfcRelContainedInSpatialStructureと IfcRelAssociates-

Material）により明示しなくとも，人間は，フロアと部材，部材と材料の関係性が異なることを理
解できるが，コンピュータがそれらの違いを認識することは困難である．関連クラスを介在させる
ことで，プロダクトモデルが複雑になるというデメリットは発生するが，プロダクトモデル内の関
係性をソフトウェアが自動的に認識し，処理させることが容易になる．

2.3.3 拡張性

IFCスキーマは，ビルや住居等の建築物の 3次元プロダクトモデルを，相互に交換するために，
多くの種類の建築物を表現できるように汎用的に設計されている．つまり，特定の建築物が表現で
きれば良いだけでなく，あらゆる種類の構造，部材，材料を表現することが求められる．しかしな
がら，現実的には不可能であるため，IFCスキーマに拡張性を備えることで，この問題を解決して
いる．以下に主な拡張性の仕組みを説明する．

18

2.3 IFCスキーマの特徴

(1) プロパティセット
IfcPropertySet クラスを用いると，クラス，またはインスタンスが保持できる情報の種類を動
的に拡張できる．モデル化の際に，IFCスキーマで定義されている属性だけでは不足する場合は，
IfcPropertySetを用いてプロパティを追加する．このようにして拡張したプロパティのうち，関連
するものを一まとめにしてプロパティセットと呼んでいる*4．
IfcPropertySet クラスとそれに関連するクラスを図 2.5 に示す*5．IFC スキーマには様々な種
類のプロパティが定義されているが，図 2.5 では，代表的な IfcPropertySingleValue, IfcProp-

ertyListValue, IfcComplexPropertyのみ図示している．IfcPropertySingleValueは 1つの値のみ
を保持できるプロパティで，IfcPropertyListValueは値の順序付けられた集合を保持できるプロパ
ティである．IfcComplexPropertyは，これらプロパティの集合を保持することができるため，ツ
リー構造のような複雑な構造の情報も保持することが可能である．
実際にプロパティセットを用いて拡張する方法は 2種類あり，ある 1つのクラスを元に生成され
たすべてのインスタンスが，同じ値のプロパティを保持する場合は，IfcTypeObjectに関連付いた
プロパティセットが IfcRelDefinedByTypeで IfcObjectに関係付ける．一方，インスタンス毎に異
なるプロパティ値を保持する場合は，IfcRelDefinedByPropertiesで IfcObjectと IfcPropertySet

を関係付ける．この 2種類の方法を併用することも可能である．なお，IFC4では 408種類のプロ
パティセットがすでに定義されており，これらを用いることも，新たに定義して用いることもで
きる．

(2) プロキシクラス
モデリングの際に，IFC スキーマで定義されていない概念や要素が必要になったとする．IFC

スキーマ自体を拡張することは可能であるが，周辺のアプリケーションを対応させるためには標
準化が必要であり，それには非常に長い時間と多大な労力が必要になる．そこで，IFC スキーマ
には，そのような未定義の概念を代替するクラスが用意されている．それが，IfcProxy クラスと
IfcBuildingElementProxyクラスである（図 2.6）．クラス図からも分かる通り，これらクラスには
最低限の属性しか定義されていない．他に必要な属性が存在する場合は，前述したプロパティセッ
トを用いて定義することになる．
IfcBuildingElementProxyは，IFCスキーマに定義されていない建築要素（例えば壁やドア）が
必要になったときに用いられる．建築要素以外の概念が必要になった場合は，IfcProxyクラスを用
いることになるが，IFC4では DEPRECATION*6扱いとなっているため，事実上対処できない．

*4 本論では，EXPRESSで定義した静的な性質のことを属性 (attribute)，プロパティセットの仕組みを用いて動的に
拡張した性質のことをプロパティと区別して呼ぶ．格納できる情報に大きな差異はない．

*5 IFC のクラスを UML で記述する際は，集合体データ型の LIST を ordered 制約（要素が順序付けられているの
意）で，SET を unique 制約（要素が一意であるの意）で記述した．また，属性の宣言子は UML で直接記述でき
ないため，宣言子名をそのまま用い，ステレオタイプとして記述した．

*6 “将来廃止する予定のクラスであり，互換性を保つ目的等の理由で残しているに過ぎないため，極力使用するべきで
はない”の意．

19

第 2 章 IFCスキーマとプロダクトモデル

その場合は既存クラスから類似概念のクラスを選んで利用することになると考えられる．

2.4 IFCプロダクトモデル
前節で示した通り，IFC スキーマでは，プロダクトモデルを構成する要素（インスタンス）
同士の間に，それらの関係性を表現するインスタンスが介在する設計となっている。また，
IfcBuildingElementProxyクラスとプロパティセットを用いて未定義の要素を表現する場合は，定
義済の要素を表現するのであれば 1個のインスタンスで済む所を，図 2.5からも分かる通り，多数
のインスタンスを用いる必要が生じる．そのため，IFCプロダクトモデルは，深い階層構造を有し
た複雑なモデルになると考えられる。

IfcPropertySet

IfcPropertySetDefinition

<<OPTIONAL>> Description : IfcText
Name : IfcIdentifier

IfcPropertyHasProperties

1..*
{unique}

IfcSimpleProperty

UsageName : IfcIdentifier

IfcComplexProperty

<<OPTIONAL>> Unit : IfcUnit
<<OPTIONAL>> NominalValue : IfcValue

IfcPropertySingleValue

Unit : IfcUnit

IfcPropertyListValue

HasProperties

1..* {unique}

IfcRelDefinesByProperties

IfcRelDefinesByType

<<OPTIONAL>> ApplicableOccurrence : IfcIdentifier

IfcTypeObject

HasPropertySets

1..*

{unique}
<<OPTIONAL>>

IfcValue
ListValues

1..*
{ordered}

IfcObject

RelatingType

RelatedObjects 1..*

{unique}

RelatingPropertyDefinition

IfcObjectDefinition
RelatedObjects

図 2.5 IfcPropertySetクラスとその関連クラス（UMLクラス図）

20

2.4 IFCプロダクトモデル

Tag : IfcLabel

IfcProxy

Representation : IfcProductRepresentation
ObjectPlacement : IfcObjectPlacement

IfcProduct

NOTDEFINED
PROJECT
GROUP
ACTOR
RESOURCE
CONTROL
PROCESS
PRODUCT

<<enum>>
IfcObjectTypeEnum

ProxyType

ObjetType : IfcLabel

IfcObject

IfcBuildingElementProxy

IfcBuildingElement

NOTDEFINED
USERDEFINED
PROVISIONFORVOID
PARTIAL
ELEMENT
COMPLEX

<<enum>>
IfcBuildingElementProxyTypeEnum

PredefinedType

図 2.6 プロキシクラスと関連クラス（UMLクラス図）

本節では，IFCプロダクトモデルの一部を例示し，IFCプロダクトモデルの複雑さを示す．

2.4.1 例 1: 5階建てビルディング

5 階建てビルディングの IFC プロダクトモデルを UML オブジェクト図で記述したモデルの一
部を図 2.7に示す．網掛けの箇所が前述した関係性を表現するインスタンスである．この図から，
ビルディング全体の空間 (IfcBuilding) が複数の各階毎の空間 (IfcBuilingStorey) に分割されてお
り，各階の空間には物理的な構成要素である，階段 (IfcStair)，壁 (IfcWall)，ドア (IfcDoor)が含
まれていることが分かる．これらは，1 対多の関係性を示す IfcRelAggregates，建築物の空間と
そこに含まれる物理的な要素との関係性を示す IfcRelContainedSpatialStructureを用いて関連付
けられている．また，ドア等の物理要素は，その材料と IfcAssociatedMaterialを介して関連して
いる．
この例では，最上位の要素である IfcProjectから末端の要素である IfcCartesianPoint（要素の
座標値を示す）までの階層は 15階層であり，その中に 4つの IfcRelationship派生インスタンスを
含んでいる．これは，空間要素と物理要素が関連するという，プロダクトモデルが表現するべき本
質的な構造のみを表わすのであれば 11階層で済むが，関連クラスにより要素間の関係性を明示す
るという IFCスキーマの設計思想により，15階層に増えたということを意味している．

2.4.2 例 2: 橋台

同様に，土木構造物である橋梁の下部構造の一部である橋台をモデリングする．図 2.8に示すよ
うに，橋台は，ウイング，パラペット、堅壁等、複数の部材により構成されているが，これらの構

21

第 2 章 IFCスキーマとプロダクトモデル

: IfcBuilding

: IfcProject

: IfcRelAggregates

: IfcSite

RelatingObject

RelatedObjects

: IfcRelAggregates

RelatingObject

RelatedObjects

: IfcRelAggregates

RelatingObject

: IfcBuildingStorey

: IfcStair

: IfcRelAssociatesMaterial

: IfcRelContainedInSpatialStructure

RelatedObjects

RelatingStructure

RelatedElements

RelatedObjects

: IfcMaterial

RelatingMaterial

: IfcBuildingStorey

: IfcWall

: IfcRelContainedInSpatialStructure

RelatingStructure

RelatedElements

RelatedObjects

: IfcDoor

: IfcRelAssociatesMaterial

RelatedObjects

: IfcMaterial

RelatingMaterial

RelatedObjects

: IfcProductDefinitionShape

: IfcExtrudedAreaSolid

: IfcShapeRepresentation

Representations

Items

: IfcArbitraryClosedProfileDef

: IfcPolyline

: IfcCartesianPoint

SweptArea

OuterCurve

: IfcCartesianPoint : IfcCartesianPoint : IfcCartesianPoint

Points PointsPoints Points

Representation

��������	
�	

: IfcCartesianPoint

Points

図 2.7 5F建てビルディングのプロダクトモデルの一部（UMLオブジェクト図）

22

2.4 IFCプロダクトモデル

図 2.8 橋台の構造

造部材は，フーチング (IfcFooting)と杭 (IfcPile) を除いて，建築物を対象とする IFCスキーマに
は定義されていない．そのため，前述した代替用クラスである IfcBuildingElementProxyを用い
てモデリングすることになる．また，橋梁全体，および橋台全体は空間要素としてモデリングして
いるが，当然，IFCスキーマにはこれらを表わすクラスが存在しないため，IfcBuilding（ビル全体
の空間を表す）と IfcBuildingStorey（階の空間を表わす）で代替している．これは，2.3.3項で述
べたように，IfcBuildingElementProxyを空間要素として使えないためである．さらに，フーチン
グの配筋情報をプロパティセットにより表現している．
このようにしてモデリングしたプロダクトモデルの一部を図 2.9に示す．網掛け箇所が，プロパ
ティセットに関係するインスタンスである．図 2.9ではフーチングのみにプロパティを関連付けて
いるが，実際は他の構造部材にも配筋情報が必要であり，プロダクトモデルを構成するインスタン
スの多数を占めることになる．
これは，IFC スキーマの拡張のための機能の 1 つであるプロパティセットを用いると，プロパ
ティ 1個につきインスタンスが 1個必要になるため，プロダクトモデルが複雑になることを示して
いる．プロパティセットは，この例で示したような，IFCが元来対象としていない物体をモデリン
グする際に用いられるだけでなく，既存概念（既存クラス）の拡張にも用いられる．現在は，IFC

スキーマは形状表現のために用いられる場合がほとんどであるため，既存クラスを拡張するという
ケースはそれほど多くない．しかし，今後，BIM/CIMが成熟していくに連れ，IFCプロダクトモ
デルが様々に応用され，既存クラスに予め備わった属性だけでは不足し，プロパティセットを用い
た拡張が多くなされるようになるとすれば，さらにプロダクトモデルが複雑になると考えられる．

23

第 2 章 IFCスキーマとプロダクトモデル

: IfcFooting

: IfcPile

: IfcPile

Name = �����

: IfcBuildingElementProxy

: IfcPile

: IfcPile

Name = ����	

: IfcBuilding

Name = ��
��

: IfcBuildingElementProxy

Name = ��

: IfcBuildingElementProxy

Name = �����

: IfcBuildingElementProxy

Name = ��A1

: IfcBuildingStorey

: IfcRelAggregates

RelatedObjects

RelatingObject

: IfcRelContainedInSpatialStructure

RelatingStructure

RelatedElements

RelatedElements

RelatedElements

RelatedElements

RelatedElements

RelatedElements

RelatedElements

RelatedElements

RelatedElements

NominalValue = D25
Name = Description

: IfcPropertySingleValue

NominalValue = 80
Name = YDirectionUpperBarCount

: IfcPropertySingleValue

NominalValue = 80
Name = YDirectionLowerBarCount

: IfcPropertySingleValue

NominalValue = 100
Name = XDirectionUpperBarCount

: IfcPropertySingleValue

NominalValue = 100
Name = XDirectionLowerBarCount

: IfcPropertySingleValue

: IfcPropertySet

HasProperties HasProperties

HasProperties HasProperties

HasProperties

: IfcRelDefinesByProperties

RelatingPropertyDefinition

RelatedObjects

��������	
��
��
�

図 2.9 橋台のプロダクトモデルの一部（UMLオブジェクト図）

2.5 CIMにおける IFCスキーマ
前述した通り，IFC スキーマはビルや住居等の建築物をモデリングの対象として設計された，

BIM の実現を目的としたスキーマである．一方，CIMの実現を目的として，土木構造物を対象と
する標準化されたスキーマは存在していない．これが，CIMにおける土木構造物のモデル化作業
で大きな問題となっており，現状では，この問題には主に以下に示す 2つの手法で対処されている．

24

2.5 CIMにおける IFCスキーマ

2.5.1 土木構造物のモデリング手法

(1) IFCスキーマを用いた土木構造物のモデリング
一つは， 建築物を対象とする IFCスキーマをそのまま用いて，モデリングする手法である．こ
の場合は土木構造物特有の部材や概念は利用できないため，他の概念で代替する必要がある．橋
梁を例に取ると，IFC スキーマには橋脚や橋桁を表わすクラスは定義されていないため，IFC ス
キーマに定義されている既存のクラスである IfcWall（壁を表わす）や IfcSlab（梁を表わす）等
で代替してモデリングする．仮に，代替するための適当なクラスが存在しない場合は，前述した
IfcBuildingElementProxyクラスを用いてモデリングすることになる．
この手法は，プロダクトモデルを交換する際に，互いに同じ規則で入出力する必要があるため，
運用が難しくなるが，CAD等，IFCスキーマに対応した既存システムをそのまま利用可能である
というメリットがあり，特定の組織やプロジェクト等，限定された範囲内でプロダクトモデルを
交換できれば良い場合には有効である．この手法の代表的なものが，BrIM (Bridge Information

Modeling) [12]であり，橋梁を既存の IFCスキーマでモデリングする際の規則をまとめたもので
ある．

(2) IFC拡張スキーマを用いた土木構造物のモデリング
もう一つの手法は，既存の IFCスキーマに必要なクラスを追加し，拡張した新たなスキーマ（以
下では，IFC拡張スキーマと言う）を作成し，それを用いてモデリングする手法である．土木構造
物を対象として提案された IFC拡張スキーマのうち，主なものを以下に示す．

• 橋梁: IFC-Bridge [13]

• 道路: IFC-Road

• 鉄道: IFC-Rail

• シールドトンネル: IFC-Shield [14]

これらは，対象となる土木構造物を想定して設計された専用のスキーマであるため，建築物を対象
とする IFCスキーマをそのまま用いる手法に比べてモデリングしやすいメリットがあるが，標準
化，および周辺ソフトウェアの対応に時間がかかる．現に，builidngSMART Internationalが鋭
意努力しているものの，これらは，まだ標準化には至っていない．
また，道路の盛土，切土，および地形データを記述するための，LandXML [15]という基準が存
在するが，道路中心線，および横断面のモデリングに利用されているのみで，道路自体のモデリン
グには使われていない．また，名前が示す通り，XML (eXtensible Markup Language) 形式のス
キーマであり，IFCをベースとしていない．

25

第 2 章 IFCスキーマとプロダクトモデル

2.5.2 IFC拡張スキーマへの対応

本研究では，CIMも含めた，IFCプロダクトモデルとデータベースの適合性を明らかにするこ
とを主目的としているため，当然，IFC拡張スキーマについても考慮する必要がある．図 2.2 で示
した IFCの将来構想が実現し，建築物のスキーマと土木構造物のスキーマが IFC5として統合さ
れた結果，IFC5のみを考慮すれば良い状況になることが理想ではあるが，その実現にはまだ多く
の時間がかかると予想され，しばらくは，土木構造物用の IFC拡張スキーマが独立して存在する
状況が続くと考えられる．
よって，本研究では，研究対象を標準化された IFC4 スキーマに限定することはせず，前バー
ジョンである IFC2x3や，IFC拡張スキーマも含めたすべての IFCスキーマを研究対象とするこ
とにする．つまり，IFCスキーマのデータ構造の本質に近い部分に着目して研究を行なうというこ
とである．

2.6 本章のまとめ
本章では，IFCスキーマとプロダクトモデルを様々な角度から分析し，以下の特徴が存在するこ
とを示した．

• IFCスキーマ，および IFC拡張スキーマは，オブジェクト指向分析設計に基いて設計され
ており，IFCプロダクトモデルは，ツリー構造に近い複雑な階層を有する．
• IFCスキーマは，拡張性を考慮した設計とインスタンス間の関係性の表現を重視した設計に
より，さらに複雑な構造となる．
• BIM/CIMでは（特に CIMにおいて顕著である），IFC拡張スキーマや異なるバージョン
のスキーマ等，様々な種類のプロダクトモデルが流通する．
• BIM/CIMで用いる IFCプロダクトモデルは，対象となる建築物，土木構造物のライフサ
イクル全般に渡って，発生した情報を蓄積していくため，その情報量は膨大になる．

BIM/CIMにおいて，多数の関係者間での情報共有を実現するため，BIM/CIM情報共有システ
ムを構築することを考えると，IFCプロダクトモデルを DBMS (DataBase Managemet System)

に格納して管理する必要がある．前述したように，IFCプロダクトモデルは Part21というテキス
トフォーマットで完全に記述することができるが，ファイルベースの共有では，アクセス速度や，
排他制御等で問題が発生するからである．DBMSには様々な種類が存在するが，それぞれ対象と
するデータモデル（データ構造）が決まっており，性能はそのデータモデルに特化している．つま
り，システム化の際には，IFCプロダクトモデルのデータ構造に合わせて DBMSを選択する必要
がある．
つまり，BIM/CIM情報共有システムの構築の際には，上記の IFCプロダクトモデルの特徴に
合わせて DBMSを選択し，さらに，複数種類，かつ複数バージョンの IFCスキーマに対応したシ

26

2.6 本章のまとめ

ステムを開発する必要がある．

27

参考文献

[1] buildingSMART International: About buildingSMART, http://buildingsmart.org/

about/about-buildingsmart/ (参照 2017/6/1).

[2] ISO 16739:2013: Industry Foundation Classes (IFC) for data sharing in the construction

and facility management industries, 2013.

[3] ISO 10303-21:2002 : Industrial automation systems and integration – Product data rep-

resentation and exchange – Part 21: Implementation methods: Clear text encoding of

the exchange structure, 2002.

[4] buildingSMART International: Industry Foundation Classes IFC2x. Edition 3 Technical

Corrigendum 1, 2007, http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/

(参照 2017/6/1).

[5] buildingSMART International: Industry Foundation Classes IFC4 Official Release, 2013,

http://www.buildingsmart-tech.org/ifc/IFC4/final/html/ (参照 2017/6/1).

[6] buildingSMART International: Standards Summit-Jeju, Korea, 2016,

http://buildingsmart.org/event/standards-summit-jeju-korea/ (参照 2017/6/1).

[7] ISO 10303-11:2004: Industrial automation systems and integration – Product data rep-

resentation and exchange – Part 11: Description methods: The EXPRESS language

reference manual, 2004.

[8] JIS B 3700-11:2002: 産業オートメーションシステム及びその統合－製品データの表現及び交
換－第 11 部：記述法：EXPRESS言語，2002.

[9] 田中文基, 菊地慶仁: 形式的データ仕様記述言語 EXPRESS, JSPE-59-12, 1993.

[10] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley: The Java R⃝Language

Specification Java SE 8 Edition, 2015.

[11] Object Management Group, 西原裕善（訳）: UML2.0仕様書 2.1対応, オーム社, 2006.

[12] U.S.Department of Transportation Federal Highway Administration: Bridge Information

Model Standardization VOLUME I–III, 2016.

[13] E. Lebegue, B. Fies, J. Gual, G. Arthaud, T. Liebich, N. Yabuki: IFC-BRIDGE V3 Data

Model - IFC4 Edition R3, 2013.

[14] 矢吹信喜，東谷雄一朗，秋山実，河内康，宮亨：シールドトンネルのプロダクトモデルの開発

28

に関する基礎的研究，土木情報利用技術論文集，Vol.16，pp.261–268，2007.

[15] LandXML.org: Welcome Land Development Professionals!, http://www.landxml.org/

(参照 2017/6/1).

29

第 3章

IFCスキーマとデータベース

3.1 本章の概要
データベースとは，多数の情報を格納し，格納データの検索，追加，更新，削除といったデータ
操作の手段を提供するものである．現在では，様々な種類のデータベースが提案され，さらに多
数の DBMS製品が開発，実用化されている．通常は，データベースに格納できるデータの構造が
データベースの方式毎に定まっており，そのデータ構造をデータモデルと呼んでいる．データベー
スに情報を格納するには，格納対象となる情報をそのデータモデルに変換する必要があるが，デー
タベースに格納される情報には，様々な種類のものが存在するため，中には変換が困難であるもの
や，変換したとしても，検索等のデータ処理性能が著しく低下してしまう種類の情報も存在する．
あらゆる構造のデータを効率良く処理できる万能なデータベース方式は存在しないため，格納する
データの構造に合わせて，適切なデータベースを選択する必要がある．
本研究では，プロダクトモデルとデータベースの適合性を明らかにする過程で，様々な方式の
データベースを検討するため，本章でそれらデータベースの特徴，主にデータモデルに関する特徴
を整理しておく．また，本研究では BIM/CIM情報共有システムとして実際にシステム化するこ
とも想定しており，第 6 章でシステム化する際のシステム構成や開発コストについても論じるた
め，システム開発における問題点やデータベースの分散処理に関する特徴についても同様に整理
する．

3.2 リレーショナルデータベース
1970年に Coddによって提案された関係モデル [1]に基づいたデータベースであり，1980年代
から普及し始め，現在では様々な分野で広く用いられている．技術的に成熟しており信頼性が高
く，運用に必要なツールが揃っていることがその理由である．

31

第 3 章 IFCスキーマとデータベース

3.2.1 関係モデル

関係モデルでは，データを関係という表に似た構造で管理している．1つの関係には複数の属性
を含めることができる．各属性の値の集合が組であり，複数の関係に，和，差，交差，直積，選択，
射影，結合，商といった関係代数演算を施すことができる．概念図を図 3.1に示す．図 3.1では，
属性 1から属性mまでのm個の属性が定義された関係に，n個の組が格納されている様子を表
している．値m,nは，n番目の組の属性mの値を示す．
なお，関係モデルにおける関係，属性，組という用語は，データベース以外の分野でもよく用い
られる一般的な単語であり，混同を避けるためか，代わりにテーブル，カラム，レコードという用
語が用いられることも多い．本論においても，それにならって，テーブル，カラム，レコードを用
いることにする．

3.2.2 正規化

関係モデルでは，冗長性が少なくなるようにデータを正規形にして格納することが前提とされて
おり，データは複数のテーブルに分割されて格納される．正規形の種類は第 1–5正規形とボイス・
コッド正規形の 6種類が存在し，テーブルをこれら正規形にすることを正規化と言う [2]．
正規化が進むほど，データは複数のテーブルに分割されることになる．

3.2.3 リレーショナルデータベースを用いたシステム開発における問題点

本研究では，実際にシステム化することも想定しているため，リレーショナル DBMSを用いた
システム開発における問題点を以下に示す．

(1) 固定スキーマ
リレーショナルデータベースでは，格納するデータの構造を，データ型も含めて予め決めておく
必要がある．この格納データの構造をスキーマと言い，リレーショナルデータベースのスキーマの
ように，格納データの構造を動的に変更できないスキーマを，固定スキーマと言う．リレーショナ
ル DBMSにおいては，スキーマはテーブルの定義そのものである．図 3.2に，SQL [3]によるテー

�� (���) 1

�1, 1

...

�1, n

�1, 2

��2

�2, 1

...

�2, n

�2, 2

��m

�m, 1

...

�m, n

�m, 2

...

...

...

...

...
��	
��

�������

図 3.1 関係モデル概念図

32

3.2 リレーショナルデータベース

1 CREATE TABLE IfcProject(

2 GlobalId CHAR (22) NOT NULL ,

3 Name VARCHAR (255) NULL ,

4 Description VARCHAR (255) NULL ,

5 ObjectType VARCHAR (255) NULL ,

6 LongName VARCHAR (255) NULL ,

7 Phase VARCHAR (255) NULL ,

8 OwnerHistoryId INTEGER NULL ,

9 UnitAssignmentId INTEGER NULL

10)

図 3.2 SQLによるテーブル定義例

ブル定義例を示す．1行目でテーブル名，2–9行目でカラム毎に，カラム名，データ型，NULL値
を許容するかどうかを定義している．
このように，格納されるデータが予め決まっており，定義した形式以外のデータを格納すること
ができないため，システム化において以下のデメリットが存在すると考えられる．

1. 対象データの構造に変更があった場合は，必ずシステム改修が必要になる．
2. 多様な種類の構造のデータを対象とするシステムである場合は，システム構築費用が高額に
なる．

3. 対象データの構造が定まっていない，つまり，入力データが XML (eXtensible Markup

Language) のような構造の自由度が高い半構造データ [4]である場合は，システム化自体が
困難である．

第 2章で，IFCスキーマの複数のバージョンや，IFC拡張スキーマも含めた複数種類のスキー
マに対応しなくてはならないと述べた．さらに，IFCプロダクトモデルの構造は階層が深く，複雑
であるとも述べた．したがって，上に挙げた理由により，リレーショナルデータベースの利用は，
BIM/CIM情報共有システムを構築する際にデメリットになる可能性が高いと予想される．

(2) 結合操作の多発
3.2.2項で説明したように，リレーショナルデータベースでは，正規化によりデータが複数のテー
ブルに分割される．分割されたデータを取得する際は，各テーブルのデータを組み合わせる必要が
生じる．この演算を結合と言う．格納対象データの構造が複雑であるほど，多数の結合演算が発生
するため，システム化の際には演算速度の面で留意が必要になる．
結合演算に要する計算量は，n個のテーブルを結合するとすれば，各テーブルに格納されている
レコード数をそれぞれ N1, N2, ..., Nn として，以下の式で表わせる*1．

O(log2 N1 + log2 N2 + ...+ log2 Nn)

*1 DBMS の内部データ構造（内部スキーマ）が二分木である場合に限る．通常は，リレーショナル DBMS の内部ス
キーマは二分木であるが，ハッシュ構造等，他のデータ構造をオプションとして選択できる DBMSも存在する．

33

第 3 章 IFCスキーマとデータベース

テーブル 1個に対する計算量は O(log2 Nn)であり十分高速であるが，計算量がテーブル数に比例
するため，結合対象のテーブルが多くなると，データ取得処理で許容できない遅延が発生すると考
えられる．
繰り返しになるが，IFCプロダクトモデルはデータ構造が複雑である．したがって，システム化
の際には，結合演算が多発することが予想される．

(3) インピーダンスミスマッチ
昨今は，システム開発には，Java や C++ といった OOPL を用いるのが主流となっている．

OOPLを用いると，ソフトウェアの再利用性と拡張性が向上するため，ソフトウェア開発の生産性
が高まるのが，用いられている理由である．しかしながら，OOPLを用いたシステム開発でリレー
ショナル DBMSを用いると，しばしばインピーダンスミスマッチという問題が発生する [5]．以下
に示すように，OOPLとリレーショナルデータベースには，主に 2つのミスマッチが存在する．

1. データ構造のミスマッチ
　前述した通り，リレーショナル DBMSは関係モデルという 2次元の表形式のデータ構造
を扱う．一方，OOPL では複数のインスタンス同士が，一方向，または双方向に関連し合
い，ネットワーク構造を構成する．両者のデータ構造に大きな相違があるため，アプリケー
ションレイヤーとデータベースレイヤー間でデータ授受が発生する度に，データ構造の変換
が必要になる．このミスマッチは，変換処理実行によるシステム性能低下と，変換処理記述
による開発コストの増加を招く*2．

2. 操作対象のミスマッチ
　 OOPLでは，常に 1個のインスタンスを操作対象とし，集合を直接操作する方法は用意
されていない*3．よって，オブジェクト指向プログラミング手法を用いて開発を行なうと，
リレーショナル DBMSへのアクセスが頻繁に発生し，アプリケーションレイヤーとデータ
ベースレイヤー間でのデータ授受がボトルネックとなる．これを嫌い，SQLによるデータ
集合に対するアクセスを実行するようにプログラミングすると，オブジェクト指向プログラ
ミングが崩れて生産性が落ちる．このミスマッチは，個であるインスタンス（オブジェク
ト）を操作対象とする OOPLと，集合を操作対象とする SQLの違いに端を発している．

*2 現在では，DBMS自体の性能や，サーバ機器の性能が向上したため，変換処理実行によるオーバーヘッドはそれほ
ど大きな問題とはなっておらず，開発コストの問題の方が重要視されている．

*3 OOPL で集合を扱うには，配列等に格納された多数のインスタンスに対して，1 インスタンスずつ繰り返し操作を
適用する．一方，SQLは，SELECT句や UPDATE句による，条件に合致するレコードの集合に対する演算を基
本としている．

34

3.3 データベース開発の歴史

3.3 データベース開発の歴史
3.3.1 リレーショナル DBMSの普及

1970年に Coddにより関係モデルが提案されてからしばらく後，1980年頃より，リレーショナ
ル DBMSが製品化され始めた．1979年に Oracle RDBMS，1981年に IBM SQL/DS，1983年
に IBM DB2が製品化され，1980年代に普及期を迎えた．現在も広く用いられており，8割のシェ
アを維持している [6]．
リレーショナル DBMSが普及した主な理由を以下に挙げる．

1. 関係モデルという強固なデータベース理論が存在していたため，DBMSのベンダーは自ら
理論を構築する必要がなく，ソフトウェアの開発に注力可能であったため，様々な開発ベン
ダーに支持された結果，多くのリレーショナル DBMSが製品化されて普及した．

2. すべてのリレーショナル DBMSが，同じデータモデルに基いているため，利用者（主にソ
フトウェア開発者）は異なる DBMSであってもノウハウを流用することが可能であり，利
用者に支持されて普及した．

3. DBMS への問い合わせのための言語である SQL が 1986 年に米国国家規格協会 (ANSI :

American National Standards Institute）で標準化されたため，利用者は異なる DBMS製
品に対しても統一的な手段で問い合わせ可能になり，利用者に支持されて普及した．

4. 関係モデルが比較的シンプルなデータモデルであったため，DBMSの性能を上げることが
可能であり，利用者（主にエンドユーザー）に支持され普及した．

しかしながら，3.2.3で示したような問題点もあり，それらが動機となって，リレーショナルデー
タベース以外のデータベース方式が研究，開発されることになったと考えられる．

3.3.2 分散データベースと NoSQL

NoSQLは，元々は “SQLを使わない”，つまりリレーショナルデータベース以外のデータベー
スの総称として使われていたが，現在は，“Not only SQL”の意味，つまり，“SQLだけではない”

データベースということになっている．いずれにせよ，NoSQLに分類されるデータベースの本質
を指した言葉ではない．実際に NoSQLに分類されているデータベースを見ると，それぞれのデー
タモデルが異なっており，同じ種類のデータベースには見えない．また，オブジェクト指向データ
ベースや XMLデータベースは SQLを用いないにも関わらず，NoSQLには分類されていない．
“NoSQL”という用語は，非リレーショナル型DBMSであるGoogle BigTable [7]の登場がデー
タベース研究者，および開発者に与えた衝撃が大きく，非リレーショナル型の DBMS開発がある
種のトレンドになった結果，様々な方式の DBMSが登場し，それらを分類するための用語が必要
になったため発明された用語に過ぎない．よって，それぞれのデータベースに本質的な共通点が見
られないのは当然と言える．しかしながら，あえて，NoSQLデータベースの共通点を挙げるとす

35

第 3 章 IFCスキーマとデータベース

れば，BigTableの影響を受け，分散処理を意識して設計されだデータベースであるという点であ
ると言える．これは，BigTableと共に有名になった CAP定理 [8,9]を意識して設計されたデータ
ベースと言い替えても良い．

(1) CAP定理
CAP定理とは，ウェブサービスのような分散コンピューティングシステムにおける定理であり，
具体的には，以下の性質を同時に 2つしか満たすことができないことを示す定理である．

1. 一貫性 (Consistency)

2. 可用性 (Availability)

3. 分断耐性 (Partition-tolerance)

ある分散コンピューティングシステムにおいて，データが複数のデータベースサーバに分散して
格納されているとする．あるデータが更新された場合に，分散したデータが一度に更新されること
はなく，更新データは時間をかけてシステム全体に伝搬していく（図 3.3）．すべてのデータが更新
されるまでの時間はシステムにより異なるが，データベースサーバ同士が地理的に離れている場合
や，分散度合いが高い場合は，より長くなると考えられる．
更新が伝搬している最中に，複数の参照リクエストがあった場合は，システムはそれぞれのリク
エストに異なるレスポンスを返す可能性がある．これが，一貫性がない状態である．一貫性を満た
そうとすると，更新データの伝搬が完了するまでデータアクセスをロックすることになり，利用者
は待ち状態になる．これが，可用性が失なわれた状態である．一貫性と可用性を両立しようとする
と，データを単一サーバに格納する以外にない．これが，分断耐性が失われた状態であり，そもそ
も分散型システムではなくなってしまう．

�����

��� �����

�����

���

���

�	

�

�

�

�

��
�����
�

����

�

�

�

�

図 3.3 分散コンピューティングシステムにおける更新の伝搬

36

3.4 非リレーショナル型データベース

(2) 分散コンピューティング
CAP定理をデータベースに当てはめると，リレーショナルデータベースは一貫性と可用性を求
め，分断耐性を犠牲にしている．つまり，分散しない．一方，NoSQLデータベースは，分断耐性
を満たし，一貫性または可用性を犠牲にするような設計となっている場合が多い*4．分散可能であ
るということは，スケールアウト可能である，つまり，分散度合いを増すことでシステムの性能を
向上させることが可能であるということであり，格納データ量，スループット（単位時間あたりの
処理可能リクエスト数）の向上が期待できる．

3.4 非リレーショナル型データベース
リレーショナルデータベース以外のデータベース方式について主なものを以下に説明する．本論
は，BIM/CIM情報共有システムを実際にシステム化することを前提としているため，研究段階の
ものは対象とせず，十分な実績があり，長期の連続運用に耐え得る DBMS製品が存在するデータ
ベース方式に限定した．

3.4.1 オブジェクト指向データベース

オブジェクト指向技術に基いたデータベースである．当然，OOPLと適合性が高く，リレーショ
ナルデータベースを用いたシステム開発で問題となっていたインピーダンスミスマッチが解消さ
れ，ソフトウェア開発の生産性が大きく向上するメリットがある．さらに，Java等の OOPLと同
程度の表現力を持っているため，格納対象となるモデルがかなり複雑なデータ構造であったとして
も，難なく記述可能である．また，DBMS製品にも依るが，スキーマレスである DBMSが多く，
そうであれば，様々な形式のオブジェクトを格納可能であり，柔軟性が高いシステムが構築できる
と考えられる．
このように，リレーショナルデータベースを用いた開発の問題点を，ほぼすべて解消できるにも
関わらず，十分なシェアを獲得するには至っていない．考えられる理由としては，データモデルが
複雑過ぎるため，性能，機能，保守性を高いレベルでバランス良く実現するのが困難である点が挙
げられる [10]．

3.4.2 キー・バリューストア

キー・バリューストアと呼ばれる非常にシンプルな構造のデータベースである．キー（通常は文
字列）に対応する値（文字列，またはバイナリデータ）を格納するだけである．概念図を図 3.4に
示す．図 3.4上段では key1から key4までのキーがそれぞれ，A，B，C，Dのバリューに対応し

*4 多くの NoSQL データベースが，可用性と分断耐性を満たす設計となっており，Google BigTable, Amazon

SimpleDB, Apache Cassandraがこれにあたる．数は少ないが一貫性と分断耐性を満たすような DBMSもあり，
Apache HBaseがこれにあたる．

37

第 3 章 IFCスキーマとデータベース

��������
����

�

����
�

����
�

����
�

���� �	
�

���� �	
�

���� �	
�

���� �	
�

�

�

�

�

�	
�

�	
�

�	
�

�

�

�

�	
�
�

�� �����	

�	
���

図 3.4 キー・バリューモデル概念図

て格納されており，キー・バリューのペア同士に何の関連もないことを表している．

3.4.3 カラム指向データベース

利便性を上げるため，1 つのキーに対応した複数のキー・バリューペアを格納できるようにし
たカラム指向型と呼ばれる実装もあり，こうすると，表のようなデータ構造も表現できる（図 3.4

下段）．これら実装では，キー・バリューペアのデータ構造をバイナリデータに変換して 1個のバ
リューとして格納しているだけで，内部のデータ構造は前述のシンプルなキー・バリューモデルと
変わらない．

3.4.4 ドキュメント指向データベース

キー（通常は文字列）に対応するドキュメントと呼ばれる構造的データを管理可能なデータベー
スである．ドキュメントの形式（データモデル）に定義はないが，JSON形式や XML形式である
DBMSが多い．
一般的に，同方式のデータベースは同じデータモデルを対象とするものだが，ドキュメント指向
データベースは従来のデータベースが対象とするデータモデルよりも複雑で記述の制限が緩いデー
タ構造を対象にしたデータベースの総称であり，データモデルが製品に依存している．

1. JSON (JavaScript Object Notation) [11]

JavaScriptにおけるオブジェクト構造の表記法をベースとしており，オブジェクト指向に基
いたオブジェクト同士の関係を表現することができる．IFC もオブジェクト指向をベース

38

3.4 非リレーショナル型データベース

としており，データ構造の類似性は高い．
2. XML (eXtensible Markup Language) [12]

データ表記法の一種で，ITシステム間のデータ交換によく用いられている．階層化したツ
リー構造状のデータ構造を記述するのに適している．IFC プロダクトモデルもツリー構造
であるため，データ構造の類似性は高い．

3.4.5 グラフデータベース

グラフ理論 [13]に基づいたデータベースであり，ノードとノード同士を結ぶ方向性を持つエッ
ジにより構成されたグラフ（図 3.5）を管理することができる．汎用的なデータストアとして使え
るように，各ノードとエッジはラベルとプロパティ（キーにより識別される値）を保持することが
できる．ラベルは各ノードとエッジ毎に 1つ，プロパティは複数保持することができる．このデー
タモデルをプロパティグラフモデル [14]と言う．概念図を図 3.6に示す．
プロパティグラフモデルは，ネットワーク状のデータ構造を表現するのに適している．IFCプロ
ダクトモデルはほぼツリー状のデータ構造であるが，ツリー構造もネットワーク構造の一種である

���

���

��	

図 3.5 有向グラフ

node1

prop1=�A�
prop2=�B�

node2

prop6=�F�

�����

�����	
����

�����
�
��

�����
���

���

�����

図 3.6 プロパティグラフモデル

39

第 3 章 IFCスキーマとデータベース

ため，データ構造はある程度類似していると言える．

3.5 本章のまとめ
本章では，NoSQLに代表される非リレーショナル型のデータベースが，リレーショナルデータ
ベースの弱点を補うようにして開発されてきた経緯を示し，さらに，各データベースの特性を，以
下の視点から分析した．

• データモデル
• 分散コンピューティング
• システム開発

第 1章，第 2章で明らかにしたように，BIM/CIMで扱われる IFCプロダクトモデルは，デー
タ量が膨大で，かつ深い階層構造を有しており，さらに，対象とする構造物のライフサイクル全般
に渡って，数多くの関係者間で共有されなくてはならない．このような特殊なデータのマネジメン
トと利用環境を実現するために，上記の視点を含んだ多角的な視点からデータベースを検討，分析
することにより，BIM/CIM情報共有システムに適したデータベースを明らかにする必要がある．

40

参考文献

[1] E. F. Codd: A Relational Model of Data for Large Shared Data Banks, 1970.

[2] C. J. Date, 株式会社クイープ（訳）: データベース実践講義，オライリージャパン，2006.

[3] ISO/IEC 9075:1999: Database Language SQL, 1999.

[4] 田島敬史: 半構造データのためのデータモデルと操作言語, 情報処理学会論文誌 Vol.40

No.SIG3(TOD 1), 1999.

[5] TECHSCORE: Hibernateの基本, 2001,

http://www.techscore.com/tech/Java/Others/Hibernate/01/ (参照 2017/6/27).

[6] DB-ENGINES: DBMS popularity broken down by database model, 2017, https://

db-engines.com/en/ranking_categories (参照 2017/6/27).

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike

Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber: Bigtable: A Distributed

Storage System for Structured Data, 7th USENIX Symposium on Operating Systems

Design and Implementation, 2006.

[8] Eric A. Brewer: Towords Robust Distributed Systems, 2000.

[9] Seth Gilbert, Nancy Lynch: Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services, ACM SIGACT News, Volume 33 Issue 2, p51–59, 2002.

[10] 鶴岡邦俊, 木村裕: オブジェクト指向 DBMSのアーキテクチャに関する考察,データベースシ
ステム, 1994.

[11] Ecma International: ECMAScript R⃝2015 Language Specification, 2015,

http://www.ecma-international.org/ecma-262/6.0/index.html (参照 2017/6/1).

[12] W3C: Extensible Markup Language (XML) 1.1 (Second Edition), 2006,

http://www.w3.org/TR/xml11/ (参照 2017/6/1).

[13] J. A. Bondy, U. S. R. Murty,立花俊一（訳），奈良知恵（訳），田澤新成（訳）: グラフ理論
への入門，共立出版，1991.

[14] Ian Robinson, Jim Webber, Emil Eifrem, 佐藤直生（監訳），木下哲也（訳）: グラフデー
タベース Neo4jによるグラフデータモデルとグラフデータベース入門，オライリージャパン，
2015.

41

第 4章

各種データベースによるプロダクトモ
デル管理手法の開発

4.1 本章の概要
IFCプロダクトモデルを DBMSに格納し，管理するためには，第 3章で述べたように DBMS

が採用するデータモデルに変換する必要がある．本章では，各種データベースの IFCプロダクト
モデルへの適合性を明確にすることを目的として，IFCプロダクトモデルを各種データモデルに変
換する手法を考案し，それら手法を用いて，様々な方式の DBMSに IFCプロダクトモデルを格納
した上で，モデルの抽出処理速度を計測した．

4.2 データモデル変換手法
IFCスキーマを，第 3章で示した各データベースのデータモデルに変換し，IFCプロダクトモデ
ルを DBMSに格納することを考える．1つのデータモデルに対する変換方法が複数考えられる場
合もあるが，各データモデルの特徴を極力残したまま変換するようにした．本章では，IFCプロダ
クトモデルを DBMSで管理する際の，各データモデルそのものの適性を明らかにすることを目的
としており，データ変換手法の優劣を比較することを目的としているわけではないからである．
説明のため，IFCプロダクトモデルの一部を各データモデルに変換する例を示すこととし，変換
元プロダクトモデルを Part21フォーマットで記述したものを図 4.1に，UMLオブジェクト図で
記述したものを図 4.2に示す．これは，IFC拡張スキーマの一種である IFC-Bridgeスキーマ [1,2]

で記述した PC箱桁橋のプロダクトモデルの一部である．
IFC-Bridgeスキーマで定義されているクラスは，表 4.1から分かるように，ほとんどのクラス
は IFC4のクラスを引き継いでいる．また，空間要素の記述方法が IFC4とは異なっているが，第
2章で示したような，プロダクトモデルのデータ構造上の特徴はそのまま引き継いでいる．そのた
め，本章で行なう検討は，IFC-Bridgeだけでなく，IFC4を含む IFCスキーマ全バージョン，お
そらくは他の IFC拡張スキーマにも適用できるはずである．

43

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

1 #1= IfcBridge(’HXGKy49hQ7+r6h0f3Nt9pQ ’,$,’ P C箱桁橋 ’,.

BOX_GIRDER_BRIDGE .,.COMPLEX.,.COMPOSITE .);

2 #2= IfcRelAggregates (’7 ET0zbEvSAC8onM3i9kebw ’,$,$,$

,#1 ,(#3 ,#4 ,#5 ,#6));

3 #3= IfcBridgePart(’MHmkXG1OTNuirgG2T1i08g ’,$,’A1 ’,$,. COMPOSITE.,.

COMPLEX.,.PIER.,. MASSIVE_SECTION_ELEMENT .);

4 #4= IfcBridgePart(’nmVdSHIzRWu /6h9L/b1/eA’,$,’P1 ’,$,. COMPOSITE.,.

COMPLEX.,.PIER.,. MASSIVE_SECTION_ELEMENT .);

5 #5= IfcBridgePart(’DQ9PeM7OQ4eoNsV9E+x+SA’,$,’A2 ’,$,. COMPOSITE.,.

COMPLEX.,.PIER.,. MASSIVE_SECTION_ELEMENT .);

6 #6= IfcBridgePart(’kEWTGkwERg2sOZiMJxwABw ’,$,$,$,. COMPOSITE.,.

COMPLEX.,.DECK.,. UNICELLULAR_MONO_BOX -GIRDER .);

図 4.1 変換元 PC箱桁橋プロダクトモデル（Part21形式）

StructureType = BOX GIRDER BRIDGE
Name = PC���
GlobalId = "HXGKy49hQ7+r6h0f3Nt9pQ"
CompositionType = COMPLEX
StructureIndicator = COMPOSITE

: IfcBridge

TechnoElementType = MASSIVE SECTION ELEMENT
StrutureElementType = PIER
Name = "P1"
GlobalId = "nmVdSHIzRWu/6h9L/b1/eA"
CompositeType = COMPLEX
StructureIndicator = COMPOSITE

: IfcBridgePart

GlobalId = 7ET0zbEvSAC8onM3i9kebw

: IfcRelAggregates

RelatingStructure

RelatedElements

TechnoElementType = MASSIVE_SECTION_ELEMENT
StrutureElementType = PIER
Name = "A1"
GlobalId = "MHmkXG1OTNuirgG2T1i08g"
CompositeType = COMPLEX
StructureIndicator = COMPOSITE

: IfcBridgePart

TechnoElementType = MASSIVE_SECTION_ELEMENT
StrutureElementType = PIER
Name = "A2"
GlobalId = "DQ9PeM7OQ4eoNsV9E+x+SA"
CompositeType = COMPLEX
StructureIndicator = COMPOSITE

: IfcBridgePart

TechnoElementType = UNICELLULAR_MONO_BOX-GIRDER
StrutureElementType = DECK
GlobalId = "kEWTGkwERg2sOZiMJxwABw"
CompositeType = COMPLEX
StructureIndicator = COMPOSITE

: IfcBridgePart

RelatedElements
RelatedElements

RelatedElements

図 4.2 変換元 PC箱桁橋プロダクトモデル（UMLオブジェクト図）

表 4.1 IFC4と IFC-Bridgeスキーマのデータ型

���� ���� ���	
��
��

��������������� ��� ���

 !��"�����"� ��� #

$%����&'�()��*�� �#� �+

,-��.�/���� 0+ #

44

4.2 データモデル変換手法

4.2.1 関係モデルへの変換

リレーショナルデータベースのデータモデルである関係モデルへの変換手法を考える．リレー
ショナルデータベースは正規化されたデータを格納することを前提としているため，IFCスキーマ
の正規化を試みる．完全に正規化されて一切の冗長性が排除されたデータベースは，多数のテーブ
ル（関係）に分割されるためパフォーマンスが低下する場合がある．そのため，実用的には第 3 正
規形が実現できた時点で十分に正規化されたと考えるのが一般的である．これにならって，IFCプ
ロダクトモデルを関係モデルに変換する際も，第 3正規形まで正規化することにする．

(1) 正規化
1. 第 1正規化
　これは，繰り返しを排除するものである．繰り返しがあるデータを別のテーブルに分割す
れば良い．IFCスキーマでは，集合体データ型の属性で 1対多に関連しているクラス同士を
別のテーブルとして定義する．

2. 第 2正規化
　これは，データベース内で一意な主キーを決定するものである．IFC スキーマの各クラ
スには必ず GlobalId属性が存在し，この GlobalId属性は IFCプロダクトモデルを扱うソ
フトウェア内で一意な値として定義されているため，これをテーブルの主キーとして利用
する．

3. 第 3正規化
　これは，テーブルに含まれる属性間の推移的関数従属性を排除するものである．第 2正規
化により，テーブルに含まれる属性は主キー属性と非キー属性とに分けられ，主キー属性と
非キー属性の間には関数従属性が存在することになる．このとき，異なる非キー属性間に関
数従属性が存在すれば，推移的関数従属性が存在すると言う．
　 IFCスキーマに推移的関数従属性が存在する場合は，互いに関連し合っている各クラス
は互いに同じデータを重複して保持することになる．IFC スキーマはオブジェクト指向分
析設計に基いて慎重に設計されているため，このような冗長性は排除されていると考えられ
る．この仮定が正しければ，クラス毎にテーブルを定義するだけで第 3正規化を満足させる
ことができる*1．

(2) データ型の変換
EXPRESS のデータ型と，標準的なリレーショナル型 DBMS が採用する SQL99 [3] のデータ
型には差異があるため，データ型の変換が必要になる．表 4.2に示すように，SQL99に対応する

*1 表 4.1 で示したように，IFC には多数のクラス定義されており，すべてのクラスで推移的関数従属性がないことを
確認することは困難であるため，実験で利用する一部のクラスについてのみ，推移的関数従属性がないことを確認し
た．

45

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

型があればそれを用いるが，EXPRESSの論理型と列挙型には SQL99に対応する型が存在しない
ため，文字列で表現し，プログラム側で型を判断することにする．集合体データ型の場合は，すべ
て別のテーブルとして定義する．定義データ型と選択データ型の場合は，それぞれ，元となるデー
タ型と選択されたデータ型の種類によって表現方法を決める．どちらも，単純データ型，エンティ
ティデータ型，列挙データ型のいずれかに収斂するため表 4.2の方法で表現できる．

(3) 関係モデルへの変換手順
以上から，IFCプロダクトモデルを第 3正規形を満足した関係モデルに変換する手順は次のよう
に整理できる．

1. クラス毎にテーブルを定義する．その際のテーブル名はクラス名と同じにする．
2. クラスの属性をテーブルのカラムとして定義する．その際のカラム名はクラスの属性名と同
じにし，GlobalIdカラムを主キーとする．

3. 集合体データ型による関連情報を保持するための Relationテーブルを定義し，主キーであ
る GlobalIdカラムと関連先の主キーを格納する RelatedObjectカラムを定義する．

4. 以下の規則で変換先カラムのデータ型を決める．
• 主キーである GlobalIdカラムは文字列型とする．
• 変換元属性が単純データ型である場合は，表 4.2に示した型にする．
• 変換元属性が集合体データ型である場合は，Relation テーブルへの外部キーとし文字
列型にする．
• 変換元属性がエンティティ型である場合は，関連先関係への外部キーとし文字列型に

表 4.2 関係モデルにおけるデータ型変換方法
��������	
�

�
 ����������

�� ���������

�� ������������

��� ��������������� ��������!��"����

#$% ������ ��������!��"����

&'� &'���(�������

)* +,-���(���

.�

/0-

1223

43

567878 ������(���

9: ;<=>	%?@A�BC

�D ������ ��������!��"����

EF ;EFGHI%?@A�BC

JK

�'L%

�MN��OO?�'L%

������(���

PQ

�'L%

43R

�'L%

STUV

�'L%

46

4.2 データモデル変換手法

する．
• 変換元属性が列挙型である場合は，文字列型とする．
• 変換元属性が定義型，選択型である場合は，定義内容に従い上記規則のいずれかを適用
する．

PC箱桁橋プロダクトモデル（図 4.2）を変換した結果を図 4.3に示す．IFCプロダクトモデル
の階層構造が，関係モデルではテーブル同士の結合として表現されることが分かる．なお，この 4

つのテーブルに推移的関数従属性は見られない．

4.2.2 半構造データへの変換

XMLデータベースやドキュメント指向データベースは，そのデータモデルに XMLや JSONと
いった半構造データを採用している．IFC プロダクトモデルをこれらデータフォーマットに変換
できれば，IFCプロダクトモデルをデータベースに格納することが可能になる．

(1) XMLへの変換手法
XML (eXtensible Markup Language) はデータ交換フォーマットの一種であり，W3C (World

Wide Web Consortium) により標準化されている [4]．さらに，プロダクトモデルの交換用フォー
マットとして ISO10303-28 (STEP-XML) [5]が標準化されており，XMLを用いて IFCプロダク
トモデルを完全に記述することができる．
IFCプロダクトモデル（図 4.2）の XMLによる変換例を図 4.4に示す．

IfcBridge
GlobalId OwnerHistory Name Description StructureIndicator CompositionType StructureType

HXGKy49hQ7+r6h0f3Nt9pQ PC��� BOX_GIRDER_BRIDGE COMPLEX COMPOSITE

IfcRelAggregates
GlobalId OwnerHistory Name Description RelatingObject RelatedElements

7ET0zbEvSAC8onM3i9kebw HXGKy49hQ7+r6h0f3Nt9pQ zhlZjk5OGJlZjJiNzU1Yjc

Relation
GlobalId IfcBridgePart

zhlZjk5OGJlZjJiNzU1Yjc MHmkXG1OTNuirgG2T1i08g
zhlZjk5OGJlZjJiNzU1Yjc nmVdSHIzRWu/6h9L/b1/eA
zhlZjk5OGJlZjJiNzU1Yjc DQ9PeM7OQ4eoNsV9E+x+SA
zhlZjk5OGJlZjJiNzU1Yjc kEWTGkwERg2sOZiMJxwABw

IfcBridgePart

GlobalId
Owner
History

Name Description
Structure
Indicator

Composition
Type

Structure
Element

Type
TechnoElementType

MHmkXG1OTNuirgG2T1i08g A1 COMPOSITE COMPLEX PIER MASSIVE_SECTION_ELEMENT
nmVdSHIzRWu/6h9L/b1/eA P1 COMPOSITE COMPLEX PIER MASSIVE_SECTION_ELEMENT
DQ9PeM7OQ4eoNsV9E+x+SA A2 COMPOSITE COMPLEX PIER MASSIVE_SECTION_ELEMENT
kEWTGkwERg2sOZiMJxwABw COMPOSITE COMPLEX DECK UNICELLULAR_MONO_BOX-GIRDER

図 4.3 PC箱桁橋プロダクトモデルの関係モデルによる表現

47

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

1 <?xml version ="1.0"? >

2 <IfcBridge id="1">

3 <GlobalId >HXGKy49hQ7+r6h0f3Nt9pQ </GlobalId >

4 <Name > P C箱桁橋 </Name >

5 <StructureIndicator >BOX_GIRDER_BRIDGE </ StructureIndicator >

6 <CompositionType >COMPLEX </ CompositionType >

7 <StructureType >COMPOSITE </ StructureType >

8 </IfcBridge >

9 <IfcRelAggregates id="2">

10 <GlobalId >7 ET0zbEvSAC8onM3i9kebw </GlobalId >

11 <RelatingObject ref ="1" />

12 <RelatedElements >

13 <IfcBridgePart id="3">

14 <GlobalId >MHmkXG1OTNuirgG2T1i08g </GlobalId >

15 <Name >A1 </Name >

16 <StructureIndicator >COMPOSITE </ StructureIndicator >

17 <CompositionType >COMPLEX </ CompositionType >

18 <StructureElementType >PIER </ StructureElementType >

19 <TechnoElementType >MASSIVE_SECTION_ELEMENT </

TechnoElementType >

20 </IfcBridgePart >

21 <IfcBridgePart id="4">

22 <GlobalId >nmVdSHIzRWu /6h9L/b1/eA </GlobalId >

23 <Name >P1 </Name >

24 <StructureIndicator >COMPOSITE </ StructureIndicator >

25 <CompositionType >COMPLEX </ CompositionType >

26 <StructureElementType >PIER </ StructureElementType >

27 <TechnoElementType >MASSIVE_SECTION_ELEMENT </

TechnoElementType >

28 </IfcBridgePart >

29 <IfcBridgePart id="5">

30 <GlobalId >DQ9PeM7OQ4eoNsV9E+x+SA </GlobalId >

31 <Name >A2 </Name >

32 <StructureIndicator >COMPOSITE </ StructureIndicator >

33 <CompositionType >COMPLEX </ CompositionType >

34 <StructureElementType >PIER </ StructureElementType >

35 <TechnoElementType >MASSIVE_SECTION_ELEMENT </

TechnoElementType >

36 </IfcBridgePart >

37 <IfcBridgePart id="6">

38 <GlobalId >kEWTGkwERg2sOZiMJxwABw </GlobalId >

39 <StructureIndicator >COMPOSITE </ StructureIndicator >

40 <CompositionType >COMPLEX </ CompositionType >

41 <StructureElementType >DECK </ StructureElementType >

42 <TechnoElementType >UNICELLULAR_MONO_BOX -GIRDER </

TechnoElementType >

43 </IfcBridgePart >

44 </RelatedElements >

45 </IfcRelAggregates >

図 4.4 IFCプロダクトモデルの XMLによる変換例

48

4.2 データモデル変換手法

(2) JSONへの変換手法
JSON はデータ交換フォーマットの一種であり，IETF (Internet Engineering Task Force) で

RFC 4627として標準化されている [6]．JSONで表現可能なデータ型を表 4.3に示す．関係モデ
ルへの変換の場合と同様に，EXPRESSのデータ型と JSONのデータ型には差異があるため，デー
タ型の変換が必要になる．表 4.4に示すように，JSONに対応する型があればそれを用いるが，存
在しない場合は文字列で表現して，取得する際にプログラム側で型を判断することにする．集合体
データ型の場合は，すべて集合 (array) で表現する．定義データ型と選択データ型の場合は，関係
モデルへの変換の場合と同様に，元となるデータ型と選択されたデータ型の種類によって表現方法
を決める．JSON形式はオブジェクト指向に基いているため，オブジェクト同士の関連を OOPL

(Object Oriented Programming Language) と同様に表現できる．よって，データ型さえ変換す
れば IFCプロダクトモデルを容易に変換できる．
IFCプロダクトモデル（図 4.2）の JSONによる変換例を図 4.5に示す．

表 4.3 JSONデータ型
���� ��

��	
��
�������� ����������� !"#$%&'�()*(+,

+,
�%��%-� ������.$%&'�(+,

/
�$%&'�� ��� !"0
!'1���0
���&�%!0
������0
%��%-0
��'�0
2%&��0
!'&&
(�3�4

567
���� !"� 567

8/
�!'1���� 8/

表 4.4 JSON形式へのデータ型変換方法
����������	
 ���
������

�� �����������

�� �����������

 � �����������

!"# !"#��$%�&�'�

()
 !"#��$%�&�'�

*�+ %���,�-./012$�

34 !"#��$%�&�'�

5#

678

9::;

<;

=>?@?@ A*BCD8��E�F�G%�

HI JKLM�
�NO�PQ

#R !"#��$%�&�'�

ST JSTUV.
�NO�PQ

WX��	

<;Y��	

Z[\]��	

^_��	

<;��1��1`�

49

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

1 {

2 "GlobalId" : "7 ET0zbEvSAC8onM3i9kebw",

3 "RelatingStructure ": {

4 "StructureIndicator" : "COMPOSITE",

5 "CompositionType" : "COMPLEX",

6 "GlobalId" : "HXGKy49hQ7+r6h0f3Nt9pQ",

7 "Name" : " P C箱桁橋 ",

8 "StructureType" : "BOX_GIRDER_BRIDGE"

9 },

10 "RelatedElements ":[

11 {

12 "StructureIndicator" : "COMPOSITE",

13 "CompositionType" : "COMPLEX",

14 "GlobalId" : "MHmkXG10TNurgG2T1i08g",

15 "Name" : "A1",

16 "StructureElementType" : "PIER",

17 "TechnoElementType" : "MASSIVE_SECTION_ELEMENT"

18 },

19 {

20 "StructureIndicator" : "COMPOSITE",

21 "CompositionType" : "COMPLEX",

22 "GlobalId" : "nmVdSHIzRWu /6h9L/b1eA",

23 "Name" : "P1",

24 "StructureElementType" : "PIER",

25 "TechnoElementType" : "MASSIVE_SECTION_ELEMENT"

26 },

27 {

28 "StructureIndicator" : "COMPOSITE",

29 "CompositionType" : "COMPLEX",

30 "GlobalId" : "DQ0PeM7OQ4eoNsV9$+x+SA",

31 "Name" : "A2",

32 "StructureElementType" : "PIER",

33 "TechnoElementType" : "MASSIVE_SECTION_ELEMENT"

34 },

35 {

36 "StructureIndicator" : "COMPOSITE",

37 "CompositionType" : "COMPLEX",

38 "GlobalId" : "kEWTGkwERg2sOZiMJxwABw",

39 "StructureElementType" : "DECK",

40 "TechnoElementType" : "UNICELLULAR_MONO_BOX -GIRDER"

41 }

42]

43 }

図 4.5 IFCプロダクトモデルの JSONによる変換例

50

4.2 データモデル変換手法

4.2.3 プロパティグラフモデルへの変換

IFCのクラスが実体化したインスタンスをノードに，インスタンス間の関連をエッジに対応させ
ると，グラフに近い構造になるため，ほぼ元の構造そのままに変換可能である．しかし，実験で利
用するグラフ型 DBMS製品である Neo4j [7]で利用可能な型と EXPRESSの型には相違があるた
め，JSONの場合と同様に型の表現方法を定める必要がある．プロパティグラフモデルには標準が
定められていないため，型などの仕様は製品に依存するのが実態である．表 4.5に Neo4jで利用可
能な型の種類を示す．また，EXPRESS固有の型を Neo4jで利用可能な型に変換する方法を表 4.6

のように定めた．
表 4.6 の変換方法と以下のルールで IFC プロダクトモデルをプロパティグラフモデルに変換
する．

表 4.5 Neo4j DBMSのデータ型

���� ��

�� ��

	� 	�

��
��

�� ���������������������

 �

���	��
���
��!"#$%&'�()*+,�

!-.!/01*

表 4.6 プロパティグラフモデルへのデータ型変換方法

��������	
�

�
����

�� ��

�� ��

�� ��

��� ���

��� ���

��� ���

�� ���

 �

!"#

$%%&

'&

()���� *�+

,- ./01��234�56

�7 ���89:;<=>?@

AB .ABCDE�234�56

FG
�H�

IJKLIMM2
�H�

NO
�H�

'&P
�H� �QRES*�+

TUVW
�H�

51

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

1. 各クラスに対応したノードを作成する．その際にノードのラベルにエンティティ名を格納
する．

2. クラスの属性が単純データ型，列挙データ型である場合は，ノードに属性名と同名のプロパ
ティを作成して属性値を格納する．

3. クラスの属性が集合体データ型であり，集合要素のデータ型が単純データ型，列挙データ型
である場合は，ノードに属性名と同名のプロパティを作成して集合要素の配列を格納する．

4. クラスの属性が集合体データ型であり，集合要素のデータ型がクラス型である場合は，各集
合要素に対応するノードを作成して，関連元クラスから関連先クラスへの方向性を持つエッ
ジで接続する．集合体データ型に順序がある場合は，エッジに indexプロパティを作成して
インデックス値を格納する．その後，nameプロパティを作成して属性名を格納する．

以上の手順で，図 4.2の IFCプロダクトモデルを変換した結果を図 4.6に示す．プロダクトモデ
ルの構造をほぼそのままに表現できていることが分かる．

IfcBridge

 GlobalId=�HXGKy49hQ7+r6h0f3Nt9pQ�

 Name=�PC����

 StructureIndicator=�BOX_GIRDER_BRIDGE�
 CompositionType=�COMPLEX�

 StructureType=�COMPOSITE�

IfcRelAggregates

 GlobalId=�7ET0zbEvSAC8onM3i9kebw�

IfcBridgePart

 GlobalId=�MHmkXG1OTNuirgG2T1i08g�
 Name=�A1"
 StructureIndicator=�COMPOSITE�
 CompositionType=�COMPLEX�

 TechnoElementType=�MASSIVE_SECTION_ELEMENT�
 StructureElementType=�PIER�

name=�RelatingObject�

name=�RelatedObjects�

IfcBridgePart

 GlobalId=�nmVdSHIzRWu/6h9L/b1/eA�
 Name=�P1"
 StructureIndicator=�COMPOSITE�
 CompositionType=�COMPLEX�

 TechnoElementType=�MASSIVE_SECTION_ELEMENT�
 StructureElementType=�PIER�

IfcBridgePart

 GlobalId=�DQ9PeM7OQ4eoNsV9E+x+SA�

 Name=�A2"
 StructureIndicator=�COMPOSITE�
 CompositionType=�COMPLEX�

 TechnoElementType=�MASSIVE_SECTION_ELEMENT�
 StructureElementType=�PIER�

IfcBridgePart

 GlobalId=�kEWTGkwERg2sOZiMJxwABw�

 StructureIndicator=�COMPOSITE�
 CompositionType=�COMPLEX�

 TechnoElementType=�UNICELLULAR_MONO_BOX-GIRDER�
 StructureElementType=�DECK�

name=�RelatedObjects�

name=�RelatedObjects�

name=�RelatedObjects�

�

�����

� �

�	
�����

��������	
��
��
�

������
��

��������
�

������
��

����
���

�

図 4.6 PC箱桁橋プロダクトモデルのプロパティグラフモデルによる表現

52

4.2 データモデル変換手法

4.2.4 キー・バリューモデルへの変換

第 3章で述べたように，キー・バリューモデルは非常に単純な構造であり，1つのキーに対して
1 つの値を格納することしかできない．そのため，複雑な階層構造を有する IFCプロダクトモデ
ルを格納するのは困難であるが，どうにかして格納するとすれば，2つのアプローチが考えられる．
1つは，何かしらの表記法を用いて IFCプロダクトモデルをテキストで記述し，記述したテキスト
を 1つのバリューとして格納する方法である．もう 1つは，キー・バリューモデルで表現できるま
で，IFCプロダクトモデルを細分化して格納する方法である．
以下で，これらの手法について詳しく検討する．

(1) プロダクトモデルのテキスト表現をバリューとする手法
この手法は，IFCプロダクトモデルをテキストで表現できれば実現可能である．IFCプロダクト
モデルは Part21形式で完全に記述することが可能であるし，また，データ型の表現に制限はある
ものの，一般的にデータ交換フォーマットとして利用されている XMLや JSONといったデータ
フォーマットで記述することも可能である．XML，または JSONを用いるとすれば，変換手法は
4.2.2項で示した変換手法をそのまま利用できる．
ただし，いずれのフォーマットで記述したとしても，キー・バリュー型 DBMSはこれらフォー
マットを理解しないため，データ取得時はプログラムでモデル構築処理を実装する必要がある．ま
た，検索処理などの，一般的には DBMSの機能を用いて実現可能な処理を，プログラムで実装す
る必要が生じる．実現は容易であるがデメリットが多い手法である．キー・バリュー型 DBMSを
用いなくてはならない制約がないのであれば，同様のアプローチで DBMSの機能を利用可能なド
キュメント指向型 DBMSを用いるべきである．

(2) キー・バリューモデルを用いて新たなデータモデルを構築する手法
キー・バリュー型の派生型の 1つであるカラム指向型のデータモデルに変換することを考える．
カラム指向型では，1レコードにカラムとバリューのペアを複数格納できるため，クラスの属性名
のカラムに属性値を格納すれば 1レコードに 1インスタンスの情報を格納することができる．
この手法を用いれば，IFCプロダクトモデルを構成する多数のインスタンスをキー・バリュー型

DBMSに格納することが可能だが，キー・バリュー型 DBMSはレコード同士を関連付ける機能を
持っていないため，IFCプロダクトモデルを再構成することができない．そのため，図 4.7のよう
に各レコードに関連先のキーを格納しておき，プログラムによりレコード同士の関連を判断して再
構成することになる．
この手法で得られる，複数の属性を持ったレコードが関連先レコードに方向性を持って直接接続
するデータ構造はプロパティグラフモデルと類似している．よって，カラム指向型 DBMSに格納
する場合の変換手法は，前項で検討したプロパティグラフモデルへの変換手法をそのまま用いれば
良い．

53

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

��� ���

��� ��

��� ���

��� ���

�

�

�

�

���

��	

��

���

���

�

���
	��

��

�������

	
��

図 4.7 カラム指向型でのインスタンス間の関連の表現

4.3 実験
IFCプロダクトモデルを，4.2節で考案した変換手法を用いて変換し，以下の DBMS製品に格
納して実験を行なった．

• SQL Server 2008R2 [8]（リレーショナル型）
• MongoDB 3.0.6 [9]（ドキュメント指向）
• Neo4j 2.2.6（グラフ型）

上記製品の選定理由であるが，本論では，BIM/CIM 情報共有システムとしてシステム化する
ことを想定しているため，すでに十分な運用実績があり，長期の連続運用に耐え得る製品から選択
するべきだと考えた．しかしながら，NoSQL 製品の実績はまだ少なく判断が困難であったため，
MongoDBと Neo4jの選択に関しては，各製品の現時点における利用状況*2を元にして選択した．
十分な運用実績があることの直接の証拠にはならないが，広く使われている DBMSにおける実験
結果の方が価値が高いと言えるし，また，今後 NoSQL DBMSの仕様が標準化されるとすれば，広
く使われている DBMSの仕様が標準に取り込まれる可能性が高いため，利用状況による選択も意
味はあると考える．いずれにしても，本章ではデータモデルの違いに着目しており，DBMS製品の
違いは検討対象外であるが，仮に他の DBMSを用いた場合の結果については，4.4節で考察する．
表 4.7に，実験の実行環境を示す．スペックが異なる複数のサーバを利用しているが，本実験で
は各 DBMS毎の実行時間の変化に着目しており，実行時間そのものの比較は行なわないため，実
験結果には影響しない．また，計測は各条件毎に 5 回以上実施してその平均値を計測結果として
いる．その際，DBMSが持つ特殊な高速化機能が働いて，測定結果のばらつきが大きくなる場合

*2 DB-ENGINESウェブサイトのDB-Engines Rankingを元にした．MongoDBとNeo4jは，同カテゴリ内では圧
倒的にスコアが高い (https://db-engines.com/en/ranking/document+store, https://db-engines.com/

en/ranking/graph+dbms)．本サイトでは，様々な要素から各 DBMS製品のスコアを総合的に算出している [10]．

54

4.3 実験

表 4.7 実行環境

����� �� �	
��

�� ������
���������������� !"#��$%&

'() *+ ��,��-.�*..�!"/

�01�2 ��� ��!��

34 �56�34�7�*��*��+89��

�� ������7�����.�+� !"#�8$%&

'() 8 ��,��-�*++�!"/

�01�2 *+� ��!��

34 ��6��:�;��<��=�>:�4��?������.�4�5�=5�=�@=������4���.�9��

AB��8C

A���D���

A4EF�4��?��

があり，その場合は該当機能を抑止する等の対処をした*3．なお，実験で使用したリレーショナル
DBMSのスキーマ（テーブル定義）は付録 Bに示した．
キー・バリュー型については，前述したようにドキュメント指向型，もしくはグラフ型と同等の
データモデルに変換することになるため実験は行なわない．

4.3.1 実験対象データ

BIM/CIMで取り扱うプロダクトモデルはデータ量が膨大で，かつ階層構造が深いという特徴が
あるため，格納データ量と取得データの階層の深さに着目して実験を行なった．対象データの一部
分を UMLオブジェクト図で記述したものを図 4.8に示す．これより，対象データが階層の深い構
造になっていることが分かる．

4.3.2 実験 1：データ数に着目した実験

(1) 実験内容
各 DBMSに格納するインスタンスの数を段階的に増やしていき，そこから 1本の鉄筋の位置情
報（図 4.8のオレンジ色のインスタンス）を取得する際の実行時間の変化を計測する．

(2) 対象データ
PC 箱桁橋の一部をプログラムで自動生成したものをテストデータとして用いた．PC 橋梁
の場合は，桁が施工単位毎にモデリングされるため，橋長が長くなるに従い桁を構成する部材
の数（データ量）が増える．また，IFC プロダクトモデルでは，形状の位置データを格納する
IfcCartesianPoint クラスのインスタンス数がもっとも多くなる傾向にある．そこで，1 施工単位
に約 26,000個のインスタンス（多くを鉄筋形状位置データが占める）を含むデータを生成し，施
工単位を増やすことでデータを増加させた．

*3 SQL Serverの場合は，同じクエリを連続して実行すると，実行結果がキャッシュされ，2回目以降の処理速度が極
端に速くなる場合があったため，キャッシュを無効にするオプションを設定して実施した．

55

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

: IfcTendon

: IfcReinforcingBar

: IfcRelNests

: IfcBridgePrismaticElement

: IfcCivilSeath

: IfcRelAggregates

RelatingObject

RelatedElements

: IfcReinforcingBar

: IfcRelAggregates

RelatedElements

RelatingObject

: IfcBridge

: IfcRelAssociatesMaterial: IfcMaterial
RelatingMaterial

RelatedElements

: IfcBridgePart

: IfcRelContainedInSpatialStructure

RelatingStructure

RelatedElements

: IfcRelContainedInSpatialStructure

RelatingStructure

RelatedElements

: IfcBridgePart : IfcBridgePart : IfcBridgePart

RelatedElements RelatedElementsRelatedElements

: IfcBridgeSegment : IfcBridgeSegment : IfcBridgeSegment : IfcBridgeSegment : IfcBridgeSegment

RelatedElementsRelatedElementsRelatedElements RelatedElements RelatedElements

: IfcRelConnectsWithRealizingElements
RealizingElements

RealizingElements

RelatingObject

: IfcReinforcingBar

RelatedElements RelatedElements

RealizingElements

: IfcShapeRepresentation

: IfcProductDefinitionShape

: IfcPolyline

: IfcCartesianPoint

: IfcCompositeCurveSegment

: IfcCompositeCurveSegment

: IfcCompositeCurve

: IfcCartesianPoint

: IfcSweptDiskSolid

Representations

Representation

Items

Directrix

Segments

ParentCurve

Points Points

Segments

: IfcTrimmedCurve

: IfcCircle

: IfcAxis2Placement3D

: IfcCartesianPoint

ParentCurve

BasisCurve

Position

Location

: A
���1, 2�����	
�	

: A
���2�����	
�	

図 4.8 実験対象データ（UMLオブジェクト図）

56

4.3 実験

(3) 実行クエリ
SQL Server, Neo4jのそれぞれで実行したクエリを，図 4.9，図 4.10に示す．また， Neo4jの
クエリ言語である Cypher言語のデータベースの参照に関する文法を表 4.8に示す．データベース
への追加等も含めた詳細な言語仕様は参考文献 [11]を参照されたい．

(4) 実験結果
結果を図 4.11に示す．SQL Serverはデータ量の増加に伴なって処理時間が増えるが，Neo4jは
格納するデータ数によらず，一定時間でデータを取得できることが分かる．MongoDBの場合は，
1ドキュメントのサイズが 16Mバイトに制限されており [9] ，クラス数を 12,000個までしか増や
すことができなかったため，処理時間の変化を計測することができなかった．

4.3.3 実験 2：階層数に着目した実験

(1) 実験内容
各 DBMS に IFC プロダクトモデルを格納し，格納データ数を固定した状態で，1 本の鉄筋情
報の取得にかかる処理時間を計測する．取得対象のインスタンスは図 4.8 中の青色とオレンジ色
のインスタンスであるが，取得する鉄筋情報の階層を，IfcReinforcingBar, IfcProductionDefini-

tionShape, ..., IfcCartesianPointインスタンスまで増やしながら計測する．

(2) 対象データ
実験 1と同様に PC箱桁橋のプロダクトモデル利用した．各階層毎の取得対象クラスとその格納
全インスタンス数，および取得対象インスタンス数を表 4.9に示す．階層が深くなるにつれインス
タンス数が増えることが分かる．ただし，MongoDBでは 1ドキュメント 16Mバイトの制限があ

1 SELECT * FROM IfcCartesianPoint CP

2 INNER JOIN Relation R ON R.GlobalId=CP.Coordinates

3 INNER JOIN IfcLengthMeasure LM on LM.GlobalId=R.RelatedObject

4 WHERE CP.GlobalId in (’71 d630ab6be1406ba4e962ba31422935 ’,’

fdee0a5a82774b02b67170b799e91569 ’)

図 4.9 実験 1のクエリ（SQL Server用）

1 START a=NODE (45)

2 MATCH (a)-[:SET]->(b)-[*]->(c)

3 WHERE c.GlobalId ="71 d630ab6be1406ba4e962ba31422935"

4 OR c.GlobalId =" fdee0a5a82774b02b67170b799e91569"

5 RETURN a,b,c;

図 4.10 実験 1のクエリ（Neo4j用）

57

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

表 4.8 Neo4jのクエリ言語である Cypherの文法（参照に関する仕様のみ）

��������	
����
�
�����������������
��������

�
�
� ��

�������	
� �	
���� !"#$%&'() !*

��
�
��� ����� !�	
��+) !*

��������

���,()-./"#$%&012
�34/5678'96:

1;1�
<�= *

�
�������� ���,()-./"#$%&012
�34/5678'> *

?�@
��AB���� ���,()-./2
�34/5678,CD'E
< !*

�	
� ��

FGHIJKLMGN IJKLMG%OP'QR2
�*

FG�SGTUJH�VWUXYZV[N GTUJ\]�^_`VWUXYZV,a!2
�*

FGNbbcFUN 2
�Gde2
�Uf1gh*

FGNbbFUN 2
�Gi2
�U1jkl1mngh*

FGNb�Ho�?�W�bcFUN 2
�Gde2
�Uf1Vo�?�WVpq�r!gh*

FGNb�K�bcFUN 2
�Gde2
�U�678K,ghstn!*

FGNb�uvwwx�bcFUN ������ข�����̆ഇ�����������������༏

FGNb�u�bcFUN คĆ�ข�����̆ഇ�����������������༏

yz96:1{|}~����05�����

�
�
�

�	
�

�

��

��

��

��

���

���

���

���

���

� ������� ������� ������� ������� 	������ �������
������ �������

�

�

�

�

�

�

�

�

�

�

����

��
������� �����

図 4.11 実験 1の測定結果

58

4.3 実験

るため，格納データ数を 1/10にして実験した．

(3) 実行クエリ
SQL Server, Neo4j, MongoDB のそれぞれで実行したクエリを，図 4.12–4.14 に示す．また，

MongoDBのクエリの参照に関する文法を表 4.10に示す．データベースへの追加等も含めた詳細
な言語仕様は参考文献 [9]を参照されたい．

(4) 実験結果
結果を図 4.15 に示す．SQL Server は階層が増えるに従い処理時間が大きく増加しているが，

Neo4j, MongoDBでは取得データの階層数によらず，ほぼ一定時間でデータを取得できている．

表 4.9 実験 2の階層別対象データ

�� ������ ��	
�	

�
���������������� ������ �

�
�������� !����� ���"#�$� ������ �

%
��"#�$���$��&�� � ��� ������ �

'
��"(�$!�&)"�*�� ������ �

+
��,�-$�&� �,��.� ������ �

/
��,�-$�&� �,��.�"��-�� �''���� �

0
����*1*��� �''���� �

�
��,�� �&������� ������� �/

1 SELECT * FROM IfcReinforcingBar RB

2 INNER JOIN IfcProductDefinitionShape PDS ON PDS.GlobalId=RB.

Representation

3 INNER JOIN Related R5 ON R5.GlobalId=PDS.Representations

4 INNER JOIN IfcShapeRepresentation SR ON SR.GlobalId=R5.

RelatedObject

5 INNER JOIN Related R6 ON R6.GlobalId=SR.Items

6 INNER JOIN IfcSweptDiskSolid SDS ON SDS.GlobalId=R6.

RelatedObject

7 INNER JOIN IfcCompositeCurve CC ON CC.GlobalId=SDS.Directrix

8 INNER JOIN Related R7 ON R7.GlobalId=CC.Segments

9 INNER JOIN IfcCompositeCurveSegment CCS ON CCS.GlobalId=R7.

RelatedObject

10 INNER JOIN IfcPolyline PL ON PL.GlobalId=CCS.ParentCurve

11 INNER JOIN Related R8 ON R8.GlobalId=PL.Points

12 INNER JOIN IfcCartesianPoint CP ON CP.GlobalId=R8.RelatedObject

13 WHERE RB.GlobalId =’765 e9e1859d04c788b7f2a9d0e7af079 ’

図 4.12 実験 2のクエリ（SQL Server用）

59

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

1 START a=NODE (38) MATCH (a)-->(b) RETURN a,b;

2 START a=NODE (38) MATCH (a)-[*..2]->(b) RETURN a,b;

3 START a=NODE (38) MATCH (a)-[*..3]->(b) RETURN a,b;

4 START a=NODE (38) MATCH (a)-[*..4]->(b) RETURN a,b;

5 START a=NODE (38) MATCH (a)-[*..5]->(b) RETURN a,b;

6 START a=NODE (38) MATCH (a)-[*..6]->(b) RETURN a,b;

7 START a=NODE (38) MATCH (a)-[*..7]->(b) RETURN a,b;

8 START a=NODE (38) MATCH (a)-[*..8]->(b) RETURN a,b;

図 4.13 実験 2のクエリ（Neo4j用）

1 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

2 "bridge000001.relatingStructure.IfcReinforcingBar ":1})

3 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

4 "bridge000001.relatingStructure.IfcProductDefinitionShape ":1})

5 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

6 "bridge000001.relatingStructure.IfcShapeRepresentation ":1})

7 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

8 "bridge000001.relatingStructure.IfcSweptDiskSolid ":1})

9 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

10 "bridge000001.relatingStructure.IfcCompositeCurve ":1})

11 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

12 "bridge000001.relatingStructure.IfcCompositeCurveSegment ":1})

13 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

14 "bridge000001.relatingStructure.IfcPolyline ":1})

15 db.getCollection(’size10num100000 ’). find ({},{" bridge000001 ":{

$slice :[37,1]} ,

16 "bridge000001.relatingStructure.IfcCartesianPoint ":1})

図 4.14 実験 2のクエリ（MongoDB用）

表 4.10 MongoDBのクエリ言語の文法（参照に関する仕様のみ）

���� ��

��	�
��

�� ��	�
��������������������� !"#

��	�
��
�$%&�
��� ��	�
�������������'$%&(� !"#

)*+,-�./�0123456�789�:';!�

01

<=>?@AAB?CD@EF>GE<H01I
>>>J

60

4.4 考察

�

���

���

���

���

�����

�����

� � � � � 	 �
 � �

�

�

�

�

�

�

�

�

�

�

������

�
�������� ����� �������

図 4.15 実験 2の測定結果

4.4 考察
前節で，格納データ数と取得対象の階層が増加した場合の，各 DBMSでのデータ取得処理時間
を計測した．それらの結果に対しての考察を以下に述べる．

4.4.1 リレーショナル型

リレーショナル型は，二分木と呼ばれるデータ構造で格納データを管理しており，n個のデータ
を含む関係からデータを取得（検索）する計算量は以下になる．

O(log2 n) (4.1)

また，階層構造があるデータを取得するには，階層分の検索処理が必要になるため，各階層に相当
する関係に含まれるデータ数をそれぞれ，n1, n2, ...とすれば以下になる．

O(log2 n1 + log2 n2 + ...) (4.2)

実験 1 では，階層数を 1 に固定してデータ数を増加させたため，対象データ数を n とする
と，O(log2 n) で処理時間が増加している．一方，実験 2 では n1, n2, ..., n8 が固定であり，かつ
n2, ..., n8はそれぞれ n1に比例しているため，階層数をmとすれば O(m)で一様に処理時間が増
加するとみなすことができる．しかし，IFCプロダクトモデルでは階層数 mは高々数十程度にし

61

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

かならないため，実際には一様には増えず，各階層に対応するインスタンス数の違いに依存して処
理時間が増加する．表 4.9と図 4.15を見ると，格納インスタンス数が多い階層 6～8で処理時間が
大きく増加していることがわかる．
式 4.1は，リレーショナル DBMSの内部スキーマである二分木データ構造の特徴であり，本章
における実験結果は，理論通りの結果が出ていると言える．そのため，SQL Server以外のリレー
ショナル DBMSを用いて実験を行なったとしても，同様の結果が出るはずである．

4.4.2 ドキュメント指向

前章で述べたように，MongoDB には 1 ドキュメント 16M バイトという制限が存在するため，
実験 1では意味のある結果を出すことができなかった．16Mバイトは約 12,000インスタンスに相
当し，IFC プロダクトモデルは小規模なモデルでも数万インスタンス，大規模なモデルでは数十万
から数百万インスタンスに達するため，これは実用に耐えない制限である．
対応方法としては，1橋梁 1ドキュメントとせずに，1インスタンス 1ドキュメントとして格納
する方法が考えられる．その場合のデータ構造は，4.2.4 (2)で示したカラム指向型による表現に近
い構造になる（図 4.7）．そこで論じたように，最終的にプロパティグラフモデルに近いデータ構造
に収斂するとすれば，グラフ構造の扱いに最適化されているグラフ型 DBMSが有利と考えられる．
階層構造が増えた場合の処理時間は，図 4.15の通り階層構造に依らず一定時間で処理可能であ
る．実際は取得対象オブジェクト数が増えるため，処理時間も増えるはずだが，MongoDBでは対
象となるドキュメント全体をメモリに読み込んでから処理するため，1ドキュメント内の検索処理
は非常に高速に動作する [12] ．よって，計測時間に現われなかったと考えられる．この処理時間
の速さはMongoDBの優位点の 1つであるが，ドキュメントサイズの制限とトレードオフの関係
がある．
ドキュメント指向 DBMSのデータモデルは，入力可能なデータ形式を定めているだけに過ぎず，
内部のデータ構造（内部スキーマ）は各 DBMS 製品に依存しているのが実態である．そのため，
ここで述べたデータ取得性能に関する考察は，他のドキュメント指向 DBMSには当て嵌まらない
と考えられる．

4.4.3 グラフ型

グラフ型において，e個の外向きのエッジを持つノードから他のノードを走査する処理時間は，
O(e)である．同様にして複数個のノードを走査する処理は，それぞれのノードから出るエッジ数
を e1, e2, ... とすれば，O(e1 + e2 + ...) であるが，ノードのエッジ数はスキーマの構造に依存す
るだけであり，格納データ数 nには依存しない．一般的に，グラフ型 DBMSは数百から数千オー
ダーのエッジ数であれば非常に高速に動作するよう実装されている．それ以上の数万オーダーの
エッジが接続するようなグラフであれば，速度低下が懸念されるが，そのような構造のプロダクト
モデルはまれであると考えられる．そのため，2ノード間の走査に要する処理時間は定数時間とみ

62

4.5 本章のまとめ

なすことができ，ノードをm回走査する処理時間は O(m)となる [11]．
実験 1は，全格納データ nが増加しても，走査データ数mは固定であるため，処理時間も固定
となっている．実験 2では対象データの階層が増加するに伴ない走査回数も増加するため，実行時
間も増えるはずだが，計測結果には現れていない．Neo4jは 1秒間に数百万ノードを処理できる性
能を持っているが，実験で使用したデータは 8階層で 37ノードしかないため，計測値には現れな
かったと考えられる．
グラフデータベースも，ドキュメント指向 DBMSと同様に標準化がなされておらず，発展途上
であるため，同じグラフデータベースに分類されていても，Neo4j とは異なる内部データ構造を
持つグラフ DBMSが存在している．Neo4jはインデックスなし隣接性と呼ばれる特性を持ってお
り [11]，これは隣接したノードへの参照が定数時間である特性であるが*4，このインデックスなし
隣接性を持つグラフ DBMSであれば，Neo4j以外の DBMSであっても同様の実験結果が得られ
るはずである．

4.5 本章のまとめ
本章の成果，および結論を以下に示す．

4.5.1 データモデル変換手法に関するまとめ

IFC プロダクトモデルを，以下データモデルに変換する手法を検討し，関係モデル，JSON 形
式，プロパティグラフモデルについては，変換手法を考案した．

• 関係モデル
• XML形式
• JSON形式
• プロパティグラフモデル
• キー・バリューモデル

プロパティグラフモデルと JSONについては，変換手法を考案しただけでなく，Java言語を用
いて変換プログラムを作成し，複数の IFCプロダクトモデルの変換を実行している．その際，変
換元のインスタンス数を数えることで，変換結果のおおよその正しさを確認したが，プログラムの
網羅的なテストは行なっていない．

*4 この特性を持つグラフデータベースでは，グラフ探索の計算量が，グラフ理論における探索アルゴリズムの時間計算
量と同じになるため，グラフ理論と適合性が高いと言える．Neo4j以外では，IBM System G [13] DBMSが該当
する．

63

第 4 章 各種データベースによるプロダクトモデル管理手法の開発

4.5.2 DBMSへの格納と取得性能に関するまとめ

さらに，これらデータモデル変換手法を用いて，IFCプロダクトモデルを以下の具体的なDBMS

製品に格納することに成功した．

• SQL Server 2008R2

• MongoDB

• Neo4j

その結果，IFCプロダクトモデルをリレーショナル型 DBMSに格納した場合には，対象データ
の階層構造が深くなるに従いデータ取得処理性能が劣化することを明らかにした．一方，グラフ型
DBMS ではそのような階層構造に依存した性能劣化が発生しないため，グラフ型 DBMS が IFC

プロダクトモデルのような階層の深いデータ構造に適している DBMSの 1つであることも同時に
明らかになった．

64

参考文献

[1] E. Lebegue, B. Fies, J. Gual, G. Arthaud, T. Liebich, N. Yabuki: IFC-BRIDGE V3 Data

Model - IFC4 Edition R3, 2013.

[2] 矢吹信喜，李占涛: 日仏橋梁プロダクトモデルの統合化による新 IFC-BRIDGE の開発と
CADコンバータの改良, 土木情報利用技術論文集, Vol.15, pp.59–66, 2006.

[3] ISO/IEC 9075:1999: Database Language SQL, 1999.

[4] W3C: Extensible Markup Language (XML) 1.1 (Second Edition), 2006.

[5] ISO 10303-28:2007: Industrial automation systems and integration – Product data rep-

resentation and exchange – Part 28: Implementation methods: XML representations of

EXPRESS schemas and data, using XML schemas, 2007.

[6] D. Crockford: The application/json Media Type for JavaScript Object Notation (JSON),

2006, http://www.ietf.org/rfc/rfc4627.txt (参照 2017/6/1).

[7] Neo Technology, Inc.: Neo4j: The World’s Leading Graph Database,

https://neo4j.com/product/ (参照 2017/6/1).

[8] Microsoft Corporation: SQL Server 2008 R2 editions overview, https://assets.

microsoft.com/en-us/SQLServer2008R2EditionsDatasheet_1.pdf

(参照 2017/6/1).

[9] MongoDB, Inc.: What is MongoDB?, https://www.mongodb.com/what-is-mongodb (参
照 2017/6/1).

[10] solid IT gmbh: Method of calculating the scores of the DB-Engines Ranking,

https://db-engines.com/en/ranking_definition (参照 2017/6/26).

[11] Ian Robinson, Jim Webber, Emil Eifrem, 佐藤直生（監訳）木下哲也（訳）: グラフデータ
ベース Neo4j によるグラフデータモデルとグラフデータベース入門, オライリージャパン,

2015.

[12] MongoDB, Inc.: The MongoDB 3.0 Manual, http://docs.mongodb.org/manual/ (参照
2015/10).

[13] IBM System G Team: About IBM System G, http://systemg.research.ibm.com/

about.html (参照 2017/6/27).

65

第 5章

グラフデータベースによるプロダクト
モデル部分抽出手法の開発

5.1 本章の概要
第 1 章で述べたように，プロダクトモデルには建築物や土木構造物のライフサイクル全体で発
生する膨大な量のデータが含まれるため，特定の作業フェーズに着目すれば不必要なデータを多
く含む冗長なモデルと言える．また，同じ作業フェーズであっても，形状を確認するのか，部材の
材料を確認するのか，設備の数量を確認するのか，その都度，要求される情報が異なる．しかし，
BIM/CIMではすべてのデータが 3次元プロダクトモデルに集約されるため，いずれの作業フェー
ズにおいても巨大なプロダクトモデルが必要となり，ネットワーク上で共有しようとすると，その
都度膨大な量のデータ転送が発生し，効率が悪い．そのため，ネットワーク上におけるプロダクト
モデルの共有を実現するには，巨大なプロダクトモデルから，必要な情報のみを抽出する技術が重
要になる．
第 4章で，様々な方式の DBMSに IFCプロダクトモデルを格納する手法を考案し，さらに，他
方式の DBMSよりもグラフ型 DBMSにメリットが多いことを示した．よって，本章ではグラフ
型 DBMSにプロダクトモデルを格納し，そこから必要な情報のみを抽出する手法を開発する．

5.2 部分抽出手法の開発
グラフ型 DBMSに格納した IFCプロダクトモデルから，モデルの一部分のみを抽出する手法を
検討する．本章では，BIM/CIMにおけるプロダクトモデルの利活用で最も需要が高いと思われる
形状データの抽出手法と，特定フロアや部材等の部分データを抽出する手法を検討することにし
た．IFCプロダクトモデルからプロパティグラフモデルへの変換手法は，基本的には第 4章で考案
した手法を用い，必要があれば変更を加える．
これらの 2種類の部分抽出処理は，図 5.1に示したサンプルモデルに当てはめると，前者がグラ
フ全体に散らばって存在する（形状）情報を収集する処理であるのに対して，後者がグラフ全体か

67

第 5 章 グラフデータベースによるプロダクトモデル部分抽出手法の開発

ら局所的に存在する情報（例えば図 5.1の右端に位置する材料情報等）を特定する処理になる．ど
のような種類の情報を抽出するにしても，グラフ型データベースにおけるデータ抽出処理は，これ
ら 2種類の抽出処理の組み合わせになると考えられる．

5.2.1 部分抽出アルゴリズム

(1) 分散したデータの抽出（全形状データの抽出）
IFC プロダクトモデル全体に分散して格納されているデータを抽出することを考える．説明の
ため，モデル全体の形状データを抽出する場合を例にする．
IFCスキーマでは，物理的な形状を持つエンティティは IfcProductクラスを継承するように定
義されているため（図 5.2），IfcProductの派生クラスのインスタンスとそれに関連するインスタ
ンス（図 5.1の網掛けのノード）を抽出すれば良い．これは，IfcProductの派生クラスのインスタ
ンスを開始ノードとし，IfcCartesianPointインスタンスを末端のノードとする部分グラフの集合
となる．
これを整理すると以下になる．

1. 探索開始ノードをプロジェクト名により決定する．
2. 1で決定したノードに接続されている全ノードのうち，IfcProduct派生クラスのノードを抽
出する．

3. 2に含まれる形状データ（形状種類，および位置情報）を抽出する．

1に関して，IFCではモデリング対象をプロジェクトとして管理することになっており，1モデ
ルにつき必ず，プロジェクトを表わす IfcProjectインスタンスが 1つ存在する．よって，プロジェ
クト名により，対象とするモデルを限定することが可能である*1．
2に関して，各ノードに変換元インスタンスの継承情報は含まれていないため，抽出条件を満た
しているかどうか，モデルだけでは判断できないという問題がある．
3に関して，本プロパティグラフモデルにおいて，「Aが Bを含む」とは，「ノード A → ノード

B」であることを意味している．つまり，2で抽出したノードを始点として外向きに接続されてい
るすべてのノードを抽出することになる．

(2) 局所的なデータの抽出（特定箇所データの部分抽出）
次に，局所的なデータ，例えば特定フロアのみのデータを抽出することを考える．IFCでは，図

5.1からも分かる通り，フロアなどの空間要素は階層構造で表現されており，IfcBuildingStoreyイ
ンスタンスで表現する．図 5.1 には明示されていないが，IfcBuildingStorey インスタンスには，
“GlobalID”, “Name”, “Description”, “Elevation” といった属性があり，これら属性を用いて複

*1 プロジェクト名が一意に管理されていることを前提としている．もし，そうでない場合，GlolabID等の別の一意な
属性を用いれば良い．

68

5.2 部分抽出手法の開発

: IfcBuilding

: IfcProject

: IfcRelAggregates

: IfcSite

RelatingObject

RelatedObjects

: IfcRelAggregates

RelatingObject

RelatedObjects

: IfcRelAggregates

RelatingObject

: IfcBuildingStorey

: IfcStair

: IfcRelContainedInSpatialStructure

RelatedObjects

RelatingStructure

RelatedElements

: IfcBuildingStorey

: IfcWall

: IfcRelContainedInSpatialStructure

RelatingStructure

RelatedElements

RelatedObjects

: IfcDoor

: IfcRelAssociatesMaterial

RelatedObjects

: IfcMaterial

RelatingMaterial

RelatedElements

:A

����A����	
���
��

:B
C

:A

����A����
������C�
 ��	����B����
���
 ��	����

: IfcProductDefinitionShape

: IfcExtrudedAreaSolid

: IfcShapeRepresentation

Representations

Items

: IfcArbitraryClosedProfileDef

: IfcPolyline

SweptArea

OuterCurve

Representation

���������
��

:A

: IfcProductDefinitionShape

: IfcExtrudedAreaSolid

: IfcShapeRepresentation

Representations

Items

: IfcArbitraryClosedProfileDef

: IfcPolyline

SweptArea

OuterCurve

Representation

: IfcProductDefinitionShape

: IfcExtrudedAreaSolid

: IfcShapeRepresentation

Representations

Items

: IfcArbitraryClosedProfileDef

: IfcPolyline

SweptArea

OuterCurve

Representation

: IfcCartesianPoint

: IfcCartesianPoint : IfcCartesianPoint

: IfcCartesianPoint

: IfcCartesianPoint

図 5.1 5F建てビルディングのプロダクトモデルの一部（UMLオブジェクト図）

69

第 5 章 グラフデータベースによるプロダクトモデル部分抽出手法の開発

IfcProduct

IfcObjectPlacement

IfcProductRepresentation

IfcBuildingElement

IfcDoor

IfcColumn IfcFooting

IfcPile

IfcSlab

IfcStair

IfcWall

IfcWallStandardCase

IfcRepresentation

1..*

図 5.2 IfcProduct関連クラス図

数フロアから，特定のフロアを選択することになる*2．対象のフロアが抽出されたら，そこに含ま
れるすべてのデータを抽出する．
これを整理すると以下になる．

1. 探索開始ノードをプロジェクト名により決定する．
2. 1 で決定したノードに接続されている全ノードのうち，IfcBuildingStorey インスタンスの
ノードで，かつ条件に合致するノードを抽出する．

3. 2に含まれる全データを抽出する．

1に関しては，「(1)分散したデータの抽出」と同様である．
2に関して，ノードのラベルにクラス名が設定されてあるため，特定種類のインスタンスのみ抽
出することが可能である．さらに，インスタンスのプロパティの値を条件にして抽出するインスタ
ンスを絞り込むことが可能である．
3 に関して，「(1) 分散したデータの抽出」と同様に，2 で抽出したノードを始点として外
向きに接続されているすべてのノードを抽出すれば良いように思えるが，図 5.1 に示されて
いる通り，空間要素である IfcBuildingStorey とそこに含まれる物理要素（IfcStair, IfcWall,

IfcDoor 等）は IfcRelContainedSpatialStructure エンティティで逆向きに関係している (A ←
IfcRelContainedSpatialStructure → B)．

*2 IfcBuildingStoreyに階数を示す属性は定義されていないため，しばしば Name属性に階数が設定される．

70

5.2 部分抽出手法の開発

5.2.2 プロパティグラフモデルの検討

第 4章で開発した変換手法を用いて変換したプロパティグラフモデルから，5.2.1項で示したア
ルゴリズムを用いて部分抽出することを考える．検討ポイントは以下になる．

• 各クラス間の継承情報の取得方法
• 関係性を示すオブジェクトの表現方法

第 4章で開発した変換手法では，変換後のプロパティグラフモデルにクラス名は含まれるが，継
承元クラス名は含まれないため，前述のアルゴリズムを適用することができない．また，要素同士
の関係性を示すインスタンス（IfcRelationShip派生クラスのインスタンス）が，プロパティグラ
フモデルでは外向きのエッジで他のノードと関連することになり，グラフの探索処理において計算
量が大きくなる要因になる．

(1) 各クラス間の継承情報の取得方法
各クラス間の継承に関する情報は，IFCスキーマで定義されており，スキーマのバージョンが同
じであれば継承情報も同じである．つまり，クラス間の継承情報は静的な情報であり，同一モデル
内で動的に変化することはないため，システム内に 1つ（または，バージョン毎に 1つずつ）保持
していれば良い．しかしながら，グラフデータベースは局所化したデータへのアクセス速度が高速
である一方，広く分散したデータへのアクセス速度が低速であるため，対象プロダクトモデルの構
成要素すべてに対して継承情報を取得する必要があるアルゴリズムでは，実用的な速度では動作し
ないと考えられる．
よって，データが冗長になってしまうが，各ノードに自ノード（インスタンス）の継承情報を含
めることにした．第 3 章で述べたように，リレーショナルデータベースにおけるデータモデリン
グ手法では，正規化によって冗長なデータを極力なくすことを目指す．冗長なデータを含むデータ
ベースは，単に記憶領域が無駄であるだけでなく，冗長なデータの更新時に不整合が発生しやすい
からである．しかしながら，このケースでは，継承情報は不変であり，変更されることはないため，
記憶領域が無駄になるというデメリット以外は発生しない．

(2) 関係性を示すオブジェクトの表現方法
第 4章の結果から分かるように，IFCプロダクトモデルの構造をそのままプロパティグラフモデ
ルに変換した場合，IfcRelationship派生インスタンスは関連するインスタンスを外向きのエッジ
で接続する．図 5.1には以下の関係が存在するが，

IfcBuildingStorey ← IfcRelContainedSpatialStructure → IfcStair

この関係は「あるフロア (IfcBuildingStorey) に，階段 (IfcStair) が含まれている．」ということ
を表現しており，IfcBuildingStoreyから IfcStairへの単一の向きの関係と解釈することが可能で

71

第 5 章 グラフデータベースによるプロダクトモデル部分抽出手法の開発

ある．
よって，第 4章ではノードにより表現していた関係性の表現を，エッジによる表現に変更するこ
とにする．*3

5.2.3 プロパティグラフモデルへの変換手法の改良

第 4章で示した変換手法に，前述した変更を加え，部分抽出に適した構造のプロパティグラフモ
デルへの変換手法を，以下の通りにまとめた．

1. 関係性を表すインスタンス以外のインスタンスに対応したノードを作成する．その際にノー
ドのラベルにクラス名を格納する．

2. インスタンスの属性が単純データ型，列挙データ型である場合は，ノードに属性名と同名の
プロパティを作成して属性値を格納する．

3. インスタンスの属性が集合体データ型であり，集合要素のデータ型が単純データ型，列挙
データ型である場合は，ノードに属性名と同名のプロパティを作成して集合要素の配列を格
納する．

4. インスタンスの属性がエンティティデータ型，あるいはエンティティデータ型の集合体デー
タ型である場合は，属性に対応するインスタンスのノードを 1–3の手順で作成し，作成した
ノードに向かう有効のエッジで接続する．さらに，クラスの継承情報を superClassプロパ
ティに格納する．

5. 関係性を表すインスタンスの場合は，関連元インスタンスに対応するノードから関連先イン
スタンスに対応するノードに向かう有効のエッジで接続する．その際に，classプロパティ
に関係性を表すインスタンスのクラス名を格納する．

以上の規則で生成されるプロパティグラフモデルの例を図 5.3 と図 5.4 に示す．各インスタンス
毎にクラスの継承情報を superClass プロパティに保持していることが分かる（図 5.3）．また，
IfcRelationship 派生インスタンスがノードではなく，有向のエッジに変換されている（図 5.4

青線）．

5.2.4 クエリの作成手法

グラフ DBMSに格納されたプロパティグラフモデルから，実際に部分抽出処理を実行するには，
クエリを作成する必要がある．本章で開発したアルゴリズムに対応したクエリの作成手法を以下に
一般化する．
グラフデータベースのためのクエリは，リレーショナルデータベースにおける SQLのように標

*3 グラフのエッジを関係性と解釈することは，多くのグラフデータベースアプリケーションで行なわれている。よく知
られているものにソーシャルグラフの生成がある。ソーシャルグラフとは，ソーシャルメディアにおける，人と人，
または組織同士の繋りを表現するためのもので，グラフデータベースを利用することにより，詳細な関係性を表現す
ることが可能になっている．

72

5.2 部分抽出手法の開発

IfcBuildingStorey

globalId=�21R8A6dHfDd8w4J$gMAIVT�
name=�floor2"
elevation=300
superClass=[�IfcSpatialStructureElement�,�IfcProduct�,�IfcObjec
t�,�IfcObjectDefinition�,�IfcRoot�,�InternalAccessClass�]

IfcDoor

globalId=�1uzfsQTF12W91b1QMNBpT�
overallWidth=1238
overallHeight=519
superClass=[�IfcBuildingElement�,�IfcElement�,�IfcProduct�,�Ifc
Object�,�IfcObjectDefinition�,�IfcRoot�,�InternalAccessClass�]

�����������	�
��
���	������
����
���
��	�

IfcProductDefinitionShape

superClass=[�IfcProductRepresentation�,�InternalAccessClass�]

図 5.3 IfcRelationshipによるプロパティグラフの表現

準化されたものが存在しない．本章では，Neo Technology社の Neo4j [1]という DBMS製品のク
エリ言語である，Cypher [2]と呼ばれるクエリ言語を利用する．

(1) 分散したデータの抽出（全形状データの抽出）
1. 探索開始ノードをプロジェクト名により決定する．
プロジェクト名を引数として，以下クエリに一般化できる．
MATCH (p:IfcProject) WHERE p.name="プ ロ ジ ェ ク ト 名" WITH p

2. 1で決定したノードに接続されている全ノードのうち，指定クラス派生インスタンスのノー
ドを抽出する．
MATCH (p:IfcProject)-[*]->(d) WHERE "IfcProduct" IN d.superClass

WITH d

3. 2 に含まれる形状データ（形状種類，および位置情報）を抽出する．
MATCH (d)-[*]->(f:IfcFace)-[*]->(: IfcPolyLoop)-->

(c:IfcCartesianPoint)

4. 形状データを返す．
RETURN f, c;

73

第 5 章 グラフデータベースによるプロダクトモデル部分抽出手法の開発

IfcProject

IfcSite

IfcBuilding

���������	��
���

���������	��
���

IfcBuildingStorey IfcBuildingStorey

���������	��
��� ���������	��
���

IfcStair IfcWall IfcDoor

������
���
����

����
��
���	����	�

������
���
����

����
��
���	����	�

������
���
����

����
��
���	����	�

IfcMaterial

������������
����
��	�
�

IfcProduct
DefinitionShape

IfcShape
Representation

IfcExtruded
AreaSolid

IfcArbitary
ClosedProfileDef

IfcPolyline

A

A B�

A B

A

����������� !"�#"�

��!"�#"�$%�&����'!"

���#"�()*+,�-./

������'!"�#"��&���0'

��!"�#"�123�-./

��45167!"�#"�

A ��4589#1:7/!"�#"�

IfcProduct
DefinitionShape

IfcShape
Representation

IfcExtruded
AreaSolid

IfcArbitary
ClosedProfileDef

IfcPolyline

IfcCartesianPoint

IfcCartesianPoint
IfcCartesianPoint

IfcCartesianPoint

IfcCartesianPoint

IfcProduct
DefinitionShape

IfcShape
Representation

IfcExtruded
AreaSolid

IfcArbitary
ClosedProfileDef

IfcPolyline

図 5.4 IfcRelationshipエッジによるプロパティグラフの表現

以上の手順で得られたクエリを結合して 1つのクエリとする．

(2) 局所的なデータの抽出（特定箇所データの部分抽出）
1. 探索開始ノードをプロジェクト名により決定する．
プロジェクト名を引数として，以下クエリに一般化できる．
MATCH (p:IfcProject) WHERE p.name="プ ロ ジ ェ ク ト 名" WITH p

2. 1 で決定したノードに接続されている全ノードのうち，IfcBuildingStorey インスタンスの
ノードで，かつ条件に合致するノードを抽出する．

74

5.3 検証

MATCH (p)-[*]->(f:IfcBuildingStorey) WHERE f.name="条 件" WITH f

3. 2に含まれる全データを抽出する．
MATCH (f)-[*]->(n)

4. 2に含まれる全データを返す．
RETURN f, n;

以上の手順で得られたクエリを結合して 1つのクエリとする．

5.3 検証
考案した変換手法と部分抽出手法が，実際のプロダクトモデルに適用可能であることを検証す
る．検証対象データとして 5 階建ビルディングの IFC プロダクトモデル (図 5.5，表 5.1) を用い
た．まず，Java言語で作成したプログラムを用いて IFCプロダクトモデルをプロパティグラフモ
デルに変換し，グラフ型 DBMSに格納する．その後，クエリ言語を用いて特定箇所の形状データ
を抽出する．
検証環境を表 5.2に示す．

図 5.5 検証対象プロダクトモデルの表示イメージ

75

第 5 章 グラフデータベースによるプロダクトモデル部分抽出手法の開発

表 5.1 検証対象プロダクトモデルの情報

�� ��

����	�
 ��
���

������� ���������

����� ��

����� ��

表 5.2 検証環境
�� �����

�	
 ��
��������������������������� !

"#$ %&�'�())*+�%++���,

�-./0 �1��'�22)

32 �45�32�6�%��%��&17�

)'�2 8��19�+�%�1

表 5.3 抽出対象箇所（階段）のインスタンス数

�� ��� ��

�	
� �
������ �

�� �
���������� ��

� !"#$% �
�&'�()''� �*+,,-

./ �
�0����1���&'��� ,-+*�-

5.3.1 検証方法

検証対象データである 5F建てビルディングのプロダクトモデルから，5F部分の階段の形状デー
タを取得する．この階段の形状は 3角ポリゴンの集合で構成されており，Neo4jに格納する前の段
階（Part21形式のファイルの状態）で形状を構成する要素の個数を予め計測しておく (表 5.3)．要
素の計測には IFCExplorer*4というツールを用いた．
図 5.6 のクエリを実行すると，階段の形状データ（面と点）が抽出される．実際には，面

（IfcPolyLoopインスタンス）の IDと面を構成する点（IfcCartesianPointインスタンス）の座標
値がコンマで区切られたテキスト形式（CSV形式）で出力される．この抽出結果から形状データ
の面と点の個数を数え，元データと合致していることを確認する．また，抽出した座標値から，obj
形式 [3]のファイルを作成し，ビューアで形状を確認する．

*4 buildingSMART Japan が開発した IFC プロダクトモデルの解析ツールである．クラス種別による検索や，イン
スタンスのツリー表示等様々な機能を搭載している．

76

5.3 検証

1 MATCH (p:IfcProject) WHERE p.name="LUC -01" WITH p

2 MATCH (p)-[*]->(f:IfcBuildingStorey) WHERE f.name="Mod -Floor -5"

WITH f

3 MATCH (f)-[*]->(s) WHERE "IfcProduct" IN s.superClass AND s.

shapeType =" STAIR" WITH s

4 MATCH (s)-[*]->(l:IfcPolyLoop)-[r:AGGREGATES]->(p:

IfcCartesianPoint)

5 RETURN id(l), p.coordinates [0], p.coordinates [1], p.coordinates

[2]

6 ORDER BY id(l), r.index

図 5.6 階段形状抽出クエリ

表 5.4 抽出対象箇所（階段）のインスタンス数

�� ��� ��

�	
��
� ����������� ������

��� ���� !"#$% &��%&" ����'�

図 5.7 抽出結果の表示イメージ

5.3.2 結果

図 5.6のクエリにより抽出した形状データの情報を表 5.4に示す．また，抽出した頂点データを
obj形式に変換後のファイルをビューアで表示した結果を図 5.7に示す．正しく抽出されているこ
とが分かる．なお，CSV形式の頂点データから obj形式への変換は，Java言語で簡易的な変換プ
ログラム*5（付録 A.1）を作成して変換した．

*5 IFCには様々な形状が定義されているが，このプログラムでは IfcFacetedBrepにしか対応していない．

77

第 5 章 グラフデータベースによるプロダクトモデル部分抽出手法の開発

5.4 考察
実行したクエリの意味であるが，最初の 3行は，Neo4j DBMSに格納されている様々な建築物
データから，抽出する建築物とそのフロアを特定し，さらに形状を含むインスタンスのみ抽出する
ことを示している．プロジェクト（建築物全体を示す）名称”LUC-01”とフロア名称”Mod-Floor-5”

により，ビルディングの 5Fまでを特定し，さらに IfcProductの派生クラスのインスタンスのみ抽
出することで，形状を含まないインスタンスを除外している．次の 2行は，抽出する形状データを
特定部材（階段）に特定し，それを構成する面と点を抽出することを意味している．最後の行は，
出力データを示しており，面を識別するための IDと，各頂点の座標値 (x, y, z)を出力している．
IFCプロダクトモデルが階層構造となっていることは，図 5.1に示したが，これは上位の要素が
下位の要素を含む構造となっているため，最上位の要素であるプロジェクト (IfcProject) から，下
位の要素をたどって行くことで，末端の座標点 (IfcCartesianPoint) までを取得できる．つまり，
IFCプロダクトモデルにおける抽出処理は，①全建築物，②特定建築物，③特定フロア，④特定種
類部材，⑤特定種類データの順に，対象データを絞り込んでいく処理となる．
グラフデータベースにおける抽出（検索）処理は，対象となる全ノードを走査していく処理であ
り，対象ノード数を nとすると，通常 O(n)で処理速度が増加する．よって，様々な建築物の情報
を集計するような処理は苦手としているが，上記のような対象ノードを絞り込んでいくような処理
では，グラフ走査処理が局所化するため高速に動作する．
つまり，部分抽出処理において，IFCプロダクトモデルのデータ構造は，グラフデータベースに
対して適合性が高い．また，IFCプロダクトモデルのこのような構造は，IFCスキーマのバージョ
ンに依らない基本的な構造であるため，IFC4など他のバージョンのスキーマで記述されたプロダ
クトモデルに対しても同様の結果が得られる．

5.5 本章のまとめ
グラフ DBMSで採用されているプロパティグラフモデルは，構成要素同士の関係性を詳細に記
述する IFCスキーマの設計方針と相性が良く，JSON等のオブジェクト指向をベースとしたモデ
リング言語を用いるよりも簡潔にモデル化可能であることを示した．
さらに，IFCプロダクトモデルをグラフ型 DBMSに格納するための変換手法を考案し，変換後
のモデルを格納した DBMSから特定のデータのみを，グラフ型 DBMSに備わっている機能（ク
エリ）だけを用いて，複雑なプログラムを作成する必要なく，簡単に抽出可能であることを検証し
た．この事実は，ネットワーク上でのプロダクトモデルの共有をシステム化する際に，グラフ型
DBMSを用いることでシステム化が容易になる可能性が高いことを示唆している．
本研究では，グラフデータベースを使用した部分抽出処理手法そのものに着目したため，その処
理速度については考察しなかった．実証した抽出処理は実用範囲内の速度 (4,242ms) で動作した
が，十分に速いとは言えない．また，実際にシステム化するためには，抽出処理だけでなく，追加，

78

5.5 本章のまとめ

変更，削除，さらに複雑な検索といった処理も必要になる．よって，抽出処理の高速化，および，
グラフデータベースにおける，追加，変更，削除処理の検証，さらに，実業務における利用を考慮
した検索処理手法の確立が，今後の課題となる．

79

参考文献

[1] Neo Technology, Inc.: Other Neo4j Releases,

https://neo4j.com/download/other-releases/ (参照 2017/6/1).

[2] Neo Technology, Inc.: The Neo4j Developer Manual v3.1, 2016,

https://neo4j.com/docs/developer-manual/3.1/ (参照 2017/6/1).

[3] ウィキペディア, Wavefront .obj ファイル, 2016, https://ja.wikipedia.org/wiki/

Wavefront_.obj%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB (参照 2017/6/1).

80

第 6章

グラフ DBMSを用いた BIM/CIM情報
共有システムの提案

6.1 本章の概要
第 1章において，BIM/CIM情報共有システムの必要性を述べた．そして，第 3章から第 5章
で，BIM/CIM情報共有システムの構築に必要なデータベース技術について検討し，性能面におい
て，現在広く用いられているリレーショナルデータベースよりも，グラフデータベースにメリット
が大きいことを示した．
本章では，実際に BIM/CIM情報共有システムを構築することを想定して，グラフ DBMSを用
いたシステムのメリット，またはデメリットを性能面に関してだけでなく，開発コスト，メンテナ
ンスコストの視点からも検討する．その結果，総合的にグラフデータベースを用いたシステムの優
位性が明らかになると考えている．

6.2 情報共有システムを中心とした BIM/CIMの姿
6.2.1 現在の情報共有システム

日本国内では，BIM/CIMが始まる以前より，工事情報共有システムを利用した（主に）施工時
における関係者間の情報共有が行なわれている．そこで，詳細な検討に入る前にそれらシステムの
概要を示す．
国土交通省は，公共事業分野の生産性の向上を目的として，CALS/EC（公共事業支援統合情報
システム）の構築を推進し [1]，その一環として，「工事施行中における受発注者間の情報共有シス
テム機能要件」を発行した [2]．この機能要件は，その名の通り，工事施工中において受注者と発
注者間における情報共有を実現するシステムの基本機能が定義されている．国土交通省がシステム
を構築，運営するのではなく，民間のシステムベンダーが本機能要件に合致したシステムを開発，

81

第 6 章 グラフ DBMSを用いた BIM/CIM情報共有システムの提案

運営し，公共工事の期間中に ASP (Application Service Provider）方式*1で運営されるのが特徴
である．なお，機能要件は順次改訂され現在は Rev.4.0となっている．
国土交通省が提供している情報によれば，機能要件 Rev.4.0に対応している工事情報共有システ
ムは 9つ存在しており [3]，国土交通省発注の土木工事のほぼすべてでそれらが使われている．同
様に，地方自治体においても国土交通省の機能要件に準じた工事情報共有システムの利用が広がっ
ている [4–6]．
一方，民間発注の工事においても，大規模な工事であれば，国土交通省の工事情報共有システム
と類似したシステムで情報共有を行なっている．しかし，国交省の情報共有システムと異なり，標
準は存在せず，工事を請負ったゼネコンなどが独自でシステムを調達している [7]．

6.2.2 BIM/CIM情報共有システム

第 1章で，BIM/CIMが成熟していくに従って，ファイルとローカルデータベースによる情報共
有から，ネットワーク上で統合されたシステムに進化していくと考えられていると述べた．上述し
たように，BIM/CIM が主に対象とする比較的大規模な工事では，すでに工事情報共有システム
が導入されているため，日本国内においては，図 6.1に示すように，すでに導入済の工事情報共有
システムを情報基盤として BIM/CIMが進化していくと考えるのが自然である．システムが 3次
元プロダクトモデルを扱えるようになり，システムの利用が工事施行中の発注者（施主）と受注者
（施工者）間に限られていたのが，多数の関係者間に広がっていることが分かる．

6.2.3 システム構成

(1) 一般的な工事情報共有システムの構成
国土交通省の「工事施行中における受発注者間の情報共有システム機能要件 (Rev.4.0)」に対応
した工事情報共有システム*2の 1つである basepage [8]のシステム構成の概要を図 6.2に示す．リ
レーショナル DBMSを用いたWeb3層アーキテクチャであることが分かる．
前述した通り，公共工事における工事情報共有システムは，国土交通省の機能要件に基いて開発
されているが，この機能要件に示されているのは要求仕様*3と非機能要求*4が中心であり，システ
ム構成については規定されていない．また，機能要件に対応した 9つのシステムはすべて商用シス
テムであり，内部のシステム構成については公開されていないため，それらすべてのシステム構成
を知ることはできないが，図 6.2に示した構成は，一般的なWebシステムでよく用いられる構成
であり，数多くの事例と長い運用実績があるため，その他の情報共有システムにおいても同様の構

*1 商用システムの提供形態の 1 つで，利用者はシステムを購入するのではなく，決められた期間借り受ける方式であ
る．

*2 BIM/CIM に対応していない現状の工事情報共有システムを，単に “工事情報共有システム” と呼び，BIM/CIM

に対応した工事情報共有システムを “BIM/CIM情報共有システム”と呼ぶ．
*3 システムに対する機能に関する要求のことである．
*4 システムに対する機能以外の要求であり，性能面やセキュリティ面に関する要求がこれにあたる．

82

6.2 情報共有システムを中心とした BIM/CIMの姿

o ������

o ��

o 	
��

����

����	

���

������

o ������

o ��

o 	
��

o
�����

�����

��
���

������	

���

������

�	
��

���

���

���

��
��
��
��
��
��
��
��
��
��
��
��
��
��

図 6.1 予想される情報共有システムの進化

成であると考えられる．
よって，本章では，現状の情報共有システムの構成が図 6.2と同等であることを前提に検討を行
なうことにする．

(2) 提案する BIM/CIM情報共有システムの構成
第 4章で，BIM/CIMにおいて中心的な存在である 3次元プロダクトモデルが，リレーショナル

DBMS が採用するデータモデルである関係モデルと親和性が低く，性能が発揮できないことを明
らかにした．しかしながら，現在の一般的な情報共有システムはリレーショナル DBMSを用いて
構築されており，システム構成を変えずに，単に機能を拡張するだけでは，特に性能面で問題が発
生すると予想される．
よって，本章では本論を通じて研究の対象としているグラフ型 DBMSを用いた BIM/CIM情報
共有システムを提案する．そのシステム構成を図 6.3に示す．データベースサーバがリレーショナ
ル型とグラフ型を併用する構成となっているのが特徴である．

83

第 6 章 グラフ DBMSを用いた BIM/CIM情報共有システムの提案

���������
�	
���
������

������	�����
���

�������

 !"#$

 !"#$

 !"#$

�����
�%
&�'()�*���

�����
�%
&+,-����

図 6.2 一般的な工事情報共有システムの構成

���������
�	
��
���

������������
���

��������
�� !"�#�$�

%���&'�

()*+,

()*+,

()*+,

���������
������-$�
���

��������
�./0����

図 6.3 提案する BIM/CIM情報共有システムの構成

6.3 コストに関する検討
BIM/CIM情報共有システムを開発することを想定して，リレーショナル DBMSを用いた場合
と，グラフ DBMSを用いた場合の開発コストの違いを考察する．BIM/CIM情報共有システムに
求められる機能は多岐に渡るため，すべての機能に関して考察することは困難である．そこで，本
研究ではプロダクトモデル読み込み処理の一部，入力データをそれぞれのデータモデル，関係モデ
ルとプロパティグラフモデルに変換して DBMSに格納する処理を考察対象とした．理由は，デー
タ処理部分に DBMSの違いが現れやすいからである．
コストの見積りには，COCOMOモデル [9]を利用した．

84

6.3 コストに関する検討

6.3.1 COCOMOモデル

COCOMOは，開発規模から開発期間と開発にかかるコスト（人月）を算出するためのモデルで
ある．扱うデータの複雑度と処理の複雑度から開発規模を算出するファンクションポイント法 [10]

と並び，ソフトウェア開発の見積りに広く用いられている．

PM = a(KDSI)E1ΠA (6.1)

TDEV = b(PM)E2 (6.2)

PM : 人月
TDEV : 標準開発期間（月）
KDSI : 開発されるプログラム命令数（kステップ）

ΠA : 努力係数
a, b : 定数

E1, E2 : 乗数

式 6.1が，開発規模 (KDSI)から開発コスト (PM)を算出する式であり，式 6.2 が，開発コスト
(PM) から開発期間 (TDEV) を算出する式である．入力値である開発規模はステップ数*5で与え
る必要があるが，通常，ソフトウェアの見積り時にプログラムコードは存在していないため，ファ
ンクションポイント法で開発規模を別途見積った後，ステップ数に変換する手法がよく用いられて
いる [11]．
努力係数 ΠA，定数 a, b，乗数 E1, E2は，開発プロジェクトの規模や，開発者の技量，時間的な
制約等の様々な要因を総合的に考慮して決定される（表 6.1, 表 6.2）．

6.3.2 開発コストの比較検討

COCOMOを用いて，リレーショナル DBMSのみを用いた構成とグラフ DBMSを並用する構
成の，開発コストの比較検討を行なった．

(1) 努力係数 ΠAの決定
COCOMOを用いた見積りでは努力係数を決める必要があるが，COCOMOでは表 6.1にある
ように 15個の努力係数が定義されており，それぞれを掛け合わせて全体の努力係数 ΠAとする．
本章の目的の 1つは，BIM/CIM情報共有システムという機能が同一であるシステムにおいて，シ
ステムを構成する DBMS の違いが開発コストにどのように影響するのか明らかにすることであ

*5 プログラムの規模を示す値であり，プログラムコードを算出規則に従って数えることで算出する．複数の算出規則が
提案されているが標準は存在しない．

85

第 6 章 グラフ DBMSを用いた BIM/CIM情報共有システムの提案

表 6.1 COCOMOの努力係数（出典:プロジェクトコスト見積り入門 [11]）

���

��

�� �� ��

���

��

	
�

��

�
�� ��������������� �� ! ��"" #��� #�#! #�$� %

&'(')*+,*-./01 % ��2$ #��� #��" #�#3 %

45�6 ������78.9:� �� � ��"! #��� #�#! #�;� #�3!

(<=
 >-?@�ABC�DEFGHIJ % % #��� #�## #�;� #�33

K(L� MNOPQIJ % % #��� #��3 #�R# #�!3

S<�(LKTU*V���.WXYZ % ��" #��� #�#! #�;�

([�\ �����+*]�^�]V+0@ % ��" #��� #�� #�#!

'4'5 �_`-�ab #�$3 #�#2 #��� ��"3 �� # %

'
65 cd.�e`f*>g].hijk� #�R2 #�#; #��� ��2# ��"R %

54'5 elm^nab #�$R #�# #��� ��"3 �� � %

S
65 LKoU*V���.hijk� #�R# #�#� #��� ��2� % %

�
65 elm^p]mqr.hijk� #�#$ #�� #��� ��2! % %

=L&5 ������stuv.wxjk� #�R$ #�#� #��� ��2# ��"R %

(LL� ������Ty*z.wxjk� #�R$ #�#� #��� ��2# ��"; %

K4
& �����st-f{|*z.IJ #�R; #��" #��� #��$ #�#� %

},z

~�

�b

��

��

���

78

U*V

78

��

el{�

��

表 6.2 COCOMOの開発モード（出典:プロジェクトコスト見積り入門 [11]より作成）

����� ������ �����

�	
����
�� ������ ������ ���
���

��������

!"#$

�%&#$ ����#$ �'(�#$

)*+,�-./ �)01 �2&3�4-. ����-.

!"56 �789:;<=>? �@889:;<=>? �@889:;<=AB

CDEFGH

�IJ�0KEFGH �L&�MNO�EFGH

�PL&�Q RSTHO�

�U56�MNEFGH

�VUKQ RSTHO�

�U56<:

WX �Y@Z[\P�Y[Z7 �Y@Z8\P�Y[Z7 �Y[Z]\P�Y[Z7

^X � _Y_Z87\P� [Y8Z@] � _Y_Z_[\P� [Y8Z@7 � _Y_Z[8\P� [Y8Z@[

る．つまり，比較により違いが明らかになればよく，正確な開発コストを求める必要はない．よっ
て，両システム構成で共通の係数はすべて中位 (1.0)とした*6．
両システム構成で異なる係数は，MODP（ソフトウェア開発技法の使用度合い）のみと考えら
れる．リレーショナル DBMSのみを用いるシステム構成は前述した通り一般的であり，使用度合
い（習熟度）が高いため非常に高い (0.82)とし，一方のグラフ DBMSを並用するシステムでは，
少なくとも現状では一般的ではないため，非常に低い (1.24)とした．他はすべて中位 (1.0)である

*6 COCOMOで正確な開発コストを求めるには，開発実績に基いた算出工数の調整が不可欠であり，詳細な検討によ
り係数を中位 1.0以外に設定したとしても，正確な工数が算出できるわけではない．

86

6.3 コストに関する検討

ため，全体の努力係数 ΠAはそれぞれ，0.82と 1.24になる．

(2) 定数と乗数の決定
COCOMOを用いた見積りでは定数 a, bと乗数 E1, E2を決める必要がある．これらは，表 6.2

に示した開発モード（プロジェクト全体の難易度を表わす）によって決まっている．BIM/CIM情
報共有システムは，簡単な小型システムではないことは間違いないが，大規模 OSに匹敵するほど
大規模ではないため，半組込モードを選択した．
よって，両システム構成共に，a = 3.0, b = 2.5, E1 = 1.12, E2 = 0.35となる．

(3) 開発規模の算出
COCOMOによる開発コストの見積りには，対象プログラムの開発規模が必要であり，前述した
ように，一般的にはファンクションポイント法などを用いて概算規模を算出するが，本章では，よ
り正確な開発規模を算出するため，それぞれの DBMS用のプログラムコードを一部作成し，その
コードを元に全体の開発規模を算出する．
データベースを利用したシステムの開発では，DAO (Data Access Object)を用いた設計が一般
的である．Alurらによってデザインパターンとしてまとめられた結果，システム開発で広く用い
られる設計パターンとなっているため [12]，本論でもこの設計にならうことにする．データ処理部
分のクラス構成を図 6.4に示す．IFCスキーマの各エンティティに対応するクラスが Dataクラス
であり，DataAccessObjectクラスが DBMS（DataSourceクラス）にアクセスし，得た情報を元
に Dataオブジェクトを生成している．
そこで，ある IFC4 スキーマのエンティティに対して，リレーショナル DBMS 用とグラフ

DBMS 用の DataAccessObject クラスを作成（Java 言語によりプログラミング）し，両者のス
テップ数を計測する．そして，その結果から全体の開発規模を算出することにする．具体的には，
鉄筋を表す IfcReinforcingBarエンティティを選択した．実際にプログラミングの対象となるクラ

+ delete() : void
+ update() : void
+ read() : Object
+ create() : void

DataAccessObject DataSource

Data

ResultSet

����

1*
������

1

1

	
��

����

図 6.4 Data Access Objectのクラス図（出典:J2EEパターン [12]）

87

第 6 章 グラフ DBMSを用いた BIM/CIM情報共有システムの提案

delete(globalId : String) : void
update(entity : IfcReinforcingBar) : void
read(globalId : String) : IfcReinforcingBar
create(param0 : String) : void

IfcReinforcingBarDao

BarSurface : IfcReinforcingBarSurfaceEnum
BarRole : IfcReinforcingBarRoleEnum
BarLength : IfcPositiveLengthMeasure
CrossSectionArea : IfcAreaMeasure
NominalDiameter : IfcPositiveLengthMeasure

IfcReinforcingBar

����

SteelGrade : IfcLabel

IfcReinforcingElement

IfcElementComponent

Tag : IfcIdentifier

IfcElement

IfcProduct

ObjetType : IfcLabel

IfcObject

IfcObjectDefinition

Description : IfcText
Name : IfcLabel
GlobalId : IfcGloballyUniqueId

IfcRoot

IfcOwnerHistory

OwnerHistory

IfcObjectPlacement

ObjectPlacement

IfcProductRepresentation

Representation

delete(globalId : String) : void
update(entity : T) : void
read() : T
create() : void

<<interface>>
Dao

T

図 6.5 IfcReinforcingBarと Data Access Object（UMLクラス図）

スを図 6.5に示す．これを元にプログラムコード（付録 A.3, A.4）を記述し，ステップ数*7を計測
した．計測対象のプログラムコードは，IfcReinforcingBarDaoのみとし，エンティティを表わす
クラスである IfcRootや IfcProduct，IfcReinforcingBar等は含めていない．なぜなら，エンティ
ティを表わすクラスは商用ライブラリを用いるのが一般的だと考えたのと，エンティティに関わる
プログラムコードはリレーショナル DBMS用とグラフ DBMS用とで同一であり，比較検討に関
係しないためである．

*7 複数の数え方が提唱されているが標準は存在しないため，本論ではプログラムコードからコメント行と空行を
除いた行数である SLOC (Source Lines Of Codes) をステップ数として用いた．また，ステップ数の計測には
SLOCCountというツール (https://www.dwheeler.com/sloccount/)を利用した．

88

6.3 コストに関する検討

計測した IfcReinforcingBarDao のステップ数から，全体の開発規模を算出した結果が以下で
ある．

1. リレーショナル DBMSを用いたシステムの開発規模

224× 543/1000 = 121.6

2. グラフ DBMSを用いたシステムの開発規模

1010/1000 = 1.01

リレーショナル DBMS用の DAOプログラムコードは，IFC4スキーマに定義されているインス
タンス化可能なエンティティ 543個分*8のコードが必要になるが，グラフ DBMS用のコードは，1
種類で済むため，開発規模が非常に小さい．

(4) 開発コストの算出
最後に，(1)～(3)で求めた，努力係数，定数，乗数，開発規模から，COCOMOを用いて開発コ
ストを算出する．結果は以下の通りである．

1. リレーショナル DBMSを用いたシステムの開発コスト

PM = 3.0× (121.6)1.12 × 0.82 = 532.2（人月）
TDEV = 2.5× (PM)0.35 = 22.5（ヶ月）

2. グラフ DBMSを用いたシステムの開発コスト

PM = 3.0× (1.01)1.12 × 1.24 = 3.8（人月）
TDEV = 2.5× (PM)0.35 = 2.2（ヶ月）

6.3.3 開発コストに関する考察

前節での開発コストの算出では，システム構成の違いにより大幅な差異（140倍）が出た．この
理由について，以下で考察する．

(1) リレーショナル DBMSを用いた構成の開発コスト
図 6.4の設計では，IFCのエンティティ毎にデータアクセス用のクラスを定義することになる．
リレーショナル DBMSはスキーマ必須の DBMSであるため，データの格納先となるテーブルを
予め定義しておく必要がある．具体的にはテーブルの名称と，そのテーブルが含むカラムの個数，
名称，データ型等である．プログラム側で IFCインスタンスを DBMSに登録する場合，各インス

*8 IFC4 に定義済の全エンティティ 766 個から，インスタンス化できない ABSTRACT であるエンティティ 123 個
を除いた個数．

89

第 6 章 グラフ DBMSを用いた BIM/CIM情報共有システムの提案

タンスを関係モデルに変換した後，インスタンスの種類毎に格納先のテーブルを振り分けて格納す
る必要がある．よって，リレーショナル DBMSを用いたシステムの開発では，IFCスキーマで定
義されている 543個のエンティティに対応するテーブルを予め定義し，それらのテーブルに 1対 1

に対応するデータアクセスクラスをプログラミングする必要がある．さらに，IFCスキーマのバー
ジョンアップが発生したり，異なる IFC拡張スキーマへの対応が必要になった場合には，対応す
るスキーマ毎に同様の対応が必要になる．

(2) グラフ DBMSを用いた構成の開発コスト
一方，グラフ DBMSはスキーマレスの DBMSであるため，格納するデータの形式は，プロパ
ティグラフモデルの形式に従っている限り自由である．そのため，プログラムは IFCインスタン
スをプロパティグラフモデルに変換した後，そのままグラフ DBMSに追加すれば良い．追加する
データ（ノードまたはエッジ）の名前，そこに含まれる属性の個数，名称，データ型を予め決めて
おく必要はない．よって，グラフ DBMSを用いた BIM/CIM情報共有システムの開発，メンテナ
ンスでは，リレーショナル DBMSを用いたシステムの開発で発生する，データベーススキーマの
定義，データアクセスクラスのプログラミングが不要になる．つまり，システム開発コスト，メン
テナンスコストが大幅に低い．

6.4 まとめ
第 4章で行なった性能比較では，リレーショナルデータベースとグラフデータベースのデータモ
デルの違いが性能の違いになった．本章における，開発コストの比較検討では，各データベースの
スキーマの定義の方法，つまり，固定スキーマであるかスキーマレスであるか，の違いが結果に大
きく作用した．第 3章で述べたように，NoSQLに分類されるデータベースは，ほとんどがスキー
マレスのデータベースであり，IFCのように多数のエンティティが定義されている複雑なプロダク
トモデルに対してシステム化するには，スキーマレスのデータベースが適していると言える．

90

参考文献

[1] 日本建設情報総合センター: CALS/ECとは？ CALS/ECイントロダクション,

http://www.cals.jacic.or.jp/calsec/index.html (参照 2017/6/1).

[2] 国土交通省: 工事施工中における受発注者間の情報共有システム機能要件（Rev.4.0）【要件
編】, 2014.

[3] 国土交通省: 情報共有システム提供者における機能要件 (Rev4.0) 対応状況一覧
表, 2017, http://www.cals-ed.go.jp/mg/wp-content/uploads/soukatsuichiran4.

pdf (参照 2017/6/1).

[4] 兵庫県県土整備部県土企画局契約管理課: CALS/EC について, 2016, https://web.pref.

hyogo.lg.jp/ks03/wd04_000000002.html (参照 2017/6/1).

[5] 広島県土木建築局技術企画課: 広島県工事中情報共有システム, https://chotatsu.pref.

hiroshima.lg.jp/asp/index.html (参照 2017/6/1).

[6] 岡山県土木部技術管理課管理情報班: 岡山県公共工事施工管理支援（情報共有）システム, http:

//www.pref.okayama.jp/doboku/gikan/cals/cals_johos.html (参照 2017/6/1).

[7] サイボウズ: サイボウズ Office6 導入事例, https://cybozu.co.jp/casestudy/example/

taisei_kensetsu/pdf/taisei_kensetsu.pdf.

[8] 川田テクノシステム: 情報共有 ASP basepage, 2017,

http://www.kts.co.jp/asp/basepage/index.html (参照 2017/6/1).

[9] Center for Software Engineering, USC: COCOMO II Model Definition Manual Version

2.1, 2000.

[10] International Function Point Users Group (IFPUG), 日本ファンクションポイントユーザ会
(JFPUG) 訳: ファンクションポイント計測マニュアル (CPM:Counting Practice Manual)

リリース 4.1.1, 2001.

[11] 岡村正司: プロジェクトコスト見積り入門, pp.123–128, 日経 BP社, 2009.

[12] Deepak Alur, John Crupi, Dan Malks, ウルシステムズ（監訳）, 近棟稔（監訳）, 吉田悦万
（監訳）, 小森美智子（監訳）, トップスタジオ（訳）: J2EE パターン第 2 版, pp.458, 日経
BP社, 2005.

[13] 建設情報標準化委員会, 電子成果高度利用検討小委員会: 工事施工中における受発注者間の情
報共有「情報共有のあるべき姿」（案）, 2006.

91

第 7章

総括

7.1 結論
本研究は，BIM/CIM における複数の関係者による情報共有と協調作業を実現するために，最
も重要な技術の 1つであるデータマネジメント技術に着目し，プロダクトモデルの DBMSへの格
納手法と部分抽出手法を開発し，さらに，実際にシステム化することを想定して，開発コストとメ
ンテナンスコストについて検討したものである．現在，圧倒的なシェアを占めるリレーショナル
データベースだけでなく，リレーショナルデータベースとは全く異なるデータモデルを採用した，
NoSQLと呼ばれるデータベース群が実用化されている昨今の状況を鑑みて，様々な方式のデータ
ベースによる比較検討を行なっている．
現時点におけるプロダクトモデルの共有は，BIM/CIMが比較的進んでいる英国やフィンランド
であっても，ファイルベースで実施されている場合がほとんどであるため，DBMSを用いたデー
タマネジメント技術に関する問題はまだ顕在化していない．本研究は，今後，必ず顕在化するはず
である，データマネジメント技術に関する問題を明らかにし，さらに対策を講じたものである．こ
れらの本研究の中心となる議論は，主に第 4章，第 5章，第 6章でなされており，各章で得られた
成果と結論を総括して以下に示す．

7.1.1 各章における検討結果のまとめ

(1) 各種データベースによるプロダクトモデル管理手法の開発
第 4章では，IFCプロダクトモデルを以下に示す複数のデータモデルに変換する手法の開発に成
功し，さらに，いくつかの DBMS製品にプロダクトモデルを格納し，データ取得速度に関する実
験を実施した．

• 関係モデル（リレーショナルデータベース）
• 半構造データ（XMLデータベース，ドキュメント指向データベース）
• プロパティグラフモデル（グラフデータベース）
• キー・バリューモデル（キー・バリューストア, カラム指向データベース）

93

第 7 章 総括

表 7.1 プロダクトモデル管理手法の検討結果

�������� �����	 ���
� ����
��

������	 ����	 ������ �������� ���!"

#$%&'()* +,-��� �� ./���012345

6789 :;<=>678��	 �� ?@

$�AB�%��(C $�AB�%���	 DEFG HIJKL

その結果（表 7.1）から，データ取得性能に関して，グラフデータベースが最も優れていると結
論付けた．

(2) グラフデータベースによるプロダクトモデル部分抽出手法の開発
第 5章では，IFCプロダクトモデルを格納したグラフ DBMSにおける，部分抽出手法に関する
検討を行なった．その結果，第 4章で開発した変換手法によるデータには，部分抽出に必要な情報
が不足していることが明らかになり，モデル変換手法の変更が必要になったが，最終的には，関係
性を示すインスタンスをエッジで表現することで，より簡潔に IFCプロダクトモデルを表現可能
になり，かつ，非常に簡潔なクエリで部分抽出が可能になった．
しかしながら，このモデル変換手法の変更により，継承情報を各ノードに保持することになり，
データが冗長化することになってしまった．本研究の範囲では問題は発生していないが，DBMS

のデータ容量を圧迫するのは間違いないため，今後は冗長化しない別の手法も検討すべきと思わ
れる．

(3) グラフ DBMSを用いた BIM/CIM情報共有システムの提案
第 6章では，BIM/CIM情報共有システムを構築することを想定し，COCOMO法を用いて開
発コストを算出し，グラフ DBMSを用いたシステムの方が，開発コスト，及びメンテナンスコス
トが低くなることを明らかにした．

7.1.2 プロダクトモデルとデータベースの適合性に関する結論

以上に示したように，性能，データ変換，開発コストと様々な側面から検討した結果，グラフ
データベースはすべてにおいて良好な結果が出ており，BIM/CIMにおいて，あらゆる情報が集約
されるプロダクトモデルと適合性が高いデータベース方式であると結論付けられる．これは，単に
データ構造の類似性に依るだけではなく，IFCスキーマの設計上の特徴である関係性の表現が，プ
ロパティグラフモデルとうまく合致したからだと考えている．
IFCスキーマは今後も開発が続けられ，IFC5, IFC6, ...と進化していくと予想される．その過
程で，IFC拡張スキーマがさらに増えるのか，それとも集約されて 1つになるのか，予見すること
はできないが，IFCスキーマの設計方針が大きく変化しない限り，IFCスキーマの新バージョン，
派生バージョンが公開されたとしても，本論で示したグラフデータベースを用いたデータマネジメ

94

7.2 今後の課題と展望

ント手法は，そのまま利用できるはずである．
しかしながら，本論における結論は，グラフデータベースの利点を明らかにしたものの，問題点
を浮び上がらせるようなものではなかった．理論上，グラフデータベースの性能は，探索対象のグ
ラフの大きさに比例して低下するはずであるが，そのような結果を確認することはできなかった．
BIM/CIM情報共有システムとしての実用化を想定するのであれば，取り扱い可能なデータのサイ
ズについても検討されるべきであり，それが本研究の反省点である．

7.2 今後の課題と展望
7.2.1 データマネジメント技術に関する課題

本論では，グラフデータベースのデータモデルであるプロパティグラフモデルに対する部分抽出
手法を研究した．理由は，BIM/CIM情報共有システムで巨大なモデルを共有するには，部分抽出
処理が必要不可欠だからである．しかし，部分抽出処理だけで十分であるはずはなく，その他に，

• 部分更新
• 差分検出
• 変更履歴管理

といった処理も必要だろう．差分検出が実現できれば，複数作業者による協調作業が大きく効率化
すると考えられるし，変更履歴の管理技術は，維持管理フェーズにおいて非常に有用な機能を実現
することになるだろう．
よって，データマネジメント技術に関しては，プロパティグラフモデルで表現したプロダクトモ
デルにおいて，これらを実現することが今後の課題となる．また，本論はデータベースとデータマ
ネジメント技術に着目したため，これらデータの可視化について論じることはできなかったが，シ
ステムとして実用化するためには可視化技術も必要であり，これも今後の研究課題となり得る．

7.2.2 BIM/CIM情報共有システムに関する課題

第 6章で，BIM/CIM情報共有システムのシステム構成として，リレーショナル DBMSとグラ
フ DBMSを併用するハイブリッド構成のシステムを提案した．本論でも論じたように，あらゆる
構造のデータを効率良く扱える万能なデータベースは存在しない．よって，様々な種類のデータが
必要な BIM/CIM情報共有システムにおいて，取り扱うデータに合わせて DBMSを使い分けるこ
とは不自然ではなく，むしろ必然と言えるのではないだろうか．
ここ 20年ほど，リレーショナル型以外に実用的（性能が高く，堅牢）な DBMS製品が存在しな
かったため，リレーショナル DBMSのみを用いてシステム化することが半ば常識となっていたよ
うに思われるが，その状況は，NoSQLデータベースの台頭で変わりつつあると感じている．将来，
実用的な NoSQL DBMS製品が増えれば，1つのシステム内で異なる方式の DBMSを併用するシ
ステム構築手法が一般的になるかもしれない．

95

第 7 章 総括

よって，今後はハイブリッド構成のシステムにおけるデータマネジメント技術，具体的には，異
なる DBMS間でのデータ授受に関する研究も必要になると考えている．

7.2.3 今後の展望

現在，日本では Part21ファイルを用いたプロダクトモデルの運用に関する標準化が開始された
ばかりで，まだファイルベースのやり取りが中心であるが，近い将来，BIM/CIM情報共有システ
ムの利用が一般化し，ネットワーク上でプロダクトモデルを共有し，維持管理までも含めたあらゆ
る情報が集約される日が訪れると信じている．そのような BIM/CIMの理想を実現すべく，研究
を継続していく所存である．

96

謝辞
本論文は，大阪大学大学院工学研究科，矢吹信喜教授のご指導のもとに実施した研究をとりまと
めたものです．私は，1997年 3月に新潟大学工学部を卒業してから，2014年 4月に大阪大学大学
院に入学するまでの 17年間，大学や学会活動にはまったく縁がなく，ほぼ何の実績もない状態か
ら学位取得への取り組みを始めることになりました．そのため，矢吹先生からは，論文の内容云々
以前に，文章の書き方からご指導いただいたような状態で，本当に世話のかかる学生だったと思い
ますが，懇切丁寧で，かつ熱意あるご指導を賜わり，感謝の念に堪えません．また，副査の澤木昌
典教授，福田知弘准教授には，暖かく，かつ丁寧なコメントを多数いただきまして，誠にありがと
うございました．この場を借りまして，深く御礼申し上げます．
この 3 年半の間は，私が籍を置く，川田テクノシステム株式会社における業務と並行しての研
究活動でしたが，テクニカルイノベーションセンターの浦辺裕二部長，工藤克士次長（現在はエン
タープライズソリューションセンター部長）には，私の研究活動に便宜を図っていただき，本当に
助かりました．また，同部署の渡辺省嗣次長，豊田純教課長には，私の業務をフォローしていただ
くことが多々ありました．申し訳なかったと思うと同時に，心から感謝しています．
私は，1997年に川田テクノシステム株式会社に入社しましたが，そこで，始めに興味を持った
ことはオブジェクト指向設計/プログラミングでした．同時に，UML やデザインパターンの習得
にも没頭しました．その後，XMLデータベースを利用したファイリングシステムの設計とプロト
タイプの開発業務を通じて，当時の最新データベース技術に触れることができました．また，2006

年頃からは工事情報共有システムの開発とシステム運用に携わり，現在に至りますが，この業務を
通して，リレーショナルデータベースやウェブシステムにも深く関わることになりました．本文中
でも再三に渡って述べていますが，IFCプロダクトモデルはオブジェクト指向技術に基づいて設計
されており，IFCプロダクトモデルとデータベースをテーマにした本論文は，3年半に渡る研究の
成果と言うだけでなく，私のこれまでの業務の集大成でもあると言えるかもしれません．よって，
これまでに関わった，社外，社内を問わず，すべての方々のおかげで完成した論文であると思って
います．ここに，すべての方々の名前を挙げることはできず，誠に申し訳ありませんが，本当にあ
りがたく思っております．
また，学位取得のチャンスを与えてくださったばかりか，御自身が学位を取得した経験に基づい
た有益なアドバイスもいただき，ときには励ましてくださった，川田テクノシステムの山野長弘社
長に深く感謝の意を表します．今後は，研究を通じて得られた知識や技術を活用して，後輩指導や
製品開発をすることで恩返しに代えさせていただきたい所存です．
最後になりますが，論文執筆中は休日に作業をすることも多く，一緒に出掛ける回数も減りまし
たが，不平も言わずに黙って私を支えてくれた妻の孝枝に感謝し，結びといたします．

2017年 7月

　
わ た ぬ き
四月朔日　 勉

97

付録 A

プログラムコード

A.1 csv→ obj変換プログラム

ソースコード A.1 main.java

package net.qb13.mk3d;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.PrintStream;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.HelpFormatter;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.ParseException;
import org.apache.commons.lang3.StringUtils;

/**
* 3 D の フ ォ ー マ ッ ト を 出 力 す る ユ ー テ ィ リ テ ィ
* <p>
* C S Vを o b j形式に変換する
* </p>
*
* 2016/06/17: 新 規 作 成
*
* @author nuki
*/

public class Main {

public static void main(String args []) throws Exception{
// コ マ ン ド ラ イ ン 引 数 の 仕 様
Options options = new Options ();

options.addOption ("h", "help", false , "print usage .");

try {
// コ マ ン ド ラ イ ン の 解 析

99

付録 A プログラムコード

CommandLine cl = new BasicParser (). parse(options , args);

if(cl.hasOption ("help") || cl.getArgs (). length == 0) {
printUsage(options);
return;

}

csv2obj(Paths.get(cl.getArgs ()[0]) , System.out);

}
catch(ParseException e) {

printUsage(options);
}

}

/**
* C S Vを o b j形式に変換する
* @param csvFile C S Vファイルパス
* @param os 出 力 先 ス ト リ ー ム
* @throws IOException C S V ファ イ ル の オ ー プ ン に 失 敗 し た
*/

static void csv2obj(Path csvFile , PrintStream os) throws
IOException {

// フ ァ イ ル を 読 み 込 む
try(BufferedReader reader = Files.newBufferedReader(csvFile)) {

String line , faceId = null;
List <Long > vertex = new ArrayList <Long >();
long vn = 0;
while((line = reader.readLine ()) != null) {

String [] columns = line.split (" ,");

// 1面 出 力 す る
if(! columns [0]. equals(faceId) && !vertex.isEmpty ())

printFace(os , vertex);

faceId = columns [0];

// 1点 出 力 す る
os.printf ("v %.20f %.20f %.20f\n",

Double.valueOf(StringUtils.remove(columns [1],
’"’)),

Double.valueOf(StringUtils.remove(columns [2],
’"’)),

Double.valueOf(StringUtils.remove(columns [3],
’"’)));

vertex.add(++vn);
}

// 最 後 の 面 を 出 力 し て 完 了
printFace(os , vertex);

}
}

protected static void printFace(PrintStream os , List <Long > vertex)
{

os.print ("f ");
vertex.forEach(v -> os.print(v + " "));
os.println ();

// デ ー タ に 不 正 が あ っ た ら コ メ ン ト 行 に ワ ー ニ ン グ を 出 力 す る
if(hasErrors(vertex)) {

os.println ("# warning ");
}

100

vertex.clear ();;
}

/**
* 面 に な っ て い な い 等 の 不 整 合 を 発 見 す る
* @param vertex
* @return
*/

static private boolean hasErrors(List <Long > vertex) {

return false;
}

/**
* 利 用 法 の 表 示
* @param options コ マ ン ド ラ イ ン の 仕 様
*/

static void printUsage(Options options) {
HelpFormatter formatter =new HelpFormatter ();

System.out.println ("mk3D (C) 2016 -17 Tsutomu Watanuki ");
System.out.println ("");
formatter.printHelp ("mk3d [options] < C S Vファイル >", options);
System.out.println ("");
System.out.println ("例: mk3d < sample.csv > sample.obj");

}
}

A.2 Data Access Object (Java言語)

ソースコード A.2 Dao.java

package model.dao;

import model.entity.IfcGloballyUniqueId;

/**
* Data Access O b j e c tのインターフェイス
*/

public interface Dao <T> {

/**
* エ ン テ ィ テ ィ を 追 加
* @param data 追 加 す る エ ン テ ィ テ ィ
* @return 追 加 し た エ ン テ ィ テ ィ の globalId
* @throws 追 加 に 失 敗 し た
*/

public IfcGloballyUniqueId create(T data) throws Exception;

/**
* エ ン テ ィ テ ィ の 取 得
* @param grobalId 取 得 す る エ ン テ ィ テ ィ の grobalId
* @return 取 得 し た エ ン テ ィ テ ィ ， 取 得 に 失 敗 し た 場 合 は null
* @throws 取 得 に 失 敗 し た
*/

public T get(IfcGloballyUniqueId globalId) throws Exception;

101

付録 A プログラムコード

/**
* エ ン テ ィ テ ィ の 更 新
* @param data 更 新 す る エ ン テ ィ テ ィ
* @throws Exception 存 在 し な い g l o b a l I dが指定された
*/

public void update(T data) throws Exception;

/**
* エ ン テ ィ テ ィ の 削 除
* @param grobalId 削 除 す る エ ン テ ィ テ ィ の grobalId
* @throws 削 除 に 失 敗 し た
*/

public void delete(IfcGloballyUniqueId globalId) throws Exception;

/**
* 接 続 先 の DBMS
* @return 接 続 先
*/

public default Object getConnection () {
// 接 続 先 の D B M Sに合わせて i m p l e m e n t sする側で実装する
return null;

};
}

ソースコード A.3 IfcReinforcingBarDao.java（リレーショナル DBMS用 DAO）
package model.dao;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

import model.entity.IfcGloballyUniqueId;
import model.entity.IfcReinforcingBar;
import model.entity.IfcReinforcingBar.IfcReinforcingBarSurfaceEnum;
import model.entity.IfcReinforcingBar.IfcReinforcingBarTypeEnum;

/**
* IfcReinforcingBar エ ン テ ィ テ ィ の DAO
*
* <p>以 下 の テ ー ブ ル に ア ク セ ス する </p>
*
* ifc_root
* ifc_object
* ifc_product
* ifc_element
* ifc_reinforcing_element
* ifc_reinforce_bar
*
*/

public class IfcReinforcingBarDao implements Dao <IfcReinforcingBar > {

/**
* IfcReinforcingBarを追加
* @param data 追 加 す る IfcReinforcingBar
* @return 追 加 し た デ ー タ の globalId
* @throws 追 加 に 失 敗 し た
*/

public IfcGloballyUniqueId create(IfcReinforcingBar data) throws
Exception {

Connection con = (Connection)getConnection ();

102

IfcGloballyUniqueId ifcReinforcingBarId = null;
PreparedStatement stmt = null;

// IfcRoot
stmt = con.prepareStatement(CREATE_IFC_ROT_SQL);
stmt.setString (1, data.getGlobalId (). toString ());
stmt.setString (2, data.getOwnerHistory (). toString ());
stmt.setString (3, data.getName ());
stmt.setString (4, data.getDescription ());

stmt.executeUpdate ();
stmt.close ();

// IfcObject
stmt = con.prepareStatement(CREATE_IFC_OBJECT_SQL);
stmt.setString (1, data.getGlobalId (). toString ());
stmt.setString (2, data.getObjectType ());

stmt.executeUpdate ();
stmt.close ();

// IfcProduct
stmt = con.prepareStatement(CREATE_IFC_PRODUCT_SQL);
stmt.setString (1, data.getGlobalId (). toString ());
stmt.setString (2, data.getObjectPlacement (). toString ());
stmt.setString (3, data.getRepresentation (). toString ());

stmt.executeUpdate ();
stmt.close ();

// IfcElement
stmt = con.prepareStatement(CREATE_IFC_ELEMENT_SQL);
stmt.setString (1, data.getGlobalId (). toString ());
stmt.setString (2, data.getTag ());

stmt.executeUpdate ();
stmt.close ();

// IfcReinforcingElement
stmt = con.prepareStatement(CREATE_IFC_REINFORCING_ELEMENT_SQL

);
stmt.setString (1, data.getGlobalId (). toString ());
stmt.setString (2, data.getSteelGrade ());

stmt.executeUpdate ();
stmt.close ();

// IfcReinforceBar
stmt = con.prepareStatement(CREATE_IFC_REINFORCE_BAR_SQL);
stmt.setString (1, data.getGlobalId (). toString ());
stmt.setDouble (2, data.getNomicalDiameter ());
stmt.setDouble (3, data.getCrossSectionArea ());
stmt.setDouble (4, data.getBarLength ());
stmt.setString (5, data.getPredefinedType (). name ());
stmt.setString (6, data.getBarSurface (). name ());

stmt.executeUpdate ();
stmt.close ();

ifcReinforcingBarId = data.getGlobalId ();

return ifcReinforcingBarId;
}

/**

103

付録 A プログラムコード

* IfcReinforcingBarの取得
* @param grobalId 取 得 す る IfcReinforcingBarのgrobalId
* @return 取 得 し た I f c R e i n f o r c i n g B a r，取得に失敗した場合は n u l l
* @throws 取 得 に 失 敗 し た
*/

public IfcReinforcingBar get(IfcGloballyUniqueId grobalId) throws
Exception{

Connection con = (Connection)getConnection ();
IfcReinforcingBar ifcReinforcingBar = null;
PreparedStatement stmt = null;
ResultSet result = null;

stmt = con.prepareStatement(SELECT_SQL);
stmt.setString (1, grobalId.toString ());
result = stmt.executeQuery ();
if (result.next ()){

ifcReinforcingBar = new IfcReinforcingBar ();
ifcReinforcingBar.setGlobalId(new IfcGloballyUniqueId(

result.getString (1)));
ifcReinforcingBar.setOwnerHistory(new IfcGloballyUniqueId(

result.getString (2)));
ifcReinforcingBar.setName(result.getString (3));
ifcReinforcingBar.setDescription(result.getString (4));
ifcReinforcingBar.setObjectType(result.getString (5));
ifcReinforcingBar.setObjectPlacement(new

IfcGloballyUniqueId(result.getString (6)));
ifcReinforcingBar.setRepresentation(new IfcGloballyUniqueId

(result.getString (7)));
ifcReinforcingBar.setTag(result.getString (8));
ifcReinforcingBar.setSteelGrade(result.getString (9));
ifcReinforcingBar.setNomicalDiameter(result.getDouble (10));
ifcReinforcingBar.setCrossSectionArea(result.getDouble

(11));
ifcReinforcingBar.setBarLength(result.getDouble (12));
ifcReinforcingBar.setPredefinedType(

IfcReinforcingBarTypeEnum.valueOf(result.getString (13)));
ifcReinforcingBar.setBarSurface(

IfcReinforcingBarSurfaceEnum.valueOf(result.getString (14)));
}

return ifcReinforcingBar;
}

/**
* IfcReinforcingBarの更新
* @param data 更 新 す る IfcReinforcingBar
* @throws Exception 存 在 し な い g l o b a l I dが指定された
*/

public void update(IfcReinforcingBar data) throws Exception{
Connection con = (Connection)getConnection ();
PreparedStatement stmt = null;

// IfcRoot
stmt = con.prepareStatement(UPDATE_IFC_ROOT_SQL);
stmt.setString (2, data.getOwnerHistory (). toString ());
stmt.setString (3, data.getName ());
stmt.setString (4, data.getDescription ());
stmt.setString (5, data.getGlobalId (). toString ());
int rowCount = stmt.executeUpdate ();
stmt.close ();
if(rowCount == 0){

throw new Exception (" Update Error: global_id: " + data.
getGlobalId ());

}

104

// IfcObject
stmt = con.prepareStatement(UPDATE_IFC_OBJECT_SQL);
stmt.setString (2, data.getObjectType ());
stmt.setString (3, data.getGlobalId (). toString ());
rowCount = stmt.executeUpdate ();
stmt.close ();
if(rowCount == 0){

throw new Exception (" Update Error: global_id: " + data.
getGlobalId ());

}

// IfcProduct
stmt = con.prepareStatement(UPDATE_IFC_PRODUCT_SQL);
stmt.setString (2, data.getObjectPlacement (). toString ());
stmt.setString (3, data.getRepresentation (). toString ());
stmt.setString (4, data.getGlobalId (). toString ());
rowCount = stmt.executeUpdate ();
stmt.close ();
if(rowCount == 0){

throw new Exception (" Update Error: global_id: " + data.
getGlobalId ());

}

// IfcElement
stmt = con.prepareStatement(UPDATE_IFC_ELEMENT_SQL);
stmt.setString (2, data.getTag ());
stmt.setString (3, data.getGlobalId (). toString ());
rowCount = stmt.executeUpdate ();
stmt.close ();
if(rowCount == 0){

throw new Exception (" Update Error: global_id: " + data.
getGlobalId ());

}

// IfcReinforcingElement
stmt = con.prepareStatement(UPDATE_IFC_REINFORCING_ELEMENT_SQL

);
stmt.setString (2, data.getSteelGrade ());
stmt.setString (3, data.getGlobalId (). toString ());
rowCount = stmt.executeUpdate ();
stmt.close ();
if(rowCount == 0){

throw new Exception (" Update Error: global_id: " + data.
getGlobalId ());

}

// IfcReinforcingBar
stmt = con.prepareStatement(UPDATE_IFC_REINFORCE_BAR_SQL);
stmt.setDouble (2, data.getNomicalDiameter ());
stmt.setDouble (3, data.getCrossSectionArea ());
stmt.setDouble (4, data.getBarLength ());
stmt.setString (5, data.getPredefinedType (). name ());
stmt.setString (6, data.getBarSurface (). name ());
stmt.setString (7, data.getGlobalId (). toString ());
rowCount = stmt.executeUpdate ();
stmt.close ();
if(rowCount == 0){

throw new Exception (" Update Error: global_id: " + data.
getGlobalId ());

}
}

/**

105

付録 A プログラムコード

* IfcReinforcingBarの削除
* @param grobalId 削 除 す る IfcReinforcingBarのgrobalId
* @throws 削 除 に 失 敗 し た
*/

public void delete(IfcGloballyUniqueId grobalId) throws Exception{

Connection con = (Connection)getConnection ();
PreparedStatement stmt = null;

stmt = con.prepareStatement(DELETE_IFC_ROOT_SQL);
stmt.setString (1, grobalId.toString ());
stmt.executeUpdate ();
stmt.close ();

stmt = con.prepareStatement(DELETE_IFC_OBJECT_SQL);
stmt.setString (1, grobalId.toString ());
stmt.executeUpdate ();
stmt.close ();

stmt = con.prepareStatement(DELETE_IFC_PRODUCT_SQL);
stmt.setString (1, grobalId.toString ());
stmt.executeUpdate ();
stmt.close ();

stmt = con.prepareStatement(DELETE_IFC_ELEMENT_SQL);
stmt.setString (1, grobalId.toString ());
stmt.executeUpdate ();
stmt.close ();

stmt = con.prepareStatement(DELETE_IFC_REINFORCING_ELEMENT_SQL
);

stmt.setString (1, grobalId.toString ());
stmt.executeUpdate ();
stmt.close ();

stmt = con.prepareStatement(DELETE_IFC_REINFORCE_BAR_SQL);
stmt.setString (1, grobalId.toString ());
stmt.executeUpdate ();
stmt.close ();

}

//
// ク エ リ

/**
* 作 成 ク エ リ
*/

private static String CREATE_IFC_ROT_SQL = "insert into ifc_root"
+ "(grobal_id , owner_history , name , description) "
+ "values "
+ "(?, ?, ?, ?)";

private static String CREATE_IFC_OBJECT_SQL = "insert into
ifc_object"

+ "(grobal_id , object_type) "
+ "values "
+ "(?, ?)";

private static String CREATE_IFC_PRODUCT_SQL = "insert into
ifc_product"

+ "(grobal_id , object_placement , representation) "
+ "values "
+ "(?, ?, ?)";

private static String CREATE_IFC_ELEMENT_SQL = "insert into
ifc_element"

+ "(grobal_id , tag) "

106

+ "values "
+ "(?, ?)";

private static String CREATE_IFC_REINFORCING_ELEMENT_SQL = "insert
into ifc_reinforcing_element"

+ "(grobal_id , steel_grade) "
+ "values "
+ "(?, ?)";

private static String CREATE_IFC_REINFORCE_BAR_SQL = "insert into
ifc_reinforce_bars"

+ "(grobal_id , nomical_diameter , cross_section_area ,
bar_length , predefined_type , bar_surface) "

+ "values "
+ "(?, ?, ?, ?, ?, ?)";

/**
* 取 得 ク エ リ
*/

private static String SELECT_SQL = "select "
+ "ifc_root.grobal_id , ifc_root.owner_history , ifc_root.

name , ifc_root.description , "
+ "ifc_object.object_type , "
+ "ifc_product.object_placement , ifc_product.representation

, "
+ "ifc_element.tag , "
+ "ifc_reinforcing_element.steel_grade , "
+ "ifc_reinforcing_bar.nomical_diameter ,

ifc_reinforcing_bar.cross_section_area , ifc_reinforcing_bar.bar_length ,
ifc_reinforcing_bar.predefined_type , ifc_reinforcing_bar.bar_surface "

+ "from ifc_root , ifc_object , ifc_product , ifc_element ,
ifc_reinforcing_element , ifc_reinforce_bar"

+ "where ifc_root.grobal_id = ? and ifc_object.grobal_id =
? and ifc_product.grobal_id = ? and ifc_element.grobal_id = ? and
ifc_reinforcing_element.grobal_id = ? and ifc_reinforcing_bar = ?";

/**
* 更 新 ク エ リ
*/

private static String UPDATE_IFC_ROOT_SQL = "update ifc_root "
+ "set owner_history = ?, name = ?, description = ? "
+ "where grobal_id = ?";

private static String UPDATE_IFC_OBJECT_SQL = "update ifc_object "
+ "set object_type = ? "
+ "where grobal_id = ?";

private static String UPDATE_IFC_PRODUCT_SQL = "update ifc_product
"

+ "set object_placement = ?, representation = ? "
+ "where grobal_id = ?";

private static String UPDATE_IFC_ELEMENT_SQL = "update ifc_element
"

+ "set tag = ? "
+ "where grobal_id = ?";

private static String UPDATE_IFC_REINFORCING_ELEMENT_SQL = "update
ifc_reinforcing_element "

+ "set steel_grade = ? "
+ "where grobal_id = ?";

private static String UPDATE_IFC_REINFORCE_BAR_SQL = "update
ifc_reinforce_bar "

+ "set nomical_diameter = ?, cross_section_area = ?,
bar_length = ?, predefined_type = ?, bar_surface = ? "

+ "where grobal_id = ?";

/**
* 削 除 ク エ リ
*/

107

付録 A プログラムコード

private static String DELETE_IFC_ROOT_SQL = "delete from ifc_root
where global_id = ? ";

private static String DELETE_IFC_OBJECT_SQL = "delete from
ifc_object where global_id = ? ";

private static String DELETE_IFC_PRODUCT_SQL = "delete from
ifc_product where global_id = ? ";

private static String DELETE_IFC_ELEMENT_SQL = "delete from
ifc_element where global_id = ? ";

private static String DELETE_IFC_REINFORCING_ELEMENT_SQL = "delete
from ifc_reinforcing_element where global_id = ? ";

private static String DELETE_IFC_REINFORCE_BAR_SQL = "delete from
ifc_reinforce_bar where global_id = ? ";
}

ソースコード A.4 IfcGraphDao.java（グラフ DBMS用 DAO）
package model.dao;

import java.beans.Introspector;
import java.beans.PropertyDescriptor;

import model.entity.IfcGloballyUniqueId;
import model.entity.IfcReinforcingBar.IfcReinforcingBarSurfaceEnum;
import model.entity.IfcReinforcingBar.IfcReinforcingBarTypeEnum;
import model.entity.IfcRoot;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.commons.beanutils.ConvertUtils;
import org.apache.commons.beanutils.Converter;
import org.neo4j.driver.v1.AuthTokens;
import org.neo4j.driver.v1.Driver;
import org.neo4j.driver.v1.GraphDatabase;
import org.neo4j.driver.v1.Session;
import org.neo4j.driver.v1.StatementResult;
import org.neo4j.driver.v1.exceptions.NoSuchRecordException;
import org.neo4j.driver.v1.types.Node;

/**
* グ ラ フ DBMS(Neo4j)用 の Data Access O b j e c tクラス .
* @param <T> 対 象 オ ブ ジ ェ ク ト の 型
*/

public class IfcGraphDao <T extends IfcRoot > implements Dao <T> {

/**
* コ ン ス ト ラ ク タ
* @param clazz 対 象 ク ラ ス 名
*/

public IfcGraphDao(Class <T> clazz) {
_class = clazz;

}

private Class <T> _class;

/**
* オ ブ ジ ェ ク ト 追 加
* @param data 追 加 す る オ ブ ジ ェ ク ト
* @retern 追 加 し た オ ブ ジ ェ ク ト の ID
*/

@Override
public IfcGloballyUniqueId create(T data) throws Exception {

// ク エ リ 構 築
StringBuffer query = new StringBuffer ();
query.append (" CREATE (n:");

108

query.append(_class.getSimpleName ());
query.append (" {");

for(PropertyDescriptor prop : Introspector.getBeanInfo(_class).
getPropertyDescriptors ()) {

if(prop.getWriteMethod () == null)
continue;

Object value = getPropertyValue(data , prop.getName ());
if(value == null)

continue;

query.append(prop.getName ());
query.append (":");
query.append(value);
query.append (",");

}

query.deleteCharAt(query.length () - 1);
query.append ("})");

// ク エ リ 実 行
try(Session session = getConnection (). session ()) {

session.run(query.toString ());
}

return data.getGlobalId ();
}

private Object getPropertyValue(Object bean , String propName)
throws Exception {

Object value = BeanUtils.getProperty(bean , propName);
if(value == null || value instanceof Number)

return value;

if(value instanceof IfcRoot) {
// エ ン テ ィ テ ィ
return getPropertyValue(value , "globalId ");

}
else {

return "\"" + value + "\"";
}

}

/**
* オ ブ ジ ェ ク ト 取 得
* @param id 取 得 対 象 の ID
* @return 取 得 し た オ ブ ジ ェ ク ト （ 存 在 し な か っ た 場 合 null）
*/

@Override
public T get(IfcGloballyUniqueId id) throws Exception {

try {
String query = String.format ("MATCH(n) WHERE n.globalId =\"%

s\" RETURN n;", id.get ());

StatementResult result = getConnection (). session ().run(
query);

Node node = result.single ().get (0). asNode ();

ConvertUtils.register(new GloballyUniqueIdConverter (),
IfcGloballyUniqueId.class);

ConvertUtils.register(new EnumConverter <
IfcActionRequestTypeEnum >(IfcActionRequestTypeEnum.class),
IfcActionRequestTypeEnum.class);

109

付録 A プログラムコード

ConvertUtils.register(new EnumConverter <
IfcActionSourceTypeEnum >(IfcActionSourceTypeEnum.class),
IfcActionSourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcActionTypeEnum >(
IfcActionTypeEnum.class), IfcActionTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcActuatorTypeEnum
>(IfcActuatorTypeEnum.class), IfcActuatorTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcAddressTypeEnum
>(IfcAddressTypeEnum.class), IfcAddressTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcAirTerminalBoxTypeEnum >(IfcAirTerminalBoxTypeEnum.class),
IfcAirTerminalBoxTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcAirTerminalTypeEnum >(IfcAirTerminalTypeEnum.class),
IfcAirTerminalTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcAirToAirHeatRecoveryTypeEnum >(IfcAirToAirHeatRecoveryTypeEnum.class
), IfcAirToAirHeatRecoveryTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcAlarmTypeEnum >(
IfcAlarmTypeEnum.class), IfcAlarmTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcAnalysisModelTypeEnum >(IfcAnalysisModelTypeEnum.class),
IfcAnalysisModelTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcAnalysisTheoryTypeEnum >(IfcAnalysisTheoryTypeEnum.class),
IfcAnalysisTheoryTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcArithmeticOperatorEnum >(IfcArithmeticOperatorEnum.class),
IfcArithmeticOperatorEnum.class);

ConvertUtils.register(new EnumConverter <
IfcAssemblyPlaceEnum >(IfcAssemblyPlaceEnum.class), IfcAssemblyPlaceEnum
.class);

ConvertUtils.register(new EnumConverter <
IfcAudioVisualApplianceTypeEnum >(IfcAudioVisualApplianceTypeEnum.class
), IfcAudioVisualApplianceTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcBeamTypeEnum >(
IfcBeamTypeEnum.class), IfcBeamTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcBenchmarkEnum >(
IfcBenchmarkEnum.class), IfcBenchmarkEnum.class);

ConvertUtils.register(new EnumConverter <IfcBoilerTypeEnum >(
IfcBoilerTypeEnum.class), IfcBoilerTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcBooleanOperator
>(IfcBooleanOperator.class), IfcBooleanOperator.class);

ConvertUtils.register(new EnumConverter <IfcBSplineCurveForm
>(IfcBSplineCurveForm.class), IfcBSplineCurveForm.class);

ConvertUtils.register(new EnumConverter <
IfcBSplineSurfaceForm >(IfcBSplineSurfaceForm.class),
IfcBSplineSurfaceForm.class);

ConvertUtils.register(new EnumConverter <
IfcBuildingElementPartTypeEnum >(IfcBuildingElementPartTypeEnum.class),
IfcBuildingElementPartTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcBuildingElementProxyTypeEnum >(IfcBuildingElementProxyTypeEnum.class
), IfcBuildingElementProxyTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcBuildingSystemTypeEnum >(IfcBuildingSystemTypeEnum.class),
IfcBuildingSystemTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcBurnerTypeEnum >(
IfcBurnerTypeEnum.class), IfcBurnerTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCableCarrierFittingTypeEnum >(IfcCableCarrierFittingTypeEnum.class),
IfcCableCarrierFittingTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCableCarrierSegmentTypeEnum >(IfcCableCarrierSegmentTypeEnum.class),
IfcCableCarrierSegmentTypeEnum.class);

110

ConvertUtils.register(new EnumConverter <
IfcCableFittingTypeEnum >(IfcCableFittingTypeEnum.class),
IfcCableFittingTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCableSegmentTypeEnum >(IfcCableSegmentTypeEnum.class),
IfcCableSegmentTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcChangeActionEnum
>(IfcChangeActionEnum.class), IfcChangeActionEnum.class);

ConvertUtils.register(new EnumConverter <IfcChillerTypeEnum
>(IfcChillerTypeEnum.class), IfcChillerTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcChimneyTypeEnum
>(IfcChimneyTypeEnum.class), IfcChimneyTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcCoilTypeEnum >(
IfcCoilTypeEnum.class), IfcCoilTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcColumnTypeEnum >(
IfcColumnTypeEnum.class), IfcColumnTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCommunicationsApplianceTypeEnum >(IfcCommunicationsApplianceTypeEnum.
class), IfcCommunicationsApplianceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcComplexPropertyTemplateTypeEnum >(IfcComplexPropertyTemplateTypeEnum.
class), IfcComplexPropertyTemplateTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCompressorTypeEnum >(IfcCompressorTypeEnum.class),
IfcCompressorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCondenserTypeEnum >(IfcCondenserTypeEnum.class), IfcCondenserTypeEnum
.class);

ConvertUtils.register(new EnumConverter <
IfcConnectionTypeEnum >(IfcConnectionTypeEnum.class),
IfcConnectionTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcConstraintEnum >(
IfcConstraintEnum.class), IfcConstraintEnum.class);

ConvertUtils.register(new EnumConverter <
IfcConstructionEquipmentResourceTypeEnum >(
IfcConstructionEquipmentResourceTypeEnum.class),
IfcConstructionEquipmentResourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcConstructionMaterialResourceTypeEnum >(
IfcConstructionMaterialResourceTypeEnum.class),
IfcConstructionMaterialResourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcConstructionProductResourceTypeEnum >(
IfcConstructionProductResourceTypeEnum.class),
IfcConstructionProductResourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcControllerTypeEnum >(IfcControllerTypeEnum.class),
IfcControllerTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCooledBeamTypeEnum >(IfcCooledBeamTypeEnum.class),
IfcCooledBeamTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCoolingTowerTypeEnum >(IfcCoolingTowerTypeEnum.class),
IfcCoolingTowerTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcCostItemTypeEnum
>(IfcCostItemTypeEnum.class), IfcCostItemTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCostScheduleTypeEnum >(IfcCostScheduleTypeEnum.class),
IfcCostScheduleTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcCoveringTypeEnum
>(IfcCoveringTypeEnum.class), IfcCoveringTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCrewResourceTypeEnum >(IfcCrewResourceTypeEnum.class),
IfcCrewResourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <

111

付録 A プログラムコード

IfcCurtainWallTypeEnum >(IfcCurtainWallTypeEnum.class),
IfcCurtainWallTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcCurveInterpolationEnum >(IfcCurveInterpolationEnum.class),
IfcCurveInterpolationEnum.class);

ConvertUtils.register(new EnumConverter <IfcDamperTypeEnum >(
IfcDamperTypeEnum.class), IfcDamperTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcDataOriginEnum >(
IfcDataOriginEnum.class), IfcDataOriginEnum.class);

ConvertUtils.register(new EnumConverter <IfcDerivedUnitEnum
>(IfcDerivedUnitEnum.class), IfcDerivedUnitEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDirectionSenseEnum >(IfcDirectionSenseEnum.class),
IfcDirectionSenseEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDiscreteAccessoryTypeEnum >(IfcDiscreteAccessoryTypeEnum.class),
IfcDiscreteAccessoryTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDistributionChamberElementTypeEnum >(
IfcDistributionChamberElementTypeEnum.class),
IfcDistributionChamberElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDistributionPortTypeEnum >(IfcDistributionPortTypeEnum.class),
IfcDistributionPortTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDistributionSystemEnum >(IfcDistributionSystemEnum.class),
IfcDistributionSystemEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDocumentConfidentialityEnum >(IfcDocumentConfidentialityEnum.class),
IfcDocumentConfidentialityEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDocumentStatusEnum >(IfcDocumentStatusEnum.class),
IfcDocumentStatusEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDoorPanelOperationEnum >(IfcDoorPanelOperationEnum.class),
IfcDoorPanelOperationEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDoorPanelPositionEnum >(IfcDoorPanelPositionEnum.class),
IfcDoorPanelPositionEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDoorStyleConstructionEnum >(IfcDoorStyleConstructionEnum.class),
IfcDoorStyleConstructionEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDoorStyleOperationEnum >(IfcDoorStyleOperationEnum.class),
IfcDoorStyleOperationEnum.class);

ConvertUtils.register(new EnumConverter <IfcDoorTypeEnum >(
IfcDoorTypeEnum.class), IfcDoorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDoorTypeOperationEnum >(IfcDoorTypeOperationEnum.class),
IfcDoorTypeOperationEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDuctFittingTypeEnum >(IfcDuctFittingTypeEnum.class),
IfcDuctFittingTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDuctSegmentTypeEnum >(IfcDuctSegmentTypeEnum.class),
IfcDuctSegmentTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcDuctSilencerTypeEnum >(IfcDuctSilencerTypeEnum.class),
IfcDuctSilencerTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElectricApplianceTypeEnum >(IfcElectricApplianceTypeEnum.class),
IfcElectricApplianceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElectricDistributionBoardTypeEnum >(
IfcElectricDistributionBoardTypeEnum.class),

112

IfcElectricDistributionBoardTypeEnum.class);
ConvertUtils.register(new EnumConverter <

IfcElectricFlowStorageDeviceTypeEnum >(
IfcElectricFlowStorageDeviceTypeEnum.class),
IfcElectricFlowStorageDeviceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElectricGeneratorTypeEnum >(IfcElectricGeneratorTypeEnum.class),
IfcElectricGeneratorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElectricMotorTypeEnum >(IfcElectricMotorTypeEnum.class),
IfcElectricMotorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElectricTimeControlTypeEnum >(IfcElectricTimeControlTypeEnum.class),
IfcElectricTimeControlTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElementAssemblyTypeEnum >(IfcElementAssemblyTypeEnum.class),
IfcElementAssemblyTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcElementCompositionEnum >(IfcElementCompositionEnum.class),
IfcElementCompositionEnum.class);

ConvertUtils.register(new EnumConverter <IfcEngineTypeEnum >(
IfcEngineTypeEnum.class), IfcEngineTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcEvaporativeCoolerTypeEnum >(IfcEvaporativeCoolerTypeEnum.class),
IfcEvaporativeCoolerTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcEvaporatorTypeEnum >(IfcEvaporatorTypeEnum.class),
IfcEvaporatorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcEventTriggerTypeEnum >(IfcEventTriggerTypeEnum.class),
IfcEventTriggerTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcEventTypeEnum >(
IfcEventTypeEnum.class), IfcEventTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcExternalSpatialElementTypeEnum >(IfcExternalSpatialElementTypeEnum.
class), IfcExternalSpatialElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcFanTypeEnum >(
IfcFanTypeEnum.class), IfcFanTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcFastenerTypeEnum
>(IfcFastenerTypeEnum.class), IfcFastenerTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcFilterTypeEnum >(
IfcFilterTypeEnum.class), IfcFilterTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcFireSuppressionTerminalTypeEnum >(IfcFireSuppressionTerminalTypeEnum.
class), IfcFireSuppressionTerminalTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcFlowDirectionEnum >(IfcFlowDirectionEnum.class), IfcFlowDirectionEnum
.class);

ConvertUtils.register(new EnumConverter <
IfcFlowInstrumentTypeEnum >(IfcFlowInstrumentTypeEnum.class),
IfcFlowInstrumentTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcFlowMeterTypeEnum >(IfcFlowMeterTypeEnum.class), IfcFlowMeterTypeEnum
.class);

ConvertUtils.register(new EnumConverter <IfcFootingTypeEnum
>(IfcFootingTypeEnum.class), IfcFootingTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcFurnitureTypeEnum >(IfcFurnitureTypeEnum.class), IfcFurnitureTypeEnum
.class);

ConvertUtils.register(new EnumConverter <
IfcGeographicElementTypeEnum >(IfcGeographicElementTypeEnum.class),
IfcGeographicElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcGeometricProjectionEnum >(IfcGeometricProjectionEnum.class),
IfcGeometricProjectionEnum.class);

113

付録 A プログラムコード

ConvertUtils.register(new EnumConverter <
IfcGlobalOrLocalEnum >(IfcGlobalOrLocalEnum.class), IfcGlobalOrLocalEnum
.class);

ConvertUtils.register(new EnumConverter <IfcGridTypeEnum >(
IfcGridTypeEnum.class), IfcGridTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcHeatExchangerTypeEnum >(IfcHeatExchangerTypeEnum.class),
IfcHeatExchangerTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcHumidifierTypeEnum >(IfcHumidifierTypeEnum.class),
IfcHumidifierTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcInterceptorTypeEnum >(IfcInterceptorTypeEnum.class),
IfcInterceptorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcInternalOrExternalEnum >(IfcInternalOrExternalEnum.class),
IfcInternalOrExternalEnum.class);

ConvertUtils.register(new EnumConverter <
IfcInventoryTypeEnum >(IfcInventoryTypeEnum.class), IfcInventoryTypeEnum
.class);

ConvertUtils.register(new EnumConverter <
IfcJunctionBoxTypeEnum >(IfcJunctionBoxTypeEnum.class),
IfcJunctionBoxTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcKnotType >(
IfcKnotType.class), IfcKnotType.class);

ConvertUtils.register(new EnumConverter <
IfcLaborResourceTypeEnum >(IfcLaborResourceTypeEnum.class),
IfcLaborResourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcLampTypeEnum >(
IfcLampTypeEnum.class), IfcLampTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcLayerSetDirectionEnum >(IfcLayerSetDirectionEnum.class),
IfcLayerSetDirectionEnum.class);

ConvertUtils.register(new EnumConverter <
IfcLightDistributionCurveEnum >(IfcLightDistributionCurveEnum.class),
IfcLightDistributionCurveEnum.class);

ConvertUtils.register(new EnumConverter <
IfcLightEmissionSourceEnum >(IfcLightEmissionSourceEnum.class),
IfcLightEmissionSourceEnum.class);

ConvertUtils.register(new EnumConverter <
IfcLightFixtureTypeEnum >(IfcLightFixtureTypeEnum.class),
IfcLightFixtureTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcLoadGroupTypeEnum >(IfcLoadGroupTypeEnum.class), IfcLoadGroupTypeEnum
.class);

ConvertUtils.register(new EnumConverter <
IfcLogicalOperatorEnum >(IfcLogicalOperatorEnum.class),
IfcLogicalOperatorEnum.class);

ConvertUtils.register(new EnumConverter <
IfcMechanicalFastenerTypeEnum >(IfcMechanicalFastenerTypeEnum.class),
IfcMechanicalFastenerTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcMedicalDeviceTypeEnum >(IfcMedicalDeviceTypeEnum.class),
IfcMedicalDeviceTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcMemberTypeEnum >(
IfcMemberTypeEnum.class), IfcMemberTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcMotorConnectionTypeEnum >(IfcMotorConnectionTypeEnum.class),
IfcMotorConnectionTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcNullStyle >(
IfcNullStyle.class), IfcNullStyle.class);

ConvertUtils.register(new EnumConverter <IfcObjectiveEnum >(
IfcObjectiveEnum.class), IfcObjectiveEnum.class);

ConvertUtils.register(new EnumConverter <IfcObjectTypeEnum >(
IfcObjectTypeEnum.class), IfcObjectTypeEnum.class);

114

ConvertUtils.register(new EnumConverter <IfcOccupantTypeEnum
>(IfcOccupantTypeEnum.class), IfcOccupantTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcOpeningElementTypeEnum >(IfcOpeningElementTypeEnum.class),
IfcOpeningElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcOutletTypeEnum >(
IfcOutletTypeEnum.class), IfcOutletTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPerformanceHistoryTypeEnum >(IfcPerformanceHistoryTypeEnum.class),
IfcPerformanceHistoryTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPermeableCoveringOperationEnum >(IfcPermeableCoveringOperationEnum.
class), IfcPermeableCoveringOperationEnum.class);

ConvertUtils.register(new EnumConverter <IfcPermitTypeEnum >(
IfcPermitTypeEnum.class), IfcPermitTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPhysicalOrVirtualEnum >(IfcPhysicalOrVirtualEnum.class),
IfcPhysicalOrVirtualEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPileConstructionEnum >(IfcPileConstructionEnum.class),
IfcPileConstructionEnum.class);

ConvertUtils.register(new EnumConverter <IfcPileTypeEnum >(
IfcPileTypeEnum.class), IfcPileTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPipeFittingTypeEnum >(IfcPipeFittingTypeEnum.class),
IfcPipeFittingTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPipeSegmentTypeEnum >(IfcPipeSegmentTypeEnum.class),
IfcPipeSegmentTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcPlateTypeEnum >(
IfcPlateTypeEnum.class), IfcPlateTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcProcedureTypeEnum >(IfcProcedureTypeEnum.class), IfcProcedureTypeEnum
.class);

ConvertUtils.register(new EnumConverter <IfcProfileTypeEnum
>(IfcProfileTypeEnum.class), IfcProfileTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcProjectedOrTrueLengthEnum >(IfcProjectedOrTrueLengthEnum.class),
IfcProjectedOrTrueLengthEnum.class);

ConvertUtils.register(new EnumConverter <
IfcProjectionElementTypeEnum >(IfcProjectionElementTypeEnum.class),
IfcProjectionElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcProjectOrderTypeEnum >(IfcProjectOrderTypeEnum.class),
IfcProjectOrderTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcPropertySetTemplateTypeEnum >(IfcPropertySetTemplateTypeEnum.class),
IfcPropertySetTemplateTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcProtectiveDeviceTrippingUnitTypeEnum >(
IfcProtectiveDeviceTrippingUnitTypeEnum.class),
IfcProtectiveDeviceTrippingUnitTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcProtectiveDeviceTypeEnum >(IfcProtectiveDeviceTypeEnum.class),
IfcProtectiveDeviceTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcPumpTypeEnum >(
IfcPumpTypeEnum.class), IfcPumpTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcRailingTypeEnum
>(IfcRailingTypeEnum.class), IfcRailingTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcRampFlightTypeEnum >(IfcRampFlightTypeEnum.class),
IfcRampFlightTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcRampTypeEnum >(
IfcRampTypeEnum.class), IfcRampTypeEnum.class);

ConvertUtils.register(new EnumConverter <

115

付録 A プログラムコード

IfcRecurrenceTypeEnum >(IfcRecurrenceTypeEnum.class),
IfcRecurrenceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcReflectanceMethodEnum >(IfcReflectanceMethodEnum.class),
IfcReflectanceMethodEnum.class);

ConvertUtils.register(new EnumConverter <
IfcReinforcingBarRoleEnum >(IfcReinforcingBarRoleEnum.class),
IfcReinforcingBarRoleEnum.class);

ConvertUtils.register(new EnumConverter <
IfcReinforcingBarSurfaceEnum >(IfcReinforcingBarSurfaceEnum.class),
IfcReinforcingBarSurfaceEnum.class);

ConvertUtils.register(new EnumConverter <
IfcReinforcingBarTypeEnum >(IfcReinforcingBarTypeEnum.class),
IfcReinforcingBarTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcReinforcingMeshTypeEnum >(IfcReinforcingMeshTypeEnum.class),
IfcReinforcingMeshTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcRoleEnum >(
IfcRoleEnum.class), IfcRoleEnum.class);

ConvertUtils.register(new EnumConverter <IfcRoofTypeEnum >(
IfcRoofTypeEnum.class), IfcRoofTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSanitaryTerminalTypeEnum >(IfcSanitaryTerminalTypeEnum.class),
IfcSanitaryTerminalTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcSectionTypeEnum
>(IfcSectionTypeEnum.class), IfcSectionTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcSensorTypeEnum >(
IfcSensorTypeEnum.class), IfcSensorTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcSequenceEnum >(
IfcSequenceEnum.class), IfcSequenceEnum.class);

ConvertUtils.register(new EnumConverter <
IfcShadingDeviceTypeEnum >(IfcShadingDeviceTypeEnum.class),
IfcShadingDeviceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSimplePropertyTemplateTypeEnum >(IfcSimplePropertyTemplateTypeEnum.
class), IfcSimplePropertyTemplateTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcSIPrefix >(
IfcSIPrefix.class), IfcSIPrefix.class);

ConvertUtils.register(new EnumConverter <IfcSIUnitName >(
IfcSIUnitName.class), IfcSIUnitName.class);

ConvertUtils.register(new EnumConverter <IfcSlabTypeEnum >(
IfcSlabTypeEnum.class), IfcSlabTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSolarDeviceTypeEnum >(IfcSolarDeviceTypeEnum.class),
IfcSolarDeviceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSpaceHeaterTypeEnum >(IfcSpaceHeaterTypeEnum.class),
IfcSpaceHeaterTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcSpaceTypeEnum >(
IfcSpaceTypeEnum.class), IfcSpaceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSpatialZoneTypeEnum >(IfcSpatialZoneTypeEnum.class),
IfcSpatialZoneTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcStackTerminalTypeEnum >(IfcStackTerminalTypeEnum.class),
IfcStackTerminalTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcStairFlightTypeEnum >(IfcStairFlightTypeEnum.class),
IfcStairFlightTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcStairTypeEnum >(
IfcStairTypeEnum.class), IfcStairTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcStateEnum >(
IfcStateEnum.class), IfcStateEnum.class);

ConvertUtils.register(new EnumConverter <
IfcStructuralCurveActivityTypeEnum >(IfcStructuralCurveActivityTypeEnum.

116

class), IfcStructuralCurveActivityTypeEnum.class);
ConvertUtils.register(new EnumConverter <

IfcStructuralCurveMemberTypeEnum >(IfcStructuralCurveMemberTypeEnum.
class), IfcStructuralCurveMemberTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcStructuralSurfaceActivityTypeEnum >(
IfcStructuralSurfaceActivityTypeEnum.class),
IfcStructuralSurfaceActivityTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcStructuralSurfaceMemberTypeEnum >(IfcStructuralSurfaceMemberTypeEnum.
class), IfcStructuralSurfaceMemberTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSubContractResourceTypeEnum >(IfcSubContractResourceTypeEnum.class),
IfcSubContractResourceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSurfaceFeatureTypeEnum >(IfcSurfaceFeatureTypeEnum.class),
IfcSurfaceFeatureTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcSurfaceSide >(
IfcSurfaceSide.class), IfcSurfaceSide.class);

ConvertUtils.register(new EnumConverter <
IfcSwitchingDeviceTypeEnum >(IfcSwitchingDeviceTypeEnum.class),
IfcSwitchingDeviceTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcSystemFurnitureElementTypeEnum >(IfcSystemFurnitureElementTypeEnum.
class), IfcSystemFurnitureElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcTankTypeEnum >(
IfcTankTypeEnum.class), IfcTankTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcTaskDurationEnum
>(IfcTaskDurationEnum.class), IfcTaskDurationEnum.class);

ConvertUtils.register(new EnumConverter <IfcTaskTypeEnum >(
IfcTaskTypeEnum.class), IfcTaskTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcTendonAnchorTypeEnum >(IfcTendonAnchorTypeEnum.class),
IfcTendonAnchorTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcTendonTypeEnum >(
IfcTendonTypeEnum.class), IfcTendonTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcTextPath >(
IfcTextPath.class), IfcTextPath.class);

ConvertUtils.register(new EnumConverter <
IfcTimeSeriesDataTypeEnum >(IfcTimeSeriesDataTypeEnum.class),
IfcTimeSeriesDataTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcTransformerTypeEnum >(IfcTransformerTypeEnum.class),
IfcTransformerTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcTransitionCode >(
IfcTransitionCode.class), IfcTransitionCode.class);

ConvertUtils.register(new EnumConverter <
IfcTransportElementTypeEnum >(IfcTransportElementTypeEnum.class),
IfcTransportElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcTrimmingPreference >(IfcTrimmingPreference.class),
IfcTrimmingPreference.class);

ConvertUtils.register(new EnumConverter <
IfcTubeBundleTypeEnum >(IfcTubeBundleTypeEnum.class),
IfcTubeBundleTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcUnitaryControlElementTypeEnum >(IfcUnitaryControlElementTypeEnum.
class), IfcUnitaryControlElementTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcUnitaryEquipmentTypeEnum >(IfcUnitaryEquipmentTypeEnum.class),
IfcUnitaryEquipmentTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcUnitEnum >(
IfcUnitEnum.class), IfcUnitEnum.class);

ConvertUtils.register(new EnumConverter <IfcValveTypeEnum >(
IfcValveTypeEnum.class), IfcValveTypeEnum.class);

117

付録 A プログラムコード

ConvertUtils.register(new EnumConverter <
IfcVibrationIsolatorTypeEnum >(IfcVibrationIsolatorTypeEnum.class),
IfcVibrationIsolatorTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcVoidingFeatureTypeEnum >(IfcVoidingFeatureTypeEnum.class),
IfcVoidingFeatureTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcWallTypeEnum >(
IfcWallTypeEnum.class), IfcWallTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWasteTerminalTypeEnum >(IfcWasteTerminalTypeEnum.class),
IfcWasteTerminalTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWindowPanelOperationEnum >(IfcWindowPanelOperationEnum.class),
IfcWindowPanelOperationEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWindowPanelPositionEnum >(IfcWindowPanelPositionEnum.class),
IfcWindowPanelPositionEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWindowStyleConstructionEnum >(IfcWindowStyleConstructionEnum.class),
IfcWindowStyleConstructionEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWindowStyleOperationEnum >(IfcWindowStyleOperationEnum.class),
IfcWindowStyleOperationEnum.class);

ConvertUtils.register(new EnumConverter <IfcWindowTypeEnum >(
IfcWindowTypeEnum.class), IfcWindowTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWindowTypePartitioningEnum >(IfcWindowTypePartitioningEnum.class),
IfcWindowTypePartitioningEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWorkCalendarTypeEnum >(IfcWorkCalendarTypeEnum.class),
IfcWorkCalendarTypeEnum.class);

ConvertUtils.register(new EnumConverter <IfcWorkPlanTypeEnum
>(IfcWorkPlanTypeEnum.class), IfcWorkPlanTypeEnum.class);

ConvertUtils.register(new EnumConverter <
IfcWorkScheduleTypeEnum >(IfcWorkScheduleTypeEnum.class),
IfcWorkScheduleTypeEnum.class);

// オ ブ ジ ェ ク ト 構 築
T instance = _class.newInstance ();
for(String key : node.keys ())

BeanUtils.setProperty(instance , key , node.get(key).
asString ());

return instance;
}
catch(NoSuchRecordException ex) {

return null;
}

}

/**
* オ ブ ジ ェ ク ト 更 新
* @param data 更 新 対 象 オ ブ ジ ェ ク ト
*/

@Override
public void update(T data) throws Exception {

// ク エ リ 構 築
StringBuffer query = new StringBuffer ();
query.append (" MATCH(n) WHERE n.globalId =\"");
query.append(data.getGlobalId ());
query.append ("\" SET ");

for(PropertyDescriptor prop : Introspector.getBeanInfo(_class).
getPropertyDescriptors ()) {

118

if(prop.getWriteMethod () == null)
continue;

Object value = getPropertyValue(data , prop.getName ());
if(value == null)

continue;

query.append ("n.");
query.append(prop.getName ());
query.append ("=");
query.append(value);
query.append (",");

}
query.deleteCharAt(query.length () - 1);

// ク エ リ 実 行
try(Session session = getConnection (). session ()) {

session.run(query.toString ());
}

}

/**
* オ ブ ジ ェ ク ト 削 除
* @param id 削 除 対 象 オ ブ ジ ェ ク ト の ID
*/

@Override
public void delete(IfcGloballyUniqueId id) throws Exception {

// ク エ リ 構 築
String query = String.format ("MATCH(n) WHERE n.globalId =\"%s\"

DELETE n;", id.get ());

// ク エ リ 実 行
try(Session session = getConnection (). session ()) {

session.run(query);
}

}

///
// コ ン バ ー タ

private class GloballyUniqueIdConverter implements Converter {
@Override @SuppressWarnings ({" unchecked", "hiding "})
public <T> T convert(Class <T> type , Object value) {

return (T)new IfcGloballyUniqueId ((String)value);
}

}

private class EnumConverter <E extends Enum <E>> implements Converter
{

public EnumConverter(Class <E> enumClass) {
_enumClass = enumClass;

}

private Class <E> _enumClass;

@SuppressWarnings ({" unchecked", "hiding "})
public <T> T convert(Class <T> type , Object value) {

return (T)Enum.valueOf(_enumClass , (String)value);
}

}
}

119

付録 A プログラムコード

ソースコード A.5 IfcRoot.java

package model.entity;

/**
* IfcRoot エ ン テ ィ テ ィ
*/

public class IfcRoot {

private IfcGloballyUniqueId _globalId = new IfcGloballyUniqueId ();
private IfcGloballyUniqueId _ownerHistory;
private String _name;
private String _description;

///
// ア ク セ サ メ ソ ッ ド

public IfcGloballyUniqueId getGlobalId () {
return _globalId;

}

public void setGlobalId(IfcGloballyUniqueId grobalId) {
this._globalId = grobalId;

}

public IfcGloballyUniqueId getOwnerHistory () {
return _ownerHistory;

}

public void setOwnerHistory(IfcGloballyUniqueId ownerHistory) {
this._ownerHistory = ownerHistory;

}

public String getName () {
return _name;

}

public void setName(String name) {
this._name = name;

}

public String getDescription () {
return _description;

}

public void setDescription(String description) {
this._description = description;

}
}

ソースコード A.6 IfcObjectDefinition.java

package model.entity;

/**
* IfcObjectDefinition エ ン テ ィ テ ィ
*/

public class IfcObjectDefinition extends IfcRoot{

}

120

ソースコード A.7 IfcObject.java

package model.entity;

/**
* IfcObject エ ン テ ィ テ ィ
*/

public class IfcObject extends IfcObjectDefinition{

private String _objectType;

///
// ア ク セ サ メ ソ ッ ド

public String getObjectType () {
return _objectType;

}

public void setObjectType(String objectType) {
this._objectType = objectType;

}
}

ソースコード A.8 IfcProduct.java

package model.entity;

/**
* IfcProduct エ ン テ ィ テ ィ
*/

public class IfcProduct extends IfcObject{
private IfcGloballyUniqueId _objectPlacement;
private IfcGloballyUniqueId _representation;

///
// ア ク セ サ メ ソ ッ ド

public IfcGloballyUniqueId getObjectPlacement () {
return _objectPlacement;

}

public void setObjectPlacement(IfcGloballyUniqueId objectPlacement)
{

this._objectPlacement = objectPlacement;
}

public IfcGloballyUniqueId getRepresentation () {
return _representation;

}

public void setRepresentation(IfcGloballyUniqueId representation) {
this._representation = representation;

}
}

ソースコード A.9 IfcElement.java

package model.entity;

/**
* IfcElement エ ン テ ィ テ ィ
*/

public class IfcElement extends IfcProduct{

121

付録 A プログラムコード

private String _tag;

///
// ア ク セ サ メ ソ ッ ド

public String getTag () {
return _tag;

}
public void setTag(String tag) {

this._tag = tag;
}

}

ソースコード A.10 IfcElementComponent.java

package model.entity;

/**
* IfcElementComponent エ ン テ ィ テ ィ
*/

public class IfcElementComponent extends IfcElement{

}

ソースコード A.11 IfcReinforcingElement.java

package model.entity;

/**
* IfcReinforcingElement エ ン テ ィ テ ィ
*/

public class IfcReinforcingElement extends IfcElementComponent{

private String _steelGrade;

///
// ア ク セ サ メ ソ ッ ド

public String getSteelGrade () {
return _steelGrade;

}

public void setSteelGrade(String steelGrade) {
this._steelGrade = steelGrade;

}
}

ソースコード A.12 IfcReinforcingBar.java

package model.entity;

/**
* IfcReinforcingBar エ ン テ ィ テ ィ
*/

public class IfcReinforcingBar extends IfcReinforcingElement{

public enum IfcReinforcingBarTypeEnum{
ANCHORING ,
EDGE ,
LIGATURE ,
MAIN ,

122

PUNCHING ,
RING ,
SHEAR ,
STUD ,
USERDEFINED ,
NOTDEFINED;

}

public enum IfcReinforcingBarSurfaceEnum{
PLAIN ,
TEXTURED;

}

//
// フ ィ ー ル ド

private Double _nomicalDiameter;
private Double _crossSectionArea;
private Double _barLength;
private IfcReinforcingBarTypeEnum _predefinedType;
private IfcReinforcingBarSurfaceEnum _barSurface;

//
// ア ク セ サ メ ソ ッ ド

public Double getNomicalDiameter () {
return _nomicalDiameter;

}

public void setNomicalDiameter(Double _nomicalDiameter) {
this._nomicalDiameter = _nomicalDiameter;

}

public Double getCrossSectionArea () {
return _crossSectionArea;

}

public void setCrossSectionArea(Double crossSectionArea) {
this._crossSectionArea = crossSectionArea;

}

public Double getBarLength () {
return _barLength;

}

public void setBarLength(Double barLength) {
this._barLength = barLength;

}

public IfcReinforcingBarTypeEnum getPredefinedType () {
return _predefinedType;

}

public void setPredefinedType(IfcReinforcingBarTypeEnum
predefinedType) {

this._predefinedType = predefinedType;
}

public IfcReinforcingBarSurfaceEnum getBarSurface () {
return _barSurface;

}

public void setBarSurface(IfcReinforcingBarSurfaceEnum barSurface)
{

123

付録 A プログラムコード

this._barSurface = barSurface;
}

}

ソースコード A.13 IfcGloballyUniqueId.java

package model.entity;

import java.util.Base64;
import java.util.UUID;

public class IfcGloballyUniqueId {

public IfcGloballyUniqueId () {
_id = Base64.getEncoder (). encodeToString(UUID.randomUUID ().

toString (). getBytes ());
}

public IfcGloballyUniqueId(String id) {
_id = id;

}

public String get() {
return _id;

}

private String _id;

@Override
public String toString () {

return _id;
}

@Override
public boolean equals(Object obj) {

if(!(obj instanceof IfcGloballyUniqueId))
return false;

return this.toString (). equals(obj.toString ());
}

}

124

付録 B

関係スキーマ（テーブル定義）

ソースコード B.1 IfcBridge.sql

CREATE TABLE [dbo].[IfcBridge](
[GlobalId] [nchar](32) NOT NULL ,
[OwnerHistory] [nchar](32) NULL ,
[Name] [nvarchar](max) NULL ,
[Description] [nvarchar](max) NULL ,
[StructureIndicator] [nvarchar](max) NULL ,
[CompositionType] [nvarchar](max) NULL ,
[StructureType] [nvarchar](max) NULL ,

CONSTRAINT [PK_IfcBridge] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

ソースコード B.2 IfcBridgePart.sql

CREATE TABLE [dbo].[IfcBridgePart](
[GlobalId] [nchar](32) NOT NULL ,
[OwnerHistory] [nchar](32) NULL ,
[Name] [nvarchar](max) NULL ,
[Description] [nvarchar](max) NULL ,
[StructureIndicator] [nvarchar](50) NULL ,
[CompositionType] [nvarchar](50) NULL ,
[StructureElementType] [nvarchar](50) NULL ,
[TechnoElementType] [nvarchar](50) NULL ,

CONSTRAINT [PK_IfcBridgePart] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

ソースコード B.3 IfcBridgePrismaticElement.sql

CREATE TABLE [dbo].[IfcBridgePrismaticElement](
[GlobalId] [nchar](32) NOT NULL ,
[Name] [nvarchar](max) NULL ,
[Description] [nvarchar](max) NULL ,
[Tag] [nvarchar](max) NULL ,
[PrismaticElementType] [nvarchar](50) NULL ,

125

付録 B 関係スキーマ（テーブル定義）

CONSTRAINT [PK_IfcBridgePrismaticElement] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

ALTER TABLE [dbo].[IfcBridgePrismaticElement] ADD CONSTRAINT [
DF_IfcBridgePrismaticElement_GlobalId] DEFAULT (replace(lower(newid
()),’-’,’’)) FOR [GlobalId]
GO

ソースコード B.4 IfcBridgeSegment.sql

CREATE TABLE [dbo].[IfcBridgeSegment](
[GlobalId] [nchar](32) NOT NULL ,
[Name] [nvarchar](max) NULL ,
[Description] [nvarchar](max) NULL ,
[SegmentType] [nvarchar](50) NULL ,

CONSTRAINT [PK_IfcBridgeSegment] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

ソースコード B.5 IfcCartesianPoint.sql

CREATE TABLE [dbo].[IfcCartesianPoint](
[GlobalId] [nchar](32) NOT NULL ,
[Coordinates] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcCartesianPoint] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

ソースコード B.6 IfcCompositeCurve.sql

CREATE TABLE [dbo].[IfcCompositeCurve](
[GlobalId] [nchar](32) NOT NULL ,
[Segments] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcCompositeCurve] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

ソースコード B.7 IfcCompositeCurveSegment.sql

CREATE TABLE [dbo].[IfcCompositeCurveSegment](
[GlobalId] [nchar](32) NOT NULL ,
[ParentCurve] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcCompositeCurveSegment] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

126

ソースコード B.8 IfcPolyline.sql

CREATE TABLE [dbo].[IfcPolyline](
[GlobalId] [nchar](32) NULL ,
[Points] [nchar](32) NULL

) ON [PRIMARY]

ソースコード B.9 IfcProductDefinitionShape.sql

CREATE TABLE [dbo].[IfcProductDefinitionShape](
[GlobalId] [nchar](32) NOT NULL ,
[Representations] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcProductDefinitionShape] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

ソースコード B.10 IfcReinforcingBar.sql

CREATE TABLE [dbo].[IfcReinforcingBar](
[GlobalId] [nchar](32) NOT NULL ,
[Name] [nvarchar](max) NULL ,
[Description] [nvarchar](max) NULL ,
[Tag] [nvarchar](max) NULL ,
[SteelGrade] [nvarchar](max) NULL ,
[NominalDiameter] [float] NULL ,
[CrossSectionArea] [float] NULL ,
[BarLength] [float] NULL ,
[BarRole] [nvarchar](50) NULL ,
[BarSurface] [nvarchar](50) NULL ,
[Representation] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcReinforcingBar] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

ALTER TABLE [dbo].[IfcReinforcingBar] ADD CONSTRAINT [
DF_IfcReinforcingBar_GlobalId] DEFAULT (replace(lower(newid
()),’-’,’’)) FOR [GlobalId]
GO

ソースコード B.11 IfcRelAggregates.sql

CREATE TABLE [dbo].[IfcRelAggregates](
[GlobalId] [nchar](32) NOT NULL ,
[Name] [nvarchar](255) NULL ,
[Description] [nvarchar](255) NULL ,
[OwnerHistoryId] [int] NULL ,
[RelatingObject] [nchar](32) NOT NULL ,
[RelatedElements] [nchar](32) NOT NULL

) ON [PRIMARY]

GO

ALTER TABLE [dbo].[IfcRelAggregates] WITH CHECK ADD CONSTRAINT [
CK_IfcRelAggregates_GlobalId] CHECK ((len([GlobalId]) >=(22)))
GO

127

付録 B 関係スキーマ（テーブル定義）

ALTER TABLE [dbo].[IfcRelAggregates] CHECK CONSTRAINT [
CK_IfcRelAggregates_GlobalId]
GO

ソースコード B.12 IfcRelContainedInSpatialStructure.sql

CREATE TABLE [dbo].[IfcRelContainedInSpatialStructure](
[GlobalId] [nchar](32) NOT NULL ,
[Name] [nvarchar](255) NULL ,
[Description] [nvarchar](255) NULL ,
[OwnerHistoryId] [int] NULL ,
[RelatingStructure] [nchar](32) NOT NULL ,
[RelatedElements] [nchar](32) NULL ,

CONSTRAINT [PK_IfcRelContainedInSpatialStructure_1] PRIMARY KEY
CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO

ALTER TABLE [dbo].[IfcRelContainedInSpatialStructure] WITH CHECK ADD
CONSTRAINT [CK_IfcRelContainedInSpatialStructure_GlobalId] CHECK ((len
([GlobalId]) >=(22)))
GO

ALTER TABLE [dbo].[IfcRelContainedInSpatialStructure] CHECK CONSTRAINT
[CK_IfcRelContainedInSpatialStructure_GlobalId]
GO

ソースコード B.13 IfcRelNests.sql

CREATE TABLE [dbo].[IfcRelNests](
[GlobalId] [nchar](32) NOT NULL ,
[Name] [nchar](10) NULL ,
[Description] [nchar](10) NULL ,
[RelatingObject] [nchar](32) NOT NULL ,
[RelatedElements] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcRelNests] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO

ALTER TABLE [dbo].[IfcRelNests] ADD CONSTRAINT [
DF_IfcRelNests_GlobalId] DEFAULT (replace(lower(newid()),’-’,’’)) FOR
[GlobalId]
GO

ソースコード B.14 IfcShapeRepresentation.sql

CREATE TABLE [dbo].[IfcShapeRepresentation](
[GlobalId] [nchar](32) NOT NULL ,
[RepresentationIdentifier] [nvarchar](255) NULL ,
[RepresentationType] [nvarchar](255) NULL ,
[ContextOfItemsId] [int] NULL ,

128

[Items] [nchar](32) NOT NULL ,
CONSTRAINT [PK_IfcShapeRepresentation] PRIMARY KEY CLUSTERED

(
[GlobalId] ASC

)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

ソースコード B.15 IfcSweptDiskSolid.sql

CREATE TABLE [dbo].[IfcSweptDiskSolid](
[GlobalId] [nchar](32) NOT NULL ,
[Directrix] [nchar](32) NOT NULL ,

CONSTRAINT [PK_IfcSweptDiskSolid] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC
)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

ソースコード B.16 Related.sql

CREATE TABLE [dbo].[Related](
[GlobalId] [nchar](32) NOT NULL ,
[RelatedObject] [nchar](32) NOT NULL ,

CONSTRAINT [PK_Related] PRIMARY KEY CLUSTERED
(

[GlobalId] ASC ,
[RelatedObject] ASC

)WITH (PAD_INDEX = OFF , STATISTICS_NORECOMPUTE = OFF , IGNORE_DUP_KEY
= OFF , ALLOW_ROW_LOCKS = ON , ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

129

