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Abstract
We study the structure of Stanley—Reisner rings associateryclic polytopes,

using ideas from unprojection theory. Consider the boundamplicial complex
A(d, m) of the d-dimensional cyclic polytope witlm vertices. We show how to ex-
press the Stanley—Reisner ring &fd, m+ 1) in terms of the Stanley—Reisner rings
of A(d,m) andA(d—2,m—1). As an application, we use the Kustin—Miller complex
construction to identify the minimal graded free resolnt®f these rings. In partic-
ular, we recover results of Schenzel, Terai and Hibi aboeit tjraded Betti numbers.

1. Introduction

Gorenstein commutative rings form an important class of roomative rings. For
example, they appear in algebraic geometry as canoniogs 1f regular surfaces and
anticanonical rings of Fano-folds and in algebraic combinatorics as Stanley—Reisner
rings of sphere triangulations. In codimensions 1 and 2 #reycomplete intersections
and in codimension 3 they are Pfaffians [2], but, to our kndgé no structure the-
orems are known for higher codimensions.

Unprojection theory [11], which analyzes and constructhgiicated commutative
rings in terms of simpler ones, began with the aim of partlynfil this gap. The first
kind of unprojection which appeared in the literature i thiatype Kustin—Miller, stud-
ied originally by Kustin and Miller [8] and later by Reid andettsecond author [9,
10]. Starting from a codimension 1 idedl of a Gorenstein ringR such that the quo-
tient R/J is Gorenstein, Kustin—Miller unprojection uses the infotima contained in
Homg(J, R) to construct a new Gorenstein rirgywhich is birational toR and corres-
ponds to the contraction 0f (J) C SpecR. See Subsection 2.2 for a precise definition
of Kustin—Miller unprojection and the introduction of [3]rfoeferences to applications.

In the paper [3], the authors proved that on the algebraiel lefs Stanley—Reisner
rings, stellar subdivisions of Gorenstein* simplicial qolexes correspond to Kustin—
Miller unprojections and gave applications to Stanley—Re&isings associated to stacked
polytopes. In the present paper, we use unprojection theotudy the structure of
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Stanley—Reisner rings associated to cyclic polytopess $hkiting is different from the
one studied in [3] since here, except for some easy subcstedlay subdivisions do not
appear and the unprojection ideals are more complicated.

Our main result, which is stated precisely in Theorems 3.8 44, can be de-
scribed as follows. Assumé > 4 andd + 1 < m. Consider the cyclic polytope which
hasm vertices and dimensiod, and denote byA(d, m) its boundary simplicial com-
plex. We show how to express the Stanley—Reisner ring @, m+ 1) in terms of the
Stanley—Reisner rings ok(d, m) and A(d — 2, m— 1) via Kustin—Miller unprojection.
Moreover, a similar result is also true for the remaining sabe- 2,3 andm =d + 1,
see Subsections 3.1, 3.2, 4.1 and 4.2. In Section 5 we givenhinatorial interpreta-
tion of our construction.

As an application, in Section 6 we inductively identify thénimal graded free reso-
lutions of the Stanley—Reisner ringggA(d, m)]. We use this identification in Propos-
ition 6.6 to calculate the graded Betti numbers of thesestingcovering results originally
due to Schenzel [12] fait even and Terai and Hibi [13] fat odd. Our derivation is more
algebraic than the one in [13], and does not use Hochstarisula or Alexander duality.
Finally, Subsection 6.2 contains examples and a link taedlaomputer algebra code.

An interesting open question is whether there are other liissnof Gorenstein
Stanley—Reisner rings related by unprojections in a similay as cyclic polytopes,
compare also the discussion in [3, Section 6].

2. Preliminaries

Assumek is a field, andm a positive integer. An (abstract) simplicial complex on
the vertex sefl,..., m} is a collectionA of subsets of{1,..., m} such that (i) all
singletons{i} with i € {1,...,m} belong toA and (i) o C 7 € A implieso € A. The
elements ofA are calledfacesand those maximal with respect to inclusion are called
facets The dimension of a face is defined as one less than the cardinalitypofThe
dimension ofA is the maximum dimension of a face. Any abstract simplic@hplex
A has a geometric realization, which is unique up to linear éa@morphism.

For any subseW of {1,..., m}, we denote byxy the square-free monomial in
the polynomial ringk[xy, ..., Xm] with supportW, in other wordsxy is the product
of x for t € W. The ideall, of K[xg, ..., Xxn] which is generated by the square-free

monomialsxw with W ¢ A is called theStanley—Reisner ideaf A. The face ring
or Stanley—Reisner ringof A over k, denotedk[A], is defined as the quotient ring of
K[Xq, - - ., Xm] by the ideall,.

AssumeR = K[Xy, ..., Xy] is @ polynomial ring over a field& with the degrees of
all variablesx; positive, and denote byn = (xy, . .., Xn) the maximal homogeneous
ideal of R. AssumeM is a finitely generated gradeld-module. Denote by

O—-F—-Fi1—--—>F—>F—>M-=0
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the minimal graded free resolution & as R-module, and write
F =@ RE).
j

The integerly;; is called theij-th graded Betti numbeiof M and is also denoted by
bij (M). For fixedi we sethb;(M) = Zj bi;(M). The integerb; (M) is the rank of the
free R-module F; in the category of (ungraded®-modules, and

(2.1) bi (M) = dimg/m TOrR(R/m, M),

cf. [7, Proposition 1.7]. For more details about free reohs and Betti numbers see,
for example, [6, Sections 19, 20].

AssumeR is a ring. An element € R will be called R-regular if the multipli-
cation byr map R — R, u+> ru is injective. A sequencey, ..., r, of elements of
R will be called aregular R-sequencé r; is R-regular, and, for 2< i <n, we have
thatr; is R/(rq, ..., ri_1)-regular.

Assumek is a field, anda, m, n three positive integers wittm < n and & <
n—m+ 2. We define the idealamn C K[Xm, Xm+1, - - -, Xn] DY

lamn = (XeXe = X [ Mt ta<n t; +2=<tj,forl=<j=<a-1).

The assumption2< n—m+2 implies that there exists at least one monomial generator
of lamn, NAMelyXmXmy2- - - Xm42(a—1). FOr example, we havé, 3 6= (X3Xs, X3Xs, X4Xe)-

2.1. Cyclic polytopes. Recall from [1, Section 5.2] the definition of cyclic poly-
topes. We fix two integersn, d, with 2 < d < m, and define the cyclic polytope
Cq(m) C RY as follows: Fix, for 1<i <m, t e R with t; <t <--- < ty,. By defin-
ition, the cyclic polytopeCq(m) = Cy(ty, .. .,tm) is the convex hull inRY of the subset
{f(t), f(t),..., f(tm)} C RY, where f: R — RY with f(t) = (t,t,...,t9) for t e R.
We have thaiCy(m) is a simpliciald-polytope, which up to combinatorial equivalence
does not depend on the choice of the poitsWe denote byA(d, m) the boundary
simplicial complex ofCq4(m), by definition A(d, m) has as elements the empty set and
the sets of vertices of the proper faces@f(m), cf. [1, Corollary 5.2.7].

AssumeW C {1,...,m} is a proper nonempty subset. A nonempty subset W
is called contiguous if there exi$t j with 2 <i < j <m—1 such thati —1 ¢ W,

j+1e¢éW, X=1{i,i+1,...,j}. AcontiguousX C W is called odd contiguous if
#X is odd. AssuméN contains a contiguous subset, this is equivalent to thaesmds
of ae W andby, b, € {1,..., m} \ W with b; < a < b,. Then, there exist a unique

integert > 1 and a unique decomposition

W=Y,UXiUXyU---UX; UYy,
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such thatY; is either empty or of the fornfl,2,...,i} for somei > 1 withi +1¢ W,
Y, is either empty or of the fornij, j +1,..., m} for somej <mwith j —1¢ W,
each Xp, for 1 < p <t, is a contiguous subset &F, and for p; < p, each element
of Xp, is strictly smaller than any element ofp,.

For a real number we denote byH] the integral value of, i.e., the largest in-
teger which is smaller or equal than The following theorem characterizing the faces
of A(d, m) is proven in [1, Theorem 5.2.13], compare also [13, Lemn&j. 2.

Theorem 2.1. Assume WC {1,..., m} is a nonempty subset withw <d. W
is a face of A(d, m) if and only if the number of odd contiguous subsets of W is at
most d—#W. In particulay if #W < [d/2] then W is a face ofA(d, m).

2.2. Kustin—Miller unprojection. We recall the definition of Kustin—Miller un-
projection from [10]. AssumeR is a local (or graded) Gorenstein ring, addC R a
codimension 1 ideal wittR/J Gorenstein. Fixp € Homg(J, R) such that Hom(J, R)
is generated as aR-module by the subsdlt, ¢}, wherei denotes the inclusion mor-
phism. TheKustin—Miller unprojection ring Sof the pairJ C R is the quotient ring

B R[T]
 (Tu—¢@) |ueld)

where T is a new variable. The ring is, up to isomorphism, independent of the
choice of¢. The original definition of Kustin and Miller [8] was using peative reso-
lutions, compare Subsection 2.3 below.

2.3. The Kustin—Miller complex construction. The following construction,
which is due to Kustin and Miller [8], will be important in Sémt 6, where we iden-
tify the minimal graded free resolution & A(d, m)].

AssumeR is a polynomial ring over a field with the degrees of all valéabposi-
tive, and|l C J C R are two homogeneous ideals Bf such that both quotient rings
R/l and R/J are Gorenstein and diR/J = dim R/l — 1. We defineky, k, € Z such
thatwg/ = R/l (k1) andwg,y = R/J(k2), compare [1, Proposition 3.6.11], and assume
that k; > ko. We fix a graded homomorphisgn € Homg,, (J, R/I) of degreek; — k»
such that Hom, (J, R/1) is generated as aR/|-module by the subsdi, ¢}, wherei
denotes the inclusion morphism, compare Subsection 2.2dé&kete byS= R[T]/Q
the Kustin—Miller unprojection ring of the paid C R/l defined by¢, whereT is a
new variable of degre&; —k,. We have thatQ = (I, Tu—¢(u) | u € J) and thatS is
a graded algebra.

We denote byg = dim R—dim R/J the codimension of the ideal of R. Let

C;: 0~ R:Ag—>Ag_l_>..._>Al_> R= Ay

and
Ci:0-R=By1—---—>B —R=B8
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be the minimal graded free resolutions BfJ and R/l respectively asR-modules.
Due to the Gorensteiness d&&/J and R/l they are both self-dual. We denote by
&: A — A_; and bj: B; — Bj_; the differential maps. In the following, for an
R-module M we denoted byM’ the R[T]-module M ®g R[T].

Kustin and Miller constructed in [8] a graded free resolutiég of S as R[T]-
module of the form

Cs:0—->Fy—>Fyq1—>--—>F —-F—>S—>0,

where, wheng > 3,

Fo= By Fi1= B ® Aj(ka— ki),
Fi=B & Ak —k)®B_j(ke—ky), for 2<i<g-2,
Fg-1= Ay 1(ke — ki) ® By (ka — ki), Fg= By ;(ka — ki),

cf. [8, p.307, Equation (3)]. Wheg = 2 we have
Fo=Bp F1=Aj(k—ki), F2=Bj(ks—ky).

We will now describe the differentials of the compl€s. We denote the rank
of the free R-module A; by t;, sinceC; is self-dualt; is also the rank of the free
R-module Ay_;. We fix R-module base®y, ..., &, of Ay andé, ..., &, of Ay 1.
We define, for 1<i <t;, ¢, § € R by ai(&) = ¢i1r and ag(1lg) = Zitlzléé. By
Gorensteiness we have that § € J forall 1 <i <t;. For 1<i <ty, letl; € R be
a lift in R of ¢(ci) and letl; € R be a lift in R of ¢(¢). For an R-module A we set
A* = Homg(A, R). For anR-basis f1, ... f; of A we denote byf/,..., f* the basis
of A* dual to it.

Denote byad_: A%_, — R = B;_, the R-homomorphism with&_; (&) = ; 1 for
1<i <t;. Taking into account the self-duality &, C;, we have thatg ; extends
to a chain mapy®: C; — C;. We denote bya: C; — C; the chain map dual tad.
The mapag: Bp = R — R = A is multiplication by an invertible element, say, of
R, cf. [9], and we setxr = &/w.

We will now define a chain ma@: C; — C,[—1]. We first definef;: Ay —
R = By by Bi(e) = —Ilj1g. We obtain a chain map: C; — C,[—1] by extending
p1. Moreover, 3: Ay = R — R = By_1 is multiplication by a nonzero constante
R. By [8, p.308] there exists a homotopy map C; — C; with hg: By — By and
hg—1: Bg—1 — Bg—1 being the zero maps and

Biai = hi_1by + bih;,

for1<i <g.
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Finally, following [8, p.307], we have that the differeritimaps f;: F — F_; of
the complexCs are given in block format by the following formulas

b hy + Tl
fi=[b B+Ta] f2=|: 2 Pz T 1},

0 —ay —0]
b B hi_i4+(-1)Tli
fi=| 0 —g — 1 for 3<i<g-2,
0 0 bi_1
Bg-1  hg2+ (19 Tlg»
fo-1=| —8g-1 —0g-2 *
0 bg_2
fy = [ —ag-1 + (—1)u T }
g bg—l !

where |; denotes the identity ranR; x rank B; matrix.

The resolutionCs is, in general, not minimal [3, Example 5.2]. However, in the
cases of stacked and cyclic polytopes it is minimal, see f&] @heorem 6.1. In the
following we will call Cs the Kustin—Miller complex constructionWe refer the reader
to Subsection 6.2 for explicit examples of this construttio

3. The main theorem for d even

We fix a fieldk, and assume that,m are integers withd even and 2<d < m—1.
(The casem = d +1 is discussed in Subsection 3.2.) We aet (d+2)/2, and denote
by k[A(d, m)] the Stanley—Reisner ring of the simplicial complexXd, m).

The following lemma is an almost immediate consequence @forgm 2.1.

Lemma 3.1. We have
K[A(, m)] = K[X1, . .., Xm]/(la,1m-1, la,2m)-

Proof. Denote by.A the set of minimal monomial generators of the ideal
(la,2m-1, la2m). We first show that ifxy € A, thenV is not a face ofA(d, m). As-
sumexy is a monomial generator af, 1 m-1, the casexy is a monomial generator of
la2m follows by the same arguments. Sinc¥ # a, we have that the number of odd
contiguous subsets of is at leasta— 1. Sincea—1=d/2>d/2—1=d—a, by
Theorem 2.1V is not a face ofA(d, m).

Assume nowW C {1,..., m} is a subset with & < d. We will show that if W
is not a face ofA(d, m) then there exists a monomial generakgre A with V. .C W.

By Theorem 2.1 ¥ > a. We will argue by induction on the cardinality V.

Denote byp the number of the odd contiguous subsetd\dfconsidered as a sub-

set of {1,..., m}, and, forw € W, by p, the number of the odd contiguous subsets
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of W\ {w} also considered as a subset{df. .., m}. By Theorem 2.1p > d — #W.
If #W = a, then p > d —#W implies thatW has at leasdt —a+1=a—-1=#W-1
odd contiguous subsets, and we Set= W.

Assume for the rest of the proof thaiM#> a. By the inductive hypothesis it is
enough to show that there existise W such thatW \ {w} is not a face ofA(d, m).
Hence, by Theorem 2.1 it is enough to show that there exisssW with p, > d —
H#W + 1.

We call a nonemptyX C W a gc-subset if there exidt < j with i — 1 ¢ W,

j +1¢ W such thatX = {i,i +1,..., j}. It is obvious that a contiguous subset\&f
is a gc-subset, and that a gc-subsetWwfis contiguous if and only if contains neither
1 norm.

If W contains a gc-subset of even cardinality, $ay +1,..., j} we setw = m if
j = m, while if j £ m we setw =1i. In the first case, since= 1 contradicts ¥/ <d,
we have thatp,, = p+1, sop, > d—#W + 1 follows. Similarly, for the second case
againp, = p+1 andp, >d—#W + 1 follows.

Assume for the rest of proof that all gc-subsetsVWéfare of odd cardinality. First
assume thatv contains a gc-subsét,i +1,...,j} of odd cardinality at least 3, and set
w =i+ 1. Since {, j) = (1, m) is impossible by ¥ < d, it is clear thatp, = p + 1,
so againp,, > d —#W + 1.

So we can assume for the rest of the proof that all gc-subg$et®¥ are of cardi-
nality 1. We either seww = m if me W, or if m¢ W we setw to be the smallest
element ofW. If me W and 1e W we havep, = p=#W —2, andp > d — #W
implies 2#V — 2 > d, so sinced is even 2#V > d + 3, hencep,, > d —#W + 1. If
me W and 1¢ W, we havep, = p=#W -1, andp, > d—#W + 1 is equivalent to
2#W > d + 2, which is true by the assumptiolMt> a = (d + 2)/2. If m¢ W and
1 e W the argument is exactly symmetric to the case= W and 1¢ W. If m¢ W
and 1¢ W, we havep, = p—1=#W -1 andp, > d —#W + 1 is equivalent to
2#W > d + 2, which is true by the assumption#> a = (d + 2)/2. This finishes the
proof of Lemma 3.1. O

We now further assume that is an even integer witld > 4, the cased = 2 is
discussed in Subsection 3.1. We &t K[X, ..., Xm, 2], where we put degree 1 for all
variables. We consider the idedls= (Ia1m-1, la2m) and J = (la—1,2m-1, Zla—2.3m-2)
of R. (When we need to be more precise we will also use the noatiggn for | and
Ja,m for J.) It is clear thatl C (la—1,2m-1), hencel C J. Moreover, using Lemma 3.1,
R/l = k[A(d, m)][Z] and R/J =~ k[A(d — 2, m — 1)][X1, Xm]. Consequently, both rings
R/l and R/J are Gorenstein by [1, Corollary 5.6.5], and diyiJ = dim R/l — 1.

The proof of the following key lemma will be given in Subsecti3.3.

Lemma 3.2. There exists unique € Homg, (J, R/1) such thatg(v) = 0 for all
V€ la_12m1 and ¢(zw) = wXgxm for all w € l4_23m—2. Moreover the R/I-module



88 J. BOHM AND S.A. PAPADAKIS

Homg, (J, R/1) is generated by the sédt, ¢}, where i: J — R/l denotes the inclu-
sion homomorphism.

Taking into account Lemma 3.2, the Kustin—Miller unprojeatiring S of the pair
J C R/I is equal to
_ (R/MIT]
(Tu—9¢(u)Jued)

We extend the grading dR to a grading ofS by putting the degree of the new variable
T equal to 1. By Lemma 3.5 is a gradeck-algebra. Our main result for the cade
even is the following theorem.

Theorem 3.3. The element £ S is S-regulgrand there is an isomorphism of
graded k-algebras

S/(2) = k[A(d, m+ 1)].
Proof. Denote byQ C R[T] the ideal
Q=,24+(Tu—¢(u)|ueJd)cC R[T].

By the definition of S we haveS/(z) =~ R[T]/Q. By the definition ofyp we haveQ =
(la,zms T lac1,2m-1, 2). Hence, Lemma 3.1 implies th&/(z) = k[A(d, m + 1)]. As a
consequence, dir§/(z) = dimS—1, and since by [10, Theorem 1.5 is Gorenstein,
hence Cohen—Macaulay, we get thais S-regular. ]

ExAmPLE 3.4. Assumed = 4 andm = 6. We have
| = (X2XaXe, X1X3Xs), J = (X2Xa, X2Xs, X3X5, ZX3, ZX4)
and
S=K[Xg, ..., X6, T, Z]/(1, TXoXq, T XoXs, T X3X5, X3(ZT — X1Xg), X4(ZT — X1Xg)).

3.1. Thecased=2andd+1<m. Assumed =2 andd+1<m. Itis clear
that A(d, m) is just the (unique) triangulation of the 1-sphe®& having m vertices.
HenceA(d, m+ 1) is a stellar subdivision oA(d, m), and the results of [3] apply.

In more detail, seR = K[Xq, ..., Xm, Z], with the degree of all variables equal to 1.
Consider the ideal$ = (I2,1m-1, l2,2m) and J = (l1,2m-1, 2) of R. (When we need to
be more precise we will also use the notatidag, for I and J,, for J.) Clearly
k[A(d, m)][Zz] = R/I. Moreover, we have that C J, that J C R/l is a codimension
1 ideal of R/1 with R/J Gorenstein, and that if we denote 8/the Kustin—Miller
unprojection ring of the paild C R/l we haveS/(z) = k[A(d, m + 1)]. Moreover,
arguing as in the proof of Theorem 3.3 we get thas an Sregular element.
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3.2. The casdal is even andm=d+1. Assumed > 2 is even andn=d + 1.

We have that
d+1
K[A(d, m)] = K[xq, ..., Xm]/(l_[ Xi)
i=1

and
d/2 d/2)+1
K[A(D, m+ 1)] = Kk[x, ..., Xm+l]/(l_[ X2i 1, l_[ X2i)-
i=0 i=1
We setR = K[xg, ..., Xm, Z], with the degree of all variables equal to 1. Consider

the idealsl = ([T"'x) and 3 = ([TY3 xa, z[19? " xsi11) of R. (When we need
to be more precise we will also use the notatiogg, for | and Jq, for J.) We have

| C J, thatJ C R/l is a codimension 1 ideal oR/I with R/J Gorenstein, and that
if we denote byS the Kustin—Miller unprojection ring of the paid C R/l we have
S/(2) = k[A(d, m+ 1)]. Moreover, arguing as in the proof of Theorem 3.3 we get tha

Z is an Sregular element.

3.3. Proof of Lemma 3.2. We start the proof of Lemma 3.2. Recall thiat=
(la,am-1, la2zm) and J = (la_1.2m-1, Zla—23m-2). SinceJ is a codimension 1 ideal of
R/l and R/1 is Gorenstein, hence Cohen—Macaulay, there exists] which is R/I-
regular. Writeb = by + zby, with by € 15, ,,, ; andby € 17,5 ,, wherel denotes
the ideal of R/l generated byl,.. Consider the element

5= 280 ¢ (R),

where K(R/1) denotes the total quotient ring d®/1, that is the localization oR/I
with respect to the multiplicatively closed subset of regutlements ofR/I, cf. [6,
p.60]. We need the following lemma.

Lemma 3.5. (a) We have that xmvw = 0 (equality in R/1) for all v € la_1 2m-1
andw € |a72,3,m—2-
(b) We have gzw = wxixm (equality in K(R/I)) for all w € l4-23m—2.

Proof. Proof of (a). It is enough to show th&txmxyxw = 0 in k[A(d, m)],
wheneverxy is a generating monomial df_12m—1 and xw is a generating monomial
of la_p3m—2, With V C {2,..., m—1} andW C {3,..., m— 2}. Consider the set
A={1,mUVUW. If 2 ¢V itis clear thatx;xy = 0 and, similarly, ifm—1¢ V
we havexmxy = 0.

Hence for the rest of the proof we can assume that\2andm—1 € V. Denote
by A; = {1,..., p} the initial segment ofA, and by A, the final segment ofA. Since
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2,m—1¢ W, we necessarily have that all odd elementsAqaf\ {1} are inW \ V,
and all even elements oAy are inV \ W. If the largest elemenp of A; is not in
V, the monomial with support\{ \ A;) U {1, 3,..., p} is in |, hencex;xyxw = 0.
By a similar argument, if the smallest element &f is not in V we getXmxyXxw = 0.
So we can assume that both the largest elemem;0and the smallest element &,
are inV. By the above discussion, this implies thatd#( V) = #(A; N W) + 1 and
#(A2NV) = #(A, N W) + 1, hence ¥V, = #V, + 1, where we seV, =V \ (AU Ap)
and W, = W \ (A; U Ap). Hence there exists a contiguous subsetVpfu W,, say
As ={i,i +1,..., ]}, which starts with an element o \ V then either stops or
continuous with an element of \ W and finally finishes with an element & \ V.
The monomial with support inM\ Ag)U{i,i +2,...,j} isin |, hence we gekyxw =0
which finishes the proof of part (a) of Lemma 3.5.

We now prove part (b) of the lemma. It is enough to show thatHzhy)wX;Xm =
zZw(boX1Xm), for all w € W. For that it is enough to showyxymb;w = 0, which follows
from part (a). ]

Using Lemma 3.5, multiplication bsy, which a priori is only arR/I -homomorphism
R/l — K(R/I), mapsJ insideR/1, so defines aiR/l -homomorphismp: J — R/I. By
the same Lemma 3.5, we have tiigv) = 0, for allv € l4_1 2m—1, andp(zw) = wWX1Xm,
for all w € la_2 3m-2. Since anR/1-homomorphism is uniquely determined by its values
on a generating set, the uniquenesg atated in Lemma 3.2 follows.

We will now prove the part of Lemma 3.2 stating that tHe/I-module
Homg, (J, R/I) is generated by the sdt, ¢}. By the arguments contained in the
proof of [1, Theorem 5.6.2], we have isomorphisms

wa@,my = K[A(D, m](0), wka@-2m-1y = K[A(d -2, m—1)](0),

of gradedk-algebras, wherag denotes the canonic&-module. Consequently, since
R/l = K[A(d, m)][Z], R/J = K[A(d — 2, m— 1)][X1, Xm] We get

(3.1) wri = (R/1)(-1) and wgys = (R/I)(-2).
Combining (3.1) with the short exact sequence ([10, p.563])
0 — wgry1 — Homg,((J, wr/1) — wry3 — 0,
we get the short exact sequence
0 — R/l — Homg, (J, R/1) — (R/J)(~1) — O.

As a consequence, Haog (J,R/1) is generated as aR/|-module by the subsdt, v},
whenevery € Homg, (J, R/1) has homogeneous degree 1 and is not contained in
the R/I-submodule of Homy (J, R/I) generated by the inclusion homomorphism



STAINLEY—REISNER RINGS OF CyCLIC POLYTOPES 91

Hence, to prove Homy, (J, R/1) = (i, ¢) is enough to show that there is mo= R/I
with ¢ = ci. Assume suclc exists. Letw € la—»3m-2 be a fixed monomial gen-
erator. We then havezw = ¢(zw) = wXiXm (equality in R/Il), and sinceR/I is
a polynomial ring with respect t@ we getwxi;xn = 0, which is impossible, since
I = (lazm-1, la2m). Hence Hom, (J, R/1) = (i, ¢), which finishes the proof of
Lemma 3.2.

4. The main theorem for d odd

Assumek is a fixed field, andd, m two integers withd odd and 55 d < m—1,
the casesl =3 andm =d + 1 are discussed in Subsections 4.1 and 4.2 respectively.
We seta = (d + 1)/2. Combining Proposition 3.1 with [1, Exercise 5.2.18] we tee
following proposition.

Proposition 4.1. We have
kK[A(d, m)] = K[X1, ..., Xm]/(la2m-1, X1Xmla_1,3m-2)-

REMARK 4.2. By Proposition 4.1 and [1, Exercise 5.2.18], fbr> 5 odd the
ideal definingk[A(d, m)] is related to the ideal defining[A(d — 1, m — 1)]. We will
use this in what follows to reduce questions fbrodd to the easier casg even. A
similar remark also applies whesh= 3.

We setR = K[X, ..., Xm, 21, Z2], Wwhere we put degree 1 for all variables. Consider
the idealsl = (|a'2’m_1, Xlxmla—l,S,m—Z) and J = (Ia—1,2,m—21 ZlZZIa—2,3,m—3) of R. It
is clear thatl C (la-1,2m-2), hencel C J. By Proposition 4.1 we have thd&/l =~
K[A(d,m)][z1,2] and R/J = kK[A(d —2,m—1)][X1, Xm—1, Xm]. CONnsequently, both rings
R/l and R/J are Gorenstein by [1, Corollary 5.6.5], and dithJ = dimR/l —1. The
following lemma is the analogue of Lemma 3.2 for the cdsedd.

Lemma 4.3. There exists unique € Homg, (J, R/1) such thatg(v) = 0 for all
V€ la12m—2 and ¢p(z122w) = XgXm—1Xmw for all w € l4— 3m—3. Moreovey the R/I-
moduleHomg, (J, R/1) is generated by the sét, ¢}, where i: J — R/I denotes the
inclusion homomorphism.

Proof. Taking into account Proposition 4.1 and Remark 4@&nina 4.3 follows
by the same arguments as Lemma 3.2. O

Taking into account Lemma 4.3, the Kustin—Miller unprojentiring S of the pair
J C R/l is equal to
_ (RN
(Tu—g¢(u) [ued)
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We extend the grading dR to a grading ofS by putting the degree of the new variable
T equal to 1. Lemma 4.3 tells us th&is a gradedk-algebra. Our main result for
the cased odd is the following theorem.

Theorem 4.4. The sequence;zz, € S is S-regulgrand there is an isomorphism
of graded k-algebras

S/(z1, z2) = k[A(d, m + 1)].
Proof. Denote byQ C R[T] the ideal
Q=(,z1,2)+ (Tu—¢()|ued)CR[TI.

By the definition of S we haveS/(z, z;) = R[T]/Q.

Denote byg: R[T] — R[xm1] the k-algebra isomorphism which is uniquely spec-
ified by g(z) =z fori =1,2,9(x) =% for 1 <i <m-—1, g(Xn) = Xms+1 and
9(T) = Xm. It is easy to see thad(Q) = (lqm+1, Z1, Z2). Sinceg is an isomorphism,
we have using Proposition 4.1 that

RIT]/Q = RXxm+1l/(lam+1, 21, 22) = K[A(d, m+ 1)],

henceS/(z1, z2) = k[A(d, m+ 1)]. As a consequence, diY(z;, z) = dimS— 2, and
since by [10, Theorem 1.5% is Gorenstein, hence Cohen—Macaulay, we get that,
is an S-regular sequence. ]

4.1. Thecasad=3 andd+1<m. Assumed =3 andd+1 < m. Combining
[1, p.229, Exercise 5.2.18] with the discussion of Subsec8.1 we have the follow-
ing picture. SetR = K[Xq, ..., Xm, Z1, Z2], where we put degree 1 for all variables.
Consider the ideals = (l2.2m-1, XaXml1,3m-2) and J = (l1,2m-2, Z122) of R. Then
k[A(d, m)][z1, 2] = R/1. Moreover, we havd C J, thatJ C R/I is a codimension 1
ideal of R/l with R/J Gorenstein, and that if we denote 8/the Kustin—Miller un-
projection ring of the paid C R/l thenz,z, is an S-regular sequence ar§y/(z;,z,) =~
k[A(d, m + 1)].

4.2. The cased is odd andm=d + 1. Assumed > 3 is odd andm =d + 1.
We have
d+1
KA, m)] = K[Xq, . .., xm]/<l_[ xi>
i=1

(d+1)/2 (d+1)/2
XZi)-

K[A(D, m+ 1)] = k[x, ..., Xm+l]/< l_[ X2i 11, 1—[
i=0

and

i=1
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Set R = K[X, - .., Xm, Z1, Z2], where we put degree 1 for all variables. Consider the
ideals| = ( ,dill x) andJ = (]_[i(d;gl)/z Xoi , 2122 ]_[i(dz’ll)/2 X2i+1) of R. We havel C J,
that J C R/l is a codimension 1 ideal oR/I with R/J Gorenstein, and that if we
denote byS the Kustin—Miller unprojection ring of the pai# C R/l thenz, z; is an

Sregular sequence and/(z;, zp) =~ K[A(d, m + 1)].

5. Combinatorial interpretation of our construction

We fix d > 2 even andn > d + 1, and we will give a combinatorial interpretation
of the constructions of Section 3. We introduce the notafiyn = K[Xy, ..., Xm, Z.
Consider the ideal$qm and Jym of Rm) as defined in Section 3 il > 4 andm >
d + 2, as defined in Subsection 3.1df=2 andm > d + 2, and as defined in Sub-
section 3.2 ifd >2 andm=d + 1.

Note thatly m is the Stanley—Reisner ideal of(d,m). We will inductively identify
Jam- We setPym = lgm : (X1Xm), then

Pa.m = Istangm(1m) + (% | iis not a vertex of stayq,m({1, m})).

It is clear that the ideaPym of Rm) is monomial, and that no minimal monomial
generator of it involves the variables, x,, and z. We denote byFA’d,m the ideal of
K[x2, ..., Xm_1, Z] which has the same minimal monomial generating set.

If d =2 we haveJym = (Pym, 2). Assume nowd > 4. It is easy to see that
the ideal FA’d,m is equal to the image of the idedh_om—> of Rm—2 under thek-
algebra isomorphisnmRm_2) — K[Xy, . .. Xm—1, Z] that sendsz to z and x; to x1 for
1<i<m-2, hencelﬁd,m is the Stanley—Reisner ideal of a simplicial complex iso-
morphic toA(d —2,m—2). The unprojection constructions described in Sectiom@ a
Subsections 3.1, 3.2 allow us to pass from the idgabm—» of Rm-2 to the ideal
lg—2m-1 Of Rm-1), which is the Stanley—Reisner ideal af(d —2, m —1). Denote
by Qam C K[Xz, ..., Xm, Z] the image of the idealq_»m-1 under thek-algebra iso-
morphism Rm—1y = K[X2, .. ., Xm, Z] that sendsz to Xy, X t0 X1 for 1 <i <m-2,
and xm—1 to z. It is then easy to see thakn is the ideal of Ry generated by the
image of Qg m under the inclusion ok-algebrask[Xz, ..., Xm, Z] = Rm). In particular,
Rm)/(Jd,m, X1, Xm) = K[A(d — 2, m —1)], as already observed above.

Assume nowd > 3 is odd andm > d + 1. Consider the ideall as defined in
Section 4. Using Remark 4.2, a similar combinatorial intet@tion exists forJ in
terms of theA(d — 2, m — 2) related to the star of the fadd, m} of A(d, m) when
d > 5, and an analogous statement whks= 3. We leave the precise formulations to
the reader.
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6. The minimal resolution of cyclic polytopes

Combining the results of Sections 3 and 4, we have thatifer4 andd +1 < m,
the Stanley—Reisner ring[A(d, m + 1)] can be constructed from the Stanley—Reisner
rings k[ A(d, m)] and k|A(d — 2, m — 1)] using Kustin—Miller unprojection. Moreover,
we showed that a similar statement is true also for the cdse®, 3 andm =d + 1.
Using the Kustin—Miller complex construction discussed iuh&ection 2.3, we can in-
ductively build a graded free resolution & hence using Proposition 6.3 below of
k[A(d, m + 1)], starting from the minimal graded free resolutionskpi(d, m)] and
K[A(d — 2, m —1)]. The following theorem, which will be proven in Subsecti6.1,
tells us that in this way we get a minimal resolution. Sulisec6.2 contains examples
demonstrating the theorem and a link to related computezbatégcode.

Theorem 6.1. For d > 4 and d+ 1 < m, the graded free resolution of[k(d,
m+-1)] obtained from the minimal graded free resolutions pAfd,m)] and HA(d—2,
m — 1)] using the Kustin—Miller complex construction is minimabrk = 2 or 3 and
d + 1 < m, the graded free resolution of[&(d, m + 1)] obtained from the minimal
graded free resolution of [lA(d, m)] and the appropriate Koszul compldggsee Sub-
sections 3.1and 4.1) using the Kustin—Miller complex construction is also miaim

We remark that in the proof of Theorem 6.1 we do not use theutalon of the
graded Betti numbers K[ A(d,m)] obtained by Schenzel [12] for eveh and by Terai
and Hibi [13] for oddd. Not only that, but in Proposition 6.6 we recover their résul
without using Hochster’s formula or Alexander duality.

6.1. Proof of Theorem 6.1. For the proof of Theorem 6.1 we will need the
following combinatorial discussion.
Assumed > 3 is odd,d+1<mand 1<i <m-d—1. We set

m—[d/2] — 2) ([d/2] +i- 1)
[d/2] +i [d/2] '

compare [13, p.291]. We also setd, m, 0) = n(d, m, m—d) = 0.

n(d, m, i) = (

Proposition 6.2. We havefor 1 <i <m-—d,
(6.1) nd,m+1,i) =nd, mi)+n(d, mi-1)4+nd-2,m-1,i).
(By our conventionsfor i = 1 the equality becomes(d,m+1,1)= n(d,m,1)+n(d—2,

m—1, 1), while for i = m—d it becomes;(d,m+1,m—-d) =n(d-2,m—-1,m—d)+
n(d,m,m-d-1).)
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Proof. Assume first X i <m—d— 1. We will use twice the Pascal triangle
identity (§) = (*,) + (5_7). We have

n(d, m+1,i)
B (m+ 1-[d/2] —2) ([d/Z] ti— 1)
B [d/2] +i [d/2]

B ((m— [d/2] —2) n (m—[d/2]—2))([d/2] +i —1)
B [d/2] +i [d/2]+i -1 [d/2]
B (m— [d/2] — 2) ([d/2] +i- 1) n (m— [d/2] — 2) ([d/2] +i- 1)
B [d/2] +i [d/2] [d/2] +i -1 [d/2]
B . m—[d/2] -2 [d/2]+i -2 [d/2]+i -2
=ne.mi+ (o (V) (aass )
=nd,mi)+nd mi-21)+nd-2,m-=1,i).
The special caseis= 1 andi = m—d are proven by the same argument. []

For the proof of Theorem 6.1 we will also need the followinghgel propositions,
the first of which is well-known.

Proposition 6.3 ([1, Proposition 1.1.5]). Assume R=K[Xy,...,Xy] is @ polynomial
ring over a field k with the degrees of all variables positigad | C R a homogeneous
ideal. Moreover assume that xis R/I-regular. Denote by cF the minimal graded
free resolution of Rl as R-module. We then have that & R/(Xn) is the minimal
graded free resolution of Kl,x,) as KX, ...,X,_1]-module where we used the natural
isomorphisms g R/(Xn) = R/(Xn) = K[X1, . .., Xn_1].

The following proposition is an immediate consequence dfidfign (2.1).

Proposition 6.4. Assume Kk is a field andiR= K[Xq, ..., Xn], Re = K[Y1, ..., Ynl
are two polynomial rings with the degrees of all variablessifige. Assume;lC R;
is a monomial idealand denote by .l the ideal of R generated by the image of |
under the k-algebra homomorphism R Ry, i — Vi, for 1 <i <n. Obviously } is
a homogeneous ideal of,RWe claim that for all i> 0 we have j(Ry/12) = bi(Ry/I1)
(of course the graded Betti numberg bf R/l and R/I; may diffei.

Proposition 6.5. Assume Kk is a fieJdR; = K[X1,...,X,, T] and R = K[y1,..., ¥n,
T1, To] are two polynomial rings with the degrees of all variablessitive, degx; =
degy;, for 1 < i < n, and degT = degT; + degT,. Assume J C R; is a homo-
geneous idealand denote by,lC R, the ideal generated by the image afunder the
graded k-algebra homomorphisgh: Ry — R, specified byp(x) = vy;, for 1 <i <t,
and ¢(T) = T;T,. Denote by cF the minimal graded free resolution of;R; as
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R;-module. Then Jl is a homogeneous ideal,Rand the complex cF®g, Ry is a
minimal graded free resolution of )R, as R-module. In particularthe correspond-
ing graded Betti numbers;jbof R;/l; and R/I, are equal.

Proof. It is clear that, is a homogeneous ideal &,. By [6, Theorem 18.16)%
is flat. As a consequence, [6, Proposition 6.1] implies thatrtatural mag; ®g, R —
I, is an isomorphism of gradeR,-modules. By flatness, tensoring the minimal graded
free resolution ofl; as Ri-module with R, we get the minimal graded free resolution
of |, as R,-module, and Proposition 6.5 follows. O

Theorem 6.1 will follow from the following more precise statent. Notice that, as
we already mentioned before, the statements about the dyelti numbers have been
proven before by different arguments in [12, 13], but we domeed to use their results.

Proposition 6.6. Assume d> 2 and d+ 1 <m. Set [ = by;(kK[A(d, m)]). Then
the statement ofTheorem 6.1is true for (d, m). Moreovey we have that if d is even

bi,d/2+i =n(d+1,m+l,i)+n(d+1,m+1,m—d—i),

for1<i <m-d-1, and k; = 0 otherwise. If d is oddthen Iy = 1 for (i, j)
{(0,0), m—d, m},

bi /241 = n(d, m,i), bigz4i+1 =n(d, m,m—-d—i),
for 1L<i <=m-d-1, and h; = 0 otherwise.

Proof. We use induction od andm. If d > 2 andm = d + 2 thenk[A(d, m)]
is a codimension 2 complete intersection and everythindearc

The next step, is to notice that, fdr= 2 andm > 3, Proposition 6.6 follows from
[3, Proposition 5.7], since\(2, m) is equal toAP,(m) defined in [3, Section 5].

Now assume thatl is even withd > 4 andd 4+ 3 < m, and, by the inductive
hypothesis, Proposition 6.6 holds for the valuds{2, m — 1) and @, m). An easy
computation, taking into account Proposition 6.2, showat the Kustin—Miller com-
plex construction resolvingg[A(d, m + 1)] has the conjectured graded Betti numbers.
Since no degree 0 morphisms appear it is necessarily minifia$ finishes the proof
for d even.

Assume nowd > 3 is odd. Combining [1, Exercise 5.2.18] with Propositiond 6
and 6.5 we get that, for &1 <m-—d,

(6.2) bi(k[A(d, m)]) = bi(k[A(d — 1, m—1)]).



STAINLEY—REISNER RINGS OF CyCLIC POLYTOPES 97

(Of course the graded Betti numbesg can, and in fact are, different fdqA(d, m)]
andk[A(d —1,m—1)].) So we can reduce the cadeodd to the casel — 1, by doing
an almost identical induction ord(m) as in the cased(— 1, m — 1), noticing that
the Kustin—Miller complex construction fdc[A(d, m + 1)] has to be minimal, since
we proved that the one fd{{A(d — 1, m)] is minimal and the corresponding numbers
b = Zj bi; are equal by Equation (6.2). This finishes the proof of Pritjpos6.6. []

6.2. Examples and implementation. In this subsection we demonstrate the con-
struction of the cyclic polytope resolution with a sequenédwo examples. First we
carry out the Kustin—Miller complex construction descriiedSubsection 2.3 for the
step passing from the codimension 4 complete interseclignand the Pfaffianl; s to
the codimension 4 idedb s. In the second step we pass fraln; and the Pfaffiar, ;
to 14,8, using thatJs 7 is equal tol, ¢ after a change of variables. At the end of the sub-
section we give a link to computer algebra code where we imefe our constructions.

Using the notation of Subsection 2.3, we will explicitly cpate for each step the
auxiliary datac;, Bi, hj, u and hence the differential§ from the input dataa; and
bi. The idealsl, s and I, 7 are Gorenstein codimension 3, hence Pfaffian, and we will
fix below a certain resolution for each of them. In additiore will also fix below a
certain Koszul complex resolving s = (z, Xz, . . . , Xa).

Assumeq > 3 is an odd integer andl is a skew-symmetri@ x q matrix with
entries in a commutative ring. For 2 i < g, we denote by pfM the Pfaffian ([1,
Section 3.4]) of the submatrix df1 obtained by deleting thée-th row and column of
M. The main property of piM is that its square is the determinant of the correspond-
ing submatrix.

We will use the notatiorRm) = K[X4, ..., Xm, z] introduced in Section 5. Fal > 2
even, we denote bWy the d + 3) x (d + 3) skew-symmetric matrix with entries in
Ra+3 whose {, j) entry fori < j is zero except that for ¥ i < d + 2 we have
(Mg)ii+1 =X and that My)14+3 = —Xg+3. It is an easy calculation that

laara = (i (Mg) [ 1<i <d +3).

In addition, according to the Buchsbaum—Eisenbud theorgnthe minimal graded
free resolution ofR.3)/ld,d+3 iS given by

U}j Mgy Vd
(6.3) 0— Rd+3) — R(ddfg) - R(ddiss) — Ra+3)

where vy denote the k (d + 3) matrix with (1,i) entry equal to €1) pf;(Mg) and v}
denotes the transpose of.
We setR = R and fix the following Koszul complex resolution &/ J; 5

a ay

(6.4) I-RERERERAER
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where

X3 X4 X 0 0 0
_ 1 -z O 0 0 Xo —Xg
aa=(z % X4 X), &= 0 -2 0 —x% 0 x
0 0 -z % —x3 O

0 X xx z 0 O ! X3

_ Xo 0 —x3 0 z O ] xa

%= X % 0 0 0 z |’ &= Xo

0 0 0 X3 Xa Xo -z

We now discuss the Kustin—Miller complex construction foe gtep passing from
(I2,5, J2.5) t0 l26, Which corresponds to the unprojection &fs C R/l2 5 We will use
as input for the Kustin—Miller complex construction the region (6.4) of R/J 5 and
the cased = 2 of (6.3), which is a resolution oR/l, 5. Performing the computations
we obtain, in the notation of Subsection 2.3, the comf@ilgxspecified byh; = h, =0,

u = —1 and the maps

5
a1: R > R )" Gig > X1(Cs + Caes) + XaCres + Xs(Co€2 + Ca€s),
i=1
5
a2: R > R®, )" Gig > Xu(Co€s + Ca) + XsC365,
i=1

az: R— R4, €1 > X1 X561

and

4
pi: R* >R Y ce - —xaae,
i=1
6
Ba: R® > R% ) e > —xa(C1€r + Cags) — XsCoe,
i=1
4
Bs: R > R, )" G& > —Xa(Co€s + C165) — XaCaey — X5(C1€2 + Caey),
i=1

where €)i<i<q denotes the canonical basis Bff as R-module. Substitutings for T
and 0 forz in the differential maps ofCs we get the minimal graded free resolution
of Re)/l2,6. Moreover, substituting for x; in the differential maps of the resolution
of Re)/l2,6 just constructed we get the minimal graded free resolutiome)/ Ja, 7.

We now setR = R7y and discuss the Kustin—Miller complex construction for the
step passing fromlf 7 Js7) to 148 which corresponds to the unprojection &f; C
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R/14,7. We will use as input for the Kustin—Miller complex constiioct the resolution
of R/Js7 constructed above and the cade= 4 of (6.3), which is a resolution of
R/14,7. Performing the computations we obtain, in the notation wbs®ction 2.3, the
complex Cgs specified byh; = h, =0, u = —1 and the maps

7
a1: R' > R%, "G > Xu(Cr€ + Cs€7 + Caes) + X611 + X7(Co€1 + Co62 + Caey),
i=1

7
a2 R — R, )" ce > X7(Ca€3+ Cs65) — Xa(Co89 + Ca€11 — C€12+ Co€13),
i=1

as: R—> R% e > XqX7(X5€4— X487 — X36x)

and

9
Bi: R >R, ) & > XiXr(—CaXg — CsX3+ CoXs),
i=1
16
Bo: R™® - R, > cig > —Xa(C1€ + Ce€2 + o4 — Co€s) — X7(C143 + C1665),
i=1
9
Ba: R —> R, ) G& > —XeCser — X7(Co€2 + Caly + Co66) + X1 (C2€3 + C165 — Co€7).
i=1

Substitutingxg for T and 0 forz in the differential maps ofCs we get the minimal
graded free resolution oRg)/l4,s.

Under the link [4], a related package for the computer algedystem Macaulay2
[5] is available. Applying the ideas of the present papermanstructs the resolution
of the ideal Iy, for d even andm > d + 1 starting from Koszul complexes and the
skew-symmetric Buchsbaum—Eisenbud resolution (6.3)q@f.3. The functions in the
package provide the user with the option to output all thermediate data;, b, «;,
Bi, hi, u, fi in addition to the final resolution.
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