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When extreme incident waves and/or large-amplitude body motions are involved, nonlinear ef-
fects in hydrodynamics of wave-body interaction problems become critically important in the
design of ships and offshore structures. In the present research, a solver named ALE-HOBEM
is developed based on potential-flow theory and applied to study fully nonlinear wave-body
interaction problem, where large-amplitude motion, moving boundary, complex geometry and

nonlinear incident waves are involved.

To develop this solver, two problems should be solved: (i) proper treatment on moving boundary,
which requires not only the exact position of free surface should be tracked but the mesh on free
surface should be able to self-adapt to body’s large-amplitude motion; (ii) accurate evaluation on
hydrodynamic force (moment), which is related to calculation of temporal derivative of velocity
potential. Regarding problem (i), an Arbitrary Lagrangian-Eulerian (ALE) scheme is proposed
in the research, which is regarded as an optimized combination of the mixed-Euler-Lagrange
(MEL) and semi-Lagrange (SL) scheme. Regarding problem (ii), the temporal derivative of ve-
locity potential is directly evaluated by solving a reconstructed boundary value problem (BVP)
with much simplicity compared to the original method. In addition, a higher-order boundary
element method (HOBEM) is used as a BVP solver.

Three nonlinear wave-body interaction problems with increasing of complexity are investigated
in detail: nonlinear wave diffraction, nonlinear wave radiation and interaction between nonlinear
incident waves and a freely floating body. In the computation, several body’s geometries (from
circular cylinder to practical ship) are used. By a systematic validation, the ALE-HOBEM is

proved to be accurate and robust in study nonlinear wave-body interaction problems.
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Chapter 1

Introduction

1.1 Background

When extreme incident waves and/or large-amplitude body motions are involved, nonlinear ef-
fects in hydrodynamics of wave-body interaction problems become critically important in the
design of ships and offshore structures. Numerical simulations taking into account nonlinear ef-
fects e.g. large-amplitude motion, moving boundary, complex geometry and nonlinear incident

waves, are still challenging due to complex physics behind of the problem.

In ocean engineering, for the problems that no wave breaking and flow separation exist or vis-
cosity and strong free-surface nonlinearities are confined in a small flow region, the numerical
simulation based on fully nonlinear potential theory (FNPT) is still an economical choice, com-

pared to the Naiver-Stokes (NS) equation based solver.

In the framework of FNPT, even the mathematical model is much simplified compared to the
original problem, there still some problems remain open or not well resolved. Note that at
present research we only focus on wave-structure interaction without a forward speed. When
developing a scheme to solve problems of nonlinear wave interaction with structures, one need

to firstly consider the following issues:

e Free surface tracking scheme

In order to track an exact position of free surface, generally, the free surface is represented
by a group of fluid particles (Lagrangian’s view ) or infinitesimal probes (Euler’ s view),
where their movement denotes free surface deformation. However, when a moving body
is involved, the free surface near the body would be split and/or merged frequently. The
associated problem is to make fluid marker self-adapt to body’s motion. Otherwise, the
subsequent problems would occur, for instance, incorrect intersection updating and low-

quality mesh near the body.
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e Decouple the mutual dependence of fluid/structure motion

This problem is related to the so-called acceleration potential problem. Although a variety
of schemes have been proposed as we will introduce later, to reproduce some of them is

not a easy task in a three-dimensional computation because of complexity of the scheme.

o Accuracy and efficiency of boundary element method (BEM)

BEM is a popular solver in the framework of FNPT. In most of practical applications, it
is required that the BEM solver should be capable of evaluating not only the unknowns of
fluid field but spatial derivatives of the solution. Generally speaking, the spatial derivatives
with order beyond one is difficult to evaluate with a promising accuracy. However, the
second spatial derivatives is common in marine hydrodynamics e.g. m-term. On the other
hand, the efficiency is another concern when developing a BVP solver based on BEM. As
known, in BEM the resulting matrix of coefficient is fully populated and unsymmetrical,

and thus to build up and solve this matrix would consume most of the computational time.

e Proper radiation condition at far field

In computation, the computational domain is usually truncated at a distance far from the
body. To avoid unwanted wave reflection from this boundary, an appreciate boundary

condition should be imposed.

1.2 Literature review

1.2.1 On free surface updating scheme

Typically, there are two extensively used approaches for free surface updating, Mixed-Euler-
Lagrange (MEL) approach ((Longuet-Higgins and Cokelet[1]) and Semi-Lagrange (SL) ap-
proach. The former allows multi-value of the free surface i.e., wave overturning, while the
later requires the single-value of the free surface. Since in SL method, the horizontal motion of
fluid particle is prescribed and it only moves freely in vertical direction, this scheme is mainly

applied to wave generation without a body or wave interaction with simple-geometrized body

[21[3].

Xue [4] and Liu, Xue and Yue [5] used the Mixed-Euler-Lagrange approach to study the gen-
eration of three-dimensional ship bow waves. For avoiding clustering of the Lagrange particle,
a regridding scheme is used. For updating the intersection point between free surface and body
surface, an arbitrary-Lagrange-Eutherian (ALE) scheme is proposed. Yan [6] also used this
method to study nonlinear wave-structure interaction. Bai and Taylor [7], Zhou and Ning [8]
studied nonlinear wave radiation by MEL scheme. Wang [9] develop an unstructured Mixed-

Euler-Lagrange approach. As the name indicates, they use unstructured grid on free surface
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combined with a desingular BEM solver. It is claimed that this method is more efficient and

robust than structured one.

Besides MEL and SL scheme, there are also some other schemes for free surface updating wor-
thy to mention. Sung and Grilli [10] applied an alternative method to study nonlinear wave-body
interaction, by combining semi-Lagrangian and Lagrangian free surface boundary conditions to
the problem of a pressure perturbation moving on the water surface. In their model, Lagrange ap-
proach is used near the body since nonlinearity is dominated in this region, while Semi-Lagrange
approach is used at region far from the ship. Spring assumption is another representative method
that all nodes on free surface are considered to be connected by springs and the free surface de-
forms like a spring system, for instance, Ma and Yan [11]. In order to remove the wall-sided
restriction in SL scheme, Zhang [12] developed a modified SL and applied this scheme to study

sloshing in a non-wall-sided tank.

1.2.2 On acceleration potential

To solve wave induced motions of floating body, one should first get wave induced loads acting
on the body by Bernoulli’s equation. The temporal derivative of velocity potential i.e. ¢, in
Bernoulli’s equation should be well evaluated. For achieving a promising accuracy of this term,
a BVP for evaluating this term is constructed by Van Daalen [13] and Tanizawa [14]. However
in body boundary condition for ¢, it contains unknown body acceleration which in turn requires
wave induced force or ¢,. It reflects the coupling between fluid and body motion. Fortunately, we
have a supplementary equation, body motion equation based on Newton’s law. Substituting body
motion equation into body boundary condition yields a closed BVP for ¢,. This is the method
used by Van Daalen [13] and Tanizawa [14]. Because this term is related to fluid acceleration,

sometimes it called as "acceleration potential’.

Wu [15][16] proposed an explicit method to directly get hydrodynamic force acting on the body
following above principle. In his method, an auxiliary function is introduced, which satisfies
very simple boundary conditions. Bandyk and Beck [17] gave an overview of existing method.
Letournel and Ducrozet et.al [18] proved that the existing BVPs for evaluating ¢, with different

form are identical in principle.

Another issue in dealing with ¢, is that there is second special derivative terms appearing in
body’s boundary condition, which relates to curvature of local surface. In 3D computations, the
expression for calculating this term is very much complicated, see Berkvens [19] and Shirakura
and Tanizawa [20]. In order to circumvent this difficulty, Wu and Hu [21] introduced an auxiliary
function and transformed this term into free surface. As a result, the second order derivative

terms are reduced by order one.



Chapter 1. Literature review 4

More recently, Sclavounos [22][23] developed a nonlinear impulse theory for motions of floating
body. In his formulation, 0¢/0tds is converted to d/dt ¢ds by momentum conservation,

which circumvents the need for calculating d¢/0ot.

1.2.3 On BVP solver

After the pioneering work of Hess and Smith [24], the subsequent researchers pay more at-
tention to either improving accuracy or increasing efficiency of the BEM. Initially, the higher-
order boundary element method (HOBEM) is a logical improvement compared to constant panel
method, where both geometry and filed variable are discreted by piecewise polynomial defined
over specific element. Many published works has done by HOBEM since it is easily extended
from constant panel method with improved accuracy and convergency. However, HOBEM can

not provide good smoothness of the solution because of C® continuity at collocation node.

To circumvent this problem, Spline based BEM is developed. Maniar [25] carried out a system-
atic research to a 3rd-order B-Spline based BEM. The accurate result is achieved with rapid con-
vergency and C? continuity is guaranteed. Lee, Maniar, and Newman [26] applied this method

to diverse problems.

However, B-spline (NURBS) based method is also not perfect. For complex geometry it has
to split into several ’patches’ and there is connection problem between patches. And also, the
geometry model generated by CAD (computer aid design) has to be modified as the analytical
model for CAE (computer aid engineering). To unify both procedure, IsoGeometric Approach
(IGA) is proposed. The benefit includes, geometry and analysis models unified; exact geometry
is used throughout and mesh repair procedures is prevented. Under this concept, the IGA-
BEM is proposed and T-spline is used as the basis function. Because T-spline is a generalized
NURBS, it keeps all the good features of NURBS and also offers several advantages superior
to NURBS. Ginnisa, Kostasb, and Politisb [27] applied this method for ship hull optimization
for minimum wave resistance. As reported, the T-spline bases offers local-refinement capabil-
ities and achieves same error level for many fewer degrees of freedom as compared with the
corresponding NURBS-based Isogeometric-BEM. Taus [28] carried out a systematic research

to IGA-BEM as his doctoral dissertation.

To improve smoothness of the solution, there are several compromises between lower-order BE-
M and spline-based BEM. Duan [29][30][30] proposed a Taylor Expansion Boundary Element
Method (TBEM). In the method, the field variable is expanded at centroid of the element with a
Taylor series expansion up to 2" order. The ¢ as well as its first and second spatial derivative
appearing in the expansion is solved by corresponding BIE. In their method, although geom-
etry is approximated by flat panel, the reported results are accurate even in the sharp corner.

Guiggiani [31] proposed a hypersingular boundary integral equations by directly differentiating
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the boundary integral equation with respect to x (coordinate of field point). As a consequence
the spatial derivative of ¢ is expressed by a hypersingular boundary integral equation. Frangi
and Guiggiani [32] extended this method to solve 2" and 3"“-order derivatives, which involves
more free terms and higher singularity (1/7* and 1/r° ). In terms of these singular integral, Gao

[33][34] proposed an very accurate scheme to solve integral with kernel 1/7*,n =1 ~ 5.

On the other hand, for improving computational efficiency, some accelerated BEMs are pro-
posed. Two representative approaches are preFFT-BEM and Fast Multipole Method accelerated
BEM. As reported, the computational effort is O(NlogN) and O(N), respectively, where N is
the number of boundary unknowns. Harris and Dombre et al [35], investigated the efficiency of
FMM-BEM in their numerical wave tank model. They suggested that for problems of moderate
size, a parallelization scheme is superior to FMM acceleration. For larger problems, with around
10° collocation nodes, it is perhaps fastest by simply applying FMM directly at each GMRES
iteration. Yan and Liu [36] also reported the efficiency of the pFFT-BEM.

1.2.4 On non-reflecting boundary condition

In time domain simulation, the computational domain have to be truncated at a distance far from
the body for saving computation. An appropriate boundary condition should be imposed on this
artificial boundary, which should consider the effect of the exclude domain or at least prevent
wave reflecting from this boundary. The existing solutions can be categorized in several groups:
(1) artificial damping approach (ii) simple far field solutions (matching scheme) (iii) differential
equations matching the outer solution, e.g., modified Sommerfeld method; (iv) feedback control

wave maker (generating a destructive wave).

Kim [37][38] studied the theoretical background of artificial damping aiming to optimize some
parameters. Kim, Ko and Hong [39] applied five types of artificial damping scheme to fully
nonlinear wave generation problem in 3D numerical wave tank. They concluded that artificial
damping schemes with two damping terms in free surface conditions showed better damping

performance.

However, artificial damping method is not economic for long wave (low frequency) since it
requires long damping zone. Clément [40] combined artificial damping method with piston-like
Neumann condition, which benefits from their different bandwidth: the numerical beach, very
efficient in the high frequency range, and a piston-like Neumann condition, asymptotically ideal
for low frequencies. As proved, the coupling method gives excellent results in the whole range

of frequencies of interest.

Jennings, Karni and Rauch [41][42] studied the non-reflecting boundary condition of linear

water waves using the analytical method, where the linear water wave equation is factored as
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a product of one-way equations. However, we do not know the possibility to extend current
method to nonlinear equation of water waves. Spinneken, Christou, and Swan [43] proposed
a force-feedback control method for a wave maker generating destructive wave at another ex-
tremity of numerical wave tank. The strategy is that 'to destroy a wave means to create a wave’,
i.e., the reflecting wave is counteracted with the newly generated wave at a distance from the
body. They tested this scheme in 2D numerical wave tank with success. However, to apply this

method to 3D multi-directional wave is not trivial.

1.3 Outline of the dissertation

This dissertation is concerned with nonlinear wave-structure interaction with the motivation to
develop a computational algorithm, which is capable of prediction of featured nonlinear phe-
nomena. To achieve this objective, an ALE-type free surface conditions are derived with the
feature that the fluid marker on free surface is able to self-adapt to body’s large-amplitude mo-
tion and body’s complex geometry above waterline. On the other hand, the mutual dependence
of fluid/body motion is decoupled in an easy and accurate manner by solving a sets of recon-
structed BVPs. Regarding solving a BVP, HOBEM with slight modification is adopted in the re-
search, since it is an economical choice for our purpose, compared to constant panel method and
spline-based BEM. In the dissertation, the computational algorithm is named as ALE-HOBEM
to highlight its feature.

Chapter 1 of this dissertation describes the introduction, including the background, state-of-
the-art, and objectives of the study. In Chapter 2, the mathematical formulations related to
governing equations and boundary conditions of the problem are described. Description of
the computed model is provided in Chapter 3. Chapter 4 describes the application of ALE-
HOBEM to nonlinear wave diffraction problem. Both numerical and experimental study are

described in this chapter.

A step further, nonlinear wave radiation problem is studied in Chapter 5. As an attempt to study
nonlinear wave interaction with a freely floating body, motion in heave mode is studied. The
second-order and third-order motion resonance in heave mode is also investigated, which are
described in detail in Chapter 6. In Chapter 7 we list several conclusions related to our user

experience of the ALE-HOBEM and some observations when solving the nonlinear problems.



Chapter 2

Mathematical formulation

In this chapter, the general equations governing fluids motion and body motion would be de-
scribed. Two right-handed Cartesian coordinate systems are defined as shown in Fig. 2.1. One
is a space-fixed coordinate system oxyz with its origin on the mean free surface and z-axis being

bybzb with o” placed at center

positive upwards. The other is a body-fixed coordinate system o”x
of gravity of the body. When the body is at its equilibrium position, these two sets of coordi-
nate systems are parallel. The relationship between those two coordinates can be found in many
reference [6][44]. The fluid domain is enclosed by several boundaries i.e. free surface S ¢, body

surface S5, control surface S . and seabed S, as shown in the figure.

Ficure 2.1: Sketch of coordinate systems and computation domain.
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2.1 Equations of fluid motion

The fluid is assumed to be inviscid and incompressible, and the flow is irrotational. A velocity

potential ¢ can therefore be introduced, which satisfies the Laplace equation in the fluid domain
V=0 2.1

This is also known as continuity equation, which indicates conservation of mass of the fluid.

For wave-body interaction problem, appropriate boundary conditions should be imposed on
those surface according to their physical functions. A free surface requires two boundary condi-
tions to be applied, a kinematic condition which relates the motion of free surface to the motion
of fluid particle on the free surface; and a dynamic condition which connects with the force

balance on the free surface. The corresponding mathematical expressions are written as follows

@+V¢-Vn=a—¢ xXeSy
ap 1 '
E+§V¢V¢+g7]=0 XESf

where z = n(x,y,t) denotes free surface elevation. It should be noted here that Eq.(2.2) is
expressed from Euler’s point of view and another alternative is Lagrange’s method. The features

of both methods as well as their combination would be discussed in detail in next chapter.

Because of existence of a body, the interface between fluid and body requires a non-penetrable

boundary condition, which can be written as follows

6—¢=V-n xXeS, 2.3)
on

where n = (n1, ny, n3) is the unit normal vector (out of the fluid) and V is the velocity of a point
on body surface relative to the Oxyz frame. Following the same requirement, the boundary on

seabed can be written in a similar form

% _o xes, (2.4)
on

At far field, the asymptotic property of velocity potential requires

p—-0 x> (2.5

However, in computation, the computational domain can not be infinite and thus it has to be
truncated at some artificial surface e.g. S.. And on S, some proper boundary condition should

be imposed to approximate the far field property of fluid flow described by Eq.(2.5).
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On the other hand, the fully-nonlinear wave-body interaction is generally solved in a time do-
main with a time-stepping scheme. And thus the initial status of the fluid and body (position

and velocity) should be given as the starting of the computation, which is defined as follows

n(x,y,0) = f(x,y) x€S¢
¢(x,y,1,0) = ff(x,y,m) x€Sy
&0)i=1,6 = ci=1,6

V(x,v,2,0) = cc(x,y,2) x€8p

(2.6)

where &(1);=1 ¢ denotes displacement of the six degree-of-freedom (DOF) motions.

2.2 Equations of wave-body interaction

2.2.1 Hydrodynamic forces (moments) and motion equations of a body

Once the velocity potential is solved from above-mentioned equations, the pressure p can be

determined following Bernoulli’s Equation,

0 1
p =+ 396V + g0 27

where p denotes density of water and g gravitational acceleration. And the corresponding force

in ith direction can be evaluated by the following expression

F;, = ff pnids i=1,6 (2.8)
Sp

where (n1, n2,n3) = n and (n4, ns, ng) = r’ x n, with r’ being the vector from the mass center to

the point considered.

The body may undergo six DOF motions with three translational motions i.e. surge (¢), sway
(é2) and heave (£3), and three rotational motions i.e. roll (£4), pitch (&5) and yaw (&), where
the translational velocities are denoted by U = (U, U,, U3) and the rotational velocities Qb =
Q°, Qg, Qg). Note that, the angular velocity is defined in the body-fixed coordinated system

following the tradition in physics.

Following Newton’s second law, the three translational motion equations can be expressed as
follows
dU;

mW =F;—opmg i=1,3 2.9)

where 6;; denotes Kronecker delta function and m mass of the body. Note that those motion

equations are described in earth-fixed coordinate system.
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The equation of rotational body motions are,

dH; )
CU=F =46 (2.10)

where H; is the angular momentum defined in earth-fixed frame with respect to center of grav-
ity 0. However, in the earth-fixed coordinate system, the inertia matrix of rotation is time-
dependent and thus it is not convenient for computation. Alternatively, the left-hand side of

Eq.(2.10) is expressed in the body-fixed coordinate system and written in the vector form,

H=TrH" = Tr(I’Q")

dH dH® beb b
E—TF(T)—TI’[IQ + Q° x (I"Q)]

@.11)

where T'r represents the transformation from 0”xy?z% to oxyz, I” the 3x3 inertia matrix in body-

fixed frame with the property that I b is time invariant and H” the associated angular momentum

in body-fixed frame.

Combining Eq.(2.10) and Eq.(2.11) yields
TriIPQ’) = M - TrQ? x (I’Q) (2.12)

where M denotes the external moment on body with M;=13 = Fiz4¢.

2.2.2 Nonlinear coupling between fluid motion and body motion

In wave-body interaction problem, the fluid field and body motion are related by Bernoulli’s
equation see Eq.(2.7) and Eq.(2.8). However, to evaluate the temporal derivative of velocity
potential is not straightforward, unless a backward finite-difference scheme is used, which as
known is not accurate and causes instability problem. In order to solve ¢; (%) in an accu-
rate manner, an appreciate boundary value problem (BVP) should be defined for ¢,, which is

analogous to BVP of ¢.

Comparing to ¢, one may find that ¢, also satisfies Laplace equation. And recalling the dy-
namic free-surface condition of ¢, one can immediately obtain the free-surface condition for ¢;.
However, the body boundary condition for ¢, is not apparent. We would derive body bound-
ary condition of ¢, starting from Eq.(2.3). Specifically, body boundary condition for ¢ can be
rewritten as follows

Vo-n=U+Q xr’)-n xes, (2.13)

Following a point p on body surface, where p adheres to body surface without relative motion,
see Fig. 2.2, the following expressions hold due to the fact that p only follows a rigid body

motion.



Chapter 2. Equations of wave-body interaction 11

z

Ficure 2.2: Time derivative when following a fixed point p on body surface.

— onb b
X, =00" +r1

B doo®  dr?

- F—=U+Q’xr
P de dt r

(2.14)

If p moves in a field, for instance ¢(x, y, z, ), the material derivative can be defined as follows

d¢ _0¢

=—+(V,- V).V 2.15
- TV V) Ve (2.15)
With those information in mind, taking time derivative in left-hand side of Eq.(2.13), yields

d d dn

Z(Vé-n) = —(Vo) - Vo — .

Ve m=—(Vg)-n+ Vo — (2.16)

It is easy to derive the following expression according to Eq.(2.14) and Eq.(2.15).

V) = Vo, + (U + Q0 x ) VIV

(2.17)
dn
= _ob
i Xn
Substituting Eq.(2.17) into Eq.(2.16) yields
d
d—t(vqs.n) =Vé-n+{[(U+Q°xr")-VIVé}-n+ Ve - (QF x n)
\%
:£(¢t)+(U+Qb><rb)-a—(p+V¢-(ben) (2.18)
on on

_9 AL RPN
_an(¢,)+U o +Q é}n(r X Vo)
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0 b
The last equation holds using the identity GL =n.
n

Taking time derivative in right-hand side of Eq.(2.13), yields

%[(U+ber”)‘n]:[U+berb+9bx(9bxrb)]-n
+(U+r*xQb) - (@ xn) (2.19)
U+ %) n+ Q- (nxU)

Combining Eq.(2.18) and Eq.(2.19) gives

V¢t'n:(U+berb)'n—U-av;¢+Qb'i[rbx(U—V¢)] (2.20)
on on

This is the body boundary condition of ¢;, which indicates the normal acceleration of a fluid

particle on body surface is identical with body’s normal acceleration at the same point.

To sum up, the governing equations as well as boundary conditions of ¢, can be written as

follows
V2¢t =0
a1
= = _§(v¢)2 —gz x€Sy (2.21)
d o v d
94 =(U+Qb><rb)-n—U-—¢+Qb-—[rbx(U—V¢)] xeS,
on on on

Since ¢, is relevant to pressure distribution, see Bernoulli’s equation Eq.(2.7), the terms contain-
ing body’s acceleration in Eq.(2.21) indicates a mutual dependence of fluid/structure motion-
s. And therefore additional effort should be focused on this issue when developing a numeri-
cal scheme. The above-mentioned procedures for deriving a BVP for ¢; can also be found in
Wu[45].



Chapter 3
Numerical implementations

In order to have a global view of the wave-body interaction problem, a brief computational flow

used for design of numerical scheme is illustrated in Fig.3.1. And following this sketch, the

AZ

/] 7%7%>X ’ Solving velocity field ‘
0 (DO ) 0

n

v

’Solving acceleration field ‘

Az
v
' )\ y Time matching procedure
l‘: \/ / 0 X : free surja.c.e updating
D, body position updating
vt

Ficure 3.1: Sketch of computational flow.

wave-body interaction problem can be divided into parts, i.e. subproblems:

o To develop a boundary value problem solver for the purpose of solving velocity field.

e To develop a scheme in order to decouple the mutual dependence of fluid/structure mo-

tions.
e To develop a scheme for updating free surface as well as the field value defined on the

free surface.

Those three subproblems would be described in detail in this chapter.

13
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3.1 Schemes for free surface updating

As described in Chapter 2, the free-surface is expressed in a Eulerian form,

on 0p
i ve.-Vp= 2
6t+ ¢-Vn Py xXeSy
op 1

_ _V V =

6t+2 ¢-Vo+gn=0 xeS¢

3.1

However, this type of free surface conditions is not suitable for design a numerical scheme and

some modifications should be made.

In the framework of potential flow theory, especially when the fluid field is solved by a BEM
method, a free surface tracking scheme (e.g. MEL and SL scheme) is more straightforward than
surface capture scheme (e.g. VOF method). In free surface tracking scheme, the free surface
is represented by a bunch of fluid particles or infinitesimal probes on free surface, where their
motion denotes free surface deformation. By following these fluid markers (fluid particles or
infinitesimal probes), the evolution of free surface as well as other variable defined on it can
be determined using a typical time-steeping scheme. With different definitions of fluid markers,
Eq.(3.1) can be modified into several equivalent forms, which is suitable for design of numerical

scheme.

3.1.1 Lagrangian method

In this method, the free surface is represented by a group of real fluid particles. Moving with
these particles, the time variation of some values in the fluid field can be determined by a material

derivative

D 0
— = _4+Ve-V 2
Dt (9t+ ¢ (3-2)

where V¢ is identical to velocity of fluid particle. From viewpoint of Lagrangian method, the

associated free-surface conditions can be rewritten as follows

DX

—=V¢ xESf
g{; | (3.3)
E=§V¢-V¢—gn xXeSy

where X () is position vector of a fluid particle at time ¢. Since the free surface is described in a
Lagrangian form while the field equation (Laplace equation) is solved in a Eulerian manner, this
scheme as a whole is referred to as mixed-Eulerian-Lagrangian scheme[1]. Due to flexibility of
particle motion, this scheme could handle complex deformation of free surface e.g. overturning

wave. The idea of this scheme is sketched in left-hand side of Fig.3.2.
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AZ

{4+ /\t

Lagrangian method Semi-Lagrangian method

Ficure 3.2: Illustration of different schemes.
3.1.2 Semi-Lagrangian method

In the semi-lagrangian (SL) scheme, the free surface is represented by a group of infinitesimal
probes floating on free surface. In contrast to the MEL scheme where the fluid particle moves
freely following deformation of free surface, in the SL scheme, the horizontal motion of fluid
marker (probe) is fixed and the marker only moves vertically following the free surface as shown

in right-hand side of Fig.3.2. In such case, the associated free-surface conditions can be written

as follows
) 0
—77=—¢—V¢-Vr] xXeSy
¢ 1 on '
L = __V¢-Vo— .y S,
ot - 2 Vet G Ve X €Sy

o on . .. . .
where — = + — - V denotes material derivative by following the fluid marker. Note that

St ot ot

6_;] = (9_7[7 denotes vertical velocity of fluid marker. Since the horizontal motion of fluid marker
is prescribed, it is relatively easy to manage mesh on free surface compared to MEL scheme.

3.1.3 Remakes on both methods

Both methods are firstly proposed for simulating evolution of nonlinear water waves without
existence of a floating body. When applied to nonlinear wave-body interaction problem, some
modifications towards the original schemes should be made in order to solve some featured
problems. The following two conditions should be considered, when a floating body is involved
: (1) the intersection should be captured and updated exactly; (2) the mesh on the free surface
should be self-adapted in order to conform to the body motion or complex geometry above the

still waterline. With those requirements in mind, the MEL and SL scheme are re-examined.
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The MEL scheme as described above is extensively used in the literature due to several advan-
tages, such as easy implementation and capability of dealing with overturning waves. However,
due to the nature of this scheme that fluid particle moves with much freedom, the unwanted
motion of fluid particle may cause some problems, see left-hand side of Fig.3.2. And thus some
modifications should be made, when applying to wave-body interaction problems. In order to
meet condition (1) mentioned above, Shirakura and Tanizawa [20] and Liu, Xue and Yue [5] de-
rived an ALE-type formulation for updating the intersection point. For avoiding a situation that
the distance between two neighboring fluid particles becomes too close or too far, a regridding
scheme is applied frequently, which is related to condition (2). However, the regridding scheme

as an artificial procedure would cause lose of information of fluid flow.

Alternatively, the SL scheme [2] is also widely used in wave-body interaction problems. Com-
pared to MEL scheme, the regridding scheme is circumvented in SL scheme due to the fact
that the horizontal distance between two neighbouring markers is time-inerrant (condition (2)).
However a drawback of this scheme is that it is applicable only to cases when the body surface

is vertical near the waterline (condition (1)).

Comparative study of different schemes for tracking the free surface may be summarized as
follows. The excessive freedom of Lagrangian fluid particle makes the MEL scheme capable
to handle complex deformation of the free surface, but the fluid particle must be relocated fre-
quently to dismiss unwanted motion of the particle. On the other hand, relocation of the fluid
marker is avoided in the SL scheme by restricting the horizontal motion of the fluid marker at

the sacrifice of flexibility to treat a body with large flare.

3.1.4 Arbitrary Lagrangian-Eulerian scheme

After the review described above, a logical question arises. Is there an optimized compromise
between MEL and SL schemes, where advantages of both methods are reserved while disad-
vantages are minimized? The answer is positive. The starting point for realizing this optimized
compromise is to increase flexibility of the SL scheme. In order to take into account a complex
body geometry above the waterline, a curved path analogous to the body’s local geometry is
introduced for each fluid marker on the free surface, where the movement of the marker along
this path represents the free surface deformation. On the other hand, in order to adapt to a large-
amplitude motion of the body, the prescribed path may also translate and/or rotate in connection
with the body motion. The idea of this method is illustrated in Fig.3.3. By carefully designing
these parameters, i.e. the shape, motion, and arrangement of these paths, the mesh on the free
surface can be well controlled. Detailed discussion on this method would be introduced later.
Since the inherent idea of this method is taken from the ALE scheme [46], this scheme will be

referred to as the ALE scheme hereafter.
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m— { e {+/\{

Ficure 3.3: Illustration of ALE scheme.

3.1.4.1 Derivation of ALE scheme, (body fixed)

To demonstrate the ALE procedure, we take updating of intersection point p illustrated in Fig.
3.4 as an example to show the central idea. And extending this approach to update the remaining
fluid markers on free surface is straightforward. In the following contents we first apply ALE to
cases where the tangential vector on cross section of body surface is constant i.e. inclined flare
without curvature, see case (a) in Fig.3.4 and extend the approach to general cases where body

geometry can be arbitrary, for instance, case (b) in Fig.3.4.

i<

side view

(a) (b)

® intersection point

y ® general fluid marker
top view
X

p

Ficure 3.4: Sketch of computational domain (half), side and top view. (a) an axisymmetrical
body with inclined flare; (b) a sphere with curved flare.

As far as intersection point p is concerned, physically it always stays on both body surface and
free surface. And the corresponding mathematical constraint conditions are: (i) the velocity of p
must parallel with tangential vector [ on body surface; (ii) the motion of p must satisfy kinematic

condition on free surface.

According to condition (i), velocity of p should parallel with /.

dx dy dz

T a3 = = KU b l) (3.5)

p:(
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where V), is the velocity of p and « is a scalar. Following condition (ii), fluid marker on inter-

section should also meet kinematic free surface condition,

on _ on 04
—=—+V, - Vp=—+V,-Vn-V¢-V 3.6
5t "o TYr V=g Ve Vn=Ve -V (3.6)
6 0 1 d
where rrialir + V), - V is material derivative by following fluid marker p. Note that 6—7 = d_j
according to the definition of 7, and substituting this relation into Eq.(3.6) yields
9¢
Kkl = 6_2 + k(lmy + lyny) = (amix + ¢)77]y) 3.7
and the corresponding vector form is
kl -Viz-nm)=V¢-V(z—1n) (3.9)

note that the unit normal vector on free surface is n = V(z — 1)/ | V(z — ) | and the final

expression is

K= — 3.9
I
A step forward, V), can be expressed as
dx dy dz_. ¢n
Vo=(—,—,—)=—1 3.10
r=Carar ad Ly 10

This expression indicates as long as intersection p moves according to this formulation, p always
stay on body surface and free surface. It is apparent that this expression can be used for time

stepping of new position of p in next step.
Correspondingly, substituting V,, into dynamic free surface condition yields

i—?:g—f+VP-V¢:—gn—%(V¢)2+%l-V¢ (3.11)
and thus new ¢ at next time step can be obtained by time integration of this expression. Note
that if we take [ = (0,0, 1) that indicates the body has wall-sided geometry near waterline,
Eq.(3.10) and Eq.(3.11) can be reduced to Eq.(3.4), which is the frequently used semi-lagrangian
approach with a restriction that the body must be wall-sided around waterline. Shirakura and
Tanizawa[20] and Liu, Xue and Yue [5] also used this method to update intersection while MEL

is used for updating free surface.

Following the similar idea which is proposed in above contents, we apply the ALE approach to
more general case where the body has curved flare near waterline, which indicates the tangential

vector on cross section line of the body is no longer a constant, see case (b) in Fig.3.4. Instead
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of using Cartesian coordinate system, a parametric coordinate system is used along the cross

section line of the body. For arbitrary 3D curve its parametric expression is
X = X(u) (3.12)

where X = (x,y, z) is coordinate of a point on cross section line of the body and u is a parameter.
In the present study u denotes arc-length of this 3D curve and the curve is approximated by a

cubic spline. Suppose the motion of intersection p on this curve is
u = u(t) (3.13)
The corresponding velocity of p is
du du
Vp = El = (Xus Yus ZM)E (3.14)

where I(u) is unit tangential vector at X(«). Note that I(u) = (x,, Yy, z,) under the condition that

u denotes arc-length.

Substituting Eq.(3.14) to kinematic free surface condition and following similar procedure men-

tioned above yields

du b

0
E = (B_Z =Vo-Vn)/(zu — xunx — yu’]y) (3.15)

Because of the relationship of u and X, see Eq.(3.12), once u is determined the corresponding
X can also be determined. And thus this expression can be further used for time stepping new
position of intersection point p at next time step. Recalling the definition of unit normal vector

on free surface, the above equation can be finally written as

du ¢,

—_—=— 3.16

dt l, ( )
this expression is elegant and consistent with Eq.(3.9). The only difference compared with
Eq.(3.9) is that I(u) is no longer a constant.

A step forward, substituting V, = ?—"l into dynamic free surface condition, yields
n

o _ Lo,y vsdu
5 = 8" 2(V¢) +1 V¢dt (3.17)

And Eq.(3.17) can be used for time steeping new ¢ at new intersection point p.

Thus far, we have derived expressions for time stepping the position of intersection point as well
as velocity potential on the intersection. Eq.(3.10) and Eq.(3.11) can be applied to body with
inclined flare (without curvature) around still waterline. And Eq.(3.16) together with Eq.(3.17)
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can be applied to more general cases where the body has curved flare around still waterline.
For the remaining fluid marker on the free surface, this approach can be easily extended by
introducing a path with tangential vector , see dotted line in Fig.3.4. For easy implementation,
it need not to define specific path for each maker. In present study, we group the markers who
belonging to same cross section of the computational domain, see Fig.3.4, and for markers in
the same group the path can be simply generated by translation of the cross section line of the
body.

3.1.4.2 Derivation of ALE scheme, (body in motion)

<
N

FiGure 3.5: [llustration of ALE scheme, where radiated waves is generated by a heaving circular
cone. a. top view of initial mesh of free surface; b. side view of computation domain.

As explained above, the feature of ALE scheme is to introduce a prescribed path for each node
on free surface. When body is in motion, the complexity of the problem is increased compared
to the above-mentioned procedure. For completeness, we list below all the associated problems,

even though some of them has been described in previous subsection,

(i) how to design an appropriate path for each fluid marker;

(i) how to collocate all of those pathes in space, which at least the path should not intersect

with each other;

(iii)) how to optimize the motion (translation and/or rotation) of each path in order to adapt to

large-amplitude motion of the body.

In terms of problem (i), in the present research, the path is generated by translation of sectional
line on the body, see Fig.3.5. More specifically, the path of point p;, for instance, illustrated

in Fig.3.5 is generated by translation of body’s sectional line (SC) along a stationary vector (in
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most cases) L;. And how to determine vector L; would be discussed later. This strategy enable

us to only define and store very few curves as pathes for all of fluid markers.

Because the prescribed path serves as trajectory of fluid marker, too close or too far distance of
two pathes is directly affect the quality of free surface mesh. This problem related to problem
(ii) can be resolved at the initial stage, where free surface is discretized by a fine mesh at the
beginning as we can see in Fig.3.5 a. At this stage, each fluid marker is provided with a unique
vector e.g. L; of p;, which indicates the path of p; would always keep its distance and orientation
from the body surface. By this way, the relative position of neighbouring fluid markers is locked
and thus the aspect ratio of each element on free surface is time-invariant. This strategy retains

good topology of initial mesh throughout the long-time simulation.

Regarding problem (iii), as we can see in Fig.3.5 b, the body’s motion may cause increase of
projected free surface area on horizontal plane, and the mesh near this region would be stretched
if there is no proper adjustment. In order to make the mesh self-adjust associated with body’s
motion, in the ALE scheme all the paths are defined to move with the body’s sectional line
which the path is translated from. By doing so, mesh near waterline can be self-adjust when
body is in large-amplitude motion. What’s more, since all nodes on free surface move uniformly
following the body’s motion, this strategy enables us to simulate motions with large horizontal

displacement by limited computational domain and mesh, for instance, ship’s maneuvering test.

Taking into account those considerations mentioned above, in the ALE scheme, the position of
prescribed path and body’s sectional line can be related by following relations,
xX,=x,+L
p P
P (3.18)
Xp=x,+L,
where x), is arbitrary point on the prescribed path and x, the corresponding point on body’s
sectional line, where x, and x ; is coincident once the prescribed path is translated back towards
—L,. Note that if there is no yaw motion, Lp = 0, otherwise L, would also rotate about z axis.

Fig. 3.6 illustrates this mapping between p and p’.

Once solving above mentioned problem, the subsequent problem is how to determine the new
position of a fluid marker moving along a curve which is also in motion. Under this circum-
stance, two constraint conditions should be imposed on the motion of fluid marker; (a) velocity
of the marker V, should parallel with tangential vector of the path, see Fig. 3.6; (b) V, should
also subject to kinematic boundary condition of free surface. According to condition (a), V, can
be expressed as follows:

Vp=xl+V (3.19)
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- mm t+/\t

Ficure 3.6: The mapping between prescribed path and body’s sectional line.

where [ is tangential vector of prescribed path at point P, y a scalar and V the velocity at point
P due to motion of path itself. Note that the path is approximated by Cubic-Spline and / can be

evaluated numerically for arbitrary body geometry.

Substitution of Eq. (3.19) into the kinematic boundary condition of the free surface and rather

lengthy transformation yields,

= YO Vemm Z V-V~

3.20
Ve-m-1 320
Note that the derivation procedure is similar with the cases that the body is fixed.
Substituting Egs. (3.19) and (3.20) into the dynamic free-surface condition, we have
0 1
2 g = (V6P +Vy Voo (321)

6 0
where 5" o + V), - V denotes the material derivative, following a marker on a moving path.

Equations (3.19), (3.20) and (3.21) provide the ALE-type free-surface conditions and can be
further used for time stepping. Compared to MEL and SL scheme, these free-surface conditions
contain terms of V and /, which indicates both body’s motion and geometry of body are taken

into account in the proposed ALE scheme.

As an optimized compromise between MEL and SL, the advantages of this ALE approach are
highlighted here. Firstly, the curved path which fits closely with body’s local geometry enables
self-awareness of fluid marker on geometry above waterline. And the motion of the path as
a response to body’s large-amplitude oscillation enables self-adjustment of the mesh, which is
crucial for long-time simulation. Secondly, once the path of fluid marker is determined at the

pre-processing, the trajectory of the marker can be computed during the entire computation. In
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other words, the mesh on the free surface needs to be generated only once at the beginning,
and the mesh can be generated automatically in subsequent time without relocation of the fluid
markers. In addition, this approach is very efficient in implementation, since we need only to
restore N 3D curves represented by the cubic spline for general cases that a body has complex

geometry, where N is the number of nodes along the waterline.

As mentioned before, Zhang [12] also developed a modified SL (MSL) scheme when studying
sloshing in a non-wall-sided tank. However, the basis for deriving both schemes is different.
In MSL scheme a coordinate transform is adopted and such that the new 7’ axis is set to be
paralleled with the inclined wall, and thus the fluid marker only moves "vertically’ in 7" direction
as the original SL scheme. In the present derivation, a material derivative is used with very clear
physical meaning. What’s more, because the prescribed path is represented by a parametric
curve in the present research, the intersection can be updated exactly with very complex body
geometry. However, it seems that the MSL scheme is only applicable to very simple cases,

where the flare is inclined, i.e. the tangential vector of the flare is constant.

3.2 Evaluation of ¢,

In order to obtain hydrodynamic forces (moments) F exerting on the body, one need firstly
consider solution of d¢/0t appearing in Bernoulli’s equation. Although, an exact BVP of ¢; is

established in Eq.(2.21), for convenience, Eq.(2.21) is repeated here

Vi =0

gy 1

E:—E(quf—gz xeSy (3.22)
%=(U+berb).n—U-@+Qb-ﬁ[rbx(U—V¢)] xXeS,

on on on

There are still problems to evaluate ¢, in solving this BVP. On one hand, ¢, is fully coupled
with body’s accelerations, that is to evaluate ¢,;, we need information of body’s accelerations,
while to evaluate body’s accelerations we need first to calculate ¢;. On the other hand, as we
can see, there are second derivative terms e.g. U - dV¢/0n appearing in the body boundary
condition. Directly evaluating this term requires much effort in a 3D problem, see Berkvens[19]

and Shirakura and Tanizawa[20].

In order to decouple the problem, the component of hydrodynamic force, which is proportional
to body’s acceleration, is extracted from the total force. And thus ¢, is decomposed into two
parts

b1 = Yace + Yo (3.23)
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where Y, 1s the induced potential due to acceleration and ¥, is the other remaining part.

Those two are subject to the following BVPs, respectively,

Vzwacc =0
Yace = 0 Sf (324)
Wace _ (710" xby.m s,
on
Vzd/oth =0
1
Von = —5(V9)* — gz S; (3.25)
Won _ . OV D, _
o o +Q an[r x(U-Vp) S,

Suppose ¥, is linearly dependent on body’s acceleration,

Yace =Ur1 + Ungpr + Us s
(3.26)

+ U4<p4 + U5<p5 + U6906

where (Uy, Uy, U3z) = U and (Uy, Us, Ug) = Qb Substituting this expression into Eq.(3.24)
yields

Vg =0
w; =0 on free surface 3.27)
0p;i

o n; on body surface
n
where (n1,ny,n3) = n and (n4, ns, ng) = r’ x n. And thus the hydrodynamic force proportional

to body’s acceleration can be written as follows

Fi = —pU; fftpin,-ds (3.28)

and therefore a; = —p f f win;ds serves as added mass and can be evaluated simultaneously.
After the derivation, one may suspect why Eq.(3.24), Eq.(3.26), Eq.(3.27) and Eq.(3.28) governs
force related to body’s acceleration. In appendix, an alternative method is proposed, where an

identical expression is derived from a physical point of view.

In terms of ¥, to avoid evaluating second derivatives, an auxiliary function is introduced as
follows,
Vo = Yo + U -V = Q7 - [r* X (U = V9)] (3.29)
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Rewriting Eq.(3.25) yields

Vzw;th =0
, 1
Y, = _§(v¢)2 g2+ U -Vop-Q' - [r' x(U-Vp)] Sy (3.30)
alﬁ,th
ZToth g g
on b

In comparison to Eq(3.25), there is no need to evaluate second derivative in Eq(3.30). And thus

the corresponding force can be written as follows

Fo' = —p f Wy —U-Vo+ Q8- [r x (U~ Vp)nds (3.31)

According to Bernoulli’s equation, the force exerting on the body can be expressed as follows

1
Fi = F%“ 1+ Fo" _ p f f (E(V¢)2 + g)nidss (3.32)

To achieve above derivations, Wu’s work [21] is followed and it is extended in the present
research to 6-DOF motion. Zhang [12] also use the similar procedure to calculate hydrodynamic

force in sloshing problem.

3.2.1 Other methods for evaluating ¢,

In some cases, where the hydrodynamic forces and body motions are decoupled, for instance,
in radiation problem the body is under a prescribed motion, ¢, can be approximated by using a
finite difference scheme after time series of ¢ is obtained (post-processing method). This method

can be used as a comparison to validate other methods.

Specifically, by denoting the velocity potential of the collocation point i on the body surface (see

Fig.3.7) at time ¢ as ¢;(¢) and the velocity of point i as v;, d¢;/dt can be written as

dei(t)  0¢(1)
dt ot

+v; - Vi(r) (3.33)
In this post-processing method, d¢;/dt|;=;, could be evaluated by a central finite difference in
terms of the information at ¢ = fy + nAt and ¢ = ty — nAt. In the thesis, d¢;/dt|;—;, is evaluated by

the three-point central difference scheme, and thus

5¢i(1)| _ @ilto + A1) — ¢i(to — At)
ar T 2At

—vi(to) - Voi(to) (3.34)
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Note that v; equals neither the body velocity nor V¢, because of mesh movement. However, it
can be evaluated in a similar manner to that for d¢;/dt, since the trajectory of node i is known

as shown in Fig. 3.7.

t=t,~At

Ficure 3.7: Evolution of free surface and wetted body surface.

It should be noted here that the central difference scheme is only applicable to the case that
body is in forced motion. Once the body is under a free motion, ¢, can only be approximated
by a backward finite difference method with lower accuracy compared to the central difference

approximation.

In contrast to the above-mentioned methods that ¢; is explicitly determined, in the following
method, the hydrodynamic forces are evaluated without explicitly solving ¢,. For a vector field

g, the time derivative of flux can be expressed as

iff q-nds:f [a—q+v(V-q)+V><(q><V)]-nds (3.35)
t JJsw sty Ot

where v is the velocity of surface s(f) and s(¢) is not necessarily enclosed. Applying Stokes

theorem to Eq.(3.35), yields

d _ dq ‘ |
a ffs(t) q-nds = ffs(l)[ a1 +v(V - @)lnds + Sg(v x 1) - qdl (3.36)

where [ denotes tangential vector on the edge of s(¢). Letv = V¢, ¢ = ¢i and s(¢) = S, we have

the following relation
if (Z)n]ds:f [a_¢+(_¢)2 In ds+9§¢(¢x — ¢ Ly)dl (3.37)
dt S S

where c is time-dependent waterline with tangential vector I. A step further,

f —nla’s——l f (a—¢)2n ds—9§¢(¢x — ¢.1y)dl (3.38)
Sb
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here I} = f ¢nids. We denote this method as impulse method. Following this way, the
Sp

hydrodynamic force in x direction can be written as follows
dl 1 o
Fy = —pd—l +pff —(—¢)2n1ds -p ff gzmds +p 56¢(¢xlz - ¢.1y)dl (3.39)
t Sy 2 0x Sy ¢

3.3 Higher-order boundary element method (HOBEM)

In solving nonlinear wave-body interaction problems in the time domain, one challenge is to
seek for the boundary-value solution accurately. As illustrated in Fig.3.1, the computation starts
or restarts from a status that the velocity potential ¢ is known on free surface and ¢, is known
on body surface. And therefore, the key objective in solving this BVP is to determine ¢, on free

surface and ¢ on body surface. Specifically, the BVP can be written as follows

Vi =0
b=do S; (3.40)
¢n=Vn Sp

Based on Green’s third identity, the Laplace equation is transformed into boundary integral

equation (BIE) over the entire surface S (Newman [47]),

c(p)p(p) = f j; &u(@)G(p; @)ds — f fs H(@Gn(p; q)ds (3.41)

where p is field point and ¢ is source field; G(p;q) = 1/|p — gl is the Rankine source Green
function. c(p) is the solid angle at point p.

Eq.(3.41) can be interpreted that for given point p, the velocity potential ¢ can be determined by
source distribution with strength ¢, and dipole distribution of strength ¢ on the entire boundary
surface §. If the surface is discreted by piece-wise element with N, + N collocation points in
total, where N is the amount of points on free surface and N, on body surface, respectively,
Np + Ny linear equations can be established according to Eq.(3.41). As a consequence, Ny
unknowns of ¢, on free surface and N, unknowns of ¢ on body surface can be determined by
solving the linear system of equations. This is the central idea of boundary element method
(BEM).

When dealing with Eq.(3.41) numerically, the constant panel method (CPM) is the most com-
monly used BIE solver because of its simplicity in implementation, where the boundary S is
approximated by small flat patches (elements) ignoring the local curvature with an assumption
that the strength of source/diople is a constant over each patch. However, it is apparent that

CPM possesses several fundamental shortcomings which limit its applications to the wave-body
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interactions problems. First of all, a relatively large number of panels are required to achieve
accurate representations of the geometry and physical quantities because of the low convergence
rate of CPM. Secondly, CPM does not converge for those BVPs with non-smoothly connected
boundaries due to numerical discontinuous approximations along the intersection lines. Third-
ly, the spatial derivatives of the velocity potential such as velocity and acceleration cannot be

evaluated accurately and robustly, especially near the intersections, edges, and corners[6].

As an improvement compared to CPM, the higher-order boundary element method (HOBEM) is
capable of avoiding the shortcomings of CPM and is relatively effective and accurate in dealing
with various BVPs. HOBEM assumes each boundary element to be curvilinear quadrilateral
where nine collocation points are located. A quadratic isoparametric interpolation is used to
represent the geometry as well as all variables on each element. Following this procedure,
the boundary is firstly discreted by NT quadratic isoparametric elements and Eq.(3.41) can be

written as follows

NT NT
o+ ), [ waGurads=Y, [[ a6 ads (3.42)
i=1 i i=1 i

To carried out the integration over S, the nine-node element is then mapped into a parametric

space ¢ — 7, with ¢ € [-1,1] and 7 € [-1,1] as shown in Fig.3.8. Let ¥ represent one of

AT
sz 7 6 5
8 9 7 g
1 2 3
o

Ficure 3.8: Mapping between physical space and parametric space.

the parameter (x, y, z, @, ¢,). According to the quadratic isoparametric interpolation, within one

element, ¥ can be appreciated by the following approximation

9
W, m) = ) Ln(s, )W, (3.43)

m=1
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where L,,(s, 7) is the Lagrangian interpolation function or shape function with the form written
as follows[6]

1
Lm(§'9 T) = Zg(g + gm)T(T + Tm)9 m = 1’ 37 53 7

1
Ln(s:1) = 5(1 = 13,6" = Gt +7u) + gL +Gu9)l. m=2.4.6.8 (44
Lo(s,7) = (1 = ¢*)(1 - 7%
where ¢, and 7, represent coordinates of the m-th point in parametric space.

Following Eq.(3.43) and Eq.(3.44), the integration in Eq.(3.42) can be rewritten as follows

9
[ #a6. w05 =3 sute [[ Lats G605
i m=1 i
9
[ #nta6wiais = 3 omnta (| Lt vuts. s
i m=1 i

where J(¢,7) is the Jacobian associated with the transformation between physical space and

(3.45)

parametric space. A step further, Eq.(3.45) can be evaluated by Gaussian quadrature. Substitut-
ing Eq.(3.45) into Eq.(3.42) yields
NT 9

)+ Y, Y @) ([ Lals G516 s =
i=1 m=1 Si
NT o (3.46)

DD bun@ f fs Lu(s. 0G(5. 1) (5. 7)ds

i=1 m=1

The imposition of Eq.(3.46) at Np collocation points on S ¢ and S leads to a system of Np
linear equations:
[HI{x} = {b} (3.47)

where [H] is a Np X N p matrix of influence coeflicients, {x} the vector of Np unknowns consist-

ing of ¢, on S s and ¢ on §, on the collocation points, and {5} the known vector.

In the procedure of impedimentary the HOBEM, there are still lots of detail worthy of mention,
although some of them is well-known. For completeness, here we only highlight a fast solution

on these issues and list references which are referred to in the research.

3.3.1 Treatment on singular and weakly singular integration

As we can see in Eq.(3.45) when p approaches ¢ the integration is weakly nonlinear, while when

p is coincident with g there is singularity in the integration. In CPM there is analytical method
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to evaluate this integration [48], while in HOBEM all integration (singular and non-singular)

must be evaluated numerically.

In terms of weakly-singular integration, a sub-division scheme is used, where once the minimum
distance d! between field point p and the element E; is comparable with the characteristic length

ds of the element, E; is then divided into several sub-elements. The sub-division continues until

dl > ds. The procedure is illustrated in Fig.3.9 and more details can be found in Mania [25].

P

d.
C.

Ficure 3.9: Sun-division scheme for weakly-singular integration.
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Ficure 3.10: Coordinate transformation to calculate the singular integration when p is inside
of E i

As far as the singular integration is concerned, where p is inside of element E; see Fig.3.10, the
element in ¢ — 7 space is firstly divided into several triangle elements with the singular point as
the shared vertex. And then the triangle polar co-ordinates are used to reduce the order of singu-
larity of the boundary integrals by one degree. And the integration is carried out over mapping
of the boundary elements onto plane square. By doing so, a Jacobin is introduced, whose value
approaches zero as integration point approaches the singular point. As a consequence, the inte-
gration is smooth everywhere and a typical Gaussian quadrature can be applied. The procedure

is illustrated in Fig.3.10 and more details can be found in Li [49].
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Ficure 3.11: Connectivity of the element.

3.3.2 Evaluation of special derivative

In the HOBEM method, both geometry and field values (e.g. ¢ and ¢,,) are approximated by local
quadratic polynomial, where the first special derivative is continuous and the second special
derivative is a constant within the element. However, at some collocation point where the point
may be shared by two or four elements, see Fig.3.14, there is only C 0 continuity, which indicates
neither the first derivative nor the second derivative is continuous due to property of the local
approximation. Actually, when evaluating the special derivative in a post-processing procedure,
in most cases (except the central points), this problem occurs, which in turn affects the accuracy

of normal vector and velocity field.

To solve this problem, the collocation point e.g. p; which is shared by 4 elements is considered
as central point of a new isoparametric element ( see the figure), where the surrounding neigh-
bouring points can be determined at the beginning of computation. By doing so, almost all the
collocation points are placed at the center of the isoparametric elements, except some point at
corner, and thus a continuous and accurate special derivative can be evaluated for most cases.

For the corner point, some special scheme is used which would be described later.

We take the evaluation of velocity at central point of a element as an example to illustrate this
scheme. According to chain rule in elementary Calculus, the velocity can be written as follows,
-1
bx Xe Yo Z¢ s
Oy | = x yr zZr o8 (3.48)

o; ny ny ng Pn
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where W, or ¥; can be determined by the following expression, where ¥ represents one of

parameter from the set (x, y, z, ¢).

9
oL,
o= ) g
m=1 (3.49)
2 AL
Ye= ) W0
mz=l or

Note that Kim and Kim [50] also derived a similar scheme for evaluating the second special

derivative. Other useful reference can be found in Banerjee and Butterfield[51].

3.3.3 Evaluation of solid angle

In physics, the solid angle is defined by ratio of the spherical surface in the fluid domain to the

whole spherical surface as shown in Fig.3.12. And thus its expression can be written as follows
C(0) = S :/4ne? (3.50)

where ¢ is the radius of a sphere with origin at o.

Ficure 3.12: Sketch of the solid angle.

Following the definition, one straightforward method to evaluate the solid angle is to calculate

S ¢. According to spherical geometry [52][53] [54], the following relation holds

Ne
S, = 82(2 0; — (Ne — 2)7) (3.51)
i=1

where Ne denotes the total number of element shared point o and 6; the angle contained by the

two neighbouring elements and the interpolated spherical surface, see Fig.3.52. And 6; can be
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further commutated by following expression[55]
0; =+ sgn[(ni—1; X njy1) - t;] arccos(mi—1; - Mijy1) (3.52)

where sgn is the signum function, »; ;| the unit normal vector (outward), and ¢; the unit tangen-

tial vector on the intersecting edges between two elements.

Apparently, the above-mentioned method is a direct method to evaluate the solid angle. Another

method referred to as indirect method can be expressed as follows

C(p) = lim f f 9GP ;o f f 9G(pq) ;¢ (3.53)
r~aJJs  On s On

where s must be a closed surface.

Comparatively speaking, the direct method is more efficient to implement than the indirect
method, since in the indirect method the whole enclosed boundary must be meshed and this
mesh is also involved in the procedure of setting up matrix of coefficient, which would increase
computational burden. On the other hand, the direct method is dependent on local geometry
and thus it’s accuracy is easily affected by local error (e.g. the saw-tooth instability), while
the indirect method is a global approximation and is not sensitive to local error. In this thesis,
both methods are used to evaluate the solid angle, where the indirect method is used near the

waterline and the direct method is applied to the remaining region.

3.3.4 Double-node technique

At corners, maximum error tends to occur because of abrupt change of normal vector at inter-

section. In double nodes technique, the coordinates and ¢ of both nodes are the same but the

Ficure 3.13: Illustration of Dirichlet-Neumann type and Neumann-Neumann type double node.
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normal vector differ, and therefore d¢/0n is different. To avoid overdetermination of the prob-
lem (because additional node is added into the system), the final influence matrix need proper

modification.

o Dirichlet-Neumann type double node.

At waterline, double node A belongs to free surface with given ¢4 and unknown d¢/dn;,
where ny is normal vector on S y. While at node a on body surface ¢, is unknown and
0¢/0ny, is given. However, because of continuity of ¢ i.e. ¢, = ¢4, no unknown is left
at node a. Without modification the final matrix is over-determined (singular). The cor-
responding modification on influence matrix [H] and right-hand side vector {b} is written
below

H,;=0 VYi#a H, =max

(3.54)
b, = maxga

where max is the maximum diagonal element in [H] and it ensures good condition number

of the linear system.

o Neumann-Neumann type double node.

At double node C and ¢ on body surface, two equations are obtained for C and c in the
algebraic system, each of them for the same unknown potential at the corner. Hence, the
system matrix is singular. To make it solvable, one of the equations, say at node c, is

modified on a way similar to above,

H;=0 Vi#c¢,C H., =max
(3.55)
H.c=-max b.=0

e Dirichlet-Dirichlet type double node.

At this type corner, the initial problem itself seems singular, because we require two
unknowns at one point (one equation). Even by double node technique, it provides two
same equation in the final matrix and thus useless. This type of corner is encountered on
far-field radiation boundary if we impose ¢ on this surface. Fortunately, we would use

artificial damping at far field and no such corner would arise.

After solving the BVP, taking waterline as example, at each node we have ¢, ¢, and ¢,,, and

V¢ can be obtained by following expression

Npx  Npy  Niz O Onb
Nfx Nfy Nfz by | =| Pnr (3.56)
lx ly lz ¢z ¢l
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where | = (I,[,[;) is tangential vector along water line and n;, normal vector on body. In

current research, ¢; and  is approximated by 3"“-order spline.

3.3.5 A simple case to validate HOBEM

1<

1 0m

a. b.

Ficure 3.14: Sketch of the computational domain. a. the body is formed by rotation of a
trapezoid; b. Mesh of the domain, 528 quadratic elements are used, with 208 elements on body
surface and 320 on free surface.

For validation capacity of the HOBEM, an isolate source is put at (0,0, 10) with strength o.
Thus the resulting ¢ at point (X,y,z) is

¢(x,y,2) = )]% R = /x> +y?+(z—-10)? (3.57)
We impose a Dirichlet condition on free surface and a Neumann condition on body surface ac-

cording to Eq.(3.57). The computational domain is illustrated in Fig.3.14. Because of symmetry

of the domain, only half domain is used.
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Ficure 3.15: Normal and horizontal velocity on free surface along a radial direction.

Fig.3.15 illustrates velocity on free surface along a radial direction. As we can see, the accuracy
of the first spatial derivatives of velocity potential is good. Since the velocity is evaluated by a

numerical interpolation based on ¢ and ¢, the result also indicates the basic solutions evaluated
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by HOBEM is accurate. Note that, in the present research, there is only first special derivatives
appearing in ALE-type free surface conditions and the second spatial derivatives appearing in
body conditions of ¢, are transformed to first order. And thus, there is no need to evaluate the

second spatial derivative in the present research.

Y

€

Ficure 3.16: Mesh used for evaluation solid angle, for indirect method and direct method.

TasLE 3.1: The value of solid angle at waterline and intersection line on bottom of the body.

Waterline Corners at bottom

Num Indirect Direct Ana. Indirect Direct Ana.

0.3238 0.3238 0.3238 0.6762 0.6762 0.6762
0.3334 0.3334 0.3234 0.6743 0.6742 0.6762
0.3427  0.3427 0.3427 0.6824 0.6823 0.6823
0.3471 0.3471 0.3471 0.6879 0.6879 0.6879
0.3489 0.3488 0.3488 0.6916 0.6916 0.6916

DN AW =

Tab.(3.1) illustrates solid angle calculated by these two approaches at five successive points,
where the first point locates at right edge of the body. As we can see, at this case both approaches

give almost identical results.

Tab.(3.2) illustrates V¢ at nodal points from number 1 to number 17 on waterline, where number
1 is at body’s left corner. As we can see, the overall accuracy is good compared to the analytical
solution, which indicates the schemes involved in the computation e.g. double-node technique

and spline approximation to evaluate tangential vector and velocity on waterline is validated.
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TaBLE 3.2: V¢ at nodes on waterline
b by ¢:

N Ana. Num. % Ana. Num. % Ana. Nume. %

1 0.0884 0.0885 0.208 -0.0000 -0.0000 - 0.265 0.2647 0.138
2 0.0858 0.0860 0.217 -0.0258 -0.0258 -0.042 0.2638 0.2635 0.122
3 0.0782 0.0784 0.197 -0.0507 -0.0507 -0.068 0.2600 0.2598 0.092
4 0.0660 0.0662 0323 -0.0736 -0.0737 -0.085 0.2537 0.2534 0.125
5 0.0495 0.0498 0.528 -0.0937 -0.0938 -0.116 0.2449 0.2445 0.161
6 0.0294 0.0296 0.625 -0.1102 -0.1103 -0.089 0.2338 0.2335 0.124
7 0.0065 0.0067 2491 -0.1224 -0.1225 -0.088 0.2204 0.2202 0.125
8 -0.0183 -0.0182 -0.612 -0.1300 -0.1301 -0.070 0.2049 0.2047 0.100
9 -0.0441 -0.0440 -0.223 -0.1325 -0.1326 -0.074 0.1875 0.1873 0.106
10 -0.0700 -0.0700 -0.082 -0.1300 -0.1301 -0.054 0.1682 0.1680 0.077
11 -0.0949 -0.0949 -0.027 -0.1224 -0.1225 -0.031 0.1473 0.1472 0.044
12 -0.1178 -0.1178 -0.015 -0.1102 -0.1102 -0.030 0.1249 0.1249 0.043
13 -0.1379 -0.1379 -0.010 -0.0937 -0.0937 -0.036 0.1014 0.1015 0.052
14 0.1544 -0.1544 -0.001 -0.0736 -0.0736 -0.013 0.0769 0.0769 0.019
15 -0.1666 -0.1666 -0.005 -0.0507 -0.0507 -0.095 0.0517 0.0516 0.148
16 -0.1742 -0.1741 -0.019 -0.0258 -0.0262 -1.312 0.0259 0.0253 2.307
17 -0.1767 -0.1767 -0.000 0.0000 -0.0000 - 0.000  -0.0000 -




Chapter 4

Study on nonlinear wave diffraction by

a non-wall-sided structure

In industry of ocean engineering, flared geometry may arise in design of fixed offshore struc-
tures. An example is the Draugen oil production platform which was installed in the Hal-
tenbanken area of the Norwegian Sea in 1993 (Wang, Wu and Drake[56]). The platform has
a prestressed concrete monotower substructure with a flare above the mean sea level to pro-
vide eflicient support for the integrated topside facilities. Simulations that take into account the

geometry of non-wall-sided bodies in steep waves are important in these cases.

4.1 Problem definition

In the framework of potential flow theory, the total velocity potential (including incident wave

and diffracted wave component) is subject to the following BVP,

V=0

on _ 9¢ ,

E—az V¢ VI] XGSf

P 1 4.1)
L - _op—_Vo¢-V

ar 8n=5 $-Vo xe€S8y

0

6—220 .X'ESb

Note that at far field on the truncated surface, an appropriate radiation condition should also be

imposed avoid unwanted wave reflection.

Instead of using a wave maker to generate nonlinear incident wave, in the present study, the

fifth-order Stokes[57] wave model is used as incident wave. Since the incident wave is explicitly

38
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defined, the total velocity potential ¢ can therefor be decomposed as, ¢ = ¢ + ¢P, where ¢’
denotes velocity potential of incident wave and ¢” governs the remaining disturbed wave field

i.e. diffracted wave field. Substituting this decomposition into Eq.(4.1) yields[58]

V2P =0

o 0" +¢P) I, D

—=——F——-V(@ +¢")-Vn x€e§;

0 0

5;D IZ I, 4D I, 4D g’ “42)
7=—§V(¢ +¢7)- V(o +¢)—877—E xeSy

P o'

on - om TS5

Since ¢ decays rapidly at far field, smaller computational domain can be used, compared to
the original problem, Eq.(4.1). Under the same reason, wave absorption at far field is more easy
to implement than the original problem. What’s more, this decomposition enables application
of a variety of well-developed wave models as incident wave. A systematic validation on this

method can be found in Ducrozet et al [59].

Taking into account the above mentioned decomposition and rewriting the free surface condi-

tions in ALE form, yields

V3P =0

ox _dut

5t 1, 43
o¢” 1  p D, I ag' ox _ p '
51 - 2V(¢ +¢) V(" +¢)—gn a5 V¢

9P og'

o - om TES

It should be pointed out that both kinematic and dynamic free surface conditions are imposed
on z = i (not 7). And at every time step we can get a new free surface position 77 and ¢” by

time integration of above expressions.

It is worth noting that Eq.(4.3) does not include damping terms which are used for absorbing
disturbed wave energy in far field. And introducing these terms into Eq.(4.3) is not as straight-
forward as putting these terms into right-hand side of free surface conditions in ALE form,
which is true in general case. The reason is that additional terms in second and third equation
of Eq.(4.3) would destroy our initial objective that fluid markers are always stay on a prescribed

path and would further introduce numerical error.
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To introduce damping terms, we should come back to the beginning of our derivation in ALE

scheme. Suppose the free surface conditions with damping terms can be written as

0 0

o= 2 VeV

ot 0z (4.4)
7 .

1
5 = 813 Ve Ve - ung

where u(r) is numerical damping coefficient and has a nonzero value inside the damping zone.
And it can be given as follows,

— Rn)?
aa)(r 0) Ro<r<Rp

u(r) = BV (4.5)
0, r< Ro

where w is circular frequency of incident wave, Ry starting point of damping zone, Rp radius of
outer boundary, and a, § are coefficients to control strength and length of the damping zone. In

current study, @ and 3 are set to 1.

Eq.(4.4) is the new free surface conditions taking into account numerical damping terms. Recall-
ing the two constraint conditions that a fluid marker moves along prescribed path on free surface
and following the similar procedure as described above, the ALE type free surface conditions

with numerical damping can be given as follows,

Sx _dutdi, (1=

ot Iy a 1-V(z-n) (4.6)
37 Lo s o)V + o) — en— 22O gD uima?

el ZV(¢ +¢) V(" +¢)—gn w5 Vo~ — u(rg

Eq.(4.6) is the final form of ALE type free surface conditions. Although the expressions seem
complicated compared with MEL and semi-lagrangian approach, the terms such as, ¢, qan and
their gradients, can be properly evaluated by HOBEM, which has been validated in previous
chapter.

4.2 Noteworthy numerical techniques applied to current computa-

tion

In fully nonlinear computation, the wetted body surface is time-dependent and thus a robust
remeshing scheme is required, especially for body with complex geometry. In current study, we
firstly mesh the whole surface of the body (including geometry above still waterline). And then

the sectional line (red line in Fig.4.1) is parameterized by cubic spline, which is the prescribed
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path for intersection point. Following above-mentioned ALE procedure, the position of intersec-
tion point can be obtained at every instant, namely, waterline can be determined. Subsequently,
the wetted portion of the curve represented by spline can be split into serval segments with same
arc-length. And thus the mesh under waterline can be determined. This procedure for remeshing

is illustrated in Fig.4.1.

/\section i

d. mesh the whole body b. representation by Spline

C. determination of waterline d. remeshing below waterline

FiGure 4.1: Sketch of remeshing procedure.

In Eq.(4.6), there is term containing Vr and in general it can be evaluated by interpolation.
However, Vn is relevant to normal vector of free surface and can be obtained directly once unit

normal vector of free surface is known. Recalling the definition of unit normal vector on free

surface
(_TI > My, 1)
(1,12, 13) = — e 4.7
(1+n:+n})
and after simple manipulation Vz can be expressed as
ny ny
Nx =——"3y=—"— 4.8)
n3 n3

In order to avoid an abrupt start and allow a gradual development of the solutions, the amplitude

of incident wave is modulated by following function:

1 it
5(1 - cos(T—m)), t<T,

M@ = 4.9)

1, t>Ty,
where T, is modulation period and chosen as 27 in present computation.

In addition, to suppress the so-called saw-footh instability, a smoothing scheme introduced by

Koo and Kim[2] is used, which is applied every 5 time steps when wave steepness exceeds 1/20



Chapter 4. Numerical results and discussions 42

and every 10 time steps for general cases. In the present computation, the 4" _order Runge-
Kutta method is used for time integration and GMRES[60] algorithm is used for solving the

linear system equations.

4.3 Numerical results and discussions

4.3.1 Comparison with experiments and other simulations

In this subsection, we compute nonlinear wave diffraction by three kinds of geometry, circular
cylinder, axisymmetrical body with flare and Bulk Carrier. And we compare the numerical
results (wave elevation at specific point and wave exciting force exerting on body surface) with

experiments and other simulations.

4.3.1.1 Case 1, wave diffraction by a circular cylinder

In case 1, the radius of the cylinder is taken as r = 8.0 m (D=16m) and the draft is 24.0 m. A brief
review of the experiment setup relevant to present simulation will be given here and more details
can be found in Sun and Zang [61]. A top view of selected wave probe locations is shown in
Fig.4.2. Wave probes were installed in a radial pattern around the column, with a distance from
the column wall of 0.2063 m (inner circle) and 8 m (outer circle). In the present computation,

all wave parameters are listed in Tab.4.1. Here H is wave height and A is wave amplitude with

WPO3
P AR
WPO2 .~ “~. _WPO4
: o
z
wave incident wave
—_— ¢ pos
. WPB2 WPB4
WPB3 4
(a) (b)
Ficure 4.2: (a) layout of wave probes (top view). (b) sketch of computational domain (side

view).

TaBLE 4.1: Wave parameters in current computation.

H/A | A(m) | A(m) | T(s) | KC water depth
1/16 | 126.36 | 3.949 | 9 1.5508 | infinity

H =2A. 1is wave length and T is wave period. The Keulegan-Carpenter number is 1.5508 and

2r/A < 0.2, which implies the flow lies within the drag-inertia regime.
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In present computation, the radius of whole computational domain Rp = 14D and the starting
point of damping layer is located at Ry with Ry = 2/3Rp. The mesh of the computational
domain at r = T is illustrated in Fig.4.3. Since in current case, the nonlinear effect is distinct

(H/A = 1/16), we use a relatively small time step, 6t = T/100.

Ficure 4.3: A sketch of the computational mesh.

Fig.4.4 illustrates time history of wave elevation at specific wave probe. Except red line in
Fig.4.4, all other results come from Sun and Zang[61]. The results obtained by present potential
flow based method agree well with experimental results and OpenFOAM. And the results ob-
tained by 2"-order method seems over-predicted at some points. Fig.4.5 illustrates time history

of force and a good agreement is observed.

4.3.1.2 Case 2, wave diffraction by a axisymmetrical body with flare

In order to study the flare effect, two axisymmetric bodies generated by rotation of the shape
around z axis as illustrated in Fig.4.6 are evaluated in current subsection. In body1 case, 6 = 85°
and 6 = 75° are studied with B; = 3r; = 15m. And the wave amplitude is A = 0.75m with

wave steepness 1/13. The wave run-ups on the front and the backside of the body are shown in
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Ficure 4.5: Time history of forces.
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FiGure 4.6: Sketch of truncated bodies formed by rotation of a plane shape, bodyl and body2.
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Fig.4.7, and the corresponding forces in Fig.4.8. The results are compared against Zhou’s[62]
results. As we can see, there are slight difference between these results. One possible reason
is that in this case, we do not use modulation function (different initial value). And the other
reason is that we use different incident wave model. It can be seen from Fig.4.7 that the wave
run-up on the front side of the body is similar at these two angles, while it is smaller at 8 = 85°

on the back side of the body. Fig.4.9 illustrates snapshots of wave profile within one period

runup at downstream runup at upstream
< —— present 6=85° - zhou  6-85° = 44 —— present 6=85° - zhou  6=85°
= present =75° + zhou  6=75° < present =75° + zhou  6=75°

" 157 —present 6-85° - zhou 6-85° ;: 44 present 6-85° -« zhou 6-85°
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= =

< 1.0

-1.0
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o~
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S

T

Ficure 4.8: Wave exciting forces of body1 with two kinds of flare angle.

with kA = 0.2512. In this case, the wetted body surface is varied apparently, which affects wave

run-ups as well as hydrodynamics.

In case of body?2, The wave diffraction by geometry 6 = 60° is studied with B, = ry = Sm. And
the wave amplitude is A = 0.5m with wave steepness 1/20. The wave run-up and wave exciting
forces are illustrated in Fig.4.10. Note that geometry of body?2 is very relevant to ship geometry
near bulbous bow. From the results, distinct nonlinearity due to the flare in time history of
wave run-ups on the backside is observed. And because of variation of wetted body surface, the

nonlinearity of force in heave mode is very apparent.



Chapter 4. Numerical results and discussions

46

FiGure 4.9: Snapshots of wave profile within one period. kA = 0.2512
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4.3.1.3 Case 3, wave diffraction by a Bulk Carrier.

Ficure 4.10: Wave run-up and exciting forces of body2.

The ship model used in the computation and experiment is RIOS Bulk Carrier and it’s principal

dimensions are illustrated in Tab.4.2. Three wave probes are instilled with a distance from ship

hull of 0.2m, see Fig.4.11. And in the present experiment, only waves near fore part of the ship

is measured, where the exact locations of wave probes are instilled in Tab.4.3. In Tab.4.4, we

list the selected wave conditions. In the table, H denotes wave height and ¢, stands for incident

wave amplitude with H = 2¢,. T stands for period of incident wave, A for wave length and k

for wave number. Note that the values of wave parameters used here are derived from linear

wave theory. It should be pointed out that in Tab.4.4 the incident wave amplitude, £, is obtained
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by measurement of incident wave in the towing tank, which is hereafter used in the numerical

computation.

D wave
FiGure 4.11: Configuration of wave probes.
TaBLE 4.2: Principle dimensions
Length: L [m] 2.4
Breadth: B [m] 0.3846
Draft: d[m] 0.138
Displacement: V[m3] 0.0813
Center of gravity : xg[m] | -0.0555
Center of gravity : zg[m] | 0.0136
TaBLE 4.3: Position of wave probes
wave probe | x(m) | y(m)
P 0.3 0.4
) 0.9 0.361
Ps 1.4 0.0
TaBLE 4.4: Selected wave conditions in the experiment
T=0.877s T=1.132s T=1.240s
H/A | A/L | Aim) | k La(m) | A/L | Am) | k Sa(m) | A/L | Am) | k La(m)
1/50 - 0.0183 0.025
1/30 | 0.5 | 1.2 5.236 1 0.02 | 0.83 | 2.0 3.142 | 0.0261 | 1.0 | 24 2.618 | 0.035
1/15 0.033 0.0517 0.0772

Fig.4.12, Fig.4.13 and Fig.4.14 illustrate time histories of wave elevation and corresponding

amplitude spectra at Py, P, and P3. In these three figures, the wave steepness keeps same i.e

H/A = 1/30 and wave length is varied from A/L = 0.5 to A/L = 1.0. From the figures, we can

see the nonlinearity is not apparent because of small wave steepness. However, compared with

Py and P;, nonlinearity at point P5 is distinguishable. That is because near ship’s bow diffracted

wave is distinct. Fig.4.15 illustrates time histories of wave elevation and amplitude spectra at

these three points in the condition that /L = 0.5, H/A = 1/15. Distinct nonlinearity is observed

in the amplitude spectra, see wave amplitude with 2wy in the spectra.
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Fiure 4.12: Time histories and amplitude spectra of wave elevation at three points, /L = 0.5,
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Ficure 4.13: Time histories and amplitude spectra of wave elevation at three points, A/L =
0.833, H/A = 1/30.

4.4 Conclusions

In the present chapter, ALE-HOBEM is applied to nonlinear wave diffraction by a non-wall-
sided structure. By introducing a prescribed path for each fluid marker on free surface, the
trajectory of fluid marker (including intersection on waterline) is determined during the whole
computation. In other words, the mesh can be generated automatically in subsequent time. Be-
cause the prescribed path is well organized in space, good mesh quality is ensured even though
the body has complex geometry. In order to validate the proposed ALE scheme, nonlinear wave
diffraction due to three kinds of geometries has been investigated. By comparison, good agree-

ment is observed. Wave diffraction due to circular cylinders with different flares are studied and
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FiGure 4.14: Time histories and amplitude spectra of wave elevation at three points, 4/L = 1.0,

H/A=1/30.
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FiGure 4.15: Time histories and amplitude spectra of wave elevation at three points, /L = 0.5,
H/A=1/15.

featured phenomena are observed which are distinct from those in wall-sided cylinders. In the

real ship diffraction problem, the diffracted wave is well predicted at region near ship’s bow.



Chapter 5

Study on nonlinear wave radiation by a

non-wall-sided structure

In the context of fully nonlinear potential flow theory, the existence of flare poses challenge
in the computation. Compared to a structure with wall-sided geometry near the waterline, the
flare could cause rapid variation in the fluid velocity and pressure and thus good mesh quality
is required near the body throughout the computation. In addition, without taking account of
the body geometry above the still waterline may lead to a spurious intersection after one time
step in the computation, for instance, the intersection may pierce the body surface, which has
been described in the diffraction problem. In general, once the body moves with rotational
motion, even the body without flare encounters the same problem as described above. What’s
more, those problems become more apparent when body oscillates with large amplitude, where
mesh may be compressed or stretched to a large extent. As a consequence, the mesh near the
body with low-quality would affect accuracy and stability of the computation. In this chapter,
the wave radiation problem is solved with focus on solving some featured problems when an

oscillating body is involved.

5.1 Problem definition

The velocity potential due to a forced oscillation of body is subject to the following BVP,

V=0

on _ 0¢

E_az V¢-Vn xeSy

o 1 5.1
0

—¢:V-n XeS,

on

50
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where V is the velocity of a point on the body. An appropriate boundary condition is also
necessary on a control surface S ¢ far from the body to avoid unwanted wave reflection. In the
present study, an artificial damping layer is used to absorb the wave energy of radiated wave,

which is similar with what we used in the diffraction problem.

5.2 Pressure and hydrodynamic forces

In this section, the proposed method for evaluating ¢, as introduced in Chapter 3 is applied to
study the radiation problem. When a body has only the translational motion, ¢; is subject to the
following BVP [45]

V2¢t = O

op 1 2

i §(V¢) gz onSp (5.2)
opy - Ve

o =U-n-U o onSpg

As we can see, there is a second derivative term dV¢/0n appearing in the body boundary condi-
tion. Directly evaluating this term requires much effort in a 3D problem, see Berkvens [19] and
Shirakura and Tanizawa [20]. In order to circumvent this difficulty, following Wu and Hu [21]
and Zhang [12], we introduce an auxiliary function, ¢ = ¢, + U - V¢p. The BVP for ¢ can be

rewritten as follows:

Vi =0

]
Y= —§(V¢)2—gz—U-V¢ onSp (5.3)
oy

—=7- S
on n onodpg

Once i is obtained, the pressure and resulting hydrodynamic forces and moments can be com-

puted directly from Bernoulli’s pressure equation.

5.3 Numerical results and discussions

We consider the radiation problem for a non-wall-sided cylinder shown in Fig.5.1, forcibly os-
cillating the body in open sea with infinite water depth. Note that the geometry of case b in
Fig.5.1 is very relevant to practical application e.g. ship’s geometry near bulbous bow and to
handle this kind of geometry is tricky in the computation as we will see later. In the simulations

below, the initial draught of the cylinder is set to d = 1.5r in case a. The cylinder is subject to
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i<

0.8331

case a case b

Ficure 5.1: Dimension of the axisymmetric body with flare; a. body with inclined flare and b.
body with curved flare.

ylk

Ficure 5.2: Sketch of damping layer.

the following harmonic motion in the vertical or horizontal direction.

Z = Asin(wt) or X = Asin(wt) 5.4

The computational domain is truncated by a vertical circular cylinder with radius Rp = 34,
where A is the wave length computed by the linear theory. The length of damping zone is set

equal to A as shown in Fig.5.2.

5.3.1 Convergence study

In the convergence tests, wave radiation around a circular cylinder with 8 = 80° (case a) under

prescribed heave motion is considered. The wave number is taken as kr = 2.42 and the amplitude
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Ficure 5.3: Sketch of meshl used for convergence test. ri denotes direction along radius; ci
direction along the circle and de direction along draft. On bottom, unstructured mesh is used.

of motion A/r = 0.4. Three different meshes are chosen, as shown in Tab.5.1 and meshl is
illustrated in Fig.5.3 for reference. On free surface, along radius direction (#i) 17 nodes, 20
nodes and 24 nodes per wave length is used in meshl, mesh2 and mesh3, correspondingly.
From Fig.5.4, we can see the results are sensitive to the mesh, especially the force, which is
true as expected since higher-order force components is easily affected by mesh. However, the
results obtained from mesh2 and mesh3 are identical, which indicates the present computation

is convergent in terms of mesh discretization.

Fig.5.5 illustrates results of convergence study from perspective of time step. As we can see,

even larger time step is used e.g. At = T/60, there is no noticeable discrepancy on the results,

TaBLE 5.1: Details of different meshes, nodes on directionl X nodes on direction2, or total
nodes.

’ Item \ free surface (rixci) \ side surface (dexci) \ bottom ‘
mesh1 52x 40 18x 40 214
mesh2 60% 56 20% 56 476
mesh3 72% 60 24x 60 827
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which proves the present computation is convergent in terms of time discretization. In the fol-
lowing computation, the free surface is discretized by 20 nodes per wave length if not specified
and discretization in other direction can be approximated by keeping a proper aspect ratio of the
mesh, and A7 = T'/80 is used. Since in the present paper many different geometries are involved,

for brevity other results on convergence study are not provided here.

0.34
9.00 9.02 9.04 9.06 9.08 9.10 9.12

T
8.0 8.5 90 /T 95 10.0

120 065
1.15 0.60

8.0 85 9.0 t/T 05 100

Ficure 5.4: Study on mesh-dependency of wave runup and vertical force, with At = T'/100.

5.3.2 Wave radiation due to heaving oscillation, case a

We first consider a cylinder (case a) with flare angle of 6 = 80°, which is in heave motion
with amplitude of A = 0.1 and A = 0.4r and non-dimensional wave number of kr = 0.64 and

kr = 1.95. The wave runup and the vertical force are calculated and the results are shown in
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Ficure 5.5: Study on time-step-dependency of wave runup and vertical force. mesh2 is used in
the computation.

Fig.5.6 for kr = 0.64 and Fig.5.7 for kr = 1.95. In computed results of the vertical force, BV P
indicates that ¢, is evaluated by solving a BVP while Diff indicates that ¢, is approximated by the
three-point central finite difference. We can see that both methods give identical results, which
shows validity of solving ¢, by the proposed scheme. From the aspect of efficiency, evaluation
of ¢; by solving a BVP would not increase the computation time, since the coefficient matrix
for ¢, is exactly the same as that for ¢. In the present paper, since the validity of the method for
computing ¢; has been confirmed through comparison of the results by two different methods,

hereafter we will show only the results of the hydrodynamic force calculated by solving Eq.(5.3).

We can see also from Fig.5.7 at higher frequency that both wave run-up and hydrodynamic force

exhibit nonlinearity with the increasing oscillation amplitude.

In order to validate computed results more, a comparison is made with the results by Wang and
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Ficure 5.6: Time histories of wave runup and vertical force by forced heave oscillation at
Kr=0.64.

Wu [56] for the wave elevation on the free surface at R = 2r. Computed results are shown for
two cases: (1) kr = 1 and A/r = 0.6 and (2) kr = 2 and A/r = 0.3. As we can see from
Fig.5.8, the present results agree well with those by Wang and Wu [56]. This may indicate that
the velocity field is properly solved.

According to Bernoulli’s pressure equation, the hydrodynamic force consists of three compo-
nents, i.e. the component computed from ¢,, the component due to the velocity squared, and the
static force. In order to validate the present results for the force calculation, comparison is again
made with the results by Wang and Wu [56] for each of the component. As we can see from
Fig.5.9, the agreement in all three components is good. By looking at the order of each compo-

nent in the force and the total force, we can see that different force components may cancel out
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Ficure 5.7: Time histories of wave runup and vertical force by forced heave oscillation at
Kr=1.95.

and as a consequence the total force does not exhibit apparent nonlinearity.

The Fourier analysis on the time history of hydrodynamic forces is carried out. The hydrody-

namic force acting in the i-th direction, F;, was represented by the following Fourier series:

o 9 Lol
F;, = pff{(?t +2(V¢) }nldS
5 (5.5)
= FEO) + Z {a(”) sin(nwr) + b™ cos(nwt)}

n=1

The first-order force is expressed in terms of the added mass and the damping coefficient and

nondimensionalized as follows:

{A33 =aV/(-Aw)/(pr) (5.6)

Bys = bV J(Aw)/(pr* \/gr)
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The remaining n-th-harmonic components are nondimensionalized in the following form [63]

FO = FO/(pgr*A/r?), F" =F" [(ogr’(A/r)") (5.7)

where F ;") = a™? + b™? is the amplitude and the phase can be computed from 6" =
arctan(b™ /a™).

Fig.5.10 illustrates the added mass and the damping coefficient of a heaving flared body at three
different oscillation amplitudes. From comparison with linear results computed by HydroSTAR,
the present results agree well with the linear results and no amplitude-dependency is found. This
indicates that the first-order hydrodynamic forces are little influenced by the variation of wetted
body surface and the nonlinear free-surface condition as far as the heave motion of the present

body is concerned.

Fig.5.11 and 5.12 show the 2nd-order and 3rd-order hydrodynamic forces, respectively. Looking
at the 2nd-order forces, both amplitude and phase of the harmonic component at two different
oscillation amplitudes are the same in the nondimensional value divided by the oscillation am-
plitude squared. On the other hand, slight difference can be seen in the 2nd-order steady-force

component at higher frequencies.

On the other hand, in the 3rd-order hydrodynamic forces, obvious differences depending on
the oscillation amplitude can be observed. Particularly the phase is different even in the low
frequency range. We should note that the amplitude of the 3rd-order hydrodynamic force for
the present body is small as compared to the 2nd-order force and thus the small difference in the

amplitude tends to be shown exaggeratedly.

1.2
n/Ao.s ] kr=1 A=0.6r
0.4

0] NN

-0.4 H

—Present ——Wang

N
N

n/Ao.s—: kr=2 A=0.3r

-1.2 T T T T T T T 1

2 3 4 t/T 5 6

Ficure 5.8: Time histories of wave elevation at R = 2r on free surface at kr = 1, A = 0.6r and
kr=2,A=0.3r.



Chapter 4. Numerical results and discussions 59

The influence of the flare on wave runups and hydrodynamic forces is studied by changing the
angle of the flare at 6 = 85°, § = 80° and 6 = 75°. The computed results are given in Fig.5.13
and Fig.5.14 for kr = 1 and kr = 2, respectively, but with the same amplitude A = 0.6r. These
computed results clearly indicate that the larger flare, the larger wave runup and vertical force.
Furthermore from comparison between Fig.5.13 and Fig.5.14, we can see that nonlinearity in
the vertical force becomes prominent at higher frequencies. However, the time variation in the
wave runup looks sinusoidal and the increase in the amplitude seems to be proportional to the
increase in the flare angle. Existence of a flare makes the body more blunt and thus at the same
oscillation amplitude, a body with larger flare could generate waves with larger amplitude. The

computed results presented here are consistent with the computation shown by others[56].

Present ——Wang

A kr=1 A=0.6r

F /(pgr'A)

-6
-8

ONDS~O O

2
4
-6
-8

OoON DO

-2
4
-6
-8 I T T T T

Figure 5.9: Time history of non-dimensional force at k» = 1 and A = 0.6r; a. vertical force in
total; b. force component due to ¢;; c. force component due to gz; d. force component due to

1/2(V¢)*.
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Figure 5.10: Added mass and damping coefficient of a heaving cylinder with flare in different

amplitudes.

In order to investigate the performance of artificial damping layer, the wave profile along the
radial direction of the domain is given in Fig.5.15. As we can see, the wave profile at t = 11T
looks identical to that at r = 107", which implies that no wave reflection from the truncated outer
boundary is observed. This result also indicates that a smoothing scheme adopted in this paper
extracts very little energy from the wave. On the other hand, these spatial wave profiles also
exhibit apparent nonlinearity especially near the body surface. Fig.5.16 gives a snapshot of the

body-generated wave at t = 11.45T for kr = 3.6 and A = 0.6r.

5.3.3 Wave radiation due to heaving oscillation, case b

In order to test capacity of the proposed ALE scheme, the radiated wave generated by an ax-
isymmetric body, see case b in Fig.5.1, is studied. As we can see, this body near waterline
has rapid geometry variation, which indicates fine mesh and smaller time step should be used
in the computation, in order to capture small scale wave phenomena as well as rapid variation
of velocity field and pressure field. In the present case, the time step is set as A = 7/100 and

smoothing scheme is applied every five steps.
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FiGure 5.11: Non-dimensional amplitude of 2nd-harmonic force as well as phase with A = 0.4r
and A = 0.6r .

The computed results including time history of wave run up and vertical force are provided with
kr = 1.147 and kr = 2.294. Under wave condition kr = 1.147, results are provided with three
heaving amplitude i.e. A/r = 0.1, A/r = 0.2 and A/r = 0.3, for comparison. However, since the
wave near waterline is very violent in kr = 2.294, only two amplitudes are used, i.e. A/r = 0.1
and A/r =0.2.

From Fig.5.17 and Fig.5.18, we can see, when increasing amplitude, there is high-frequency
oscillation appearing in time series of wave run up, which is due partly to physical cause that
the flare serves as a orbit for the intersection and therefore the curved orbit with motion together
with effect of nonlinear local wave do contribute to fluctuation in wave run up; and is due partly
to numerical error e.g. the so-called sawtooth wave. However, the time history of force is
smooth with apparent nonlinearity, which indicates the very local nonlinearity affects a little on

global force calculation.
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FiGure 5.12: Non-dimensional amplitude of 3rd-harmonic force as well as phase with A = 0.4r
and and A = 0.6r.

In order to further investigate the source of nonlinearity in the computed force, according to
Bernoulli’s equation different force components are separated as shown in Fig. 5.19. From com-
parison, we can see hydrodynamic force is dominant in the case kr = 2.294 while static force
plays the leading role in the case kr = 1.47, which is consistent with well-known wave-body
interaction theory. And also the force component due to ¢, is opposite to static force in phase,
which is because the leading order of force component due to ¢, is proportional to acceleration

of the body, see Eq.(5.3) and the static force is proportional to displacement of the body.

5.3.4 Wave radiation due to a surge motion, case a and case b

In this subsection, some of the numerical results in the forced surge motion of a body with
flare are shown and the discussion on their features is made. In the computation, two kinds of
geometry i.e. case a and case b as shown in Fig.5.1 are used. Note that in case a the flare is
defined with 6 = 75°.
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Figure 5.14: Flare effect on wave runup and vertical force with A = 0.6r and kr = 2.

Fig.5.20 and Fig.5.21 illustrate results of wave run up on frontside and backside and forces in
horizontal and vertical direction, which is calculated by case a with kr = 1 and kr = 2.42,
respectively. Looking at the wave runup, we can see that the phase in the time variation is
almost opposite between front side and back side. In general, because of sinusoidal motion and
symmetry of the body, a relation of f(—x,y,z,t+ T/2) = f(x,y,z,t) holds, where f can be the
pressure or the wave elevation. Substituting this relation into the Fourier-series expansion of the
vertical force F3, one can understand that only 2nw component exists [64]. From Fig.5.20 and
Fig.5.21, it can be seen that the present result for the heave force in the z direction is consistent

with this observation.
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Ficure 5.15: Wave profile along radial direction of the computational domain (d is distance
from body) with A = 0.6r, kr =2, and = 75°.

Note that since the hydrodynamic force in heave mode is a second-order value and thus it’s vari-
ation is proportional to A2 with increasing of amplitude of surging oscillation, which would be
clear if we non- dimensionalized this value by Eq.(5.7). Fig.5.22 illustrates the results computed

from case b.

In the present computation, because of features of ALE scheme, all the nodes as well as the
prescribed pathes on free surface move uniformly following the body’s surge motion. This strat-
egy enables us to simulate motions with large horizontal displacement by limited computational

domain and mesh, for instance, ship’s maneuvering test.

5.4 Conclusions

The radiation problem of a 3D non-wall-sided floating body has been studied based on the fully
nonlinear potential flow theory, and nonlinearity in the body-generated waves and the hydrody-
namic forces on the body has been discussed. In order to solve a nonlinear free-surface problem
associated with the flare of a body, ALE-HOBEM is used in the present computation. It is fea-
tured in the capability of tracking the exact intersection between the body and the water surface.
Furthermore, the mesh on the free surface can be self-adapted to conform to the body motion,
which is important when the body oscillates with large amplitude. In the calculation of hy-
drodynamic forces, a boundary-value problem for an auxiliary function related to the temporal

derivative of the velocity potential ¢, was solved, and the accuracy and efficiency of the method
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Ficure 5.16: Sketch of wave radiation by a heaving cylinder with flare, at ¢+ = 11.45T with
kr=3.6 and A = 0.6r.

have been demonstrated. From computed results, we confirmed that the flare of a body could
increase the degree of nonlinearity in the hydrodynamic force and the wave runup. Through var-
ious validation and confirmation for the waves and hydrodynamic forces induced by the forced
oscillation of flared bodies, the calculation method presented in this thesis was found to be ac-
curate enough and flexible and hence may be applicable to more complicated problems, e.g.

interaction of nonlinear waves with a freely floating body.



Chapter 4. Numerical results and discussions

1 ——A/Ir=0.1 — A/r=0.2 —— A/r=0.3

_2'0-""I""I""I""I"""' L
0 1 2 3 ¢T 4 5 6 7

Figure 5.17: Time history of wave run up and vertical force with kr = 1.147.
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FiGure 5.18: Time history of wave run up and vertical force with kr = 2.294.
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FiGure 5.19: Comparison of different force components; a. kr = 1.47 and b. kr = 2.294.
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FiGure 5.20: Time history of wave elevations and forces on a surging body (case a) with 8 = 75°
and kr = 1. a. wave runup; b. horizontal force; c. vertical force.
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FiGure 5.21: Time history of wave elevations and forces on a surging body (case a) with § = 75°
and kr = 2.42. a. wave runup; b. horizontal force; c. vertical force.
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Ficure 5.22: Time history of wave elevations and forces on a surging body (case b) with kr =
2.04. a. wave run up; b. horizontal force; c. vertical force.



Chapter 6

Wave interaction with a freely floating
body

This chapter introduces an attempt to apply ALE-HOBEM to study nonlinear waves interaction
with a freely floating body. At present (when the author is writing the dissertation), there is
some problem in the code. And thus only preliminary results are provided here, which includes
motion response in heave mode, the second-order and third-order motion resonance of heave

motion.

6.1 Problem definition

In the framework of potential flow theory, a velocity potential ¢ can therefore be introduced,
which satisfies the Laplace equation in the fluid domain and proper boundary conditions on free

surface (S r), body surface (S ) and truncated surface (S ;) at far field.

V=0
0
—¢=V-n XeS,
on ©.1)
on 0P :
Ve -Vn = —
8t+ ¢-Vn 7z xeSy
op 1
E+EV¢-V¢>+gn=O xXeSy
b

where n = (ny,n;,n3) is the unit normal vector (out of the fluid) and V = U + w X r” is
the velocity of a point on body surface relative to the Oxyz frame with U being translational
velocity and w rotational velocity. 7 is free surface elevation. On control surface S, an proper

absorbing boundary is imposed.

72
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6.2 Decomposition of velocity potential

As used in the diffraction problem, the velocity potential decomposition scheme is adopted in
the present research. Since the incident wave is explicitly represented by fifth-order Stokes
wave [57], the total velocity potential ¢ can therefore be decomposed as, ¢ = ¢’ + ¢, where ¢’
denotes velocity potential of incident wave and ¢” governs the remaining disturbed wave field

i.e. diffracted and radiated wave fields. Substituting this decomposition into Eq.(6.1) yields

V2P =0

D /

(9(;/; V. —%% xS, 5
%=%Z¢D)—V(¢’+¢D).vn xeSy >
%=—%V(¢’+¢D)-V(¢’+¢D)—gn—% X€ESy

Note that in the present fully nonlinear computation, the diffracted wave and radiated wave
governed by ¢” can not be further explicitly split as what is usually done in linear theory.

Writing the free surface conditions into ALE type, yields

V24P =
%=——V(¢) Vig) - gn—aiz O% VP — g .
b I

where x and x” satisfy a relation described by Eq.(3.18).

6.3 Hydrodynamic forces and motion equations

Note that, here we only consider hydrodynamic force and motion equation in heave mode to
highlight some features of nonlinear wave interaction with a freely floating structure. In order to
obtain hydrodynamic force exerting on the body, one need firstly to consider solution of d¢/0t
appearing in Bernoulli’s equation, which is subject to the following BVP as described in Chapter
3.

V2¢z =

0 1

a(f (V¢) onS g (6.4)
b _ - aw

- =U-n-U n onSpg
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where in Eq.(6.4) the rotational motion is omitted. And note that here ¢ is the total velocity

potential including incident wave and disturbed wave.

In order to decouple the problem, the component of hydrodynamic force, which is proportional
to body’s acceleration, is extracted from the total force. And thus ¢, is decomposed into two
parts

&r = Wace + Yorn (6.5)

where ¥, is the induced potential due to acceleration and ¥, is the other remaining part.

Those two are subject to the following BVPs, respectively,

Vzwacc =0

Yace = 0 Sf (6.6)

&pa cc

=U-n S
on " b

V2o = 0

1
Worh = —E(Vfﬁ)z -gz Sy (6.7)

a'7001}1 8V¢
=-U-—— §
on on b

Suppose ¥, is linearly dependent on body’s acceleration,

Yace = Ul‘ﬁl + UZSDZ + U3‘P3 (68)

where (U}, U,, Us) = U. Substituting this expression into Eq.(6.6) yields

Vi =0

¢i =0 on free surface (6.9)
Ho:

Hi _ n; on body surface

on

where (n1,n3,n3) = n. And thus the hydrodynamic force proportional to body’s acceleration

Fii© = —pU, ffgo,-njds (6.10)

and therefore a;; = —p f f pin;jds serves as added mass and can be evaluated simultaneously.

can be written as follows

After the derivation, one may suspect why Eq.(6.6), Eq.(6.8), Eq.(6.9) and Eq.(6.10) governs

force related to body’s acceleration.
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In terms of Y, to avoid evaluating second derivatives, an auxiliary function is introduced as

follows,
Yo = Yon + U -V (6.11)
Rewriting Eq(6.7) yields
Vzw;th =0
, 1
Vo =—5V8) —gz+U Vo S, (6.12)
31,0;m
— =0 S
on b

In comparison to Eq(6.7), there is no need to evaluate second derivative in Eq(6.12). And thus

the corresponding force can be written as follows

Ff’h = —pf W, —U-Vonds (6.13)
According to Bernoulli’s equation, the force exerting on the body can be expressed as follows

3
1
F; = Z F4 + F™ —p f f (E(Vqﬁ)z + gD)nids (6.14)
j=1

Following Newton’s second law, the motion equation in heave mode can be expressed as follows

3
— =[5 - 6.15
m— 3 —mg (6.15)

Substituting Eq.(6.14) into Eq.(6.15) and moving the added mass into left-hand side, yields

dUu 1
(m + 033)d—t3 =F{" —-mg—-p ff(i(vd’)z + g2)nsds (6.16)

Eq.(6.16) shows that nonlinear dependence of fluid body motion is decoupled, since the right-
hand force = F gth is only related to velocity field of the fluid, see Eq.(6.12) and the added
mass on left-hand side is only related to geometry of the enclosed surface of the domain, see
Eq.(6.9). In addition, this method can also give pressure distribution due to a directly evaluation

of hydrodynamic force.

6.4 Numerical results and discussions

In the computation, an axisymmetric body as shown in Fig.6.1 are used with 6 = 75°. The

incident wave is represented by the fifth-order Stokes wave as mentioned above, in witch A
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denotes wave amplitude, A4 wave length and £ wave number.

d=1. 5r

r

Ficure 6.1: Dimension of the floating cylinder with flare.

3.0
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2.5

linear
e nonlinear 2A/A =1/150

FiGure 6.2: Response Amplitude Operator (RAO) in heave mode.

Fig.6.2 illustrates RAO of motion response evaluated by HydroSTAR and the present fully non-
linear computation. In the most linear case (2A/4 = 1/150), ALE-HOBEM should provide
with identical results to the linear solver HydroSTAR. Since in reality 3DOF motion equations
(heave-pitch-surge) are solved, the incorrect motion response in pitch mode would affect heave
motion to some extent by means of coupling effect. This may explain the discrepancy in the

peak of motion response.

In order to study non-linear effect, the induced wave loads and motion are calculated with in-
creasing wave steepness at kr = 0.888. From Fig.6.3 and Fig.6.4, the high-order harmonic
components are observed both in force and motion. In addition, there is also noticeable discrep-

ancy in first-harmonic component with a increasing wave steepness.
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FiGure 6.3: Time history of non-dimensional vertical force as well as harmonic components of
the force with kr = 0.888.
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FiGure 6.4: Time history of non-dimensional heave motion as well as its harmonic components
with kr = 0.888.

Comparatively speaking, the magnitude of high-order harmonic force is small as we can see
from Fig.6.3, and one may suspect whether those small values make difference in practical ap-
plication. Actually, these higher-harmonic forces may cause highly intense nonlinear structural
behaviours called springing (at double frequency) and ringing (at triple), which were first ob-
served in a model test of the Hutton platform which was operated in the UK North Sea from
1984 to 2001 [65]. The second-order excitation at the double frequency dominates for spring-
ing, while the higher-order (3rd- and 4th-order) frequencies trigger the ringing of gravity-based

platforms and tension leg platforms, which is a transient elastic response [66][67][68].

In the present research, the springing and ringing phenomena are simulated. For a given incident
wave with circular frequency w, in order to trigger the springing or ringing phenomena, the
natural frequency of the body w, is designed such that w, = 2w for the springing or w, = 3w
for the ringing. That indicates the body is in resonance with the excitation of force with double
or triple frequency. In terms of reconstruction of body’s natural frequency, considering the added
mass and damping coefficient of the body at w, w, can be redesigned by changing stiffness of

the motion equation.

In the research, the incident wave is selected such that w+/g/r = 1.4, and three waves with
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different steepness are used for comparison i.e. 2A/4 = 1/50, 2A/1 = 1/30 and 2A/4 = 1/16,
respectively. As shown in Fig.6.5 and Fig.6.6, the springing and ringing are reproduced in the
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FiGure 6.5: Time history of non-dimensional heave motion as well as its harmonic components
when the springing occurs.
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FiGure 6.6: Time history of non-dimensional heave motion as well as its harmonic components
when the ringing occurs.

simulation. Since the body is in resonance, even the 2nd-harmonic force or 3rd-harmonic force
is a small value at the beginning, the amplitude of motion would increase with time going on.
In springing, the 2nd-harmonic response is comparable with the the 1st-harmonic, and thus it

should be well evaluated in the practical applications.

6.5 Conclusions

As an attempt, ALE-HOBEM is applied to study nonlinear wave interaction with a freely float-
ing body. One DOF heave motion response to steep incident wave is studied. Some prelimi-

nary results are provided and validated with available results. The second-order and third-order
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motion resonance is studied, which proves that ALE-HOBEM can capture higher-order non-
linearity. Once the high-harmonic force is close to the natural frequency of body, it tends to
trigger large-amplitude body motion, even though, the high-harmonic force is a small value at

the beginning.



Chapter 7

Conclusions and future work

7.1 Conclusions

A solver named ALE-HOBEM is developed in the present research, which has been applied
to study various wave-structure interaction problems. As its name indicates, an ALE-type free
surface tracking scheme is adopted in the solver; and a higher-order boundary element method
(HOBEM) is used for solving the BVP. In addition, the mutual dependence of fluid body mo-
tion is decoupled in an accurate and elegant manner. By means of ALE-HOBEM, we studied
nonlinear wave diffraction, wave radiation and wave interaction with a freely floating body (1D-
OF). From these applications, we not only test the solver itself but investigate some features of

nonlinear wave-structure interaction problem, which are summarized as follows:

a. Taking advantage of ALE scheme, body’s geometry above waterline and body’s large
amplitude motion are taken into account when tracking the free surface deformation. As a
consequence, the mesh near waterline can self-adapt to large-amplitude motion and body’s
complex geometry above waterline. What’s more, an exact intersection (waterline) can be

captured.

b. The mutual dependence of fluid structure motion is mainly due to hydrodynamic force
proportional to body’s acceleration. Following the similar idea used for evaluating added
mass in infinite domain, the acceleration-related force can be also extracted, which serves
as time-dependent added mass and can be put at left-hand side of motion equation. The
remaining force is only related to velocity field of fluid and has no coupling effect with
body’s motion. By means of the proposed method in the dissertation, not only the mutual
dependence of fluid structure motion is decoupled but also pressure distribution can be

explicitly calculated.

80
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c. As the ALE-type free surface conditions indicate, it requires not only basic solutions of
the field, i.e. ¢ and ¢,, but first spatial derivative of the solution, i.e. V¢. In the present
research, HOBEM is proved to be capable of fulfilling this requirement proposed by ALE
scheme. In other words, HOBEM fits well with ALE scheme.

d. Both in diffraction problem and radiation problem, a body with flare around waterline
could increase nonlinearity of hydrodynamic performance. The existence of a flare could
enhance variation of wetted body surface as well as horizontal projection area of free

surface. In addition, the pressure variation around this region is also rapid.

e. In a motion response problem, when incident wave frequency is 1/2 or 1/3 of natural
frequency of the body. The high-harmonic force would trigger springing (double fre-
quency resonance) and ringing (triple frequency resonance). Because of the resonance,
even a very small high-harmonic force would amplify motion response. In the present
research, when the springing occurs, the second-harmonic motion is comparable with the

fundamental (first-harmonic) motion response.

7.2 Future works

As the title indicates, the present dissertation is trying to solve nonlinear wave-structure inter-
action by means of numerical computation. Even though the research arrived at the stage of
evaluation of wave interaction with a freely floating body, we could only provide very prelim-
inary results. And thus in the near future, an immediate study is to continue the research in
Chapter 6 and to extend the present research to more practical applications, which are summa-

rized as follows:

o Nonlinear regular or irregular waves interaction with a floating FPSO in 3DOF.

This is an immediate extension of the work in Chapter 6. In order to analysis the origin of
nonlinear effect, the problem is divided into parts, nonlinear wave diffraction and nonlin-
ear wave radiation. By means of this separation, nonlinear features of exciting force and
coupling effect of hydrodynamic coefficient (added mass and damping coefficient) could
be studied. With those knowledge in mind, the original problem can be studied and ana-
lyzed. In order to carry out in-depth study, the wave field decomposition technique may

be used, by which the harmonic free propagation and bounded wave can be separated.

e Study the coupling of sloshing and vessel motion in waves.

To validate capacity of the ALE-HOBEM, the coupling of sloshing and vessel motion in
waves would be studied. This is an extension of above-mentioned work by adding a tank

inside of the ship.
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o Nonlinear wave interaction with a couple of cylinders.

This is an extension of work in Chapter 4 to study multi-body interaction (trapping, near-

trapping or cloaking).
e Use unstructured mesh on free surface.
e Seek a hybrid scheme to cooperate ALE-HOBEM with other N-S equation based solver.

e Application of ALE-HOBEM to study nonlinear wave-structure interaction taking into

account forward-speed effect.



Appendix A

Time-dependent added mass

As mentioned before, ¢, is related to acceleration of the body and therefore there is component
of total force proportional to acceleration. When designing a numerical scheme, this force
component had better extracted and put at left-hand side of motion equation serving as added
mass, for the sake of numerical stability. In the following contents, we would introduce an
intuitive method to separate inertial force which is proportional to body’s acceleration. Note
that this method is proposed by Wang (2007) in his master thesis for a 2D problem, and at

present we derived this formulation for 3D problem.

The force calculated by Bernoulli’s equation is the summation of inertia force, damping force
and some other forces. In order to separate the inertia force, we assume the body moves with
an infinite acceleration, and as a result the added inertia force play the leading role in the total
force. By multiplying a tiny minimum to the total force, other forces approach to zero, and only

the inertia force left. Finally, the time-dependent added mass can be obtained.

Suppose at time #y, the normal velocity on body surface is V,,. A short time later at 7y + d¢,
the normal velocity on body surface is V,, + §V,, and the associated normal acceleration can be

written as follows,
1h15%’ (A.])
= 11 = & .
Gn 5t—0 Ot

Taking fully nonlinear 3D wave-body interaction as an example, the velocity potential ¢ is sub-

ject to the following BVP

Vi =0

on _ 0¢

L =T _V¢- =

ot 9z $-Vn =

o6 1 (A.2)
_— = = —=V¢-V =

i 8n 2¢ $» z=n7

0

%IV,, xesS,
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Suppose ¢y is the velocity potential at 7y and ¢ at fp + 0t. At 1y + ot, the following BVP holds
Vg =0

0
m =(£—V¢-Vn)6t+no z=m

] (A3)
1= (—gn— §V¢ “V@)or+¢o z=m
%:6Vn+Vn XeSy,
on

where the free-surface conditions are expressed in a finite difference form. Because 6t — 0,
actually n; = no and ¢; = ¢ on free surface, namely, the free surface and velocity potential
have no change after a infinitesimal time step. And thus, 6¢ = ¢; — ¢g satisfies the following
BVP

V26p =0

6p=0 z=mo (A.4)
66—¢ =0V, x€8,

on

0¢ and 6V, can be further decomposed by following expression

5V, = Z SVin
i=1,6

5= ) SVioo:

i=1,6

(AS)

where V; is body velocity at i-th mode. Substituting Eq.(A.4) and Eq.(A.5) into Eq.(A.3) yields

V264 = 0

6¢;i=0 z=mno (A.6)
A6 ¢;

6—3271,‘ XeSy

According to Bernoulli’s equation, the hydrodynamic force can be written as follows

Fi=—-p ff(%—(f + %Vg& -V + g2)nids (A.7)

Since a — oo, and thus F; — co. Multiplying 67 at both side of Eq.(A.7) yields

OtF; = —pdt ff %nids — pot ff(%V(ﬁ - Vo + gnids (A.8)
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The second part of Eq.(A.8) is zero. Eq.(A.8) can be rewritten as follows

0
otf; = —pé}inoét ff 6—?nids =-—p 6}ii>no ffégbn,-ds (A9)

where f; is the associated inertia force.

Substituting Eq.(A.5) into Eq.(A.9) yields

5if; = —p lim f f (266Vi6¢i)nids (A.10)
=1,
and divide 6t on both sides
. oV
= —p | LS A1l
= fim 3 [[ G asomas (A1)

From Eq.(A.12), it is shown that f; is proportional to body’s acceleration. And the associated

time-dependent added mass can be written as follows

Aij = —p ff6¢jn,~ds (A12)



Appendix B

Motion equations

By formulating Newton’s second law, i.e., conservation of linear and angular momentum, in a
body-fixed coordinate system, the resulting equations of motions could take advantage of ship

geometry property. The earth-fixed and body-fixed coordinate systems are illustrated in Fig.B.1.

Ficure B.1: The earth-fixed non-rotating coordinate system XYZ and body-fixed rotating coor-
dinate system xyz and G is center of gravity.

Consider Newton’s second law in terms of linear and angular momentum conservation

d dr
I)E(Ep)dvzfvpgdv+fsfds (B.1)

d dr
\fva(rx Ep)dv: ﬁrx(pg)dv+£r><fds (B.2)

where r = ry +r, with r, an arbitrary position vector as defined in Fig.B.1 and p is mass density
of ship. The forces applied on the ship are divided into volume and surface components denoted

with volume integration | dv and surface integration f ds, respectively. Time derivative in
v A
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both coordinate systems are related by following relation
A=A+oxA (B.3)

where A is time derivative in earth-fixed coordinate system and A is time derivative in body-
fixed coordinate system. w is the angular velocity vector. Intuitively, suppose r, is a arbitrary
time-independent vector (¥, = 0) in xyz system, from the point of view of XYZ system, because
rp rotates with xyz system, the time derivative of r, should be w X r}, i.e., tangent velocity. Note

that time derivative of w is independent of reference system as indicated below

W=0D+WXW=00 (B.4)

Evaluating the left-hand-side of Eq.(B.1) yields,

d dr d dro + rp
f T (o) f —(———Lp)dv = f (¥ + Fp)pdv (B.5)
dry 2 d*r P . ., . . .
here vy = I and r) = o Note that in real case the ship’s translation velocity vg is easy to

get and the relative position rg is not our concern. The following useful expression holds

Fp=Fg+wXr,=wXr,
Fp=wXrp+wX(Xrp) (B.6)

Vo = Vo + w X vy
Substituting Eq.(B.6) into Eq.(B.5) yields
f(ﬁo+w><v0+d)><rp+w><(w><rp))pdv= fpgdv+ffds (B.7)
v v 5
For ship with constant mass m, f W Xrppdv = @ X f rppdv = w X mrg with rg location of
ship’s center of gravity expressed in body-fixed system.vCOnsider this, Eq.(B.7) simplified to
my+wXvyg+wXrg+wXxX(wxrg)) =f (B.8)

Here f denotes all external force. The derivation of angular momentum conservation in xyz

reference takes the similar manner. Consider Eq.(B.2),

d d? d?
j;p—rx—+(r><d—t;p)dv: (rxd—;p):j;rx@g)dv+fsrxfds (B.9)
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For any constant vector ¢, the equations of linear momentum conservation indicates

d dr
cx{fva(ap)dv—jv‘pgdv+£fds} =0 (B.10)

Substituting Eq.(B.10) and r = rg + r}, into Eq.(B.9) yields

frpx(i‘0+i‘p)p)dv: frI,ngdv+frp><fds} (B.11)

v v S

Substituting Eq.(B.6) into above expression, we finally get
frpx(ﬁ0+w><v0+d)xrg+wx(a)xrg))pdv=M (B.12)
v
Here M is external moment. Note that the vector triple product expansion i.e.,
ax((bxc)=bla-c)—c(a-b)

could further simplify terms in Eq.(B.12),

frp X (w X (w X rg))pdv = frp X w(w - rp)pdy (B.13)

v v

In Cartesian coordinate system, we have, r, = x,i + y,j + 7,k and w = w,i + wyj + w;k. And

the expression can be expanded to yield

f rp X (@ X rp)pdv = f ((rp - rp) — rp(rp - @))pdv

= f{((y; + Z?;)wx — XpYpWy — xpzpwz)i
v

+ j‘((x]z7 + ij,)a)y — XpYpWx — YpZpWs)J (B.14)
v
+ fv‘((xf, + yf,)wz — XpZpWx — YpZpwy)klpdv
=Io
where I is the inertia tensor calculated with respect to body-fixed coordinate system.
Lo —Iy —lx
I=|-1, I, I, (B.15)

=1, Iyz I
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here I,,,1,y,I;; are the moments of inertia about local ox, oy and oz axes, respectively. And

I,y,1,..1y; are the products of inertia defined as

Ly = f (5, + 2)pdv,
v

I, = f(xf, + zf,)pdv,
v

I; = f(xf; + yi)pdv,
v

Following the similar procedure yields

V

Iy=1,= fxypdv
v

Iy, =1y = fyZPdV
\4

I, =1,= fxzpdv
v

frp X w(w - rp)pdv = w X (Iw)

(B.16)

(B.17)

Applying above definitions, the final expression of angular momentum conservation can be writ-

ten as

mrg X vy +mrg X (0 Xvy) + v+ wX (Iw)=M

(B.18)

Eq.(B.8) and Eq.(B.18) is ship’s motion equation expressed in body-fixed frame with arbitrary

origin. Obviously, choosing the origin of the body frame to coincide with the center of gravity

simplifies the equations.
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