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Abstract
We show that the two cuspidal unipotent characters of a fi@hevalley group
E7(q) have Schur inde®, provided thaty is an even power of a (sufficiently large)
prime numberp such thgi =1 mod 4 The proof uses a refinement of Kawanaka’s
generalized Gelfand—Graev representations and someciexgdmputations with the
CHEVIE computer algebra system.

1. Introduction

Throughout this paper, le& be a simple algebraic group obiattype E7. As-
sume thatG is defined over the finite field,, with corresponding Frobenius map
F: G — G. There are precisely two cuspidal unipotent character& 6fdenoted by
E7[+£] where & =,/—q; see the table in [2]§13.9.

The purpose of this paper is to determine the Schur index-$f£], at least if
the characteristic off, is large enough. Modulo this condition on the characteristi
this completes the determination of the Schur indices of uhgotent characters of
finite groups of Lie type; see [12], [5] and the referencesedhe

By [4], Table 1, the character values @af;[+£] generate the field)(¢). Further-
more, by [4], Example 6.4, we already know that the Schurxndel if p % 1 mod 4
or if g is not a square, wherp is the characteristicFgf Thus, the remaining task
is to determine the Schur index when is a square ped 1 mod 4.

Theorem 1.1. Assume thay is an even power of(sufficiently largg prime p
such thatp = 1 mod 4 Then the character&;[+£] have Schur indeX.

Here, p is “sufficiently large” if Lusztig’s results [11] on geralized Gelfand—
Graev characters hold; it is conjectured that this is thes ¢a is good forG .

The idea of the proof is as follows. We have already seen ingfg] that E;[+£]
occur with multiplicity 1 in a generalized Gelfand—Graevacicterl', , where: is a

2000 Mathematics Subject ClassificatiorPrimary 20C15; Secondary 20G40.



202 M. GEck

Table 1. The weighted Dynkin diagram for the unipotent supmd the cuspidal
unipotent characters in typg;

1 0 0 1 0
E7 @ o o o ®

[ a3 o7} as g a7

0 o2

certain unipotent element i6& . Here, we shall use a refinemktite construction of
I', to show that, under the given assumptionspn and , the cleasaci[+&] oc-
cur with odd multiplicity in an induced character which cahtve realized ovef)(¢).
By standard arguments on Schur indices, this implies Hgit&é] cannot be realized
over Q(€). At some stage, the proof relies on the fact that, in Lg&tparametriza-
tion of the irreducible characters @¥” , the functian  ocaugrin [10], Main The-
orem 4.23, takes value 1 on the labels corresponding-{a:£].

Furthermore, we rely on some explicit computations G . Heeve we shall
only use computations with the root system and the irredeaiharacters of the Weyl
group of G, for which theCHEVIE system [6] is a convenient tool.

2. Generalized Gelfand-Graev characters for typeE;

A short summary of the construction of generalized Gelf@wkev characters is
given in [5], §2. Assume thay is a power of a “good” prime/ =2, 3. I&t be the
root system ofG with respect to a fixed maximally split tofis et C be the unipo-
tent class ofG whose weighted Dynkin diagraim ® — Z is given in Table 1. (The
notation in that table also defines a labelling of the simmets in the root system
of G.) The classC is the “unipotent support” of the two cuspidaipotent characters
of GT; see [5],§4, and the references there.

Given the weight functiond @ — Z specified by the diagram in Table 1, we
define unipotent subgroups

Usz= [| Xa and  Us1:= [] Xe.

ez b
where X, is the root subgroup i@  corresponding to the @ot .qlumderstood
that the products are taken in some fixed order.) The gemedalelfand—Graev char-
acter associated with an element Gif is obtained by inducimgrgain linear char-
acter fromU,. We haveCg § )Cg 4 ) = Z/2Z for u € C. Thus,C* splits into two
classes in the finite grou” . By Mizuno [13], Lemma 28, repnéstives of these
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two GT -classes are given by

y74 = x20(1)x21(1)x23(1)x28(1)x31(1),
¥75 = x20(1)x21(1)x28(1)x24(1)x23(1)x25(1)x36(2 ),

where ¢ is a generator for the multiplicative group Bf and where the subscripts
correspond to the following roots ib*:

20 a1 tao +az+ay, 21 a1 tasz+agtas,
23 o+ a4 +as+ag, 24 a3+ a4+ as + ag,
25 a4 +as+ag+ a7, 28 iap + a3+ 2004 + as,
31l :a3+as+as+ag+ o7, 36 :ax+azt+astas+og+a7.

(Attention: Here, we use the labelling of the roots as givgrttie CHEVIE system [6],
which is slightly different from that of Mizuno.) We note thboth y;4 and yzs lie in
CNUf, Now let us fix

u € {y7a, y78s S CNUJ ,;

the above expressions show that

u= l_[ X (M) wheren, € F,.

acdt
d(«)=2

Then we define a linear charactey U;,f2 — C* by the formula

gou< l_[ xa(éa)> = X(Z Ca Na Sa) for all & € Fy,

aedt acdt
d(a)=2 d(a)=2

wherec, € F, are certain fixed constants (independent of the and ) andewher
X IF;' — C* is a fixed non-trivial character of the additive grouplyf, see [5], Defi-
nition 2.1, for more details. It will actually be conveniemot choosey in the following
special way. Letyp: ]F; — C* be a fixed non-trivial character of the additive group
of F,. Then we takey to be

X = xoo Trr /¥,
where Tk /r,: IF;' — IF; is the trace map. Now we have
F
Indgf-z (wu) = [Ujl : U£2]l/2 T,

wherel', is the generalized Gelfand—Graev character asedawdth u . We have seen
in [5], Corollary 4.3, that

<E7[:t§], F”)G* =1 for suitableu € {v74, y75}.
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(Here, and throughout the paper, we denote(hy )4 the standasd product on
the character ring of a finite group )
We will now refine the construction df, . The strategy for doihgs has already
been outlined in [5]§4. For this purpose, we shall assume from now on that
g is an even power op.
Since G is simple of adjoint type, we have &p-isomorphism

h: K x.--xk*—=T, (x1,...,x7) > h(x1,...,x7),
—_—
7 factors
such thato; & £1,...,x7) = x; for 1 < i < 7. In particular, we havel ¥ =
{h(x1,...,x7) | x; € F;}. We shall set

t:=h(v% 1, L0 1072 1) e T

as in the proof of [5], Lemma 4.1, whete is a generator for thatiplicative group

of F, c F, and vY¥? is a square root ob irF,. (The square root exists singe is
an even power op .) Then has the property that (v) = for all reoisvolved in

the expressions fopz4 or yz5 as products of root subgroup elements; furthermore, we
havea ¢) =1 for all rootsx such that«( ) =0. The element has order-21) and

H = (t) normalizesU, . We set

s1=h(-1,1,1-11-11)="ter?.

Note thata §1) = 1 for all rootsa € ®* which are involved in the expressions of
y74 and y7s as products of root subgroup elements. Thysfixes the charactep, and

SO we can extena, t@]jz.(sl). Actually, there are two such extensions which we
denote byg; andp, . Their values are determined by

¢Lt(xsl) = Qu ()C) and (pjl QCS]_) ==y (.X') for all x € sz
DeriniTioN 2.1, Letu € {y74, y75}. Then we set
G2 H

Ur, H . ~
Yu=Indy (@) and gy = Indyt ().

d.2-<51>
Thus, we have
Usy.H _ o 12 - .
IndU‘%z ((pu) - wu + wl/, and D{I,l : Ud.Z] /2., ]_'“ = ]"“ +I
where

f” = Indg}:z-(h) (@u) = Indg}:Z'H (wu)v
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VA G ~7\ — G /
L, =Indge o (@) = Indy, L)
The following result provides some crucial information ceming,, andy;, .

Proposition 2.2. Recall thatg is an even power of . Themith the above no-
tation, the following hold.
(a) Both v, andy, are irreducible characters msz.H .
(b) ¥, can be realized ovef).
(c) v, is rational-valued but cannot be realized ov@. In fact v, has non-trivial

u

local Schur indices ato and at the prime

Proof. (see also the argument of Ohmori [14], p. 154.) Let

(1) x= [[ @) eus, and oy =) conuba

aedt aedt
d(a)=2 d(@)=2

where&, € F,. Then, as in the proof of [5], Proposition 2.3, we have
0u(t'xt™) = x (V' yy) forl<i<2p-1)

In particular, this implies Stagb¢f{ ) Zs1). Hence, by Clifford theory, the induced
character

Ur,.H
ind,*" (¢u) = v+,

has inner product 2. Thus, wg, ang must be irreducible, pgo@).
Next we prove (b). Using Mackey’s formula and relation (1) Wwave that

U B 2(p-1) 2= .
Ind,i*™ () (x) = D eutxt™)= 3 x (V)
' i=1 i=1
2(p-1) . _
; 2(p —1) if Trg, v, (vx) =0,
= 2 (v Tray () :{ 2 it Tr 0
i=1 - F,/F,(vx) #0.

In particular, this shows that the values are rational ietegThus,y, 4/, is rational-
valued. Now assume, if possible, that is not rational-vdluknen the characterg,
and v, must be algebraically conjugate. Consequently, @nd urowsdth the
same multiplicity in every rational-valued character. Ndw the Mackey formula and

Frobenius reciprocity, we have

v,

Uyo-H

Uil () Ui o H
(Indj 1, (7). Ind (1”)>U;,2.H

Uls (~
= (Res (7). 1)

F
U11.2
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since ¢, 1) = —1. (Here, the symboll stands for the unit character.) By a similar
argument, sincep, s{) = 1, we also have

f.H
(s Il (1H)>u;;z.ﬁ -t
Thus, v, andy;, do not occur with the same multiplicity in someoradi-valued char-
acter, a contradiction. Thus, our assumption was wrong antath v, andy, are
rational-valued. But then the above multiplicity 1 formutaplies thaty,, can be real-
ized overQ, by a standard argument concerning Schur indices (seesl§8hcCorol-
lary 10.2).

Finally, we prove (c). We begin by showing that the local Schdex atoco is
non-trivial. In other words, we must show thétf ~ cannot beizedl overR. For this
purpose, by a well-known criterion due to Frobenius and B¢kee Isaacs [8], Chap-
ter 4), it is enough to show that

| UF Z i (8%) =
4, 2 EUIFZ
Now, in order to evaluate the above sum, we note that
F Z 1uﬁu(g )_
|Ud 2 geUr, H
112
sincey, can be realized ovép. Thus, it will be enough to show that
1 1

Ui H 2\ = 2) =
Ujo-H Z " (%)(g) Uj,-H Z (w“ W“)( )=0

8€Uj,.H 8€U;j,.H

Let ¢ € U;,.H and writeg =xh wherex € U;, andh € H. Now the value of
the above induced character @A is zero unlesg? e Ur,. Thus, we only need to
consider elementg xh whede =1 br sg So we must show that

> ind = () (2) + 3 Indy 2 () ess) =

)LeU[,.2 )LeU[,.2

Now, sinceU}, has odd order, the map— x? defines a bijection o/, onto itself.
Hence the first sum evaluates to

UL, H Uk,.H
Z Ind(_/]2 (pu ( ) | 12 H| <IndUd:z ((p“)’lUdF.Z'H>

XGUJ.Z

Ur,.H
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Now consider the second sum. For this purpose, we noteatha) =(1 for all roots
a € ®* which are involved in the expressions of, and y;s as products of root sub-
group elements. Thus, f and.  are as in (1), then we have

Vixs1)? = Z Colla (O{(Sl) + 1)%-01 = ZVX =Vx2-

acdpt
d(a)=2

Using once more Mackey’s formula as at the beginning of thaf) we see that

UFH 2(p—1) 2(p—1)
Indy, 2" () (%) = D0 x(v'r2) = 30 (v )

i=1 i=1

Ur,.H
:mdU(;é ((p“)(XS]_XSl)

for all x € U;,. Consequently, the second sum also equals 0. Thus, we havensh
that ¢, cannot be realized ov@&. We shall now use some general properties of Schur
indices; see Feit [3]§2, for references. First, sincg, is rational-valued Bt can-
not be realized oveR, the Schur index ofy; is 2 (by the Brauer—Speiser theorem;
see [3], 2.4). Furthermore, there exists at least one priomaber/ such that the
I-local Schur index ofy;, is 2 (by the Hasse sum formula; see [315R2 Thus, it
will be enough to show that the -local Schur indexyof is 1, feerg primel £p .
Let / be such a prime. It /= 2, theiy;, is a character/of -defect cygg.H. So

the [ -local Schur index is 1 by [3], 2.10. Finally, if = 2, thefj, s & character of
2-defect 1 and, hence, lies in a block with a cyclic defectugrof order 2. Conse-
quently, that block contains only two irreducible charsgtand soy;, remains irre-
ducible as a 2-modular Brauer character. This implies atjah the local Schur index

is 1; see [3], 2.10. O

3. A subgroup of type Dg x A;

Our next aim is to compute the multiplicity af7[+¢] in T, andI"; see Defini-
tion 2.1. We already know that the multiplicity d@f7[+£¢] in the sumT', + T/ equals
[Uf, : US,1"2, for suitableu € {y7a, y7s}. We shall now try to compute the multiplic-
ity in the differencef"u—f";. For this purpose, we take a closer look at the semisimple
elements; and its centralizer. Let

G =(T, Xy | @ € P7) where Q1 :={xed| O[(Sl) =1}

Using theCHEVIE function ReflectionSubgroupwve check that the root systefy has
type Dg x Aj; a system of simple roots id; is given by

My = {op, o3, a5, 07, ¢ 14 @ 18 X 23
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Table 2. The restriction off to the subsystem of tyPe x A

0 2 0 2 0 2
DexA1 @ °® °® ° °
a5 14 oy (18 o3 28
0 o7

where
aua=oaptaztoag, oigi=oagtoastog,  opgi=axtazt 204+ os.

(Here, the numbering of the roots is the same as that give€HBEVIE) The corre-
sponding Dynkin diagram and the restriction of the weightction d toI1; are given
in Table 2. Furthermore, one can check, us@igEVIE (for example), that

Nw(Wl) ={weW| w(d>1) C P} =Wq

where Wy = (w, | @« € ®;1) C W is the Weyl group ofG; (and where we denote
by wg the reflection with rooig , for any rogt € ¢ ).

Lemma 3.1. We haveCs(s1) = G1; in particular, Cg(s1) is connected.

Proof. By Carter [2],§3.5, we haveCs «)° = G1. Hence,G; is a normal sub-
group in Cg 61). So it is enough to show thaWs Gg) = Gi. Let g € Ng(Gy).
Then gTg~! is a maximal torus inG; and so there exists somg € G; such that
gTg ™ = g1Tg;*. Thus, we haveg;'s € Ng(T) and sog € G1.Ng(T). Hence,
we may assume without loss of generality thhae Ng T O Ng G1). Now, for any
g € Ng(T) N Ng(G1) and anya € ®;, we havegX,g ! = Xy S G1, Wherew is
the image ofg inW =Ng T )T . Thus, we have ®{) € ®; and sow € W; (see
the above remarks). This impliese G;, as required. ]

Let C1 be the conjugacy class ofz4 in G1 and denote byd;: &3 — Z the
corresponding weighted Dynkin diagram. Using the idertfan results in [1], The-
orem 11.3.2, it is straightforward to check that, under thtural matrix representation
of a group of typeDs x A1, the elementsz4 and y75 correspond to matrices with Jor-
dan blocks of size 1, 1, 2, 5, 5 (where the block of size 2 coma® fthe A;-factor).
Hence, using [2]§13.1, we see that; is given by the restriction off ta;, as speci-
fied in Table 2. Furthermore, we notice that the above rootsadiabe written as sums
of roots in 1. Thus, we have

y74, y75€ C1N U(/ﬁ;z,
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where Uy, » is the unipotent subgroup a¥i defined with respect td;.

Lemma 3.2. Letu € {ys, y7s}. Then we havalim®Bl = 4 (where B! denotes
the variety of Borel subgroups d@¥; containingu) and

Ca,(u)/Ca,(u)” = Co(u)/Cq(u)” = Z/2L.

Proof. Letu :=y7s. The formula for dint8! follows from [2], §13.1. To prove
the remaining statements, we note that

s1 €8 = {h(x, x 2, x2%x3 x % x, D|xe kx} C Cg,(u).

Furthermore, one checks thatG{) = {r € T | a(¢r) = 1 for all « € ®;1} = (s1). Thus,
since S is connected, we have G{) C Cg,(u)°.

Now let = : Gy — H; be the adjoint quotient 061, where H; is a semisimple
group of adjoint typeDgs x A;. Let u be the image aof iff;. Then, by Carter [2],
§13.1, we know thaCy, (u yCy,(u'y = Z/27. Furthermorer induces a surjective ho-
momorphism

Co,(u)/Ca,()° = Cuy () Coy(uw} = Z/2Z

with kernel given by the image af () in Cg,(1)/Cq,(1)°. SinceZ G1) < Cq,(u)°,
that image is trivial and so the above surjective map is atgeciive. [l

Proposition 3.3. Letu € {y74, y751 € C N sz. Then as we already notedwe
haveu € CmUG,FL2 and so the corresponding generalized Gelfand—Graev chardc!
of G is well-defined. We have

T, (ys1) — T (ys1) =TXy)  for all y e GI unipotent

Proof. By the Mackey formula, we have

B (rs1) = Regiy () (vs1) = Regs (IndGy | (34) ) (vs2)
_ FRE)
Z 'nd(sz (52)):NGE ( %U(:ﬁz.(si)):mcf (“’u))(y s1),

wherez runs over a set of representatives of g ((s1), G{)-double cosets of5”
Let us fix such a double coset representative, say. Assunte¢hbavalue atys; of
the corresponding induced character in the above sum iszemn-Thenys; must be
G1-conjugate to an element in the subgroup; §.(s1))* N G;. Consequentlys; must
be G!'-conjugate to an element in that subgroup. Siigé¢ is a Sylow 2-subgroup of
UJ,.(s1), we conclude that all elements of order 20ff,.(s1) are of the formxsix~*
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wherex € UJ,. Thus, we haver™sic = z7*xsix~'z for somec € G{ and some
x € UJ,. Consequentlyx~zc™* € Cg(s1)" = Gf and soz € xGic € UJ,.GY. Thus,
z represents the trivial double coset and so we can take = hgUhe fact that

Ujo-(s1) NGY = Uy 5 x (s1)
(where Uy, » € G1 is the unipotent subgroup defined with respect to the weighte
Dynkin diagramd;: ®; — Z) we find that

~ GF
Tu(ys))=Indt (o5 B 1) (ys1)

4y, 2% (5)
where ¢! denotes the restriction aof, t&/f

4.2+ Sincesy is in the center ofGy, it is
readily checked that

~ 1. GF 1 GF
Fu (ysl) = E Du (Sl) lndquL2 (%})()’) = E IndU}lz ((pi-)(y)

By a completely analogous argument, we also obtain that

~, _ 1 ~ GF 1 _ 1 GF 1
Fu (ysl) - E (pu(sl) IndUi.Z ((pu)(y) - _E IndU};.Z (%)(}’)
Thus, it remains to check that
1_ a0t (1
r,= IndeFl‘2 (%)-

For this purpose, we must show tha} indeed is the linear character &f; , re-
quired in the definition of". Now, the definition ofl"! requires the choice of a non-
degenerate bilinear form and of an opposition automorptisnthe Lie algebra o ;.
However, the Lie algebra ofi; is naturally contained in the Lie algebra 6f , with
compatible Cartan decompositions. Thus, the chosen bilifkm and the chosen op-
position automorphism restrict to the Lie algebra®f, and this implies thap? is the
required linear character df; ,. O

A formula of this kind has been stated (without proof) by Kaaka in [9],
Lemma 2.3.5; see also the Ph. D. thesis of Wings [§8]2.1.

RemarRk 3.4. Letg € GF and writeg =g,8, =.g, Wherg, € GI is semisim-
ple andg, € G is unipotent. Assume that is not conjugatejtin G¥. Then we
have

(fll - f‘;)(g) = 0

Indeed, if the value is non-zero, thep  must B&  -conjugate rtoel@ment in
UJ,.(s1). But theng, will also beG* -conjugate to an element in that subgrdJs-
ing a Sylow argument as in the above proof, we see that eggher 1 er g, is
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GF-conjugate tos;, as claimed. Furthermore, i, =1, then it is readily checkeat t
Tu(g) = F;(g).

Thus, in order to compute the scalar productE{+¢] with T, — F;, it will be
enough to know the values df;[+£] on elements of the formys; wherey € G¥
is umpotent Furthermore, sincE;[¢] and E7[—&] are complex conjugate and since
I, and 1"/ are rational-valued, it will actually be enough to consitlee sumE;[£] +
E7[—£]. Now, by Lusztig [10], Main Theorem 4.23, we have

E7[£] + E7[—£] = Rs1z, — Rs1z.

(Note that the functiomA occurring in [10], 4.23, takes vald& on the labels corre-
sponding to the charactets;[+£].) Here, 512 , 512 are the two irreducible charac-
ters of W of degree 512 an#si,, Rs1z are the corresponding “almost characters”,
as defined by Lusztig [10], (3.7). For amye  IW( ), we have

—qu( ) Rz, 1;

weW

here, T, C G is anF -stable maximal torus obtained frédm by twistiithw and
Ry, 1 is the Deligne—Lusztig generalized character associaiétd the trivial character
of TF. Similarly, for anyy € Irr(W1), we denote byR}b the corresponding almost

w

character ofG{.

Lemma 3.5. Let ¢ € Irr(W) and write

Regy, ()= > m(p. )y  wherem(p, V) € Zo.

yelr(Wy)

Let y € GI' be a unipotent element. Then we have

Ry(ys))= Y ml(¢, ¥) Ry ().

yelr(Wy)

Proof. The character formula fakz, 1 (see [2], Theorem 7.2.8) shows that

|CW(w)| 1

R7, 1(ys1) = ——— Rz, 1)
w2

wowy

where the relation~ means conjugacyWn . (Heké,’,,l.l denotes a Deligne—Lusztig
generalized character @.) Thus, we have

1 |C (w)|
Ro(yss) = > |”;V| ¢(w) RE, 1(y)
weW,wjeWq
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1 1
= — (m Z |CW(w)| (p(w))R% 1(y)

-~
(Wil wieW; wew

wrwg

Now, we have¢ © ) =¢ ¢1) and |Cy w) = |Cw wq)| for all w; € Wi such that
w ~ wi. Thus, we have

1 _ |Cw(wi)] _
W ; |Cw(w)| p(w) = Wqﬁ(wl) ; 1=¢wy).
Writing ¢(w1) = 3", m(@. ¥)¥ (w1), we obtain the desired expression. O

Corollary 3.6. With the notation ofProposition 3.3and Lemma 3.5,we have

(R Tu = To)gr = D ml@. ) (Ry. Thgr

yelr(Wy)

for any ¢ € Irr(W) and u € {y74, y7s} € C1N Ua{i.Z'
Proof. Immediate from Proposition 3.3, Remark 3.4 and Lendnga U

We now need some explicit information concerning the restm of characters
from W to W;. Using theCHEVIE function InductionTable we compute that

Resy (512,)® ¢ = ([21 3]X 1) +sum ofy wherey € Irra) anday > 4
Reg; (512,)® ¢ = ([2 31]X 1) +sum ofy wherey € Irffy1) anday > 4

Here, 1 denotes the unit character on thg-factor of W; ande denotes the sign char-
acter of W;. The characters of thég-factor are denoted byA[n ] where  and
are partitions such that| He = 6. The -invariant of a charadeddfined as in
Lusztig [10], (4.1); inCHEVIE thesea -invariants are obtained by the functlomw-
estPowerGenericDegree$Ve have

ay =4 fory =[21 3]X1 andy =[2 31]X 1.
With these explicit formulas, we can now prove the followirgsult.
Proposition 3.7. Assume that the characteristip  is large enougiuch that
Lusztig’'s formula in[11], Theorem 7.5,for the values of a generalized Gelfand—

Graev holds forT'l. By [5], Corollary 4.3,there exists some € {y7s, y75} such that
(E7[££], Tu)gr = 1. For this element: , we have

(E7[:|:E], fu - f[4>Gf = _1-
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Proof. We have already mentioned in the remarks precedimgnia 3.5 that
E7[§]+ E7[—£] = Rs12, — Rs13.

Sincel, and f{, are rational-valued (see Proposition 2.2), we have

o~ ~ 1
(E7[£€], T — F;) §<E7[§] + E7[-£], T, — F,,)
1 ™ ™~/
§<R512, — Rs13, T, F“>Gr

Now let + e Irr(W;) be a constituent in the restriction of 512 or 512 frdin
to Wi. Then, by Corollary 3.6, we must compute the scalar prooKlR;;,Ft})Gf.
Let D denote the Alvis—Curtis—Kawanaka duality operationtba character ring of
G!; see Lusztig [10], (6.8). We hav® R{, )Ryg. and so

(Ry. Tt = (D(Ry). DY) gr = (Ryee. D) g

Now, in order to evaluate the above scalar product, it is ghoww know the values
of Ryg. on the unipotent elements aff. By Shoji's algorithm [15] and by [11],
Corollary 10.9, we know thaRyg, ¥ ) = O if dimﬁi < ayge. ON the other hand,
we haveD [;)(y) = 0 if dim®B; < dim®}. (This follows from [11]; see the remarks
in [4], (2.4).) Thus, the above scalar product is zera,jk, > @i= 4. Taking into
account the explicit information concerning the restaot of 512 and 512 froniV
to W1, we conclude that

=

1) (E7[£8]. T — T) . = >(Rv3m1 — Rz sum1. D(F“))

N

Now [21, 3]X 1 and [2 31]X 1 lie in the same family of characters &¥1; see [10],
Chapter 4. The Fourier matrix (which has sizex4 4) for thatiffarshows that

Ri213m1 — Rp2,31)1 = —p1 — P2

where p; and p, are unipotent characters &ff. Now, we can explicitly compute the
unipotent support of these two characters; see [$1], or [7], §3.C. This involves
the knowledge of the Springer correspondence Gar Using the description of that
correspondence in [2513.3, we find thafo; and p, have unipotent suppoi®s. Thus,
by the formula in [7], Remark 3.8, we have

(2) </O,, D(F}M) D(Fns)) (D(p,) 1—‘y74 F;s) =1 fori=1,2

Note thatCq,(y74)/Cs,(y74)° = Z/2Z by Lemma 3.2 and thaD pf), D(p2) are actual
characters in the present situation; see [10], (6.8.2). Me@vhaveu € {y74, y7s} and
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we would like to show that
© (D). Ti)gr = (i D))y =1 fori =1, 2

This can be seen as follows. Fixe { , § 2. Sinfep; ( ) is an actual ctewawe
certainly have(D f; ,)F&)G{- > 0. Hence, using (2), the latter scalar product equals 0
or 1. Assume, if possible, that the scalar product is zer@nTthe scalar product of
—p1 — p2 With Dg(I'}) would be — 1 or 0. Consequently, the scalar product in (1)
would be — ¥ 2 or 0. Thus, the only possibility is that the scabaoduct in (1)
equals 0. But this would mean that

(E7[:té:] ’ l:;u + f‘;)Gf = [U£1 : U£2]1/2 (EY[:l:E]v FL()(;F = [Ujl : U;:Z]l/z

is an even number, which is not true. So, our assumption wasgvand (3) holds.
Inserting this into (1), we obtain the desired result. U

4. Proof of Theorem 1.1

By [5], Corollary 4.3, the Schur index of;[+£] is at most 2. Hence, we only
need to show thaf;[+£] cannot be realized ove®(¢). Now, we have

(E7[:|:E], I')or= 1 for suitableu € {y74, y75}.
So, using the formulas in Definition 2.1, we obtain that
(E7[£8]. T+ 1)), = [US, 1 US,]V?=¢" for somem > 1

Combining this with Proposition 3.7 and using Frobeniusmecity, this yields

(Reg (Eilel). v, = (B8 i), = 507+ )
Since p = 1mod4, we also havg = 1 mod 4 and so the above scalar produc
is an odd number. Now assume, if possible, tBaft+&] can be realized ovef)(¢).
Then the restriction ofE/[+£] to UjZ.H can also be realized ove@(¢). Thus, by
a standard argument on Schur induces ([8], Corollary 1Gi®), Schur index ofy,
over Q(¢) divides the above odd number. Since the Schur indexy/pf e is
at most 2 (see Proposition 2.2), it must be one. Thyjs, can dead overQ().
Now, sinceq is a square, we hag¢e +#—1. Furthermore, sincg = 1 mod 4, we
have v/—1 € Q, (the field of p -adic numbers). Hencg,  can be realized d@gr
contradicting Proposition 2.2(c). Thus, our assumptiors waong and saf;[+£] can-
not be realized ove@(§).
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