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1. Introduction

It is of great interest to know whether a knot invariant is ifidel under connected
sum. The genug K ) of a knat  is additive [13], that gsK1#K>) = g(K1) + g(K>),
where K1#K> denotes a connected sum of two kndfs and K». For the braid index
b(K) of a knot K , Birman and Menasco [1] showed tliaK (— } is additive, that is,
b(Ki#K2)—1 = (b(K1) —1)+(®(K2) —1). For the tunnel number K{ ) of a kn& , it is
known thatr K ) is not additive under connected sum. See, famgie, [8], [9], [5].
In this paper, we study the additivity of the clasp number btk which is defined in
the following.

Let K be a knot inS%. We denote byf an immersioi D — S° of a disc D
into $% such thatf|sp: D — K is a homeomorphism ont& . Let denote the
singular set{x € f(D) | |f~1(x)| > 2} of the immersionf , and leE  denotg (%)
on D. The following lemma is a special case of Lemma 1 in [14k &0 Lemma 1
in [15].

Lemma 1.1. We may choose an immersigh  so that each connected component
of ¥ is an embedded arc oP joining a point éD and a point in intD .

Note that this immersiory  satisfids € f(D) | |f~(x)| > 3} = 0. An immersed
disc B = f (D) with these properties is calledctasp discof K. Fig. 1.1 illustrates a
clasp disc of a trefoil knot. Letpy K ) denote the number of catee components
of £ in B. The minimal number otpp K ) among all clasp diss Kf s called
the clasp numberof K, denoted bycp K ). Shibuya defined also the clasp number of
a link in $3. See Definition 3 in [14]. We refer to Appendix for the claspnrher
of prime knots of eight or fewer crossings excepg.8he following proposition is a
special case of Theorem 1 in [14].

Proposition 1.2. Let K be a knot inS%. Then we have inequalitiesp(K) >
g(K) and cp(K) > u(K), whereu(K) denotes the unknotting number &f
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Fig. 1.2 illustrates a sketch of an operation to show theuaéty cp(K) > g(K).
In [14], Shibuya called the operation, illustrated in Fig2,1an orientation preserving
cut along a clasp arc. This operation has been also calledoatking.

Using Proposition 1.2, Morimoto [7] determined the claspnber of torus knots.
Note that the genus of a torus knot of type,§ ) Ip|(— 1)(¢| — 1)/2. See, for
example, Theorem 7.5.2 in [10]. Since the unknotting nundfea torus knot of type
(p,q) is equal to [p| — 1)(Jg| — 1)/2 (see [3], [4]), we obtain the following theorem.

Theorem 1.3. Let K be a torus knot of typép, g). Then the clasp number of
K is (|p| — 1)(gq| — 1)/2, that is cp(K) = g(K) =u(K).

Concerning the additivity ofcp K ), Morimoto made the followinconjecture
in [6].

Conjecture 1.4. cp(K1#K>2) = cp(K1) + cp(K2).
He obtained a partial solution to this conjecture in the saager.

Theorem 1.5([6]). If cp(K1#K3) < 2, thencp(K1#K?) = cp(K1) + cp(K2).
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In this paper, we prove the following theorem.

Theorem 1.6. Let K1, K2 be non-trivial knots. lfep(K1#K2) = 3, then cp(Ki) =
1 and cp(K2) = 2.

Together with Theorem 1.5, we obtain the following corogllar
Corollary 1.7. If cp(K1#K>2) < 3, then cp(K1#K>) = cp(K1) + cp(K2).

2. Preliminary lemmas

Let B = f(D) be a clasp disc oK withepy K ) =p K ). LeK K 1#K>
denote a knot which is a connected sum of two non-trivial &kt and K,. Then
there exists a 2-spher&  which realizes a non-trivial deomitipn of K = K j#K».
We may isotopeS so tha§ interseck  ahdtransversely. Letl denote the set
f~X(S N B) on D. ThenT consists of a properly embedded arc Din and some
simple closed curves embeddediim D. Let D1 and D, denote discs inD such that
DiNDy;=m and DU D, = D, and letl; { =1 and 2) denote the afy; N 9D. See
Fig. 2.1. LetQ; be the 3-ball which is bounded By S$A and which contains the arc
f(l;). Let k be a simple arc o8 which connects the two pointsfadDYNS = KNS.
We may regard the knak; as the union of two akcs gntl (). In tHevidig, Z;
(Z=D, K, I, ..., etc.) denoteg; or Z». B

Loop components of" separal® to many regions. Detdenote the region in
D; separated by loop components Bf such that is a subattpf If there is no
loop component off’ inD; , thenﬁ,- is D; itself. Letg be the restriction of taﬁ,-.
Let ¥, denote the sefx € g(D;) | |g~%(x)| > 2}, and letS; denoteg—X(Z;) on D;.
By the definition of a clasp disc, a connected componenkof Eorbelongs to one
of arcs of the following four types (see Fig. 2.2);
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type A: an arc which connects a point in and a pointci'naﬁ( —1;),

type A’: an arc which connects a point intD; and a point incl (()5,- — 1),

type B: an arc which connects two distinct points d¢h 8[@- — 1),

type C: an arc which connects a point int D; and a point inl; .

Note that an arc of typed is identified byg with an arc of typed’, that an arc
of type B with another arc of typd3, and that an arc of typ€ with another arc of
type C. Let X; denote the union of endpoints of arcs of typ&sand( in int D;. The
following lemma is essentially the same as Lemma 1 (2) in Y& refer to [6] for a
proof.

Lemma 2.1. Let «a be an arc of typed on D;. Suppose thatv and a subarc of
m together with a subarc of cobound a di§awith (int5)NX; =0 on D_,-. Then there
are a surfaceD; and an immersiorg*: D} — Q; satisfying the following properties
(i) The surfaceD; is homeomorphic ta;,
(i) Every connected component ¢f*)~1({x € g*(D7) | |(g")"*(x)| > 2}) = &7
belongs to an arc of typed, A’, B or C, where these arcs of four types are defined
on D} in the same way as they are an,
(iii) The numbers of arcs of typds and C in X are equal to those of typeS and
C, respectivelyin %;,
(iv) The numbers of arcs of type$ and A’ in £ are strictly less than those of types
A and A’, respectivelyin ¥;, and
(v) There is a subard; of 0D} such thatg*(/¥) = g(;) and thatg*(0D; — I) is
contained inS .

Lemma 2.2. Let 31 and 3, be arcs of typel3 on D; with g(81) = g(B2). Sup-
pose that; and 3, together with two subarcs a?D; — [; cobound a discd in D;.
Then there are a surfac®; and an immersiorg*: D} — Q; satisfying the following
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properties

(i) The surfaceD; is homeomorphic ta;,

(i) Every connected component ) 1({x € g*(D7) | |(g*) " *(x)| > 2}) =
belongs to an arc of typed, A’, B or C, where these arcs of four types are defined
on D} in the same way as they are an,

(iii) The numbers of arcs of type4, A’ and C in X} are equal to those of typed,

A’ and C, respectivelyin ;,

(iv) The number of arcs of typB in X is strictly less than that of typ8 in %;, and

(v) There is a subard; of 0D} such thatg*(/) = g(l;) and thatg*(0D; — I}) is
contained inS .

Proof. LetV denote a regular neighborhoddg f)( Q;) of the arcg () =
g(B2) in Q;. We may choose/ so that Df) NV consists of two discg N &; Di))
and g (V (3z; D:)). The discg (v (1; D;)) intersectsg & §2; D;)) transversely along the
arc g (31) = g(32). We regardV as the sd{x, y,z) |x>+y? <1, 0<z <1} so that
two discs of V NS correspond to{(x, y,0) | x2+y? < 1} and {(x, y, 1) | x?+y? < 1}.
We may assume that N( 3{; D;)) corresponds td(x,0,z) | -1 <x <1, 0<z <1},
and thatg (v (2; D;)) corresponds to{(0,y,z) | -1 < y <1, 0 < z < 1}. We
may also assume that 6)(N V corresponds to the union dfix,0,z) | 0 < x < 1,
0<z<1and{(0,y,z) | 0 < y <1, 0< z < 1}. Let d; be the disc
{(x,y,2) | x2+y2 =1, x >0, y <0, 0< z < 1}, andd, be the disc
{(x,y,2) | x?+y>=1 x <0, y>0, 0<z <1}

Now we define an immersiog* of a surfaceD; into Q;. Letg (D ) be the im-
mersed surface which is the union ng( N(BLU B2; D; ), d1 and d,. By this con-
struction, g*(D;") satisfies the properties (ii)—(v).

The surfaceD; is the union ofD; — N(ﬁlu 32, D) d1 andd, whered; ( =1
and 2) is a disc corresponding tq Since dq may be regarded as a band which
connects two arc§(1,0,z) | 0 < z < 1} and {(0,-1,z) | 0 < z < 1}, the
disc d1 may be regarded as a band which connects the subarocof ON(0i; 5,-)
and the subarey, of ON(B; D;), where g €11) = {(1,0z) | 0 < z < 1} and
g(c12) =1{(0,-1,z) | 0 < z < 1}. Similarly, the discd, may be regarded as a band
which connects the subarg 1 of ON(61; D;) and the subarey 2 of IN(G; D;), where
glc21) = {(-1.0.2) | 0 < z < 1} and g ¢22) = {(0.1.z) | 0 < z < 1}. We notice
that g () is either an immersed annulus or an immersed Mobius bang;jnbecause
8(B1) = g(B2). This construction ofD; shows thatD; is homeomorphic taD;. [l

Fig. 2.3 (1) illustrates a sketch of the operation descrilbedthe proof of
Lemma 2.2. Similar arguments as in the proof of Lemma 2.2 stimwfollowing two
lemmas. See Fig. 2.3 (2) and (3) for sketches of operationpréwe Lemmas 2.3
and 2.4, respectively.
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Lemma 2.3. Let 3, and 3, be arcs of type3 on D; with g(B1) = g(B2). Suppose
that 5; (j = 1 and 2) and a subarc of9D; cobound a dise); in D; such thaté; N
d2 = 0. Then there are a surfac®; and an immersiorg*: D} — Q, satisfying the
following properties
(i) The surfaceD; is homeomorphic taD;,

(i) Every connected component @f*)~1({x € g*(D}) | |(g")"1(x)| > 2}) = X7
belongs to an arc of typed, A’, B or C, where these arcs of four types are defined
on D in the same way as they are dp,

(i) The numbers of arcs of types, A’ and C in £ are equal to those of typed,

A’ and C, respectivelyin %,

(iv) The number of arcs of typB in X is strictly less than that of typ8 in X;, and

(v) There is a subard; of 0D} such thatg*(l*) = g(l;) and thatg*(0D; — I) is
contained inS .

Lemma 2.4. Let 31, (52, 71 and v, be arcs of type3 on D; with 8(Bj) =g(v))
for j = 1 and 2. Suppose thap;, 5, and two subarcs 065,- cobound a discdg
in D;, and that+1, v, and two subarcs oPD; — I; cobound a disad, in D; such
that ds Nd, = 0. Suppose also thag(ds) U g(d,) forms an immersed annulus i@,
Then there are a surfac®; and an immersiorg*: D — Q,; satisfying the following
properties
(i) The surfaceD; is homeomorphic ta;,

(i) Every connected component )~ 1({x € g*(D7) | |(g*) " *(x)| > 2}) = &7
belongs to an arc of typed, A’, B or C, where these arcs of four types are defined
on D} in the same way as they are an,

(iii) The numbers of arcs of types, A" andC in X} are equal to those of typed,

A’ and C, respectivelyin %;,

(iv) The number of arcs of typB in X is strictly less than that of typ8 in %;, and

(v) There is a subard; of 0D} such thatg*(l) = g(l;) and thatg*(0D; — I}) is
contained inS .

For a positive integerp  and an immersig# D_;” — Q;, I/ denotes, in the
following, the subarc ofdD! with gP(I”) = g(i;), and =/ denotes the segA )
({x € 87(D)) [ (") X (x)| = 2}) on D/.

3. Proof of Theorem 1.6

In this section, we give a proof of Theorem 1.6 assuming psitipms we prove
in §84 and 5. Supposep K( ) = 3, so tha&t  consists of six args.., 06 On D.
Let x; (j = 1...,6) be the pointds; NintD, and X be the union of the points
{x1, ..., x6}. The following proposition is the same as Lemma 1 (3) in [6k Véfer
to [6] for a proof.
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Proposition 3.1. Let o be a loop component df, and 6, be the disc bounded
by « in D. Then there exists a-sphereS such thaf realizes a non-trivial decompo-
sition of K = K1#K>, and that|d, N X| > 2 for every loop component of 7.

The following four propositions are proved §4.

Proposition 4.1. Suppose thaD; = D; is a disg and that the number of points
of X; on D; is at most one. TheX; is the trivial knot.

Proposition 4.2. Suppose thaD; = D; is a disg and that the number of points
of X; on D; is two. Then the clasp number &f; is at most one.

Proposition 4.5. Suppose thaD; = D; is a disg and that the number of points
of X; on D; is three. Then the clasp number &if is at most one.

Proposition 4.6. Suppose thaD; = D; is a disg and that the number of points
of X; on D; is four. Then the clasp number &f; is at most two.

The following four propositions are proved §b.

Proposition 5.1. Suppose thaD; is an annulusand that the number of points
of X; on D; is 0. ThenK; is the trivial knot.

Proposition 5.3. Suppose thaD; is an annulusand that the number of points
of X; on D; is one. Then the clasp number &f is at most one.

Proposition 5.6. Suppose thaD; is an annulus, and that the number of points
of X; on D; is two. Then the clasp number &f; is at most one.

Proposition 5.14. Suppose thaD; is a twice-punctured discand that the num-
ber of points ofX; onD; is 0. Then the clasp number &; is at most one.

By Propositions 3.1 and 4.1, we may suppose tiatn X| > 2 and|D.NX| > 2.
Without loss of generality, we may suppose thd?i(N X|, | DN X|) = (2, 4) or (3 3).

First supposdD; N X| = |D2 N X| = 3. Propositions 3.1, 4.5, 5.1, and 5.3 show
that the clasp numbers &€, and K, are at most one. By the definition of the clasp
number, we see thatp KG#K>) < cp(K1) +cp(K2). Hencecp K1#K3) < 2. This con-
tradicts our supposition.

Next suppose|D; N X| = 2 and |D, N X| = 4. Propositions 3.1, 4.2 and 5.1
show that the clasp number df; is at most one. Propositions 3.1, 4.6, 5.1, 5.3,
5.6 and 5.14 show that the clasp numberKf is at most two. Therefore we have
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cp(K1) =1 andep K2) = 2.
This completes the proof of Theorem 1.6. [l

4. The case whereD; contains no loop component ofT

In this section, we deal with an immersed surfagcei-)(when there is no loop
component off’ inD; . Therefor®; = D; is a disc.

Proposition 4.1. Suppose that the number of pointsXof  bp is at most one.
ThenK; is the trivial knot.

Proposition 4.1 is essentially the same as Claim 1 in [6].

Proof. First supposeX;| = 0. ThenX; consists only of arcs of typ8. By
Lemma 2.3, we obtain an embeddigg of a disc D} into Q;. This embedded disc
¢X(D}) shows thatk; is the trivial knot.

Next supposeéX;| =1. ThenX; consists of one arc of typé, one arc of typed’
and some arcs of typ&. By Lemma 2.3, we obtain an immersigrt of a disc D}
into Q; such thatx} consists of one arc of typgl and one arc of typed’. Then we
obtain, by Lemma 2.1, an embeddirg of a disc D? into Q;. This embedded disc
g%(D?) shows thatk; is the trivial knot. O

Proposition 4.2. Suppose that the number of points Xf on is two. Then
the clasp number ok; is at most one.

Proof. Since|X;| =2, X; consists of either (1) two arcs of tygeand some arcs
of type B, or (2) two arcs of typed, two arcs of typed’ and some arcs of typs.

In both cases, we obtain, by Lemma 2.3, an immergiérof a disc D} into Q; such
that there is no arc of typ8 in =}

First suppose thak} consists of two arcs of typ€. Then the immersed disc
gY(D?) shows that the clasp number & is at most one.

Next suppose thakE} consists of two arcs of typel and two arcs of typed’. Let
a1, az be arcs of typed, andaj, o4 be arcs of typed’ such thatg'(«;) = g*(a)) for
j=1and 2. Letn® be the arccl §D} —[}). When we proceed om® from one end-
point of m!, we may assume, by Lemma 2.1 and Proposition 4.1, that theptiist of
zlnm! we encounter is an endpoint of an arc of tydé Hence we may assume that
the order of arcs of typesl and.A’ whose endpoints we encounter, when we proceed
on m* from one endpoint ofnl, is eithera), a1, az, aj, or of, az, a1, af in this
order. If the order isj, au, ag, af, then a configuration of the singular agé(m?)
on S is that of Fig. 4.1 (1) or (2), up to symmetry and isotopy Hnif the order is
oy, az, a1, o, then a configuration of the singular agé(m?) on S is that of Fig. 4.1
(3), up to symmetry and isotopy afi
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Fig. 4.1.

Lemma 4.3. Suppose that a configuration gf(m') on S is that ofFig. 4.1 (1)
or (2). ThenKk; is the trivial knot.

Proof. Suppose that the configuration is that of Fig. 4.1 Bt £ be a simple
arc on S such thak N gi(m?) = 0k = g'(Om?). The immersed disg'(D?) implies
that the singular argl(m?) is a projection of the arg!(/}) to S fixing its boundary
gX(01}). Therefore the uniort U g(m') may be regarded as a projection &f o
This shows that the crossing number &f is at most twoKso igriti@al knot.

Similar arguments as above prove the case in the configorafidcig. 4.1 (2).

U

Lemma 4.4. Suppose that a configuration gf(m?') on S is that ofFig. 4.1 (3)
Then the clasp number @&&; is at most one.

Proof. Letk be a simple arc o8  which connects two pointsgbfom?!) and
which intersectsg!(intm?') transversely in one point. The immersed diggD}) im-
plies that the uniork U g'(m') may be regarded as a projection &f o . Therefore
the crossing number oK; is at most three, and the clasp numbéf; s at most
one. See Appendix for the clasp number of prime knots of eaghtewer crossings
except 8s. Ol

This completes the proof of Proposition 4.2. [l

Proposition 4.5. Suppose that the number of points Xf bn is three. Then
the clasp number oK; is at most one.

Proof. Since|X;| = 3, ¥; consists of either (1) three arcs of type three arcs
of type A’ and some arcs of typ&, or (2) one arc of typed, one arc of typed’,
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two arcs of typeC and some arcs of typB. In both cases, we obtain, by Lemma 2.3,
an immersiong! of a disc D} into Q; such that there is no arc of tyge in X1

First suppose thaE! consists of three arcs of typd and three arcs of typel’.
Similar arguments as in the proof of Proposition 4.2 showt tha crossing number
of K; is at most four, and the clasp number Kf is at most one.

Next suppose thakE} consists of one arc of typel, one arc of typed’ and two
arcs of typeC. Let o and o’ denote these arcs of types and A’, respectively. LetV
denote a regular neighborhoad g*(a); Q;) of the arcg(a) in Q;,. We may choose
V so thatg!(D}) NV consists of two discg(N(a; DY) and gX(N(«’; D1)). The disc
gY(N(«; DY) intersectsg(N(a/; D)) transversely along the argl(a) = gl(a’). We
regardV as the seft(x, y,z) | x2+y?> <1, 0<z <2} so that the disdV N S corre-
sponds to the sef(x, y, 0) | x2+ y? < 1}. We suppose thag'(N(«; D})) corresponds
to the set{(0,y,z)| -1 <y <1, 0<z <1}, and thatg'(N(a'; D})) corresponds to
the set{(x,0,z) | -1 < x <1, 0< z < 2}. See Fig. 4.2. We may suppose that an
image of the outward-normal t®} in N(«; D}) agrees with the direction of increas-
ing x, and that an image of the outward-normal A in N(«’; D) agrees with the
direction of increasingy . Letly be the disc{(x,y,z) | x2+y2=1 x >0, y >0,

0 <z <1}, andd, be the disc{(x, y,z) | x2+y2=1, x <0, y<0, 0<z <1}
in V. Let d3 denote the disc embedded I which is the union of dias 0, z) |
2—7<x<1 1<z<2} {(x,y,2) | ¥®+y?>=(2-2)% x>0, y>0, 1<z<2},
{(0.y,2)|z-2<y<2-z, 1<z<2}, {(x,y,2) [ ¥*+y*=(2—2)% x <0, y <O,
1<z<2}and{(x,0,z) | -1 <x <z-2, 1<z <2}. We note here that the arc
¢ (1H)NV which corresponds to the s(0, y, 1)| —1 < y < 1} is disjoint fromintda,
that d3 N AV is an arc consisting of the three subarfsn {(x, y, 1) | x2 + y2 = 1},
doN{(x,y,1)| x2+y? =1} and gX(ON(c/; DH)N{(x, y,2) [ x2+y2 <1, 1<z <2},
and thatdds consists of the two arcs!(/}) NV anddz N dV.

Now we define an immersiog? of a surfaceD? into Q;. Let g?(D?) be the im-
mersed surface which is the union of(D! — (N(a; D! — I}) U N(o/; DY), di, d>
and d3. We say thatg?(D?) is obtained fromg(D!) by a CP surgeryalong g!(a).
A CP surgery may be regarded as a detailed explanation of athing operation, il-
lustrated in Fig. 1.2, in a regular neighborhood of an enalpof the clasp arc. By
this construction, we see that? consists of two arcs of typ€, and that there is a
subarc/? of 9D? with g%(1%) = g*(I}) = g(l;}). Now we investigate the surfach?
in detail. The surfaceD? is the union of D} — (N(a; D} — 1Y) U N(o/; DY), di, d2
and ds, whered; ( =1, 2 and 3) is a disc correspondingjgo Let c; be the arc
{(0,L,z)|0<z<1}in V, andc, be the arc{(0,—1,z) | 0 < z < 1} in V. Note
that one endpoint of, (p = 1, 2) is contained inS . Let, denote the arc &}
with g*(c,) = ¢,. Let 711, 712, 721 and 722 be the arcs{(1,0,z) | 0 < z < 1},
{1,0z2)]1<z<2}L{(-1,0z)|0<z<1}and{(-1,0z)|1<z<2}in V, re-
spectively. Note that one endpoint §f1 (¢ = 1, 2) is contained inS . Let, . (¢ =1,
2; r =1, 2) denote the arc o@}! with g%(v,,) =7,.,. We may suppose, without loss
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Fig. 4.2.

Ya.,2
Ya,1

Fig. 4.3.

of generality, that Fig. 4.3 shows the location of the arc@nd ¢, on dN(a; D}), and
the location of the arcs..1, Va2, 5.1 @nd~, 2 on ON(a’; DY), where @, b )= (1 2) or
(2, 1). Considering images of the outward-normal¥ in N(a; D}) and N ¢/; D?),
we see thatd,b ) = (1 2). Since the disf; (j =1, 2) may be regarded as a band
which connects; and~;1, the discd; may be regarded as a band which conngcts
and v, 1. This construction ofD? shows that the surfac®? is homeomorphic to an
annulus.

Let n? denote the component @D? such that/? is not contained im?. Let m?
be the arcel §D? — (n? U [?)). The simple closed curve?(n?) bounds a dis& on S
such thatg?(m?) is not contained ins. Isotopeg?(N(n?; D?)) U § slightly into int Q;.
Then we obtain an immersiog® of a disc D? into Q; such thatx? consists of two
arcs of typeC. This immersed disg3(D?) shows that the clasp number &f; is at
most one. O
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Proposition 4.6. Suppose that the number of points Xf on is four. Then
the clasp number ok; is at most two.

Proof. Since|X;| =4, ¥, consists of either (1) four arcs of typ4, four arcs of
type A’ and some arcs of typB, or (2) four arcs of typ& and some arcs of typB,
or (3) two arcs of typeA, two arcs of typed’, two arcs of typeC and some arcs of
type B. In these three cases, we obtain, by Lemma 2.3, an immegsiai a disc D}
into Q; such that there is no arc of tyggin X}

First suppose thakE}! consists of four arcs of typed and four arcs of typed’.
Similar arguments as in the proof of Proposition 4.2 show tha crossing number of
K; is at most six, and the clasp number &f is at most two.

Next suppose thak}! consists of four arcs of typ€. Then the immersed disc
gY(D?) shows that the clasp number &  is at most two.

Finally suppose thak! consists of two arcs of typel, two arcs of typeA’ and
two arcs of typeC. Let a1, ap be arcs of typed, andaj, o be arcs of typed’ such
that g*(a;) = ¢g*() for j =1 and 2. Letn' denote the arel gD} — I}).

Now we consider configurations of arcs of typdsand.A’ on D}. When we pro-
ceed onm? from one endpoint ofz!, we may assume, without loss of generality, that
the first point of =}Nm?® we encounter is an endpoint of either or o). First suppose
that the first point ofz! N m?! is an endpoint ofny. If the second point oft! N m?
is an endpoint ofa}, then a configuration of arcs of type$ and A’ on D} is that
of Fig. 4.4 (1) or (2). In the configurations of Fig. 4.4, we oraics of typeC. If the
second point ofg!Nm?! is an endpoint ofv,, then the configuration is that of Fig. 4.4
(3) or (4). If the second point is an endpoint @f, then the configuration is that of
Fig. 4.4 (5) or (6). Next suppose that the first pointf Nnm?! is an endpoint of].

If the second point is an endpoint of;, then the configuration is that of Fig. 4.4 (1)
or (7), up to exchange of the suffix. If the second point is adpemt of a,, then the
configuration is that of Fig. 4.4 (6) or (8). If the second pois an endpoint ofa,
then the configuration is that of Fig. 4.4 (3) or (4), up to exule of the suffix.

Lemma 4.7. Suppose that a configuration of arcs of typdsand A’ on D} is
that of Fig. 4.4 (1), (2), (4), (6) or (7)Then the clasp number &; is at most one.

Proof. Suppose that a configuration of arcs of typeand A’ on D} is that of
Fig. 4.4 (1). Performing a CP surgery td(D}) along the arcgl(ai) = gl(f), we
obtain an immersiorg? of an annulusD? into Q; such thats? consists of one arc of
type A, one arc of typed’ and two arcs of type. Let n? denote the component of
OD? such that/? is not contained im?2. Let m? be the arccl §D? — (n? U [?)). The
simple closed curvg?(n?) bounds a dis@ on S such thatg?(m?) is not contained in
§. Isotopeg?(N(n?; D?))U$§ slightly into int Q;. Then we obtain an immersiog® of a
disc into Q; such that?® consists of one arc of typel, one arc of typed’ and two
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arcs of typeC. Proposition 4.5 shows that the clasp numberkpf is at most one
Similar arguments as above prove the cases in the configasatf Fig. 4.4 (2),
(4), (6) and (7). ]

Lemma 4.8. Suppose that a configuration of arcs of typdsand A’ on D} is
that of Fig. 4.4 (3) or (8) Then the clasp number &; is at most two.

Proof. Suppose that a configuration of arcs of typgésand A’ on D} is that
of Fig. 4.4 (3). Performing a CP surgery t'(D}) along the arcg'(a;), we ob-
tain an immersiong? of an annulusD? into Q; such thatz? consists of one arc of
type A, one arc of typed’ and two arcs of typ€. Let a; andaj denote these arcs of
types.A and A’ in £2, respectively. Let? denote the component ¢fD? such that/?
is not contained im?, and letm? denote the are! AD?— (n?Ul?)). The simple closed
curve g2(n?) bounds a disad on S which contains one endpoint of the simple arc
g%(m?). Isotopeg?(N(n?; D?))Ud slightly into int Q;. Then we obtain an immersiog®
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of a disc D? into Q;. This isotopy changes the union of the agé$ay) = g2(a%) and
g%(m?) N 4§ to a singular arey of g3(D?) such that ¢%)~1(y) consists of two arcs of
type C in D?. HenceX? consists of four arcs of typ€. This immersed disg3(D?)
shows that the clasp number &;  is at most two.
Similar arguments as above prove the case in the configorafid=ig. 4.4 (8).
O

Lemma 4.9. Suppose that a configuration of arcs of typdsand A’ on D} is
that of Fig. 4.4 (5) Then the clasp number &; is at most two.

Proof. Lety; be the subarc ofn! with 9y, = (a1 N mt) U (o), Nm?t), and~, be
the subarc ofn! with 9y, = (a2 N mt) U (o) N m?). Note that the singular arg!(m?)
on S has the same configuration as that of Fig. 4.1 (3), up to stmynand isotopy
on S. The two arcg'(v1) and g'(y2) cobound a dis@ on S such thatg!(9m?) is not
contained iné. Isotope g'(N(v1; DY)) along §. Then we obtain an immersiog? of a
disc D? into Q; such thatg?(m?) is an embedded arc o , whewe = cl(OD? — 1?).
This isotopy changes the union of the agd$ai) = g1(c), gl(a2) = g1(a}) and gi(y2)
to a singular arey of g2(D?) such that ¢2)~1(y) consists of two arcs of typ€ in D?.
Therefore ©? consists of four arcs of typ€. This immersed disg?(D?) shows that
the clasp number ok; is at most two. Ol

This completes the proof of Proposition 4.6 [l

5. The case whereD; contains loop components ofT

In this section, we deal with an immersed surf@c@_,-)(when there are loop com-
ponents of7" inD; . Recall thaD; is the region separated by loop componentsrof
in D; such thatl; is a subarc @lD;.

Proposition 5.1. Suppose thaiD; is an annulusand that the number of points
of X; on D; is 0. ThenKk; is the trivial knot.

Proof. SinceX; =), X; consists only of arcs of typ#. Let n denote the com-
ponent ofdD; such that/; is not contained im

First supposex; =f). Then the simple closed curven ( ) bounds a dison S
such thatg £ ) is not contained i Isotopeg (V £ :D;))Ué slightly into int Q;. Then
we obtain an embedding of a disc inf®; . This embedded disc shbet K; is the
trivial knot.

Next supposex; # (). A properly embedded ark oby; is said to beof type by
if the two points ofdb are contained inn , and # and a subdrcof dD; cobound
a disc onD; such that/; is contained in’. See Fig. 5.1. A properly embedded arc
b on D; is of type b, if b together with a subarc ofz cobounds a disc fn. A
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Fig. 5.1.

properly embedded ark ob); is of type bs if b connects a point omm  and a point
on n. A properly embedded aiie ab; is of type by if b together with a subarc of
n cobounds a disc om;. We note that an arc of typg on D; is of type ba, b, bs
or by.

Now we consider configurations of a pair of arcs of typen D; which are iden-
tified by g. If one of the arcs of typ® in the pair is of typebs, then we may assume,
by Lemmas 2.2 and 2.3, that a configuration of the pair is, ugytometry ofD;, that
of Fig. 5.2 (1) or (2). If one of the arcs of typ#8 is of type b, then we may assume,
by Lemmas 2.2 and 2.3, that a configuration of the pair is, upytmmetry of D;,
that of Fig. 5.2 (1) or (3). If one of the arcs of tyge is of type b3, then we may
assume, by Lemma 2.2, that a configuration of the pair is, ugytometry ofD;, that
of Fig. 5.2 (2), (3) or (4). If one of the arcs of typ8 is of type b4, then we may
assume, by Lemmas 2.2 and 2.3, that a configuration of theipdhat of Fig. 5.2

(4).

Lemma 5.2. Suppose that a configuration of the pair of arcs of typeon D;
which are identified by is that dfig. 5.2 (1), (2), (3)or (4). Then there exists an
immersiong? of an annulusD? into Q; satisfying the following properties
() Every component oE? is an arc of typeB,

(i) The number of arcs of typB in =2 is strictly less than that of typ8 in %;, and
(i) There is a subard? of 9D? such thatg?(/?) = g(/;), and that g2(0D? — 1?) is
contained inS .

Proof. Suppose that a configuration of the pair of arcs of t#pen D; which
are identified byg is that of Fig. 5.2 (1). Lék and 3, be the two arcs of typ#. Let
V denote a regular neighborhoad g 61); Q;). We may choose/ so that 5() nv
consists of two discse N A; D;)) and g (V (32 D;)). The disc g (v (i; D;)) inter-
sectsg v 52;5,-)) transversely along the arg 81) = g(52). We regardV as the set
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{(x,v,2) | x?+y? <1, 0<z<1} so that two discs oV N S correspond to the sets
{(x,y,0) | x2+y2 < 1} and {(x, y, 1) | x?+ y? < 1}. Without loss of generality, we
may assume thag N 3(; D_,-)) corresponds tq(x,0,z) | -1 <x <1, 0<z <1},
and thatg V (2; D;)) corresponds tq(0,y,z) | -1 <y <1, 0<z <1} We may
also assume that an image of the outward-normabtan N(51; D;) agrees with the
direction of increasingy , and that an image of the outwandwab to D; in N(Go; 5,-)
agrees with the direction of increasing . Lét be the disc{(x, y,z) | x2+y2 = 1,
x>0, y>0, 0<z<1}, andd; be the disc{(x,y,z) | x2+y2=1, x <0, y <0,
0<z<1}. . _

Now we define an immersiog® of a surfaceD! into Q;. Let g'(D?) be the
immersed surface which is the union @fD,(— N(B1 U B2; D;)), d1 and do. We say
that g*(D}) is obtained fromg (5,-) by anoriented double curve surgemiong the arc
g(B1) = g(B2). This operation was called aorientation preserving cualong the arc
2(B1) = g(32). See, for example, [11, p. 4]. By this constructigrt(D}) satisfies the
properties (i)—(iii). The surfaced} is the union of D; — N(B1 U B2, D;), dv and do,
whered; ( =1, 2) is a_disc corresponding &Ea Similar arguments as in the proof
of Lemma 2.2 show thaD} is homeomorphic to either an annulus or two annuli.

Let D? denote the connected component@} such that/! is a subarc ofoD?.
Let g2 be the restriction of® to D?. Thus we obtain an immersiog? of an annulus
D? into Q; satisfying the properties (i)—(iii).

Similar arguments as above prove the cases in the confignsatf Fig. 5.2 (2),
(3) and (4). ]

By Lemma 5.2, we obtain an embedding of an annulusD_,.3 into Q; with
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2313 = g(li). Therefore we haves? = ), and K; is the trivial knot. This completes
the proof of Proposition 5.1. U

Proposition 5.3. Suppose thatD; is an annulus, and that the number of points
of X; on D; is one. Then the clasp number &f is at most one.

Proof. Since|X;| = 1, X; consists of one arc of typel, one arc of typed’
and some arcs of typ#. By similar arguments as in the proof of Proposition 5.1,
we obtain an immersiorg! of an annulusD,.l into Q; such that there is no arc of
type B in £, and that there is a subait of 9D} with g*(/}) = g(;). If ! =10, then
Proposition 5.1 shows that; is the trivial knot. So we may amsthatX=}! consists
of one arc of typeAd and one arc of typed’. Let n' denote the component @D}
such that} is not contained im'. Let m! be the arccl @D} — (nt U 1Y)).

First suppose that there are no endpoints of arcs of typemd .4’ on n. Then
the simple closed curve!(n') bounds a dis@ on S such thaig'(m?) is not contained
in 6. Isotopeg*(N(nt; DH)US slightly into int Q;. Then we obtain an immersiog? of
a disc D? into Q; such thatx? consists of one arc of typel and one arc of typed'.
Proposition 4.1 shows that; is the trivial knot.

Next suppose that there are endpoints of arcs of typemd.A’ on »nl. If there is
an endpoint_of only the arc of type on n!, then a configuration of arcs of type$
and A’ on D} is that of Fig. 5.3 (1). If there is an endpoint of only the afcype A’
on nt, then the arc of typed satisfies the supposition of Lemma 2.1, and we obtain
an embedding of an annulus inf®; . Proposition 5.1 shows Rhast thd trivial knot.

If there are endpoints of the arcs of typglsand A’ on nt, then a configuration of
arcs of types4 and A’ on D! is that of Fig. 5.3 (2).
Similar arguments as in the proof of Lemma 4.8 prove the Willg lemma.

Lemma 5.4. Suppose that a configuration of arcs of typdsand .4’ on D_l.l is
that of Fig. 5.3 (1) Then the clasp number &; is at most one.
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Lemma 5.5. Suppose that a configuration of arcs of typdsand A’ on D_,.1 is
that of Fig. 5.3 (2) ThenK; is the trivial knot.

Proof. Performing a CP surgery to'(D!) along the singular arc, we obtain
an embeddingg? of a twice-punctured dis@®? into Q;. Let n3 and n3 denote the
components ofdD? such that/? is not a subarc of? or n3. Let m? be the arc
cl(0D? — (n? Un3 UI?)). At least one of the simple closed curveqn?) and g?(n3),
say g?(n?), bounds a dis¢d on S such thatg?(n3) and g%(m?) are not contained in
§. Isotopeg?(N(n2; D?)) U § slightly into int Q;. Then we obtain an embedding of an
annulus intoQ; . Proposition 5.1 shows thit is the trivial knot U

This completes the proof of Proposition 5.3. U

Proposition 5.6. Suppose thaiD; is an annulus, and that the number of points
of X; on D; is two. Then the clasp number &f; is at most one.

Proof. Since|X;| =2, X; consists of either (1) two arcs of typé, two arcs of
type A’ and some arcs of typB, or (2) two arcs of typ& and some arcs of typs.
In both cases, we obtain, by similar arguments as in the pobdfroposition 5.1, an
immersion g of an annulusD} into Q; such that there is no arc of type in =1,
and that there is a subafg of 9D} with g'(I}) = g(l;). We may assume, by Proposi-
tions 5.1 and 5.3, thaE! consists of two arcs of typel and two arcs of typed’ in
the case of (1), and tha&} consists of two arcs of typ€ in the case of (2). Let?!
denote the component @D} such that/}! is not contained im®. Let m* be the arc
cl(OD} — (nt Ul})). O

Lemma 5.7. Suppose that:}! consists of two arcs of typ€. Then the clasp
number ofK; is at most one.

Proof. The simple closed curyg'(n!) bounds a dis@ on S such thatgl(m?) is
not contained ind. Isotopeg(N(nt; DY) U § slightly into int Q;. Then we obtain an
immersiong? of a disc D? into Q; such thatx? consists of two arcs of typé€. This
immersed disgg?(D?) shows that the clasp number &f; is at most one. [l

Lemma 5.8. Suppose that! consists of two arcs of typel and two arcs of
type A’. Then the clasp number &; is at most one.

Proof. We consider configurations of arcs of typésand A’ on D_,.l.

Ciamv 5.9. If there are no endpoints of arcs of typeor A’ on n', then the
clasp number ofK; is at most one.
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Proof. Suppose that there are no endpoints of arcs of #ume A’ on n'. Then
the simple closed curve!(n') bounds a dis@ on S such thaig(m?) is not contained
in §. Isotopeg!(N (nt; D})US slightly into int Q;. Then we obtain an immersiogf of
a disc intoQ; such thak? consists of two arcs of typel and two arcs of typed'.
Proposition 4.2 shows that the clasp numberkof is at most one. U

We may assume, by Claim 5.9, that there is at least one erdpbiarcs of
types.A and A’ on n'. If there is an endpoint of only one arc of typé on n', then
we may assume, by Lemma 2.1 and Proposition 5.3, that a coafigu of arcs of
types A and A’ on D} is, up to symmetry ofD}, that of Fig. 5.4 (1) or (2). If there
is an endpoint of only one arc of typd’ on n!, then we may assume, by Lemma 2.1
and Proposition 5.3, that the configuration is, up to symynefr D}, that of Fig. 5.4
(3). If there are endpoints of only one arc of typeand one arc of typed’ on n?,
then we may assume, by Lemma 2.1 and Proposition 5.3, thataigguration is, up
to symmetry of D}, that of Fig. 5.4 (4). If there are endpoints of only two ards o
type A on nl, then the configuration is that of Fig. 5.4 (5). If there aremoints of
only two arcs of typed’ on nl, then at least one of the two arcs of type satisfies
the supposition of Lemma 2.1, and we obtain an immergibof an annulus intoQ;
such thatx? consists of one arc of typel and one arc of typed’. Proposition 5.3
shows that the clasp number &f; is at most one. If there areoémdpof only one
arc of typeA and two arcs of typed’ on nt, then the same arguments as above show
that the clasp number of; is at most one. If there are endpointly two arcs of
type A and one arc of typed’ on n!, then the configuration is that of Fig. 5.4 (6)
or (7). If there are endpoints of two arcs of type and two arcs of typed’ on n?,
then the configuration is that of Fig. 5.4 (8), (9) or (10).

Ciam 5.10. Suppose that a configuration of arcs of typesand A’ on D_,.l is
that of Fig. 5.4 (1), (2), (3), (6) or (7). Then the clasp numbég K; is at most one.

Proof. Suppose that a configuration of arcs of typesnd.A’ on D} is that of
Fig. 5.4 (1). Leta), o) denote arcs of typed’, anda; (j = 1 or 2) denote the arc of
type A as illustrated in the figure. We assume tha(a),) = gl(a;,) for p=1 and 2.

First supposej = 2. The simple closed cug/n') intersects the immersed arc
gY(m?) transversely in one point of . Singé(a1) = g'(«}), we can construct a sim-
ple closed curve or§  which intersectd(n') transversely in one point. This shows
that g'(n?) is a non-separating simple closed curve on a 2-sphere, madation.

Next supposej = 1. Performing a CP surgerygf¢D?) along the arcg'(az) =
gY(a%), we obtain an immersiog? of a twice-punctured dis®? into Q; such that
¥2 consists of one arc of typel and one arc of typed’. Let n? be the connected
component ofdD? such that there is no endpoint of the arc of tydeor A’ on n.
Then the simple closed curyg(n?) bounds a dis& on S such thag?(0D? —n?)NS
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is not contained iry. Isotopeg?(N (n?; D?))Ué slightly into int Q;. Then we obtain an
immersiong® of an annulus intoQ; such tha? consists of one arc of typel and
one arc of typed’. Proposition 5.3 shows that the clasp numberkof is at most one

Similar arguments as above prove the cases in the configusatf Fig. 5.4 (2),
(3), (6) and (7). ]

Ciav 5.11. Suppose that a configuration of arcs of typesand A’ on D_,.l is
that of Fig. 5.4 (4). Then the clasp number Kf is at most one.
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Proof. Leta;, ay denote arcs of typed, and 04 (j =1 or 2) denote the arc of
type A’ as illustrated in the figure. We assume thato,) = g*(a,) for p =1 and 2.

First supposej = 1. Then the simple closed cug¥é:') bounds a dis® on §
which contains no endpoints of the simple ag&(m?'). Isotope g*(N(n'; D})) U §
slightly into int Q;. Then we obtain an immersiog? of a disc D? into Q;. This iso-
topy changes the union of the arg§au) = gl()), gX(a2) = g*(ab) and g*(mt) N4 to
a singular arcy of g?(D?) such that £2)~1(y) consists of two arcs of typ€ in D2.
Hence ©2 consists of two arcs of typ€. This immersed disg?(D?) shows that the
clasp number ofK; is at most one. _

Next supposej = 2. Perform a CP surgery gt(D}) along the arcgl(a) =
gY(a%). Then we obtain an immersiog? of a twice-punctured disc int@; . By simi-
lar arguments as in the proof of Lemma 5.5, we obtain an imimergs’> of a disc into
Q; such that=? consists of one arc of typel and one arc of typed’. Proposition 4.1
shows thatkK; is the trivial knot. O

Ciam 5.12. Suppose that a configuration of arcs of typesand A’ on D_,.1 is
that of Fig. 5.4 (5). TherK; is the trivial knot.

Proof. Leta; anda; be arcs of typed on D}. The simple closed curvgl(nt)
bounds a dis&y on § which contains no endpoints of the simple gf¢m?). Isotope
gY(N(nt; DY) U 6§ slightly into int Q;. Then we obtain an immersiog? of a disc D?
into Q;. This isotopy changes the union of the agééas), g'(az) andgl(m)Nd to a
singular arcy of gZ(D,?) such that §2)~(v) consists of two arcs; and~, embedded
in D2, wheredy, is contained in? and, is contained inint D2. Note thaty; Ny, = ()
on D?, and thaty; and a subarc of? cobound a disal, in D? such thaty, is not
contained ind.,. Isotopeg?(N(v2; D?)) along g2(d,). Then we obtain an embedding
of a disc D? into Q;. This embedded disg*(D?) shows thatk; is the trivial knot.

O

Ciam 5.13. Suppose that a configuration of arcs of typesand A’ on D_,.l is
that of Fig. 5.4 (8), (9) or (10). Thek; is the trivial knot.

Proof. Suppose that a configuration of arcs of typesand A’ on D} is that of
Fig. 5.4 (8). Leta; and o, denote arcs of typed, and a3 (j = 1 or 2) denote the
arc of type A’ as illustrated in the figure. We assume thgafe,) = g'(a,) for p =1
and 2.

First supposej = 2. Then there is no configuration of an imndecéesed curve
g*(n') on a 2-sphere. _

Next supposej = 1. Performing CP surgeriet¢D?) along the arcg*(as) and
gY(a2), we obtain an embedding? of a twice-punctured annulud? into Q;. Similar
arguments as in the proof of Lemma 5.5 shows tkiat is the Itririat.
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The same arguments as above prove the cases in the configsrafi Fig. 5.4 (9)
and (10). O

Fig. 5.5.

This completes the proofs of Lemma 5.8 and Proposition 5.6. U

Proposition 5.14. Suppose thaiD; is a twice-punctured discand that the num-
ber of points ofX; onD; is 0. Then the clasp number &; is at most one.

Proof. Since|X;| = 0, X; consists only of arcs of typ#. Let ni, n, denote
connected components oD, — (m Ul).

A properly embedded arb ob; is said to beof type bg if b and a subarc of
cl(dD; — ;) cobound a disc orD;. See Fig. 5.5. A properly embedded drc  bn
is of type by if the two points of 9b are contained iz , and ib together with a
subarcd’ of 85,- cobounds a disc 0115,- such that/; is contained ih’. A properly
embedded aré o is of type b, if the two points of9b are contained inn , and
if b separatesﬁ,- to two annulid, andd. so thatn; is a component @ld; for j =1
and 2. A properly embedded afc a; is of type b3 if b connects a point onn
and a point onn; forj =1 or 2. A properly embedded arc bnis of type by
if b connects a point om; and a point omm,. A properly embedded ark ob; is
of type bs if the two points ofdb are contained im; , and b and a subarc rof
together withn;, cobound an annulus @ for (j,k) = (1, 2) or (2 1). We note that
an arc of typeB on 5,- is of type bo, b1, bz, b3, by OF bs.

The following lemma is essentially the same as Lemma 1 (1)6in Ve refer
to [6] for a proof.

Lemma 5.15. Let 5 be an arc of type3 which _is of typeby on D;. Then there
are an orientable surfaced} and an immersiorg: D} — Q; satisfying the following
properties _

() The Euler characteristics oD} is equal to or greater than that ab;,

(i) Every component oE! is an arc of typeB,

(iii) The number of arcs of typB in X! is strictly less than that inZ;, and

(iv) There is a subard! of 9D} such thatg'(i}) = g(i;), and that g*(0D}! — 11) is
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contained inS .

We may assume, by Lemma 5.15 and Propositions 4.1 and 5tlthidwe is no
arc of typeB which is of typeby on a twice-punctured dis®; .

Let g be an arc of type3 which is of typeb; on D;, and dg be the disc on
D; which is cobounded by and a subarc obD;. We may assume, by Lemma 2.2,
that the restriction o talg is an embedding. We can isotope the string ( ) of the
1-string tangle Q;, g k )) along the embedded dgsds)(in Q; to the stringg () of
the 1-string tangle @;, g A)). It follows that it has no effect on the knot type &f;
to replaceD; with cI(D; — N(ds; D;)). So we suppose, in the following, that there is
no arc of typeB which is of typeb; on D;.

Now we consider configurations of a pair of arcs of tyfeon D; which are
identified by g . If one of the arcs of typ# is of type bp, then we may assume,
by Lemma 2.2, that a configuration of the pair is, up to symynetf D;, that of
Fig. 5.6 (1), (2) or (3). If one of the arcs of typ® is of type b3, then we may as-
sume, by Lemma 2.2, that a configuration of the pair is, up torsgtry of D;, that
of Fig. 5.6 (2)—(6) or (7). If one of the arcs of typé is of type b4, then we may
assume, by Lemma 2.2, that a configuration of the pair is, ugpytometry ofD;, that
of Fig. 5.6 (6) or (8). If one of the arcs of typB is of type bs, then we may as-
sume, by Lemma 2.2, that a configuration of the pair is, up torsgtry of D;, that
of Fig. 5.6 (7) or (8).

Lemma 5.16. Suppose that a configuration of a pair of arcs of tySeon D;
which are identified by is that dfig. 5.6 (1), (2), (3), (5), (7or (8). Then there is
an immersiongz:_D[.2 — Q; with the following properties
() The surfaceD? is homeomorphic to either an annulus or a twice-puncturest, di
(i) Every component oE? is an arc of types,

(iii) The number of arcs of typB in 2 is strictly less than that irz;, and
(iv) There is a subard? of 9D? such thatg?(/?) = g(;) and that g*(9D? — 1?) is
contained inS .

Proof. Suppose that a configuration of a pair of arcs of t§pen D; which are
identified by g is that of Fig. 5.6 (1). Performing an orienteslibdle curve surgery to
g(5,-) along the singular arc, we obtain an immersign D! — Q; which satisfies the
conditions (i), (iii) and (iv). Similar arguments as in throof of Lemma 2.2 show
that the surfaceD! is homeomorphic to either a union of an annulus and a twice-
punctured disc, or a twice-punctured disc. 2% denote the connected component of
D! such that/! is a subarc ofdoD?. Let g2 be the restriction ofg* to D2. Then the
immersiong?: D? — Q; satisfies the conditions (i)—(iv).

The same arguments as above prove the cases in the contigarafiFig. 5.6 (2),
(3), (5), (7) and (8). ]
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The same arguments as in the proof of Lemma 5.16 prove thenfoly two lem-
mas.

Lemma 5.17. Suppose that a configuration of a pair of arcs of tySeon D;
which are identified byg is that dfig. 5.6 (4) Let 1, 2, x, y denote endpoints of
arcs of typeB5 as illustrated in the figure. Ig(1) =g (x) and g(2) = g(y), then there is
an immersiong? of a twice-punctured dis®? into Q; such that every component of
¥2 is an arc of typeB3, that the number of arcs of typB in £2 is strictly less than
that in X;, and that there is a subar? of dD? with g2(12) = g(l;).

Lemma 5.18. Suppose that a configuration of a pair of arcs of tySeon D;
which are identified byg is that ofig. 5.6 (6) Let 1, 2, x, y denote endpoints of
arcs of typel5 as illustrated in the figure. Ig(1) =¢(x) and g(2) = g(y), then there is
an immersiong? of a twice-punctured dis®? into Q; such that every component of
2 is an arc of typeB, that the number of arcs of typg in X2 is strictly less than
that in X;, and that there is a subar? of 9D? with g2(1?) = g(l;).

By Lemmas 5.16, 5.17 and 5.18, we may suppose either fifats an annulus
such thatx? consists only of arcs of typé8, or that D? is a twice-punctured disc
such that a configuration of every pair of arcs of tyfeon D? which are identified
by g2 is that of Fig. 5.6 (4) or (6) withg?(1) = g2(y) and g%(2) = g%(x). If D? is an
annulus, then Proposition 5.1 shows thgt is the trivial knot _

In the rest of the proof of Proposition 5.14, we suppose thdtis a twice-
punctured disc, and that every pair of arcs of typeon D? which are identified by
g2 is either the pair as in the configuration of Fig. 5.6 (4) with(1) = g2(y) and
2%(2) = g?(x), or the pair as in the configuration of Fig. 5.6 (6) wigh(1) = g%(y)
and g2(2) = g?(x).

We may assume, by Lemma 2.4, th8f contains at most one pair of arcs of
type B as in the configuration of Fig. 5.6 (4), and at most two pairauais of type5
as in the configuration of Fig. 5.6 (6). Now we consider comfigions of arcs of
type B on D2. If £2 consists of only one pair of arcs of tyg@as in the configuration
of Fig. 5.6 (4), then a configuration of arcs of typeon D? is that of Fig. 5.7 (1). In
the configurations of Fig. 5.7, we suppose that endpointyed af type3 which have
the same labels are identified lgy. If =2 consists of only one pair of arcs of tyyg
as in the configuration of Fig. 5.6 (6), then the configurati®rhat of Fig. 5.7 (2). If
¥2 consists of only one pair of arcs of ty# as in the configuration of Fig. 5.6 (4)
and one pair of arcs of typB as in the configuration of Fig. 5.6 (6), then the config-
uration is that of Fig. 5.7 (3), (4) or (5), up to symmetry Bf. If X2 consists of only
two pairs of arcs of type3 as in the configuration of Fig. 5.6 (6), then the configura-
tion is that of Fig. 5.7 (6), up to symmetry db?. If =2 consists of one pair of arcs
of type B as in the configuration of Fig. 5.6 (4) and two pairs of arcsygfet3 as
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(14)

Fig. 5.7. (continued)

in the configuration of Fig. 5.6 (6), then the configuratiorthiat of Fig. 5.7 (7)—-(13)
or (14), up to symmetry oD?.
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Lemma 5.19. A configuration of arcs of typds on D_,? is not that ofFig. 5.7
(2)-(5), (7)—~(11)or (14).

Proof. First we_deal with the configuration of Fig. 5.7 (2).tL€, n3 denote
the components 0dD? as illustrated in the figure. Note that bogi(n2) and g?(n3)
are simple closed curves dh . The simple closed cgi(e3) intersectsg?(n?) trans-
versely in one point at the image of the point labeled 1. Thiplies that each of
g%(n?) and g%(n3) is a non-separating simple closed curve on a 2-sphere, @aday
tion.

Similar arguments as above prove that a configuration of afi¢cgpe B on D? is
not that of Fig. 5.7 (3), (4) or (5).

Next we deal with the configuration of Fig. 5.7 (7). Lef and n3 denote the
components obD?, and letm? denote the arel AD? — (n? U n3 U 1?)) as illustrated
in the figure. We denote by, the subarc ofn? such thatd~, consists of the two
points labeled 2 and 6, and we denote fythe subarc of:3 such thatdy, consists
of the two points labeled 2 and 6, and that~, is disjoint from the points labeled 3
and 5. Then the uniog?(y,) U g%(v,) forms a simple closed curve ofi . The sim-
ple closed curves?(n?) intersectsg?(v,,) Ug?(7,) on S transversely in one point at the
image of the point labeled 4. This implies that batf(n) and g2(v,) U g2(v.) are
non-separating simple closed curves on a 2-sphere, a darioa. _

Similar arguments as above prove that a configuration of afi¢gpe B on D? is
not that of Fig. 5.7 (8)—(11) or (14). O

Lemma 5.20. Suppose that a configuration of arcs of typeon D_,? is that of
Fig. 5.7 (1) Then the clasp number &; is at most one.

Proof. Let nf n§ denote the components cﬂD,?,_and 01, B2 denote arcs of
type B as illustrated in the figure. Let? be the arccl §D?—(n?Un3UI?)). The image
g%(n? Un2 Um?), which is unique up to isotopy and symmetry 6n , is illusithin
Fig. 5.8 (1). The simple closed curg&(n?) bounds a disd on S such thatg?(n3) is
not contained ind. Isotope g(N(n?; D?)) U ¢ slightly into int Q;. Then we obtain an
immersion g2 of an annulusD? into Q;. This isotopy changes the union of the arcs
2%(51) = g%(B2) and g2(m?)N§ to a singular arey of g3(D?) such that £%)~1(y) con-
sists of one arc of typed and one arc of typed’ on D?. HenceX? consists of one
arc of type.A and one arc of typed’. Proposition 5.3 shows that the clasp number of
K; is at most one. O

Lemma 5.21. Suppose that a configuraton of arcs of tyBeon D? is that of
Fig. 5.7 (6) Then the clasp number &; is at most one.
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Fig. 5.8.

Proof. Letn3, n3 denote the components &fD? as illustrated in the figure. Let
m? be the arcel §D? — (n2Un3U12)). The imageg?(n?UnsUm?), which is unique up
to isotopy and symmetry o , is illustrated in Fig. 5.8 (2).eT$imple closed curve
g%(n2) bounds a dise on S such that the image of the point labeled 2 is not con-
tained iné. Isotope g?(N (n3; D?)) U 4 slightly into int Q;. Then we obtain an immer-
sion g2 of an annulus intaQ; . Similar arguments as in the proof of Lenfn2) show
that 3 consists of one arc of typel and one arc of typed’. Proposition 5.3 shows
that the clasp number of; is at most one. O

Lemma 5.22. Suppose that a configuration of arcs of typeon D_l? is that of
Fig. 5.7 (12) ThenK; is the trivial knot.
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Proof. Letn2, nZ denote the components 6fD? as illustrated in the figure. Let
m? denote the ar@! AD? — (n? U n3 U 12)). The imageg?(n? U n3 U m?), which is
unique up to isotopy and symmetry a1 , is illustrated in Fig8 £3). The simple
closed curveg?(n?) bounds a dis& on S which contains no endpoints of the simple
arc g2(m?). Isotopeg?(N(n%; D?)) U § slightly into int Q;. Then we obtain an immer-
sion g% of an annulus intoQ; . Similar arguments as in the proof of Lenn2® show
that =2 consists of two arcs of typd. Proposition 5.1 shows thak; is the trivial
knot. ]

Lemma 5.23. Suppose that a configuration of arcs of tyfeon D_,? is that of
Fig. 5.7 (13) ThenK; is the trivial knot.

Proof. Letn3, n3 denote the components &fD? as illustrated in the figure. Let
m? denote the arel AD? — (n3 U n3 U 1?)). The imageg?(n? U ng U m?), which is
unique up to isotopy and symmetry dh , is illustrated in Fig8 $). The simple
closed curveg?(n?) bounds a_dis& on S which contains no endpoints of the simple
arc g%(m?). Isotopeg?(N(n%; D2)) U § slightly into int Q;. Then we obtain an immer-
sion g2 of an annulus intoQ; . Similar arguments as in the proof of Lenin® show
that 2 consists of two arcs of typd. Proposition 5.1 shows thak; is the trivial
knot. ]

By Lemmas 5.19-5.23, we may suppose tii¥ is a twice-punctured disc and
Y2 = (). The same arguments as in the proof of Lemma 5.5 showkhat eitrithal
knot.

This completes the proof of Proposition 5.14. O

Appendix

Kadokami obtained the following table in his Doctoral Didaton [2]. This table
gives us the clasp number of prime knots of eight or fewersings except . We
refer to Rolfsen’s table [12] for the nomenclature of knofbe clasp number of 18
is not known yet.
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knot | ¢p(K) knot | ¢p(K)
3 1 8, 2
4 1 85 3
51 2 8s 2
5 1 8; 3
61 1 8 2
62 2 89 3
63 2 810 3
73 2 813 2
T4 2 814 2
7s 2 815 2
76 2 816 3
82 3 820 2
83 2 81 2
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