|

) <

The University of Osaka
Institutional Knowledge Archive

Title Tracking Data Dependence of Large-scale
Systemsfor Practical Program Understanding

Author(s) |=E, EE

Citation |KFRKZ, 2017, HEHwX

Version Type|VoR

URL https://doi.org/10.18910/67169

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

WoLN F o %R

B3

K 4 (=¥ AR)

Tracking Data Dependence of Large—scale Systems for Practical
o g o Program Und?rstanding)
i S (KBS 27 LD FREH /T 1 75 N6 7= 7 — & K17 B%
D5yHT)
A DB R

Software developers must understand program behavior through code reading for software maintenance
When changing existing features, developers must understand locations of the source code related to
the features. When fixing bugs, developers must understand which statements cause the bugs.

Existing studies reported that developers spend a lot of time for program understanding. Developers
are often required to read the source code of large—scale systems that are unfamiliar to them.
Therefore, many researchers investigated how developers understand programs and developed numerous
techniques to help developers understand programs.

Program dependence analysis is one of techniques for helping program understanding. It analyzes the
source code to extract read/write relationships of variables (called data dependence), method call
relationships, and so on. Developers use these relationships to explore the source code effectively
and efficiently

This dissertation describes studies on dependence analysis techniques for program understanding
These studies aim to extract useful information from the source code and provide it for developers
Furthermore, we released our analysis tool to facilitate future studies on dependence analysis by
other researchers.

First, we conducted an empirical study to statistically investigate the effectiveness of thin
slicing, which is a variant of program slicing to extract statements that produce data used by a
particular statement. Although an existing study showed that thin slicing is useful for program
understanding in small cases, it is not clear whether thin slicing is effective for program
understanding in general. We computed thin slices with respect to all statements that consume data
and measured various metrics on extracted statements. The results showed that the size of the
extracted statements is small enough on average. Furthermore, we found that 10% of thin slices can be
effective for identifying the source statements of data. We believe that these slices help developers
track data dependence.

Second, we developed a novel dependence analysis technique tailored to understanding how outputs of a
feature are computed from inputs (called business rules). Existing techniques extract statements that
correspond to business rules. However, these techniques may include conditional statements that do
not correspond to rules. Our technique excludes those conditional statements by constructing a
partial control-flow graph, every path of which outputs a computed result. We evaluated whether this
technique actually contributes to the performance of developers who extract business rules. A
controlled experiment based on an actual understanding process in one company shows that the
technique enables developers to more accurately identify business rules without affecting the time
required for the task. This is the first study to apply an automated extraction technique to
practical tasks in business-—rule understanding.

Finally, we developed a program analysis tool for Java named SOBA. It analyzes intra—procedural
control-flow, data dependence, control dependence, method call relationships, and so on. Its design
enables to easily obtain the above information without detailed knowledge of program analysis. We
compared the functional differences and usage differences between SOBA and existing tools. We also
compared the performance of them and showed that SOBA was faster than existing tools. Furthermore
SOBA was applicable to a large—scale system which has over 67,000 classes. We believe that releasing
the analysis tool as open source software contributes to future studies of software engineering

R 7
RMXEAOKROEES KO Y F

K 4 (®%% BFE)

() K %
E# i JE L SR
WIEERLE | B # i g R
Al % B A 2
Al % Ut Fil M (A RIEHRHFHEIT R BERT)
MXBEOEROER

KA 2 FEEYER THE LTCRER, UTICENNELHER L.

RN, 7ul T AR ETET L5 2B, 7 a7 T AOBNMBITHIFICBE T 5 LU F O3> DF & 1T

ST,

—OEIE, APMFRHIL2HED, Thin SlicingS—fKINCAHATH L0 E I DOFMIEAT I 120D AT A A A XD
HTHD. BERMTETIE, PO —ATUMThin SlicingD AN RENTE LT, —RUICAHTHL0E S
DPBRRPATH T, £ TARIFETIE, ZHE TORERIISIZZ DY, Thin Slicing DA T A A4 A X&FHE LI
B, WkOTa T T ERATA T XONEINT ER otz

ZoHE, F3ED, EYXAN—AOBMIZ T I KFRERMT FIETH S, TEREMTIE, EYR A — Tkt
T EXEY —Aa— R LT 2 EMERE L TV DR, ERERITE Y32 A —uicxis Langt et & %
NTLEIEWIOMER D -T2, TZT, AFFETIIE Y R AL =S T D802+ FEAREL, ©
OFMZIT->72. TOMRE, MEFEIE VR AN —VTHIET 256002 ERCHE T, RS OHMRIEEEE
IZTHZENTED LN ZENRyhol.

=8I, F4ED, JavaZ' a7 7 50707 5 Mg a17 5 Y —VORBETHS. kD7 v 7 T Mgy — Vi,
fiEMT 7 LY RACET D LWEES e e, TNOEFIAT 2 EBREETH . £ TRETHE, vl 7
MENTZRHIATO) ZEMTEDLY—NVEHRREL, Thid—T70 =AY 7 b =7 ELTARLE. AY—1ix
PR = K FATHERE N L <, KPS 2T AA~OBEHFTRMENE W B3 5hoTo. T0O K9 R — Vi,
VIR 2T LFORRBICFESTHLOTHLHEEZLND.

LD Z &g, RZMEm SO EFERREICR LT, BMmAICiIRRE2RE/FHMEL, BEELRREEZDITF VDL L
FHER L. F2, 7ul T 2B AMEE ML, KOBA~HIRLTWAHLDOTHELEWVWR S, LoT, H#
+ ([F®BE) OFMHRTE LTIECH 2D LD 5.

	要旨

