
Title
Singular limits for the compressible Euler
equation in an exterior domain. II. Bodies in a
uniform flow

Author(s) Isozaki, Hiroshi

Citation Osaka Journal of Mathematics. 1989, 26(2), p.
399-410

Version Type VoR

URL https://doi.org/10.18910/6727

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Isozaki, H.
Osaka J. Math.
26 (1989), 399-410

SINGULAR LIMITS FOR THE COMPRESSIBLE EULER
EQUATION IN AN EXTERIOR DOMAIN, II

-BODIES IN A UNIFORM FLOW

HIROSHI ISOZAKI

(Received May 25, 1988)

1. Introduction

1.1. Bodies in a uniform fiow. Suppose an unbounded domain Ω in
Λ3 exterior to a bounded obstacle with compact smooth boundary S is occupied
by an ideal gas. Let P be its pressure and V the velocity. The entropy is
assumed to be constant. Then the compressible Euler equation in a suitable

non-dimensional form is written as

(1.1)

( 9, P+(Γ V) P+γPV V = 0 ,

9, F+(F V) F+λ2P-1/γ VP = 0,

<XF> = 0 on S,

Where 9,=9/9ί, y is a constant >1, n is the outer unit normal to S. < , > de-
notes the standard inner product in Λ3, and λ is a large parameter propotional
to the inverse of the Mach number (see [5], p. 52). We shall explain the deri-
vation of the above equation in §5 of this paper. Let Hm=Hm(Ω) be the usual
Sobolev space of order m. In our previous works [1], [2], we have already
shown that the solution of the above equation converges to that of the incom-
pressible Euler equation as λ->°° under the main condition that the initaial
pressure Pλ(0)=Const. +O(λ~1) and the initial velocity Fλ(0)eίF+1, ΛΓ>4.
The assumption that the initial velocity belongs to L2(Ω) is rather restrictive,
since it excludes physically important flows which are both solenoidal and irrota-
tional. In fact, if a vector field V(x)^L2(Ω) satisfies div V= 0, curl V=Q and
the boundary condition, it must be identically equal to 0. In this article, we
consider the flow constant at infinity as an important example of such a non L2

flow.
Let a constant non zero vector ξ^R3 be fixed, which is the velocity at in-

finity. Take w0(x)^lB(Ω)=Uιe space of smooth functions with bounded der-
ivatives such that
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' div WQ = 0 in Ω ,

woy = 0 on S

*>-*-'β', |α| = 0, 1 ,

where C and £ are positive constants, <X>=(1+ |#|2)1/2 and for a multi-index

«=(«!, «„ «s), 9*=9?ι 8J» 9?3, 8,=8/8*y, I α | =«1+α2+α3.

EXAMPLES. For instance, one can take WO(Λ:)=£ -\-Vφ(x), where φ solves the
following Neumann problem:

(1.3)

Δφ = 0 in Ω ,

on S.

Indeed, 9?(Λ?) is written by a single layer potential on the boundary

\χ—y\

whence \Q*(w0(x)—ξ)\ <CΛ<(Λ:)>"2~|Λ|, for a constant CΛ. Note that this w0 is a
stationary solution to the incompressible Euler equation.

One can also construct other examples by setting wQ(oc)—ξ-\- curl A(x).

To make (1.1) easier to handle, we transform P into Q= — - — p1"1/?.
Then (1.1) is rewritten as '

We set γ=2 for the sake of simplicity. We are going to assume that the ini-
tial pressure behaves like Const. +O(λ"1). Thus, we set, without loss of gen-
erality, Q=l+p/\. Then we arrive at

dtV+(V V)V+

Since we consider the velocity close to WQ specified by (1.2), we set V=v-\-wQ

and obtain the following equation

(1.4)

V)p+pV v+(wQ

9, v

k ϋ , Λ> = 0 on S .

1.2. Main results. The following assumptions are imposed on the ini-
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tial

(A-l) {($,«#); λ>0} is a bounded set in HN+l(Ω}r\Ll(£ϊ), 'where N is an

integer > 4.

(A-2) The compatibility condition is satisfied up to order N+l.

(A-3) PS V^-*VQ in HN(Ω) as λ->°°, ps being the projection onto the soleniodal

fields.

Let us remark that for a real uniform flow, one should slightly change the
formulation, which will be discussed in §5.

Let || |L be the norm of Hm. Our main results are the following theorems.

Theorem A. There exist constants Γ>0 and Λ>0 such that for any λ>Λ,

there exists a unique solution p\t), v\t)<= Π C*(/5 HN~k(n)), /=[0, T]} of the
k = Q

above equation (I A). Moreover, it satisfies the following uniform estimate

sup (\\P\t}\\N+\\ v\t)\\N )<<χ> .
λeΛ,/eI

Theorem B. For 0<t<T, pλ(t)-*Q and v\t)-^v°°(t) in H^~l(ΐϊ) as\-*oo.

Furthermore, u°°(t)=v00(t)-\-w0 satisfies the following incompressible Euler equation

dtu~+(u00 V)u0°+Vq00 = 0, in Ω, t(=I ,

divu°° = Q, in Ω,

<rι, u°°y = Q on S ,

ιT(0) =

where q°°=q00(t)^H^1(Π) is calculated from u°°(t).

The above theorems serve as basic steps for the low Mach number expansion

of compressibel fluids (see e.g. [8], p. 19) and also hold in any exterior domain
in JRΛ, n>2, by a slight modification of the proof. To fix the idea, however, we

consider the 3 -dimensional case in this paper. We also point out that the regu-

larity assumption (A-l) on the initial data can be relaxed so that they are bound-

ed set in H3(Ω) Π L\Ω). But we adopt this stronger one to economize technical

details.

1.3. Methods of the proof. The proof of Theorem A is almost the same
as in [1], §5. That is, we derive the energy estimate for the linearized equation

of (1.4), from which the non-linear equation (1.4) is solved by iteration. To

prove Theorem B, we study in §3 an asymptotic property as λ->°o of the

equation
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(1.5) = 0,

= 0 on *S ,

by utilizing the results obtained in [1] on the spectral properties of the linearized

operator of acoustics (Theorem 3.2). Using Theorem 3.2, we shall prove The-
orem B in §4 by employing the arguments in [2], §3.

1.4. Remaining problems. So for we have studied the equation (1.1)
in an exterior domain, but many problems are left unsolved. For instance it is
not easy to relate the pressure q°°(f) to the original p\f). Even in the case w0(x)
=0, some geometric assumptions on the boundary (e.g. non trapping conditions)

seem to be necessary. If we consider the non-isentropic fluid, in order to prove
Theorem B, we have to study spectral and scattering problems of the linearized
operator of acoustics with coefficients depending on time, which seems to be a
delicate problem. Theorem A also holds for the interior domain (we take WQ=
0). In this case, the incompressible limit (Theorem B) is derived under the ad-
ditional assumption that, roughly, ρ^=O(\~l), div vl=O(\~1}, and the initial
layer does not appear. But what occurs when we consider the limit λ-> °o un-
der our original assumptions? The incompressible limit for the boundary
value problem of the compressible Navier-Stokes equation is also an interesting
problem. For the stationary case, this was studied by [4]. But the non station-
ary problem is yet unsolved. A good explanation of these problems of singular
limits in non-linear equations of fluid is given in [5], Chapter 2.

2. Non-linear compressible Euler equation

In this section, we shall briefly explain the outline of the proof of Theorem

A. Let C[Γ(Ω) be the space of smooth functions with compact support in Ω

and

Co"σ(Ω) = {weCSΓ(Ω); div w = 0} .

S(Ω) is the closure of C£>σ(Ω) in L2(Ω)3 and G(Ω) is the orthogonal comple-

ment of *S(Ω) in L2(Ω)3. Let PG and Ps be the orthogonal projections onto
G(Ω) and S(Ω), respectively. Then we have

Lemma 2.1 ([2], Lemma 2.1).

(1) //α eS(Ω), div w=Q in distribution sense and <n, α/>=0 in H~1/2(S).

(2) Ifv^G(Ω), there exists a φ^Hloc(Π) such that v=Vφ.

Let L be the linearized operator of acoustics in L2(Ω). More precisely, L
is the self -adjoint realization in L2(Ω)4 of the differential operator
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0 V'/
= Λ*

with the boundary condition <X^>=0 on S (see [1], Definition 1.8). Let Γ0

and Γ be the orthogonal projections onto the null space of L and its orhtogonal

complement, respectively. Then for f=t(p, v),

(2.1) Γo/^'tO.P^), Γ/='(/>,PGί>)

For g=*(q, α>), we define the differential operator A(g) by

(2.2)

Then, letting F—'(0, — (α;0 V) ̂ o)> one can rewrite (1.4) as

(2.3) dtf+A(f)f+(w0 v)f+i\Lf = F .

The linearized equation for (2.3) is

(2-4) dlf+A(g)f+(to0 V)f+i\I/=G.

The treatment of the equation (2.4) is essentially the same as the one given

in [1], §5. We split the solution /of (2.4) into two parts: /=Γ0/+Γ/. The

part Γ0/ satisfies the linearized incompressible Euler equation

V) Γ0/

-Γβ(«vV) Γ/,

which can be studied separately by the method of Agemi [3], p.p. 180, 181. To
obtain the regularity of Γ/, we use the following coerciveness estimate ([1],

Lemma 1.12): Let/eZ)(L). Then for any m>0, there exists a constant Cw>0

such that

(2.5) I|Γ/|U<C«(||Γ/||+||LΓ/|L) .

Invoking these two facts, one can prove the following energy estimate. Let

\\f(t)\\x» be defined by

(2.6) \m\\z- = Σ

and N be an integer Ξ>3. Let

For an interval 7=[0,T], we set
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= su

Then there exists a constant C>0 independent of X, T, γ and a non-negative,
non-decreasing function C( ) such that for the solution f ( t ) of (2.4)

(2.7) l|/(ί)llx"£C^M(ll/(0)llz-+Γ IIGWHx- <fc+-
Jo X

holds if \>C(γ)βcw, l<w<#, ίe/ (see [1], Lemma 5.5).
Once we have established the energy estimate (2.7), Theorem A readily

follows by the standard method of iteration.

3. An asymptotic property for the linearized equation

We study in this section an asymptotic property as λ-> °o of the equation

(3.1) dtf+(w0 V)f+i\Lf=Q in Ω

with the boundary condition (y, n^—Q. It is easy to see by (2.7) and the as-
sumption div w0=0 that (3.1) generates a unitary group which we denote by

Uλ(t).
Let φt(x) be the solution of the differential equation

(3.2) — - φt(x) = W0(φt(x)) , φ0(x) = χζ=Ω .
at

Then one can easily show the following lemma.

Lemma 3.1. (1) φt(x) defines a volume preserving \-parameter group of
diffeomorphism in Ω.
(2) For any T>0} there is a constant OO such that

c~\xy<<<pt(x)y<c<χy, ^eΩ, \t\<τ.
(3) Let dφt(x) be the differential of φt. Then for any T>0 there exists a con-
stant C>0 such that

l, \t\<T,

I3 being the 3x3 identity matrix.

We define a unitary gorup Φ(f) by

(3.3)

The following theorem reduces the asymptotic properties of Uλ(t)T to
those of e~itXLT.

Theorem 3.2. t/λ(ί)Γ— Φ(— t) e~itλLΓ-^0 strongly in L2(Ω) as λ->oo for
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any

Proof. Let /(*)= C/λ(ί)/ and g(t)=Φ(t)f(t). Since f(t) satisfies (3.1), g(t) is
the solution of the equation

(3.4)

where L(ΐ) is obtained from L by the change of variables. Letting M(i)=L(t)—
3

L= 2 -M>(ί, ΛJ) 3; , we have by Lemma 3.1
y=ι

(3.5) |M,.M|<C|ί|<x>-'-e, |ί |^Γ.

Let F"λ(ί, s) be the evolution operator for (3.4). Obviously

(3.6)

Integrating the relation

we have

(3.7) Vλ(t, 0)T~e-itλL Γ = — fλ f ' Fλ(ί, j) M(s) e~isXL Yds .
Jo

In view of (3.6), we have only to show that the right-hand side of (3.7) tends to
0 strongly in L2(Ω) as λ-»°o. Using (3.5), we have for

(3.8)
o

<cx Σ Γ ίiK^x1"1 9, β-'fλ
/=! JO

Here we note the following facts: For any ^(XjeCjJ^J?1— {0}),

(3.9)

for any ί,6>0, where || || denotes the operator norm in L2(Ω) and CSt9 is a
constant independent of t,

(3.10) <^>-s dj φ(L) <xy<zB(L2(Ω)', L2(Ω)) for any

where for Banach spaces X and F, B(X\ Y) denotes the totality of bounded
operators from X to F,

Granting (3.9) and (3.10) for the moment, we continue the proof of Theorem
3.2. Take φ(\), Λ/r^eC^Λ1-^}) such that ψ(λ)=l on supp .̂ Let/e
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CiΓ(ίl). Then, since <p(L)=ψ (L) φ(L), we have

»*.<*>->- e-'*L φ(L)f.

Invoking (3.8), (3.9) and (3.10) we have

o

which tends to 0 as λ->°o. To complete the proof, we have only to note that

the set {φ(L)f\ φ<=CZ(Rl-{0}),f(ΞCZ(Ω)} is dense in ΓL2(Ω).
It remains to prove (3.9) and (3.10). (3.9) follows from [1], Theorem 3.3.

To prove (3.10) we introduce a function space Hm>$ by

ff" = {/; ll/lli.. = Σ !!<*>'

Then by [1], Corollary 1.13,

φ(L)<=ΞB(H»>«\Hm ") for any m>0.

[1], Lemma 4.4 implies that

φ(L)GiB(H* 9\H* ) for any ίe/21 .

By an interpolation, we have

φ(L)<EΞB(H" s\Hm s) for any m>Q, sZΞR1 ,

which proves (3.10).

4. Proof of Theorem B

For the solution p\ί), v\t) of (2.3), we set/λ(f)='(£λ(f), vλ(t)) and rewrite
(2.3) into the integral equation

(4 1) -*ϊ Fds '

We begin by showing

Step 1. For *>0, Γ/λ(*)-*0 weakly in L2(Ω) as X->CXD.

Taking the inner product of (4.1) with ^eL2(Ω), we have

(4-2)
+J (F,l7λ(*-
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We show for ί-ί>0, (A(f*)f\ U^s—t) Γg)-+Q as λ-»°o. In fact, by Theorem
3.2,

\ Uλ(s-ί)Tg) =

Λ ef('-s)λ£ Tg)+o(l) .

We split ^(/λ)/λ into two parts, Aί/^/HΛA where

ϊΛ (iΛ V) *>λ) ,

By Theorem A, {A(/λ)/λ}λ>Λ *s a bounded set in L\Ω). Lemma 3.1 implies
that Φ(t) is isometric in L\Ω). Therefore

(4.3) |(Φ(ί-ί) A(/λ)/V('-s)λiΓ£)| <ZC\\ύ>«- »*Γg\\L-(lo

for a constant C independent of λ. Lemma 3.1 also implies that <#>1+f Φ(f)
^X1'8 is a bounded operator in Z,2(Ω). Hence again using Theorem A and
the third condition in (1.2), we have

'

Now we assume that g=φ(L) h, where ^eC^Λ1— {0}) and AeCΓ(Ω). Such
£'s are dense in ΓL2(Ω). Then in view of (4.3) and (4.4) we have for a con-
stant C>0

( ' ' «'-^ φ(L) AIL

The first term of the right-hand side tends to 0 as λ->°o by virtue of [1], Lemma
4.8 and so does the second term by (3.9). Similarly, all the rerms of the right-
hand side of (4.2) are shown to converge to 0 as λ->°°. To treat the third term,
we approximate F by a function of compact support and apply the same argu-
ments as above.

Once we have proved Step 1, one can follow the arguments of [2] §3, with
no essential change. Indeed, by [2] Lemma 3.1, we have

Step 2. For *>0, Γ/λ(f)-*0 in Hfcl(Ω) as λ-*oo.

Applying the Rellich and the Ascoli-Arzela theorems and also an inter-
polation theorem, we have

Step 3. There exists a subsequence {λv} such that Γ0/
λv(ί) is convergent
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Step 4. Let/°°(ί) be the limit of Γ0/
λv(*) Step 2 and Step 3 imply that

/-(f)='(0, v~(t)\ 0-(f)eC(7; Hfc'ίΠ)), sup lb"(*)IU-ι<- Furthermore,

multiplying (2.3) by Γ0 and letting λ— λv tend to infinity, we can easily show

dtV"+Ps(v~ V)v00+

(4.6) = -Ps(«vV)«Ό,

It israther easy to show that the above equation (4.6) has a unique solution
which shows that/λ(£) itself converges to '(0, v~(t)) in ίΓj^Π) as λ-»oo without
passing to a subsequence.

Finally, letting u°°(t)= v°°(t)-\-wQ and introducing q°°(t) satisfying Vq°°(t)=

-PG(ιr(f) V)H"(f),wehave

div u~ = 0 .

We have thus completed the proof of Therorem B.

5. Derivation of the equation (1.1)

We discuss in this section the derivation of the equation (1.1). Usually, the
compressible Euler equation is written as

'

where p denotes the density, V the velocity and P the pressure. If the en-
tropy is assumed to be constant, the equation of state becomes

(5.2) p = AI»»,y>lt

A being a positive constant.
First we look for a stationary solution to the incompressible Euler equation.

Let ?=(!, 0, 0) and wQ(x)=ξ-\-τjφ(x), where φ satisfies (1.3). We introduce a
large parameter λ and set WQ(X)=\~I w0(x). Then, λ"1 can be regarded as the
speed at infinity of the flow WQ(X). Let

(5.3)

O =—- V I WG(#) 12, we have

where PO is a positive constant. Noting that curl zϋo(x)=Q and hence (&>o V)

x__

(5.4)
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which shows that (Pj, ^o) is ε stationary solution to the incompressible Euler
equation.

The sound speed at infinity is

,P=PQ-λ Y2

The Mach number is defined by (the flow sρeed)/(the sound speed). If we
adopt the speeds at infinity, the Mach unmber at infinity M^ is

This shows that λ"1 is propotional to M^ modulo Ml.
The problem is now evident. How the solution of (5.1) behaves when the

intial data is slightly perturbed around (Po, ^o) ? To see this, we replace V by
X-1 Fin (5.1) to get

dt P+\-\V V) P+λ-1 γPV V = 0 ,

' ' ' λ'1 8t F+χ-2(F V) V+A~l P-1/Y VP = 0 .

To study the behavior of the solution of (5.5), it is convenient to put P=P0-|-
pl\. Then we have

( ' ' - - l - l Ί 0 .

If we let λ— >oo in (5.6), we merely obtain the linearized equation of acoustics

5 7
( ' '

Therefore, to observe the more detailed behavior, we further make a change of
variable t->\t in (5.5) and obtain

(5<8) l a F+(F V)F+λ2^I- 1P- 1 / γVP=0.

This is just the equation (1.1).
In summary, what we have shown in this article is that, if the initial data

for (5.1) is sufficiently close to (Po, WQ), the solution P\t,x), V\t, x) of (5.1)
exists in a time interval (0, λΓ), T being independent of large X, and furhter,
if we set Fλ(Xί, x)=X"1 u\t, x), u\t, x) is approximated by the solution of the
incompressible Euler equation.
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