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Introduction. This paper intends to study the fundamental solution
E(2) of a degenerate parabolic system of pseudo-differential operators:

d
0.1) { 4 pwD)] E9=0, >0, seR",

EO0)=1I,
where kX k matrix p(x, &) has the following expansion:

(%, &) = pu(®, E)F-Pm-1(%, E)FPm-o%, §) s
0.2) Pu-; €8T (=0, 1,2),

Dm-j(% NE) = A" p,_(x, E) A>0,E+0 (7=0,1)
and m>1.

Our aim is to find E(¢) in some class of pseudo-differential operators. We
adopt the Weyl symbol for pseudo-differential operators in this paper. The
main theorem of this paper is that one can construct the fundamental solution
E(¢#) in the class S9,,, of pseudo-differential operators with parameter ¢ pro-
vided the symbol (0.2) satisfies the following Condition (A):

Condition (A).
where ¢,, (€S7,) is a non-negative scalar symbol.

(A)-(i)) min (Reu,(x, §))+tr 42>c|E|"
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for some positive constant ¢ on the characteristic set S={(x, {)R"XR";

gn(x, £)=0}, where {u,(x, £)}%..: are the eigenvalues of p,_(x, &) and tr 4 is
the sum of all positive eigenvalues of 4:

0.3) A=1iJH, .
Here

0, I
04) J= (_ I O)
and

6:5 ,85
(0.5) qu( b Ot d

(the Hessian matrix of ¢).
0t G, Ot q)

For a single equation in C. Iwasaki and N. Iwasaki [7] E(¢) has been con-
structed in class 89, under Condition (A), which is equivalent to the con-
dition that the following inequality holds for some positive constant & (Melin

[9))-
(0.6)  Re(p(®, D), w)>&llu|lppp—Cllull} for ucCi(R").

Similar results are found in Menikoff and Sjostrand [10] and Sjostrand [12].
However for the degenerate systems, namely, when some of the eigenvalues
of the principal symbol attain zero, a necessary and sufficient condition in order
that (0.6) holds is not known. Although the principal symbol is assumed
to have a simple form in our case, our result will turn out to be valid when
we apply it to [J,.

We intend to construct directly the symbol of E(¢) having the form e*f.
The function ¢ is expressible of an explicite function of the principal symbol
Pms its derivatives of the first order, the fundamental matrix A and the sub-
principal symbol near the characteristic set 3 with the aid of symbol calculus
of pseudo-differential operators. The meaning of (A)-(ii) will be made clear
through our construction of ¢. We obtain E(¢) by following the discussion
given in [7] carefully.

The exact form of E(f) is available to obtain the asymptotic behavior of

Y exp (—#\;) as ¢ tends to zero, where {\;}7.: are the eigenvalues of p(x, D),
& P j i g

if p(x, D) is a self-adjoint operator on a bundle over a compact manifold and
has exactly double characteristics. As an application of this theorem we get
an explicite construction of a parametrix for [, under the condition Y(g) (See
[2], Definition 4.1 also) for the Levi form, which will be shown to be equivalent
to (A)-(ii). Also we get the asymptotic behavior of the eigenvalues of [J;.
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Folland and Stein [3] and Boutet de Monvel [1] constructed a parametrix for
[J, under more restrictive conditions. We no longer assume the nondegeneracy
of the Levi form, that is, the characteristic % is symplectic as they did. On
the other hand Rothschild and Tartakoff [11] obtained a parametrix of integral
form under Y(g). But its kernel is not given in an exact form and their re-
sults are not available to the study of the asymptotic behavior of eigenvalues.

The plan of this paper is as follows. In Section 1 we state the theorems
of this paper. Section 2 is devoted to the calculus of pseudo-differential opera-
tors with the Weyl symbols and to the construction of the fundamental solu-
tion for (0.1). In Section 3 we apply the main theorem to an operator on a
manifold. Finally in Section 4 we apply theorems obtained to [J;.

1. Main results

We say that a C~-function p(x, £) defined on R"X R" belongs to S,
=S7rs(R") (0<8<p<1, 3<]1) if for any pair of multi-indices «, B there exists
a constant C, g such that

gnﬂ? (x’ E)l <C, ﬂ<£>m PI#I+31BI

where pig) (x, £)=0202p(x, &) and <E>D=(1+4|E|)"2. For p(x, E)ESr; we
define the semi norms | p|™ (=0, 1, 2, --+) by

(1.1) |p1¢” =max sup__{|p(§ (%, £)[<E>m0R

10| +1BI<! (x,8) €R"x

Sy is a Fréchet space with the system of semi-norms (1.1).
We employ the Weyl symbol for pseudo-differential operators in this
paper, that is, a symbol p(x, £) S5 defines an operator as

(12)  p(w Dyu) = oy et p(FE E) uly) dya

for ueS(R").

J e

DerFINITION 1.1.  We say that {p(x, £)}s<e<: cOnverges to po(x, £) as €0
weakly in S5 if {pe}o<e<: is @ bounded set in the Fréchet space Sp; and if
Pe(x, E) converges to py(x, &) as E—0 uniformly on any compact set of R"x R".
We denote by 9—E9(Sys) the set of all functions of ¢ with values in S,
which are continuous in ¢ with respect to this topology.

The main theorem of this paper is the following

Theorem 1. Let p(x, &) of (0.2) satisfy Condition (A). Then a funda-
mental solution E(t) of (0.1) is constructed as a matrix whose elements are pseudo-
differential operators belonging to YW—EY(SYpa). This is also the unique
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fundamental solution in CW——@?(LJS;’}) Sfor any 0<8<p<1 and 8§<1. More-
over E(t) belongs to S~ if t is positive and its symbol o(E(t)) has the following
asymptotic expansion for any N

o(E®) = 33 (5 ¢) f-+en

where fy=1I, (exp ¢) f; are matrices whose elements belong to W—ENST/%1,2) and
gy s ome with elements belonging to IW—ENSTN}P) (0<€<1/6). Here the
Sfunction ¢ is defined by
(1.3) ¢ =¥ di+(1—Y) ¢,
where U=l P
Y= (gD )
V= (KB
Y(s)EeC=([0, o)) such that Yy =1 (s<1), ¥y =0 (s=>2)
P(5)<0 (1<s<2) and |v™|<C,,(1—y)" (0<7<1)
0<128<1-6¢6<1

1= —{qn t-+<Vq, t, F(4[2) JVg, )[4
(1.4) +tr [log {cosh (42¢/2)}1/2} I—p,-1 ¢,
F(\) = (@A) (1—A"! tanh A)

and
o= —{gn t+<EO" "} I.

Remark. The operator ST E(t)dt (T>0) is a parametrix of p(x, D) of
0

class Si7%",2 since ¢ of (1.3) satisfies
|l exp ¢ || <o exp (—c'<EX"7' 2)

with some positive constant ¢, and ¢’ (See (2.8)). The case that p,,=0 implies
the results for parabolic systems of order m—1.

If p(x, £) is a quadratic polynomial with respect to (x, £), then exp ¢, is
the symbol of E(t). We have

Corollary. Let p=<X, HX>/2 with X =<g) for some constant matrix

H>0. Then
o(E(t)) = exp {—i <X, Jtanh (iJHt[2)XD} [det {cosh (iJH?/2)}]~*.
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ExampLE 1.
P = E (D%, -3 Dﬁj)—}-E D:,. Then
o(E(®) =TI, (cosh ;| )7 exp {—3] (E3+3 72) ;| tanh (In;] )
—31ti 4.

ExampLE 2. Let H, be the Heisenberg group with / strongly pseudo
convex CR structure. Then [J; on I'(A*?) (g0, /) is

O 67 o)) = 33 | 31 (2 24 2, Z)il=20) T ¢, d o

0 0 6
where Z ;= oz, oz, T8 ;> IT="7; and o’ is the dual base for Z;.

a(L) (%, 3, 8, &, =, T) = {lor—Jv2|*—(—29) 7} I,

where v,= ( )and '02—< )

d
The fundamental solution E(s) of 2s T is given by

o(E(s)) = {2/(1+e 29} exp {—tanh(7s)|v,7— Jo,/2|%T
—l|7|s+(1—2q) 7s} 1.

We apply Theorem 1 to a formally self-adjoint operator P on sections
of a bundle E of rank k over a compact manifold M of dimension # under the
additional assumption (B). As for the definition of pseudo-differential opera-
tors on a manifold we use that of Hormander [6] and Treves [13] which will
be illustrated in Section 3.

Condition (B). ¢, vanishes exactly to the second order on the character-
istic set =, that is, ¢,(X)>C(X) d(X, =), where C(X)>0 and d(-, +) is a dis-
tance on T*M. :

Under Condition (B) the characteristic set == {g,,=0} consists of smooth
conic submanifolds of T*M. Let 3f be submanifolds of 3 such that
codim Z'=d;. We put 3=V =/, where d=min{d}.

di=d

Theorem 2. Let a system of pseudo-differential operators P satisfy Condi-
tion (A) in any local chart and trivializations of E. Then there exists the funda-

mental solution E(t) of ~; +P in the class W—EY (SS1(M, E)) of pseudo-

differential operators (See Definition 3.2). Suppose further that P is formally
self-adjoint with respect to the inner product associated with some volume of M
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and some Hermitian form on E, and satisfies (B). Then we have the following
assertions.
(i) P is self-adjoint and has only discrete spectrum {\}5-;.

(11) i exp(—i\;) has the following asymptotic behavior as t tends to zero.
i=1

©o

El exp(—M;)  ~ (Ci+o(1)) t™™ if n—md|2<0,
~  (Cylog (1/)+0()) £ if n—mdj2 = 0 ,
~  (Cyto(l)) £ OmIn=D i n_md[2>0,

where

C,= Q)" k ST*M exp (—q,(x, £)) dxdE
C, = (2)*=) (e/m) Szo hexp (—h) d =2,
Cy = (2m) =9 Lo [det {(4/2)" sinh (4/2)} ]2 X tr {exp(—pn_1)} 4=,

where h is an arbitrary positive function on Z° which is homogeneous of degree
m—1 with respect to &, and where d=° is a density on =° induced by q,, and dxdg
as follows ([7]). If (u, v) is a system of local coordinates such that 3°= {u=0},
we define d='=(det H,,)™"* ®dv, where ®dudv=dxd¥ and H,, is the Hessian matrix
of q,, with respect to the variable u.

Remark. It will be shown later that Condition (A) is independent of
the choise of a local coordinate system.

We apply Theorem 2 to the operator [J, on a compact CR-manifold whose
definitions will be stated in Section 4 for the sake of convenience.

Theorem 3. Let M be a compact CR-manifold of dimension 21+1 which
satisfies the condition Y(q). Then a parametrix Q for [, on T'(A?9) is con-
structed as a system of pseudo-differential operators of class Sy 1,2 (M, A?9).
Moreover 9,Q and 9,Q belong to Siji (M, A*9). We also get the following

asymptotic behavior of ,i exp (—In;), where {\;}7-, are the eigenvalues of [J,.
=1

(1.5) 3 exp(—tr,) = (2et)" ( I’, )SM ¢y dM+-o(t~17Y)

where dM stands for the natural volume on M defined by the Hermitian metric
and ¢, ts defined by

(16) = [ 11 {o7/2 sinh o7/} 3 exp 3 v 3 v) i dr

i€y}



DEGENERATE PARABOLIC SYSTEMS 937

= SVEAHL (B 1 — 2 w4 3 )2, 5)
|Tr1=q j=1 JE(T)

€W}
HEL (vl + 3 7= 3 v )

where {v;} !, are eigenvalues of the Levi form L, v=(|v,|, -+, |v,|) and T (s, a, #)
is grven as follows.

E s, 0, ) =T() IT 1y, 31 (@3] s m)

Ao
= T (1 —exp (—py ) 27t e d.
2= (uy *, p,) (#;>0), Re s>1 and Re a>0.

Then

(s, @, #) = lim £+ 1, 0, (4, 8)).

So we can define T,(s, a, #) for p=(uy, ***, p,) (u;=>0), Re s>r>1 and Re a>0.
It is clear that

Ei(s, a, 1) = T'(s) &(s, a)
where §(s, a) is Hurwitz zeta function.

Corollary. Under the assumption of Theorem 3, we get the estimate
Nl <CUI 0 ¢ llatllSlly) ET(A»)  for any s>s".

2. Fundamental solution for degenerate parabolic systems on R"

Some basic theorems for pseudo-differential operators of the Weyl symbols
are stated below. Their proofs are found in the appendix of [7]. At first
we give a relation between the ordinary type of pseudo-differential operators

et p(x, £) u(y) dyd§

RﬂxR’l

#(x, D) u(x) = 22) |

and those of Weyl symbols.

Theorem 2.1. 1If a Weyl symbol p(x, £) and an ordinary symbol g(x, £)
give the same pseudo-differential operator, that is, p(x, D)=gq(x, D), then they
are transformed to each other by the following relations:

2.1) o &) = @u) | e plaertaf2, E+2) dade

R"XR
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(22) Pl §) = @myn [ et a2, g40) dadt
Corollary. In the above theorem if p(x, &) and q(x, £) have homogeneous
expansions p~i Pm—i» q~f} Qu-j» then p,=q, (the principal symbol) and
j=o j=0

pm_lz(qm_l—l—% ;21 0:; 0t q.)=(the subprincipal symbol of ¢°(x, D)).

ReMaRK. We may use the following form of the same operator instead
of (1.2).

(23) (s, D) u(x) = 2™ | gt p (g, §?) A(n) dndydg

Rﬂ xRﬂ xR"
for ueS(RY, (Ay) = S %7 (x) d) .
Rﬂ
We use the same notation S;’s to denote the set of pseudo-differential
operators whose symbols belong to S’;.

Noration 2.2. We denote the symbol of multi-product p,(x, D) --
bpu(x, D) of pseudo-differential operators p;(x, D) with symbol p,(x, &) by
(pro-++opy) (%, £). We use the notation o(P) to denote the symbol of P. So

o(p(x, D))=p(x, ).
Theorem 2.3.

(Pl 0+e00 pv) (x, E) = (27,)—’:1: 2" SS exp {i g ﬂj(yj‘y,-_l)}
><jl‘[:1 Pia+y;124y;0/2, E-+n;) dyy -+ dyy dyy -+ dyy,

where ny..=—n, Yvn=—Y,. Moreover if p; belongs to S7{’ (j=1, ---, v)
then p=p, o-++0 p,ESy, (m:i} m(J)) satisfies the following estimate for any 1
=1
pI<C L 12,1250,
where C and I, are independent of v.
Theorem 2.4. Let p; belong to S;3siy (j=1, 2) and §(j)<1, p(j)=8(k)
(j==k). Then for any N, we get the expansion
N-1
bep= § (20)7* (B ou(pry p2) 4 »

where
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!
(24) oi(P1s P2) =l°’l+zlﬂll »(_ ) |k ﬁ' DB P8 »

g€ Sp5™, m=m(1)+m(2), p=min (p(1), p(2)), §=max (§(1), §2)) and
&é=min {p(1)—8(2), p(2)—8(1)} >0. Moreover there exists constants l, and C
for any [ such that

(m—eN @ D+38(1)181-P(1)|® 2 |-
lqn ™ )<C{M+§_N,PI§B;“TIO) MIBI=PMI®]) v lngggl(ﬂ(lo)ﬁ(z’)l 1=P@)IBD) |

Theorem 2.5. Let p=S)s. Then its adjoint is a pseudo-differential
operator with symbol p*(x, ).

We get some properties for a(p, q) of (2.4) in case that p and ¢ are arbitrary
smooth functions on R"X R".

DrrFINITION 2.6. (i) Vp means a vector (V =P ) ‘0,p, +*, 0,0, O, Py
., 0¢, p) for pe C=(R" X R"), where superscript ¢ stands for transpose.
(i) J is a transformation on C"x C* defined by ] (f‘,j):(_”u), (See (0.4)).
(iii) H, is the Hessian matrix of p (See (0.5)).
@iv) <a, b>=f‘1 a; b; for a pair of vectors a=*(a,, +*-, a,,) and
b="(b,, *+-, by,). "
For scalar valued smooth functions p, g, ¢, we have

Proposition 2.7. (i) ou(p, 9=(—1Yci(g, p) (k=0, 1,2, -:)
(i) oy(p, 9=<JVp, V>
(i) oy(p, g)=—1tr (JH, JH,)
(iv) O'I(P’ CquB):o‘,(P, ¢) expo
(V) oxp, expdp)=0u(p, ¢) expp+<JV. H, [V exp.

Proof of Theorem 1. We obtain the fundamental solution E(f) by apply-
ing the same method as that of [7] for a single operator. The uniqueness of
E(#) will be shown in Theorem 2.8. The shape of the phase function ¢, of
(1.4) near {t=0} X is important. So we sketch how to construct ¢, and f;
G=1).

If we assume that expp belongs to P —E7 (S3,2,12), we get by Theorem
2.4

d d
I SXPp+poexpp= exr>¢>+2 (20)7F ()™ o4(Pm> €XPP)
+Pm-1 €XpP mod S1723% .

Off the characteristics we take ¢p=—p,t. Near {t=0} X=, ¢=¢, should
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satisfy the equation approximately

d 2
-ﬁ ¢1+§) (21)-k (k')-l a'k(Pm’ exp ¢1) €xXp (_¢1)+Pm—1=0 ’

¢1':=o=0 .

Put ¢;=—p,—; ¢+, 1 for some function ¢,. Then &, should satisfy the follow-
ing equation by Proposition 2.7 if we neglect derivatives of p,,-,

(L Bt quti <Vam JYEIN2 6 (JH,, JH 5)[3

(2.5) l +<{Véy, JH,, JVD[8=0,
$1 I t=0=0.

We get the following equation for X=iJH 5 taking derivatives of (2.5) and
neglecting the terms which include the derivation of ¢,, p,, of more than second
order.

{ 7sz X+ A—AXY4=0,4=iJH, ((0.3))
X|im=0.
Thus we get X=—2 tanh (4¢/2) and

b1 = —{qn t-+<Vn t, F(4t[2) ]V )[4
+271 tr [log {cosh (4¢/2)}]} I—pp-1 t.

In our case p,,_,(¥, &) of ¢, is a matrix. So we use the following estimate found
in Chapter II of Gel’fand and Shilov [4].

| exp(—tpp-u(x, &) Il <e™* ;: @t || pues (1, E) Y 20,
where A=min (Rep;), {u}}.1 are the cigenvalues of p,-i(x, £). Then there
exist constant ¢, g and d, g for any a, B such that
(26)  [10g0%(exp (—tpm-s(x, E)) [l Sca,g<EX™' (142ED™ ") Pmp e™H2
Noting
[det {cosh (4#/2)}]7*<C exp (—tr4 /2),
we have
Il 82 8% (exp ¢?) Il <cf 6<E>™™ (142<EV™ ") a8 exp (—(A+1rA/2) t)
for ¢ = —27"tr [log {cosh (4¢/2)}] I—p,-, t.
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Hence we have
(2.7) [l exp ¢ || <C exp (—c'|E|™! 2)

for ¢'<<c with some constant C according to (A)—(ii). By (2.7) and the same
method of Proposition 1.25 of [7] the function ¢ of (1.3) satisfies

(2.8) lexp ¢ || <cy exp (—ebo),

where
o = D, Vg, t(1—AP)F'LKEOm 1 > ' KED™ !,

with @y(x, £)=q,((x, £)+h) t, h=hy(At[2) JVg,t
and k(\)=2"! F(\){14+(\""! tanh A)~¥2} 72,
To find f; (=1, 2, --+, N) we must seek the solution of the equation

@9 LA G e (—9) foi(m (exp ) 1)

—oj(Pm exp $) f} = ¢

for some given matrix g. We can apply the same method as in Lemma 1.15
of [7] to solve (2.9) approximately. Noting the estimate of g obtained by (2.6),
we have

(210) |1 020Z ((exp ¢) f;) | <Cja,p KEDTVHUFITI®N2 exp (—by/2)

by the same reason as that of Proposition 1.28 of [7]. It is clear that (exp ¢) f;
belongs to S77, 1,2 by (2.10).

Once an approximate solution Ey(¢) has been obtained, a fundamental
solution E(¢) is constructed by solving the equation

2.11) E(t)—}-S: E(t—s) Gy(s) ds = Ey(2),

where EN(t)=g (exp &) f(t, %, D) and GN(t)=(%—|—P) Ey(?). To get the

solution of (2.11) we use the estimate of symbols of multi-product given in Theo-
rem 2.3. Q.E.D.

Theorem 2.8. Under Condition (A), E(t) is the unique fundamental solu-
tion in IW—E} (Sgs) in any finite interval [0, T].

Proof. By the same method as in the proof of Theorem 2.2 of [7], we
can choose a constant ¢>0 such that

Re (p(x, D) u, u)+c(u, u)=>0  us(S (R"))*.
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Now consider the Cauchy problem
{%-{—p(x, D)} E@)=0, >0,

E0)=0.
Then E (t)=e E(t) satisfies

(- 4w D)+ B =0, 1>0,
E(0)=0.

The inequality
% (Edt, 5) u, B2, 5) u) = —2 Re (P+c) Et, s) u, Et, s) u)<O
implies
” E‘.(t, S) u ” < II Et(s’ S) u ” =0.
Therefore we get conclusion of the theorem. Q.E.D.
Under the same assumption (A) for p(x, ), we get

Theorem 2.9. p*(x, &) also satisfies Condition (A) and we can construct

a fundamental solution V(£)€ W —E5 (S%y112) of

[Tj;—]—p*(x, D)] Vie)=0, >0,

(2.12)
V()=1I.
Moreover
(2.13) E*(t) = V()
and
(2.14) —dd? E(%)+E@) p(x, D)= 0, t>0.

Proof. Let 0<<r<t be any number. For any f and g (S(R"))* we have

2 (B0 1, Ve g)
= —(PE®)f, V(t—7) )+(E0 £, PV(t—1) g) = 0.

Integrating it in 7 from 0 to ¢, we obtain
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(2.15) (EQ0) f, V(1) &) = (E(®) f, V(0) &) -
From (2.15) we have (2.13). Taking the adjoint of (2.12), we get (2.14) by
(2.13). Q.E.D.

Corollary. Under Condition (A), we can construct a parametrix
T
0= B atestme (1>0) for p(x, D).

Proof. In view of Theorem 1 Q is a right parametrix, and by Theorem

29 Q is a left parametrix also. The function ¢ defined by (1.3) satisfies
[lexp ¢ || <cgexp (—c'<ED™ ' #). So it is easy to see that Q belongs to S}y /s.
Q.E.D.

In the rest of this section we assume that

(2.16) 25, ) = 31 |2(x D)1,

where 2 (x, £) belongs to ST for each j.

Proposition 2.10. On the characteristic set S={(x, £)R"X R"; q,(, &)
=0} the non zero eigenvalues of A coincide with those of M including multiplicities,
where M is the symmetric matrix defined by

tC, D )
—-D,—C)"

Here C and D are 1 X | matrices whose elements are given by

Cip= i<Jsz; vz

(2.17) M= (

and
dj,k =1{JV=zj, V2> .

Proof. The Hesse matrix of g, is equal to
!
3 VAV VE(VZ)}

on 3, when (2.16) holds. Let X be the 27X 2/ matrix defined by
(2.18) X= (Vzh *%y Vzh Vél! %y Vzl) .

Then A=iJXX* on =. On the other hand we have H=iX*JX by (2.17)
and (2.18). Then

(2.19) X* A= M X*
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and
(2.20) AJ X =JX M.
The conclusion of the proposition follows from (2.19) and (2.20) without difficulty.

Q.E.D.

Theorem 2.11. We assume (2.16) and Condition (A). Then the parametrix
Q=q(x, D) obtained in Corollary of Theorem 2.9 satisfies

(2.21) zj0q, Z09ES8UzME (=1, 1)
and
(2.22) 2° Boge STHNF" (lal+168122),

where 2° 2P=251 - 291 781 ... 381 [
Proof. We have
0 2 (]
2%q = z(-," 7,
=

where 75=(24)"7 ()7 ¢,(2", @) ESIF ™ (=0, 1) and r7&STf5'{%™ since
O belongs to Si77%,, and 2 belongs to S*§"/2. Then it is sufficient to show

z; q€SUNE, 2" qeSTEP” (lal=2)
and
o(2% @ ESTETR? (la]=2).

By q¢= S: e(t) dt, for concluding (2.21) and (2.22) it suffices to show

(2.23) [2; exp (—o/2)| SCLEI™D exp (—¢hol4),
(2.24) |2:2; exp (—¢o/2)| SCLED™" exp (—¢po/4)
and

(2.25) 12 0@, d, (exp 6) £) | SCKE™™ exp (—hof)

by (2.8) and (2.10). Proposition 1.23 of [7] and the Taylor expansion lead to
2j(x, £) = 2((x, £)+h)+=j(x, £),
where 2j(x, £) satisfies

(2.26) | 2j(x, E)| SC {(Do)2+<EX™ D2 (@y+-EX" ) (14-2KED" )%}

for some d >0.
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(2.23) and (2.24) are proved by (2.8) and (2.26). (2.25) is clear by (2.10) and
(2.24) E.Q.D.

3. Fundamental solution for a degenerate parabolic operator on
bundles

In this section we consider pseudo-differential operators on sections of
vector bundles over a compact manifold M. The definitions of pseudo-differ-
ential operators on a manifold are given, for example, in Hormander [6],
Kumano-go [8] and Treves [13]. We use, in this paper, the definition given by
Hoérmander and Treves. We state it here for the sake of completeness. In this
section we always assume p+3>1 and §<1.

For an open set Q in R", S7'5(Q) is the set of C=(Q X R")-functions such
that for any compact set KCQ and multi-indeces «, 3, there exists a constant
Cy,ap such that

| DB (%, E)| < ChaplEO" P00 xe K, EER".

DeriNiTION 3.1. A linear operator L: C3(M)—C=(M) belongs to Sy (M)
if the kernel of L is smooth off the diagonal in M X M and if for any local chart
6 of M with X: 6—Q a diffeomorphism onto an open set Q of R", the mapping
of C7(Q) into C=(Q) given by u—>L(uoX)oX ™" belongs to S;'5(Q). Elements of
S7s(M) are called pseudo-differential operators on M.

DeriNITION 3.2. Let E, F be vector bundles over a compact manifold
M and let T'(E) be the set of sections of E. We say a linear operator P: I'(E)—
T(F) is a pseudo-differential operator of class S;'s(M; E) if the kernel of P is
smooth off the diagonal in M X M and if for any local chart § and any pair of
local basis e, -, e, and f;, +++, f, of E and F over # respectively, there exists
P; ;€575(€) such that

(3.1) (Po); =3P, ,0,inQ, 1<i<v,
i=1

where u————_f] (v;0X) e; and Pu:Zv] ((Pv);oX) f;.
ji=1 §i=1

DerFINITION 3.3 (properly supported). A distribution Us9D'(QXQ) is
said to be properly supported if supp U has a compact intersection with KX Q
and with QXK for any compact KC Q. A pseudo-differential operator is said
to be properly supported if its kernel is properly supported.

Theorem 3.4. Let Q and Q' be open sets in R" and let ¢: Q—Q' be a
diffeomorphism. Suppose P is a matrix consisting of property supported opera-
tors in S"y(Q'). Then we get a matrix P consisting of elements of Sy(S) such
that
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B(y, D,) (ue9) () = [(p(x, D) u(x))od] (y)  for ueCF(Q).

(32) By, = o) || ¢ po(r-+a2)2+ 6y —212)2, "2, 57 )
2y $—sl2)|dsdt,

X|®(y, 2)| 7

where WU(y, 2) is a matrix valued smooth function such that
Py +2[2)—p(y—=2[2) = ¥(y, 2) 2.
Corollary. Pseudo-differential operators on sections of the bundles over

a manifold are well-defined. If P has a homogeneous expansion p~i Dm-j» then
j=o

D has also a homogeneous expansion §~i Do- ; which satisfy
j=o0

3-3) () Bu(ys 2) = Pu(®(5), (0,8)7" 7)

(34) (i) Bu-o(3 1) = Pur($(9), (8, $)™" )
zfﬁm(y’ ’7) = Vﬁm(y' 77) =0.

ReEMARK. On manifolds it is natural to use (2.3) as a definition of pseudo-
differential operators instead of (1.2). Condition (A) is independent of the
choise of local coordinates by (3.3) and (3.4).

Proof of Theorem 2. Take a finite covering of M by a local chart (4,,
X )cex. Using the local coordinates, we get systems of pseudo-differential
operators P*=(P%,;) satisfying Condition (A) in Q,=X,(6.). We may assume
that p*ES7(Q,) are extended to p*= ST (R") satisfying Condition (A) of
Theorem 1. According to Theorem 1, we can construct a fundamental solution
E<(t)E S}, R") of

(%Jrﬁ‘) E<®)=0, >0,
E0)=1.

(3.5)

For E¥(t)=(E j(?));, j=1,...x We define operators Ef ;(t) on 6, such that
(3.6) E; () v=Ei j(t) (voX,)oXs*  for v€CT(X(0.)) -

Choose {¢p.}«cx a partition of unity subordinate to 6, and another function
¥, eC7(0,) such that pYr,=o, (kEK). Put

k k

(3.7) Et =23 21 23 v Ei (1) (bew); €5

i=1 j=1
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where ¢, u=12fl (¢ u); €. Then E(t) belongs to 8%, ., (M, E) and by (3.5)
~(3.7) it is clear that

(%—i—P) E@t) =K@ >0,
Eoy=1,

where K(¢) is a smoothing operator.
We assume that the fundamental solution E(Z) is of the form

E(t) = E(:)+S’ E(t—s) ®(s) ds.
0
Then &(¢) must satisfy the following integral equation
t
(3.8) K(t)+®(0)+ So K(t—s) ®(s) ds = 0.

(I>(t)=;;: @i(t) satisfies (3.8), where /(%) is defined by
DUt) = —K(¢)
Di(t) = —S; K(t—s) &Y(s) ds .

It is clear that ®(¢) is a smoothing operator. Uniqueness is shown by the
same method as that of Theorem 2.8. The proofs of the assertions (i), (ii)
for a formally self-adjoint system satisfying Condition (B) are omitted since
they are obtained by applying the method of Section 4 of [7] to a system of
pseudo-differential operators on M with diagonal principal symbol instead
of pseudo-differential operators on M. Q.E.D.

4. Proof of Theorem 3

M is a CR-manifold of dimension 2/-+1 i.e. a real orientable C*~-manifold
with a subbundle S of complex tangent bundle CTM satisfying the following
conditions:

(i) dimeS =1
(i) SnS= {0}
(i) [T'(S), T(S)I<T(S),

where T'(S) stands for the space of C* cross sections of S. We fix F a com-
plexification of the line bundle of T'M such that

CTM = S®SH F.
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We denote (A?S*)@(A'S*) by A?4. The operator 8,: T(A»9)—>T(A?) is
defined as

By, (ZiN - NZYQWi A+ AW pii)>
=21 (— 1Y W, <, (ZiA\ -+ AZYQWiA e AW, A e AWpar)>
+Z (=D g, (AA-NZ)R(Ws WIAWyee AR AW Ao AW >
for Z, -, Z,€T(S), Wy, -+, W, nET(S).
Then 3, forms a complex. Let L, ---, L, be a local basis for sections of S

and choose a non zero local section T' of TMNF. Then Ly, -, L,, L,, -+, L,
and T span CTM. The Levi form L=(L; ;) defined by

(41) z [Li, LJ] = Ls‘,j T mod (Ll’ S} LI) le Y Ll)

is hermitian on C€’. If we introduce a Hermitian metric on M such that S, S
and F are mutually orthogonal, then we can define the formal adjoint operator
9, T(A?)—-T(A? ") of 0, and the Laplacian [1,=8,%,+9,0,: T(A?9)—
T'(A?9). Following Folland and Kohn [2] we introduce the condition Y(g)
for the Levi form.

DEerFINITION 4.1.  We say that M satisfies Y(qg) if

max (g4, p-)>max (g+1, I41—¢q)

or

min (py, p-)>min (¢+1, I41—9g)

at each point of M, where p, (u-) are numbers of the positive (negative) eigen-
values of the Levi form L, respectively.

ReMaRk. The condition Y(q) is independent of the choise of L,, ---, L,
T (See [2]). The Hermitian metric which we use is arbitrary as far as S, S
and F are mutually orthogonal. Hence, we need not choose Hermitian metrices
bearing a relationship to the Levi form as Folland—Stein [3] and Greiner—Stein
[5] did.

Now we will calculate the symbol of self-adjoint operator [, in a local
chart to apply Theorem 2. Let L,, -+, L, and T be an orthonormal basis over
an open set U of M. Let o', -, o, " be its dual basis. We can write by

(4.1) with the Levi form L=(L, ;)

i[L,L]=L,, T—|—k§_‘,il at L,,+g ¥ ,L, onU.
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For simplicity we consider [J, on T'(A%?). No difference appears in other cases.
For =31 ¢ o/ ST(A®), where &/ =z A+ AB, J=(ju * jo) <o+
T =49

<j, (i€ {l, -, 1}), we have
0, ¢ = EL ¢; @ Nw’/+-&(¢p) ,

I ¢ = —ZL ¢ @ 1o/ +E&(4),

where &(¢) means linear combinations of ¢; with coefficients of smooth func-
tions and

o o/ = (=1 &' for J = (ji, = oo ** Jo) Je =1J andf= o s Jo» =" Ja)
=0ifje].

Then we have

(50 19b+19b 5b) d’
(E L Em+2 .Z Lm)(j)]?D']

m—a meE (T}

(#2) L, L,—L, L,) ¢ & (@" Aw')

|J1=a j§m

+&(L¢, L),

where &(L¢, Lp) means linear combinations of L;¢p;, L;p; and ¢; with

coefficients of smooth functions.
Put k=I!/(I—q)! ¢! and n=2I+1. For local basis (@’);, the symbol of

[0, is given by
o([s) = pot+D1+100

where p; (j=0, 1, 2) is a kX% matrix homogeneous of order j in £ such that

Proposition 4.2. (i) Pz:,zi‘; |2(x, £)|* I=¢q, I,

where
#j(% £) = 23 af(x) En
when
7" " 8
LJ =~ (X, xm

(i) tr (z:[qu)=i;,: | nj(x, E)| on the characteristic .= {(x, £); z;(x, £)=0,
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J=1, -+, I}, where {u;(x, E)} are the eigenvalues of the matrix C(x, £)=(c; ;(%, &)
defined by :

4.3) ¢, (%, &) =1 {JVzx, E), VZj(x, E)) .

(iii) On =, py(x, &) is a Hermitian matrix whose eigenvalues are (u;(x, ));,
where

(44) (%, &) = {jeﬁm (%, E)-j;(J)/bi(x, E}2.

Proof. We can find smooth functions {d;(x)}}.; such that o(L;)=iz;+d;
and o(L;)=iZ;+d;. By Theorem 2.4 we get

(X Ly L+ X L, L)
meE (T) me(r)

—;2 lzm |2_ {m;b,)o'l(zm gm)_l'm;‘“o'l(ém’ 2’,,,)} /2Z

(4.5) +i 33 (dn 2ty Z)
=— {mz; I Zm | 2+ mé.—.l o-l(zm’ ém)/Zl—mgr) o-l(zm’ ém)/l}
i mz']l (@, 2td, 2,)  mod S,
46 oL Li—L.L)=o(L; L)

=102, 2,) =1<J V2, VZ,0 = ¢} mod S?,.

So (i) is clear by (4.2) and (4.5). By the property [I'(S), I'(S)]CT(S) we
have

(47) 0'([Lx'r LJ]) = z(]Vz,, sz> =0 on 2 .
Proposition 2.10 means on 2

tr (iJH,,)

= {the sum of absolute values of eigenvalues

of M= ('g”_oc) }/2

!
=Z |Mj|~
i=1

Thus (ii) is proved. By (4.5), (4.6) and oy(a, b)=<JVa, Vb> we have on 3,
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Pl(x) E) (l;llﬂ(b] EI)
(48) = S 3] s D24 unls B} 1 0

1J1=9
-+ Z _ (91(35, E))K,! ¢J o ’
IK[=|J|=2
where g,(x, £) is given by
(4.9) 2 (@ gy @ = -2 cim@ L@ " ND).
1K|=9 iEm
JU(ER)=my ()

¢, is a Hermitian matrix because C is a Hermitian matrix. Choose a unitary
matrix U such that

M 0
(4.10) UcU-=|

0
oy

Let =%, ---, %') be defined as =Uw, o='(@", ***, @'). Then we have
the following lemma. So the proof is complete since {7/}; are linearly in-
dependent. Q.E.D.

Lemma 4.3. p(x, &) 7/=p,(x, &) 5’ for any J.
Proof. We assume the following equality
(+11) £l B) = = (tr O) IHpi(%, ),
where
412 Pl @) = 3 i@ A Awh ACah AaHoi A A)
for J=(ju = J)) (h<jz<-*<jg)»
Cai=2’;‘ci,ma”'.
Then we also prove the formula (4.12) for any &’ (J=(j;, ***, j,) s« {1, ==, I}),
because o/ =&f &¥ K=(ky, -+, k,) by<---<k,
Pi(@) = &k pi(a")
— &} 31 A ABHIAC BHATHA e AT

i=1

DN AT -1 A C/od Ao +1 N\ v Aw'e

q
2
i=1
é A Adi-t AC 6’"’/\ e Awde s
=1
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where o is the permutation such that j,,=*k;. By linearlity we can prove
(4.12) for any vector of A’. So we can prove by (4.10)

(#:13) pi(n’) = (23 w) 7

The conclusion follows from (4.11) and (4.13). (4.12) is justified as follows.
Noting that if J=(j;, =, j,) and j=j, & J(@"A@’)=(—1) @1 A+ Aw'i-1A
@" Aw'i-t A\ -+ Aw’s, we get by (4.8) and (4.9)
Pi(ps ) = ¢ {El mg. Ciom DN A1 AB" A i1 A -+ At
—En Cjm @ (@ No)}

= ¢y {Zqz mE_, Ciim @I A@-INGD" ABTi+1 N\ o+ N’

—+ il ? Ciim DN AB I ABT ADIFLNA e /\Eiq}
i=1 A
= ¢1 DI TA ACTHA - AT} . QED.
Before we prove Theorem 3, we give a remark for (1.6).

ReMARK. Of course the expression (1.6) is independent of the choise
of an orthonomal basis {L;}}., of S and 7. In fact for another orthonormal
basis {L/}!.,, C'=BCB* holds with a unitary matrix B, where C=(c,,,)
=o([L;, L,]) and C'=(c} m)=0([L}, Lp]). So {uj}}-1 are invariant. We also
see that the integrand is an even function of 7. Thus (1.6) is independent of
choise of T.

Proof of Theorem 3. We have only to check Condition (A) of Theorem
1. By Proposition 4.2 qz=jélz]-|2>0 and (A)—(ii) is equivalent to the following
=1

inequality.

1
(4.14) 2 ps( E)+20 | s, ) >l
for any J and for some positive constant ¢ on 3= {(x, £); 2,=0, j=1, ---, I} .

Set o(T)=it. Then 7 is a real-valued function of (x, £). By (4.1) and (4.6)
we have

(4.15) Ci i = L,-,j Tonz,
It is clear by (4.15) that

ni(%, &) =vi(x) 7(x, &) j=1, -, 1.
(4.14) is equivalent to the inequality
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X T— . X e .
2 vi(x) P2 vi(x) -r-|—j2=_‘i [v;(x) || 7| >¢c|7|, r€R for any J

This is equivalent to the inequalities
jez(.:r)(lvjl +V,-)-|—j§n(|vj| —v))>c
(4.16) and
jg)(lvﬂ -—vj)+]§_.m(|vjl +v;)>c¢ forany J.

It is easily shown that (4.16) is equivalent to Y(gq). We also use Theorem 2
for our operator [J,. Take n=2I4+1, m=2 and d=2I. Then we have

Som (29

417) o @ | [det {(4)2)" sinh (/2] tr (%) d=°,
with 4 = iJH,, .
By Proposition 2.10, the eigenvalues of 4 are {u;, —u;}i-, and zero and
those of p; are {us}; by Proposition 4.2. The integrand of (4.17) is

1T 2 sinh (u;/2)) (33 79

Take u;=(2;4+%,)/2, #;+,=(2;—%;)/2¢ (j=1, -+, I) and v=(7, x). Then

we have

2/

22 {ul =t Uy = 0}’P2=2 u?/z) Huu =1

i=1
dxdE = ®dudo with @ = | 0% 07 [
oF’ oF

By the assumption that L;, T are orthonormal with respect to the Hermitian
metric, (U,)i4! (U;=(L;+L))[2, Uy;=(L;—L))[2%, j=1, =+, I, Uy,,=T) are

mutually orthonormal with respect to the Riemannian metric g. This means

(4.18) S g al =8,

)and U=34 0 (j=1, -, 2141). By (4.18)

0 0
h [ <_s
Where 8i.7=¢ ox;  Ox; ox,

X i
|det a| =|det G|,
where G=(g; ;). Then ®=|det a|'=|det G|¥.. So we have
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dZ = ®do = |det G| dxdr=dMd~ .

3, 0, 9, Q= S1//3,2(M, A??) are shown as an application of Theorem 2.11.

(1

(2]
B3]
[4]
[5]
(6]
7]

[8]
91
[10]

[11]

[12]

[13]

Q.E.D.
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