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1. Introduction

It is of great interest to know whether a knot invariant is additive under connected
sum. The genus ( ) of a knot is additive [13], that is, (1# 2) = ( 1) + ( 2),
where 1# 2 denotes a connected sum of two knots1 and 2. For the braid index
( ) of a knot , Birman and Menasco [1] showed that ( )− 1 is additive, that is,
( 1# 2)−1 = ( ( 1)−1)+( ( 2)−1). For the tunnel number ( ) of a knot , it is

known that ( ) is not additive under connected sum. See, for example, [8], [9], [5].
In this paper, we study the additivity of the clasp number of knots which is defined in
the following.

Let be a knot in 3. We denote by an immersion : → 3 of a disc
into 3 such that |∂ : ∂ → is a homeomorphism onto . Let̃ denote the
singular set{ ∈ ( ) | | −1( )| ≥ 2} of the immersion , and let denote−1(˜ )
on . The following lemma is a special case of Lemma 1 in [14]. See also Lemma 1
in [15].

Lemma 1.1. We may choose an immersion so that each connected component
of is an embedded arc on joining a point in∂ and a point in int .

Note that this immersion satisfies{ ∈ ( ) | | −1( )| ≥ 3} = ∅. An immersed
disc = ( ) with these properties is called aclasp discof . Fig. 1.1 illustrates a
clasp disc of a trefoil knot. Let ( ) denote the number of connected components
of ˜ in . The minimal number of ( ) among all clasp discs of is called
the clasp numberof , denoted by ( ). Shibuya defined also the clasp number of
a link in 3. See Definition 3 in [14]. We refer to Appendix for the clasp number
of prime knots of eight or fewer crossings except 818. The following proposition is a
special case of Theorem 1 in [14].

Proposition 1.2. Let be a knot in 3. Then we have inequalities ( ) ≥
( ) and ( ) ≥ ( ), where ( ) denotes the unknotting number of .
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Fig. 1.2.

Fig. 1.2 illustrates a sketch of an operation to show the inequality ( ) ≥ ( ).
In [14], Shibuya called the operation, illustrated in Fig. 1.2, an orientation preserving
cut along a clasp arc. This operation has been also called a smoothing.

Using Proposition 1.2, Morimoto [7] determined the clasp number of torus knots.
Note that the genus of a torus knot of type ( ) is (| | − 1)(| | − 1)/2. See, for
example, Theorem 7.5.2 in [10]. Since the unknotting numberof a torus knot of type
( ) is equal to (| | − 1)(| | − 1)/2 (see [3], [4]), we obtain the following theorem.

Theorem 1.3. Let be a torus knot of type( ). Then the clasp number of
is (| | − 1)(| | − 1)/2, that is, ( ) = ( ) = ( ).

Concerning the additivity of ( ), Morimoto made the following conjecture
in [6].

Conjecture 1.4. ( 1# 2) = ( 1) + ( 2).

He obtained a partial solution to this conjecture in the samepaper.

Theorem 1.5 ([6]). If ( 1# 2) ≤ 2, then ( 1# 2) = ( 1) + ( 2).
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Fig. 2.1.

In this paper, we prove the following theorem.

Theorem 1.6. Let 1, 2 be non-trivial knots. If ( 1# 2) = 3, then ( 1) =
1 and ( 2) = 2.

Together with Theorem 1.5, we obtain the following corollary.

Corollary 1.7. If ( 1# 2) ≤ 3, then ( 1# 2) = ( 1) + ( 2).

2. Preliminary lemmas

Let = ( ) be a clasp disc of with ( ) = ( ). Let = 1# 2

denote a knot which is a connected sum of two non-trivial knots 1 and 2. Then
there exists a 2-sphere which realizes a non-trivial decomposition of = 1# 2.
We may isotope so that intersects and˜ transversely. Let denote the set
−1( ∩ ) on . Then consists of a properly embedded arc in and some

simple closed curves embedded inint . Let 1 and 2 denote discs in such that

1 ∩ 2 = and 1 ∪ 2 = , and let ( = 1 and 2) denote the arc ∩ ∂ . See
Fig. 2.1. Let be the 3-ball which is bounded by in3 and which contains the arc

( ). Let be a simple arc on which connects the two points of (∂ )∩ = ∩ .
We may regard the knot as the union of two arcs and ( ). In the following,
( = , , , . . . , etc.) denotes 1 or 2.

Loop components of separate to many regions. Let¯ denote the region in
separated by loop components of such that is a subarc of∂ ¯ . If there is no

loop component of in , then¯ is itself. Let be the restriction of to¯ .
Let ¯ denote the set{ ∈ ( ¯ ) | | −1( )| ≥ 2}, and let denote −1( ¯ ) on ¯ .
By the definition of a clasp disc, a connected component of on¯ belongs to one
of arcs of the following four types (see Fig. 2.2);
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type A: an arc which connects a point in and a point in (∂ ¯ − ),
type A′: an arc which connects a point inint ¯ and a point in (∂ ¯ − ),
type B: an arc which connects two distinct points in (∂ ¯ − ),
type C: an arc which connects a point inint ¯ and a point in .
Note that an arc of typeA is identified by with an arc of typeA′, that an arc

of type B with another arc of typeB, and that an arc of typeC with another arc of
type C. Let denote the union of endpoints of arcs of typesA′ and C in int ¯ . The
following lemma is essentially the same as Lemma 1 (2) in [6].We refer to [6] for a
proof.

Lemma 2.1. Let α be an arc of typeA on ¯ . Suppose thatα and a subarc of
together with a subarc of cobound a discδ with (int δ)∩ = ∅ on ¯ . Then there

are a surface ∗ and an immersion ∗ : ∗ → satisfying the following properties;
(i) The surface ∗ is homeomorphic to¯ ,
(ii) Every connected component of( ∗)−1({ ∈ ∗( ∗) | |( ∗)−1( )| ≥ 2}) = ∗

belongs to an arc of typeA, A′, B or C, where these arcs of four types are defined
on ∗ in the same way as they are on̄ ,
(iii) The numbers of arcs of typesB and C in ∗ are equal to those of typesB and
C, respectively, in ,
(iv) The numbers of arcs of typesA and A′ in ∗ are strictly less than those of types
A and A′, respectively, in , and
(v) There is a subarc∗ of ∂ ∗ such that ∗( ∗) = ( ) and that ∗(∂ ∗ − ∗) is
contained in .

Lemma 2.2. Let β1 and β2 be arcs of typeB on ¯ with (β1) = (β2). Sup-
pose thatβ1 and β2 together with two subarcs of∂ ¯ − cobound a discδ in ¯ .
Then there are a surface ∗ and an immersion ∗ : ∗ → satisfying the following



ADDITIVITY OF CLASP NUMBER OF KNOTS 805

properties;
(i) The surface ∗ is homeomorphic to¯ ,
(ii) Every connected component of( ∗)−1({ ∈ ∗( ∗) | |( ∗)−1( )| ≥ 2}) = ∗

belongs to an arc of typeA, A′, B or C, where these arcs of four types are defined
on ∗ in the same way as they are on̄ ,
(iii) The numbers of arcs of typesA, A′ and C in ∗ are equal to those of typesA,
A′ and C, respectively, in ,
(iv) The number of arcs of typeB in ∗ is strictly less than that of typeB in , and
(v) There is a subarc∗ of ∂ ∗ such that ∗( ∗) = ( ) and that ∗(∂ ∗ − ∗) is
contained in .

Proof. Let denote a regular neighborhood ( (β1); ) of the arc (β1) =
(β2) in . We may choose so that (̄) ∩ consists of two discs ( (β1; ¯ ))

and ( (β2; ¯ )). The disc ( (β1; ¯ )) intersects ( (β2; ¯ )) transversely along the
arc (β1) = (β2). We regard as the set{( ) | 2 + 2 ≤ 1 0≤ ≤ 1} so that
two discs of ∩ correspond to{( 0) | 2 + 2 ≤ 1} and {( 1) | 2 + 2 ≤ 1}.
We may assume that ( (β1; ¯ )) corresponds to{( 0 ) | −1 ≤ ≤ 1 0≤ ≤ 1},
and that ( (β2; ¯ )) corresponds to{(0 ) | −1 ≤ ≤ 1 0 ≤ ≤ 1}. We
may also assume that (δ) ∩ corresponds to the union of{( 0 ) | 0 ≤ ≤ 1
0 ≤ ≤ 1} and {(0 ) | 0 ≤ ≤ 1 0 ≤ ≤ 1}. Let 1̃ be the disc
{( ) | 2 + 2 = 1 ≥ 0 ≤ 0 0 ≤ ≤ 1}, and 2̃ be the disc
{( ) | 2 + 2 = 1 ≤ 0 ≥ 0 0≤ ≤ 1}.

Now we define an immersion∗ of a surface ∗ into . Let ∗( ∗) be the im-
mersed surface which is the union of (¯ − (β1 ∪ β2; ¯ )), 1̃ and 2̃. By this con-
struction, ∗( ∗) satisfies the properties (ii)–(v).

The surface ∗ is the union of ¯ − (β1 ∪ β2; ¯ ), 1 and 2, where ( = 1
and 2) is a disc corresponding tõ . Since 1̃ may be regarded as a band which
connects two arcs{(1 0 ) | 0 ≤ ≤ 1} and {(0 −1 ) | 0 ≤ ≤ 1}, the
disc 1 may be regarded as a band which connects the subarc1 1 of ∂ (β1; ¯ )
and the subarc 1 2 of ∂ (β2; ¯ ), where ( 1 1) = {(1 0 ) | 0 ≤ ≤ 1} and

( 1 2) = {(0 −1 ) | 0 ≤ ≤ 1}. Similarly, the disc 2 may be regarded as a band
which connects the subarc2 1 of ∂ (β1; ¯ ) and the subarc2 2 of ∂ (β2; ¯ ), where

( 2 1) = {(−1 0 ) | 0 ≤ ≤ 1} and ( 2 2) = {(0 1 ) | 0 ≤ ≤ 1}. We notice
that (δ) is either an immersed annulus or an immersed Möbius band in, because

(β1) = (β2). This construction of ∗ shows that ∗ is homeomorphic to¯ .

Fig. 2.3 (1) illustrates a sketch of the operation describedin the proof of
Lemma 2.2. Similar arguments as in the proof of Lemma 2.2 showthe following two
lemmas. See Fig. 2.3 (2) and (3) for sketches of operations toprove Lemmas 2.3
and 2.4, respectively.
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Lemma 2.3. Let β1 and β2 be arcs of typeB on ¯ with (β1) = (β2). Suppose
that β ( = 1 and 2) and a subarc of∂ ¯ cobound a discδ in ¯ such thatδ1 ∩
δ2 = ∅. Then there are a surface ∗ and an immersion ∗ : ∗ → satisfying the
following properties;
(i) The surface ∗ is homeomorphic to¯ ,
(ii) Every connected component of( ∗)−1({ ∈ ∗( ∗) | |( ∗)−1( )| ≥ 2}) = ∗

belongs to an arc of typeA, A′, B or C, where these arcs of four types are defined
on ∗ in the same way as they are on̄ ,
(iii) The numbers of arcs of typesA, A′ and C in ∗ are equal to those of typesA,
A′ and C, respectively, in ,
(iv) The number of arcs of typeB in ∗ is strictly less than that of typeB in , and
(v) There is a subarc∗ of ∂ ∗ such that ∗( ∗) = ( ) and that ∗(∂ ∗ − ∗) is
contained in .

Lemma 2.4. Let β1, β2, γ1 and γ2 be arcs of typeB on ¯ with (β ) = (γ )
for = 1 and 2. Suppose thatβ1, β2 and two subarcs of∂ ¯ cobound a disc β

in ¯ , and that γ1, γ2 and two subarcs of∂ ¯ − cobound a disc γ in ¯ such
that β ∩ γ = ∅. Suppose also that( β) ∪ ( γ) forms an immersed annulus in .
Then there are a surface ∗ and an immersion ∗ : ∗ → satisfying the following
properties;
(i) The surface ∗ is homeomorphic to¯ ,
(ii) Every connected component of( ∗)−1({ ∈ ∗( ∗) | |( ∗)−1( )| ≥ 2}) = ∗

belongs to an arc of typeA, A′, B or C, where these arcs of four types are defined
on ∗ in the same way as they are on̄ ,
(iii) The numbers of arcs of typesA, A′ and C in ∗ are equal to those of typesA,
A′ and C, respectively, in ,
(iv) The number of arcs of typeB in ∗ is strictly less than that of typeB in , and
(v) There is a subarc∗ of ∂ ∗ such that ∗( ∗) = ( ) and that ∗(∂ ∗ − ∗) is
contained in .

For a positive integer and an immersion :̄ → , denotes, in the
following, the subarc of∂ ¯ with ( ) = ( ), and denotes the set ( )−1

({ ∈ ( ¯ ) | |( )−1( )| ≥ 2}) on ¯ .

3. Proof of Theorem 1.6

In this section, we give a proof of Theorem 1.6 assuming propositions we prove
in §§4 and 5. Suppose ( ) = 3, so that consists of six arcsσ1 . . . σ6 on .
Let ( = 1 . . . 6) be the point∂σ ∩ int , and be the union of the points
{ 1 . . . 6}. The following proposition is the same as Lemma 1 (3) in [6]. We refer
to [6] for a proof.
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Proposition 3.1. Let α be a loop component of , and δα be the disc bounded
by α in . Then there exists a2-sphere such that realizes a non-trivial decompo-
sition of = 1# 2, and that |δα ∩ | ≥ 2 for every loop componentα of .

The following four propositions are proved in§4.

Proposition 4.1. Suppose that¯ = is a disc, and that the number of points
of on ¯ is at most one. Then is the trivial knot.

Proposition 4.2. Suppose that¯ = is a disc, and that the number of points
of on ¯ is two. Then the clasp number of is at most one.

Proposition 4.5. Suppose that¯ = is a disc, and that the number of points
of on ¯ is three. Then the clasp number of is at most one.

Proposition 4.6. Suppose that¯ = is a disc, and that the number of points
of on ¯ is four. Then the clasp number of is at most two.

The following four propositions are proved in§5.

Proposition 5.1. Suppose that¯ is an annulus, and that the number of points
of on ¯ is 0. Then is the trivial knot.

Proposition 5.3. Suppose that¯ is an annulus, and that the number of points
of on ¯ is one. Then the clasp number of is at most one.

Proposition 5.6. Suppose that¯ is an annulus, and that the number of points
of on ¯ is two. Then the clasp number of is at most one.

Proposition 5.14. Suppose that¯ is a twice-punctured disc, and that the num-
ber of points of on ¯ is 0. Then the clasp number of is at most one.

By Propositions 3.1 and 4.1, we may suppose that| 1∩ | ≥ 2 and | 2∩ | ≥ 2.
Without loss of generality, we may suppose that (| 1 ∩ | | 2 ∩ |) = (2 4) or (3 3).

First suppose| 1 ∩ | = | 2 ∩ | = 3. Propositions 3.1, 4.5, 5.1, and 5.3 show
that the clasp numbers of 1 and 2 are at most one. By the definition of the clasp
number, we see that (1# 2) ≤ ( 1) + ( 2). Hence ( 1# 2) ≤ 2. This con-
tradicts our supposition.

Next suppose| 1 ∩ | = 2 and | 2 ∩ | = 4. Propositions 3.1, 4.2 and 5.1
show that the clasp number of 1 is at most one. Propositions 3.1, 4.6, 5.1, 5.3,
5.6 and 5.14 show that the clasp number of2 is at most two. Therefore we have
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( 1) = 1 and ( 2) = 2.
This completes the proof of Theorem 1.6.

4. The case whereDi contains no loop component ofT

In this section, we deal with an immersed surface (¯ ) when there is no loop
component of in . Thereforē = is a disc.

Proposition 4.1. Suppose that the number of points of on is at most one.
Then is the trivial knot.

Proposition 4.1 is essentially the same as Claim 1 in [6].

Proof. First suppose| | = 0. Then consists only of arcs of typeB. By
Lemma 2.3, we obtain an embedding1 of a disc 1 into . This embedded disc

1( 1) shows that is the trivial knot.
Next suppose| | = 1. Then consists of one arc of typeA, one arc of typeA′

and some arcs of typeB. By Lemma 2.3, we obtain an immersion1 of a disc 1

into such that 1 consists of one arc of typeA and one arc of typeA′. Then we
obtain, by Lemma 2.1, an embedding2 of a disc 2 into . This embedded disc

2( 2) shows that is the trivial knot.

Proposition 4.2. Suppose that the number of points of on is two. Then
the clasp number of is at most one.

Proof. Since| | = 2, consists of either (1) two arcs of typeC and some arcs
of type B, or (2) two arcs of typeA, two arcs of typeA′ and some arcs of typeB.
In both cases, we obtain, by Lemma 2.3, an immersion1 of a disc 1 into such
that there is no arc of typeB in 1.

First suppose that 1 consists of two arcs of typeC. Then the immersed disc
1( 1) shows that the clasp number of is at most one.

Next suppose that 1 consists of two arcs of typeA and two arcs of typeA′. Let
α1, α2 be arcs of typeA, andα′

1, α′
2 be arcs of typeA′ such that 1(α ) = 1(α′ ) for

= 1 and 2. Let 1 be the arc (∂ 1 − 1). When we proceed on 1 from one end-
point of 1, we may assume, by Lemma 2.1 and Proposition 4.1, that the first point of

1∩ 1 we encounter is an endpoint of an arc of typeA′. Hence we may assume that
the order of arcs of typesA andA′ whose endpoints we encounter, when we proceed
on 1 from one endpoint of 1, is eitherα′

1, α1, α2, α′
2, or α′

1, α2, α1, α′
2 in this

order. If the order isα′
1, α1, α2, α′

2, then a configuration of the singular arc1( 1)
on is that of Fig. 4.1 (1) or (2), up to symmetry and isotopy on .If the order is
α′

1, α2, α1, α′
2, then a configuration of the singular arc1( 1) on is that of Fig. 4.1

(3), up to symmetry and isotopy on .
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Fig. 4.1.

Lemma 4.3. Suppose that a configuration of1( 1) on is that ofFig. 4.1 (1)
or (2). Then is the trivial knot.

Proof. Suppose that the configuration is that of Fig. 4.1 (1).Let be a simple
arc on such that ∩ 1( 1) = ∂ = 1(∂ 1). The immersed disc 1( 1) implies
that the singular arc 1( 1) is a projection of the arc 1( 1) to fixing its boundary

1(∂ 1). Therefore the union ∪ 1( 1) may be regarded as a projection of to .
This shows that the crossing number of is at most two, so is thetrivial knot.

Similar arguments as above prove the case in the configuration of Fig. 4.1 (2).

Lemma 4.4. Suppose that a configuration of1( 1) on is that ofFig. 4.1 (3).
Then the clasp number of is at most one.

Proof. Let be a simple arc on which connects two points of1(∂ 1) and
which intersects 1(int 1) transversely in one point. The immersed disc1( 1) im-
plies that the union ∪ 1( 1) may be regarded as a projection of to . Therefore
the crossing number of is at most three, and the clasp number of is at most
one. See Appendix for the clasp number of prime knots of eightor fewer crossings
except 818.

This completes the proof of Proposition 4.2.

Proposition 4.5. Suppose that the number of points of on is three. Then
the clasp number of is at most one.

Proof. Since| | = 3, consists of either (1) three arcs of typeA, three arcs
of type A′ and some arcs of typeB, or (2) one arc of typeA, one arc of typeA′,
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two arcs of typeC and some arcs of typeB. In both cases, we obtain, by Lemma 2.3,
an immersion 1 of a disc 1 into such that there is no arc of typeB in 1.

First suppose that 1 consists of three arcs of typeA and three arcs of typeA′.
Similar arguments as in the proof of Proposition 4.2 show that the crossing number
of is at most four, and the clasp number of is at most one.

Next suppose that 1 consists of one arc of typeA, one arc of typeA′ and two
arcs of typeC. Let α andα′ denote these arcs of typesA andA′, respectively. Let
denote a regular neighborhood (1(α); ) of the arc 1(α) in . We may choose

so that 1( 1)∩ consists of two discs 1( (α; 1)) and 1( (α′; 1)). The disc
1( (α; 1)) intersects 1( (α′; 1)) transversely along the arc1(α) = 1(α′). We

regard as the set{( ) | 2 + 2 ≤ 1 0≤ ≤ 2} so that the disc ∩ corre-
sponds to the set{( 0) | 2 + 2 ≤ 1}. We suppose that1( (α; 1)) corresponds
to the set{(0 ) | −1 ≤ ≤ 1 0≤ ≤ 1}, and that 1( (α′; 1)) corresponds to
the set{( 0 ) | −1 ≤ ≤ 1 0 ≤ ≤ 2}. See Fig. 4.2. We may suppose that an
image of the outward-normal to 1 in (α; 1) agrees with the direction of increas-
ing , and that an image of the outward-normal to1 in (α′; 1) agrees with the
direction of increasing . Let̃ 1 be the disc{( ) | 2 + 2 = 1 ≥ 0 ≥ 0
0 ≤ ≤ 1}, and 2̃ be the disc{( ) | 2 + 2 = 1 ≤ 0 ≤ 0 0 ≤ ≤ 1}
in . Let 3̃ denote the disc embedded in which is the union of discs{( 0 ) |
2− ≤ ≤ 1 1≤ ≤ 2}, {( ) | 2 + 2 = (2− )2 ≥ 0 ≥ 0 1≤ ≤ 2},
{(0 ) | −2 ≤ ≤ 2− 1 ≤ ≤ 2}, {( ) | 2 + 2 = (2− )2 ≤ 0 ≤ 0
1 ≤ ≤ 2} and {( 0 ) | −1 ≤ ≤ − 2 1 ≤ ≤ 2}. We note here that the arc

1( 1)∩ which corresponds to the set{(0 1) | −1 ≤ ≤ 1} is disjoint from int 3̃,
that 3̃ ∩ ∂ is an arc consisting of the three subarcs1̃ ∩ {( 1) | 2 + 2 = 1},

2̃ ∩ {( 1) | 2 + 2 = 1} and 1(∂ (α′; 1))∩ {( ) | 2 + 2 ≤ 1 1≤ ≤ 2},
and that∂ 3̃ consists of the two arcs1( 1) ∩ and 3̃ ∩ ∂ .

Now we define an immersion2 of a surface 2 into . Let 2( 2) be the im-
mersed surface which is the union of1( 1 − ( (α; 1 − 1) ∪ (α′; 1))), 1̃, 2̃

and 3̃. We say that 2( 2) is obtained from 1( 1) by a CP surgeryalong 1(α).
A CP surgery may be regarded as a detailed explanation of a smoothing operation, il-
lustrated in Fig. 1.2, in a regular neighborhood of an endpoint of the clasp arc. By
this construction, we see that2 consists of two arcs of typeC, and that there is a
subarc 2 of ∂ 2 with 2( 2) = 1( 1) = ( ). Now we investigate the surface2

in detail. The surface 2 is the union of 1 − ( (α; 1 − 1) ∪ (α′; 1)), 1, 2

and 3, where ( = 1, 2 and 3) is a disc corresponding to˜ . Let 1̃ be the arc
{(0 1 ) | 0 ≤ ≤ 1} in , and 2̃ be the arc{(0 −1 ) | 0 ≤ ≤ 1} in . Note
that one endpoint of̃ ( = 1, 2) is contained in . Let denote the arc on1

with 1( ) = ˜ . Let γ̃1 1, γ̃1 2, γ̃2 1 and γ̃2 2 be the arcs{(1 0 ) | 0 ≤ ≤ 1},
{(1 0 ) | 1 ≤ ≤ 2}, {(−1 0 ) | 0 ≤ ≤ 1} and {(−1 0 ) | 1 ≤ ≤ 2} in , re-
spectively. Note that one endpoint of̃γ 1 ( = 1 2) is contained in . Letγ ( = 1,
2; = 1, 2) denote the arc on 1 with 1(γ ) = γ̃ . We may suppose, without loss
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of generality, that Fig. 4.3 shows the location of the arcs1 and 2 on ∂ (α; 1), and
the location of the arcsγ 1, γ 2, γ 1 andγ 2 on ∂ (α′; 1), where ( ) = (1 2) or
(2 1). Considering images of the outward-normal to1 in (α; 1) and (α′; 1),
we see that ( ) = (1 2). Since the disc̃ ( = 1, 2) may be regarded as a band
which connects˜ and γ̃ 1, the disc may be regarded as a band which connects
and γ 1. This construction of 2 shows that the surface 2 is homeomorphic to an
annulus.

Let 2 denote the component of∂ 2 such that 2 is not contained in 2. Let 2

be the arc (∂ 2 − ( 2 ∪ 2)). The simple closed curve2( 2) bounds a discδ on
such that 2( 2) is not contained inδ. Isotope 2( ( 2; 2)) ∪ δ slightly into int .
Then we obtain an immersion3 of a disc 3 into such that 3 consists of two
arcs of typeC. This immersed disc 3( 3) shows that the clasp number of is at
most one.
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Proposition 4.6. Suppose that the number of points of on is four. Then
the clasp number of is at most two.

Proof. Since| | = 4, consists of either (1) four arcs of typeA, four arcs of
type A′ and some arcs of typeB, or (2) four arcs of typeC and some arcs of typeB,
or (3) two arcs of typeA, two arcs of typeA′, two arcs of typeC and some arcs of
type B. In these three cases, we obtain, by Lemma 2.3, an immersion1 of a disc 1

into such that there is no arc of typeB in 1.
First suppose that 1 consists of four arcs of typeA and four arcs of typeA′.

Similar arguments as in the proof of Proposition 4.2 show that the crossing number of
is at most six, and the clasp number of is at most two.
Next suppose that 1 consists of four arcs of typeC. Then the immersed disc

1( 1) shows that the clasp number of is at most two.
Finally suppose that 1 consists of two arcs of typeA, two arcs of typeA′ and

two arcs of typeC. Let α1, α2 be arcs of typeA, andα′
1, α′

2 be arcs of typeA′ such
that 1(α ) = 1(α′ ) for = 1 and 2. Let 1 denote the arc (∂ 1 − 1).

Now we consider configurations of arcs of typesA andA′ on 1. When we pro-
ceed on 1 from one endpoint of 1, we may assume, without loss of generality, that
the first point of 1∩ 1 we encounter is an endpoint of eitherα1 or α′

1. First suppose
that the first point of 1 ∩ 1 is an endpoint ofα1. If the second point of 1 ∩ 1

is an endpoint ofα′
1, then a configuration of arcs of typesA and A′ on 1 is that

of Fig. 4.4 (1) or (2). In the configurations of Fig. 4.4, we omit arcs of typeC. If the
second point of 1∩ 1 is an endpoint ofα2, then the configuration is that of Fig. 4.4
(3) or (4). If the second point is an endpoint ofα′

2, then the configuration is that of
Fig. 4.4 (5) or (6). Next suppose that the first point of1 ∩ 1 is an endpoint ofα′

1.
If the second point is an endpoint ofα1, then the configuration is that of Fig. 4.4 (1)
or (7), up to exchange of the suffix. If the second point is an endpoint of α2, then the
configuration is that of Fig. 4.4 (6) or (8). If the second point is an endpoint ofα′

2,
then the configuration is that of Fig. 4.4 (3) or (4), up to exchange of the suffix.

Lemma 4.7. Suppose that a configuration of arcs of typesA and A′ on 1 is
that of Fig. 4.4 (1), (2), (4), (6) or (7). Then the clasp number of is at most one.

Proof. Suppose that a configuration of arcs of typesA and A′ on 1 is that of
Fig. 4.4 (1). Performing a CP surgery to1( 1) along the arc 1(α1) = 1(α′

1), we
obtain an immersion 2 of an annulus 2 into such that 2 consists of one arc of
type A, one arc of typeA′ and two arcs of typeC. Let 2 denote the component of
∂ 2 such that 2 is not contained in 2. Let 2 be the arc (∂ 2 − ( 2 ∪ 2)). The
simple closed curve 2( 2) bounds a discδ on such that 2( 2) is not contained in
δ. Isotope 2( ( 2; 2))∪δ slightly into int . Then we obtain an immersion3 of a
disc into such that 3 consists of one arc of typeA, one arc of typeA′ and two
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arcs of typeC. Proposition 4.5 shows that the clasp number of is at most one.
Similar arguments as above prove the cases in the configurations of Fig. 4.4 (2),

(4), (6) and (7).

Lemma 4.8. Suppose that a configuration of arcs of typesA and A′ on 1 is
that of Fig. 4.4 (3) or (8). Then the clasp number of is at most two.

Proof. Suppose that a configuration of arcs of typesA and A′ on 1 is that
of Fig. 4.4 (3). Performing a CP surgery to1( 1) along the arc 1(α1), we ob-
tain an immersion 2 of an annulus 2 into such that 2 consists of one arc of
type A, one arc of typeA′ and two arcs of typeC. Let α2 andα′

2 denote these arcs of
typesA andA′ in 2, respectively. Let 2 denote the component of∂ 2 such that 2

is not contained in 2, and let 2 denote the arc (∂ 2−( 2∪ 2)). The simple closed
curve 2( 2) bounds a discδ on which contains one endpoint of the simple arc

2( 2). Isotope 2( ( 2; 2))∪δ slightly into int . Then we obtain an immersion3
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of a disc 3 into . This isotopy changes the union of the arcs2(α2) = 2(α′
2) and

2( 2) ∩ δ to a singular arcγ of 3( 3) such that (3)−1(γ) consists of two arcs of
type C in 3. Hence 3 consists of four arcs of typeC. This immersed disc 3( 3)
shows that the clasp number of is at most two.

Similar arguments as above prove the case in the configuration of Fig. 4.4 (8).

Lemma 4.9. Suppose that a configuration of arcs of typesA and A′ on 1 is
that of Fig. 4.4 (5). Then the clasp number of is at most two.

Proof. Letγ1 be the subarc of 1 with ∂γ1 = (α1 ∩ 1) ∪ (α′
2 ∩ 1), andγ2 be

the subarc of 1 with ∂γ2 = (α2 ∩ 1) ∪ (α′
1 ∩ 1). Note that the singular arc1( 1)

on has the same configuration as that of Fig. 4.1 (3), up to symmetry and isotopy
on . The two arcs 1(γ1) and 1(γ2) cobound a discδ on such that 1(∂ 1) is not
contained inδ. Isotope 1( (γ1; 1)) along δ. Then we obtain an immersion2 of a
disc 2 into such that 2( 2) is an embedded arc on , where2 = (∂ 2 − 2).
This isotopy changes the union of the arcs1(α1) = 1(α′

1),
1(α2) = 1(α′

2) and 1(γ2)
to a singular arcγ of 2( 2) such that (2)−1(γ) consists of two arcs of typeC in 2.
Therefore 2 consists of four arcs of typeC. This immersed disc 2( 2) shows that
the clasp number of is at most two.

This completes the proof of Proposition 4.6

5. The case whereDi contains loop components ofT

In this section, we deal with an immersed surface (¯ ) when there are loop com-
ponents of in . Recall that̄ is the region separated by loop components of
in such that is a subarc of∂ ¯ .

Proposition 5.1. Suppose that¯ is an annulus, and that the number of points
of on ¯ is 0. Then is the trivial knot.

Proof. Since =∅, consists only of arcs of typeB. Let denote the com-
ponent of∂ ¯ such that is not contained in .

First suppose =∅. Then the simple closed curve ( ) bounds a discδ on
such that ( ) is not contained inδ. Isotope ( ( ; ¯ ))∪ δ slightly into int . Then
we obtain an embedding of a disc into . This embedded disc shows that is the
trivial knot.

Next suppose 6= ∅. A properly embedded arc on̄ is said to beof type 1

if the two points of∂ are contained in , and if and a subarc′ of ∂ ¯ cobound
a disc on ¯ such that is contained in′. See Fig. 5.1. A properly embedded arc

on ¯ is of type 2 if together with a subarc of cobounds a disc on̄. A
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1

2

3 4

Fig. 5.1.

properly embedded arc on̄ is of type 3 if connects a point on and a point
on . A properly embedded arc on̄ is of type 4 if together with a subarc of

cobounds a disc on¯ . We note that an arc of typeB on ¯ is of type 1, 2, 3

or 4.
Now we consider configurations of a pair of arcs of typeB on ¯ which are iden-

tified by . If one of the arcs of typeB in the pair is of type 1, then we may assume,
by Lemmas 2.2 and 2.3, that a configuration of the pair is, up tosymmetry of ¯ , that
of Fig. 5.2 (1) or (2). If one of the arcs of typeB is of type 2, then we may assume,
by Lemmas 2.2 and 2.3, that a configuration of the pair is, up tosymmetry of ¯ ,
that of Fig. 5.2 (1) or (3). If one of the arcs of typeB is of type 3, then we may
assume, by Lemma 2.2, that a configuration of the pair is, up tosymmetry of ¯ , that
of Fig. 5.2 (2), (3) or (4). If one of the arcs of typeB is of type 4, then we may
assume, by Lemmas 2.2 and 2.3, that a configuration of the pairis that of Fig. 5.2
(4).

Lemma 5.2. Suppose that a configuration of the pair of arcs of typeB on ¯

which are identified by is that ofFig. 5.2 (1), (2), (3)or (4). Then there exists an
immersion 2 of an annulus 2̄ into satisfying the following properties;
(i) Every component of 2 is an arc of typeB,
(ii) The number of arcs of typeB in 2 is strictly less than that of typeB in , and
(iii) There is a subarc 2 of ∂ 2̄ such that 2( 2) = ( ), and that 2(∂ 2̄ − 2) is
contained in .

Proof. Suppose that a configuration of the pair of arcs of typeB on ¯ which
are identified by is that of Fig. 5.2 (1). Letβ1 andβ2 be the two arcs of typeB. Let

denote a regular neighborhood ( (β1); ). We may choose so that (̄) ∩
consists of two discs ( (β1; ¯ )) and ( (β2; ¯ )). The disc ( (β1; ¯ )) inter-
sects ( (β2; ¯ )) transversely along the arc (β1) = (β2). We regard as the set
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(1) (2) (3)

(4)

Fig. 5.2.

{( ) | 2 + 2 ≤ 1 0≤ ≤ 1} so that two discs of ∩ correspond to the sets
{( 0) | 2 + 2 ≤ 1} and {( 1) | 2 + 2 ≤ 1}. Without loss of generality, we
may assume that ( (β1; ¯ )) corresponds to{( 0 ) | −1 ≤ ≤ 1 0 ≤ ≤ 1},
and that ( (β2; ¯ )) corresponds to{(0 ) | −1 ≤ ≤ 1 0 ≤ ≤ 1}. We may
also assume that an image of the outward-normal to¯ in (β1; ¯ ) agrees with the
direction of increasing , and that an image of the outward-normal to ¯ in (β2; ¯ )
agrees with the direction of increasing . Let1̃ be the disc{( ) | 2 + 2 = 1
≥ 0 ≥ 0 0≤ ≤ 1}, and 2̃ be the disc{( ) | 2 + 2 = 1 ≤ 0 ≤ 0

0 ≤ ≤ 1}.
Now we define an immersion 1 of a surface 1̄ into . Let 1( 1̄) be the

immersed surface which is the union of (¯ − (β1 ∪ β2; ¯ )), 1̃ and 2̃. We say
that 1( 1̄) is obtained from (̄ ) by an oriented double curve surgeryalong the arc

(β1) = (β2). This operation was called anorientation preserving cutalong the arc
(β1) = (β2). See, for example, [11, p. 4]. By this construction,1( 1̄) satisfies the

properties (i)–(iii). The surface 1̄ is the union of ¯ − (β1 ∪ β2; ¯ ), 1 and 2,
where ( = 1, 2) is a disc corresponding tõ. Similar arguments as in the proof
of Lemma 2.2 show that 1̄ is homeomorphic to either an annulus or two annuli.

Let 2̄ denote the connected component of̄1 such that 1 is a subarc of∂ 2̄.
Let 2 be the restriction of 1 to 2̄. Thus we obtain an immersion2 of an annulus

2̄ into satisfying the properties (i)–(iii).
Similar arguments as above prove the cases in the configurations of Fig. 5.2 (2),

(3) and (4).

By Lemma 5.2, we obtain an embedding3 of an annulus 3̄ into with
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Fig. 5.3.

3( 3) = ( ). Therefore we have 3 = ∅, and is the trivial knot. This completes
the proof of Proposition 5.1.

Proposition 5.3. Suppose that¯ is an annulus, and that the number of points
of on ¯ is one. Then the clasp number of is at most one.

Proof. Since| | = 1, consists of one arc of typeA, one arc of typeA′

and some arcs of typeB. By similar arguments as in the proof of Proposition 5.1,
we obtain an immersion 1 of an annulus 1̄ into such that there is no arc of
type B in 1, and that there is a subarc1 of ∂ 1̄ with 1( 1) = ( ). If 1 = ∅, then
Proposition 5.1 shows that is the trivial knot. So we may assume that 1 consists
of one arc of typeA and one arc of typeA′. Let 1 denote the component of∂ 1̄

such that 1 is not contained in 1. Let 1 be the arc (∂ 1̄ − ( 1 ∪ 1)).
First suppose that there are no endpoints of arcs of typesA and A′ on 1. Then

the simple closed curve1( 1) bounds a discδ on such that 1( 1) is not contained
in δ. Isotope 1( ( 1; 1̄))∪δ slightly into int . Then we obtain an immersion2 of
a disc 2̄ into such that 2 consists of one arc of typeA and one arc of typeA′.
Proposition 4.1 shows that is the trivial knot.

Next suppose that there are endpoints of arcs of typesA andA′ on 1. If there is
an endpoint of only the arc of typeA on 1, then a configuration of arcs of typesA
andA′ on 1̄ is that of Fig. 5.3 (1). If there is an endpoint of only the arc of type A′

on 1, then the arc of typeA satisfies the supposition of Lemma 2.1, and we obtain
an embedding of an annulus into . Proposition 5.1 shows that is the trivial knot.
If there are endpoints of the arcs of typesA and A′ on 1, then a configuration of
arcs of typesA andA′ on 1̄ is that of Fig. 5.3 (2).

Similar arguments as in the proof of Lemma 4.8 prove the following lemma.

Lemma 5.4. Suppose that a configuration of arcs of typesA and A′ on 1̄ is
that of Fig. 5.3 (1). Then the clasp number of is at most one.
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Lemma 5.5. Suppose that a configuration of arcs of typesA and A′ on 1̄ is
that of Fig. 5.3 (2). Then is the trivial knot.

Proof. Performing a CP surgery to1( 1̄) along the singular arc, we obtain
an embedding 2 of a twice-punctured disc 2̄ into . Let 2

1 and 2
2 denote the

components of∂ 2̄ such that 2 is not a subarc of 2
1 or 2

2. Let 2 be the arc
(∂ 2̄ − ( 2

1 ∪ 2
2 ∪ 2)). At least one of the simple closed curves2( 2

1) and 2( 2
2),

say 2( 2
1), bounds a discδ on such that 2( 2

2) and 2( 2) are not contained in
δ. Isotope 2( ( 2

1; 2̄)) ∪ δ slightly into int . Then we obtain an embedding of an
annulus into . Proposition 5.1 shows that is the trivial knot.

This completes the proof of Proposition 5.3.

Proposition 5.6. Suppose that¯ is an annulus, and that the number of points
of on ¯ is two. Then the clasp number of is at most one.

Proof. Since| | = 2, consists of either (1) two arcs of typeA, two arcs of
type A′ and some arcs of typeB, or (2) two arcs of typeC and some arcs of typeB.
In both cases, we obtain, by similar arguments as in the proofof Proposition 5.1, an
immersion 1 of an annulus 1̄ into such that there is no arc of typeB in 1,
and that there is a subarc1 of ∂ 1̄ with 1( 1) = ( ). We may assume, by Proposi-
tions 5.1 and 5.3, that 1 consists of two arcs of typeA and two arcs of typeA′ in
the case of (1), and that 1 consists of two arcs of typeC in the case of (2). Let 1

denote the component of∂ 1̄ such that 1 is not contained in 1. Let 1 be the arc
(∂ 1̄ − ( 1 ∪ 1)).

Lemma 5.7. Suppose that 1 consists of two arcs of typeC. Then the clasp
number of is at most one.

Proof. The simple closed curve1( 1) bounds a discδ on such that 1( 1) is
not contained inδ. Isotope 1( ( 1; 1̄)) ∪ δ slightly into int . Then we obtain an
immersion 2 of a disc 2̄ into such that 2 consists of two arcs of typeC. This
immersed disc 2( 2̄) shows that the clasp number of is at most one.

Lemma 5.8. Suppose that 1 consists of two arcs of typeA and two arcs of
typeA′. Then the clasp number of is at most one.

Proof. We consider configurations of arcs of typesA andA′ on 1̄.

CLAIM 5.9. If there are no endpoints of arcs of typeA or A′ on 1, then the
clasp number of is at most one.
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Proof. Suppose that there are no endpoints of arcs of typeA or A′ on 1. Then
the simple closed curve1( 1) bounds a discδ on such that 1( 1) is not contained
in δ. Isotope 1( ( 1; 1̄))∪δ slightly into int . Then we obtain an immersion2 of
a disc into such that 2 consists of two arcs of typeA and two arcs of typeA′.
Proposition 4.2 shows that the clasp number of is at most one.

We may assume, by Claim 5.9, that there is at least one endpoint of arcs of
typesA andA′ on 1. If there is an endpoint of only one arc of typeA on 1, then
we may assume, by Lemma 2.1 and Proposition 5.3, that a configuration of arcs of
typesA and A′ on 1̄ is, up to symmetry of 1̄, that of Fig. 5.4 (1) or (2). If there
is an endpoint of only one arc of typeA′ on 1, then we may assume, by Lemma 2.1
and Proposition 5.3, that the configuration is, up to symmetry of 1̄, that of Fig. 5.4
(3). If there are endpoints of only one arc of typeA and one arc of typeA′ on 1,
then we may assume, by Lemma 2.1 and Proposition 5.3, that theconfiguration is, up
to symmetry of 1̄, that of Fig. 5.4 (4). If there are endpoints of only two arcs of
type A on 1, then the configuration is that of Fig. 5.4 (5). If there are endpoints of
only two arcs of typeA′ on 1, then at least one of the two arcs of typeA satisfies
the supposition of Lemma 2.1, and we obtain an immersion2 of an annulus into
such that 2 consists of one arc of typeA and one arc of typeA′. Proposition 5.3
shows that the clasp number of is at most one. If there are endpoints of only one
arc of typeA and two arcs of typeA′ on 1, then the same arguments as above show
that the clasp number of is at most one. If there are endpointsof only two arcs of
type A and one arc of typeA′ on 1, then the configuration is that of Fig. 5.4 (6)
or (7). If there are endpoints of two arcs of typeA and two arcs of typeA′ on 1,
then the configuration is that of Fig. 5.4 (8), (9) or (10).

CLAIM 5.10. Suppose that a configuration of arcs of typesA and A′ on 1̄ is
that of Fig. 5.4 (1), (2), (3), (6) or (7). Then the clasp number of is at most one.

Proof. Suppose that a configuration of arcs of typesA and A′ on 1̄ is that of
Fig. 5.4 (1). Letα′

1, α′
2 denote arcs of typeA′, andα ( = 1 or 2) denote the arc of

type A as illustrated in the figure. We assume that1(α ) = 1(α′ ) for = 1 and 2.
First suppose = 2. The simple closed curve1( 1) intersects the immersed arc

1( 1) transversely in one point on . Since1(α1) = 1(α′
1), we can construct a sim-

ple closed curve on which intersects1( 1) transversely in one point. This shows
that 1( 1) is a non-separating simple closed curve on a 2-sphere, a contradiction.

Next suppose = 1. Performing a CP surgery to1( 1̄) along the arc 1(α2) =
1(α′

2), we obtain an immersion 2 of a twice-punctured disc 2̄ into such that
2 consists of one arc of typeA and one arc of typeA′. Let 2 be the connected

component of∂ 2̄ such that there is no endpoint of the arc of typeA or A′ on 2.
Then the simple closed curve2( 2) bounds a discδ on such that 2(∂ 2̄− 2)∩
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is not contained inδ. Isotope 2( ( 2; 2̄))∪δ slightly into int . Then we obtain an
immersion 3 of an annulus into such that 3 consists of one arc of typeA and
one arc of typeA′. Proposition 5.3 shows that the clasp number of is at most one.

Similar arguments as above prove the cases in the configurations of Fig. 5.4 (2),
(3), (6) and (7).

CLAIM 5.11. Suppose that a configuration of arcs of typesA and A′ on 1̄ is
that of Fig. 5.4 (4). Then the clasp number of is at most one.
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Proof. Letα1, α2 denote arcs of typeA, andα′ ( = 1 or 2) denote the arc of
type A′ as illustrated in the figure. We assume that1(α ) = 1(α′ ) for = 1 and 2.

First suppose = 1. Then the simple closed curve1( 1) bounds a discδ on
which contains no endpoints of the simple arc1( 1). Isotope 1( ( 1; 1̄)) ∪ δ

slightly into int . Then we obtain an immersion2 of a disc 2̄ into . This iso-
topy changes the union of the arcs1(α1) = 1(α′

1),
1(α2) = 1(α′

2) and 1( 1)∩ δ to
a singular arcγ of 2( 2̄) such that (2)−1(γ) consists of two arcs of typeC in 2̄.
Hence 2 consists of two arcs of typeC. This immersed disc 2( 2̄) shows that the
clasp number of is at most one.

Next suppose = 2. Perform a CP surgery to1( 1̄) along the arc 1(α2) =
1(α′

2). Then we obtain an immersion2 of a twice-punctured disc into . By simi-
lar arguments as in the proof of Lemma 5.5, we obtain an immersion 3 of a disc into

such that 3 consists of one arc of typeA and one arc of typeA′. Proposition 4.1
shows that is the trivial knot.

CLAIM 5.12. Suppose that a configuration of arcs of typesA and A′ on 1̄ is
that of Fig. 5.4 (5). Then is the trivial knot.

Proof. Letα1 andα2 be arcs of typeA on 1̄. The simple closed curve1( 1)
bounds a discδ on which contains no endpoints of the simple arc1( 1). Isotope

1( ( 1; 1̄)) ∪ δ slightly into int . Then we obtain an immersion2 of a disc 2̄

into . This isotopy changes the union of the arcs1(α1), 1(α2) and 1( 1)∩δ to a
singular arcγ of 2( 2̄) such that (2)−1(γ) consists of two arcsγ1 andγ2 embedded
in 2̄, where∂γ1 is contained in 2 andγ2 is contained inint 2̄. Note thatγ1∩γ2 = ∅
on 2̄, and thatγ1 and a subarc of2 cobound a disc γ in 2̄ such thatγ2 is not
contained in γ . Isotope 2( (γ2; 2̄)) along 2( γ). Then we obtain an embedding3

of a disc 3̄ into . This embedded disc3( 3̄) shows that is the trivial knot.

CLAIM 5.13. Suppose that a configuration of arcs of typesA and A′ on 1̄ is
that of Fig. 5.4 (8), (9) or (10). Then is the trivial knot.

Proof. Suppose that a configuration of arcs of typesA and A′ on 1̄ is that of
Fig. 5.4 (8). Letα1 and α2 denote arcs of typeA, and α′ ( = 1 or 2) denote the
arc of typeA′ as illustrated in the figure. We assume that1(α ) = 1(α′ ) for = 1
and 2.

First suppose = 2. Then there is no configuration of an immersed closed curve
1( 1) on a 2-sphere.

Next suppose = 1. Performing CP surgeries to1( 1̄) along the arcs 1(α1) and
1(α2), we obtain an embedding2 of a twice-punctured annulus̄ 2 into . Similar

arguments as in the proof of Lemma 5.5 shows that is the trivial knot.
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The same arguments as above prove the cases in the configurations of Fig. 5.4 (9)
and (10).

This completes the proofs of Lemma 5.8 and Proposition 5.6.

Proposition 5.14. Suppose that¯ is a twice-punctured disc, and that the num-
ber of points of on ¯ is 0. Then the clasp number of is at most one.

Proof. Since| | = 0, consists only of arcs of typeB. Let 1, 2 denote
connected components of∂ ¯ − ( ∪ ).

A properly embedded arc on̄ is said to beof type 0 if and a subarc of
(∂ ¯ − ) cobound a disc on¯ . See Fig. 5.5. A properly embedded arc on̄

is of type 1 if the two points of ∂ are contained in , and if together with a
subarc ′ of ∂ ¯ cobounds a disc on¯ such that is contained in′. A properly
embedded arc on¯ is of type 2 if the two points of∂ are contained in , and
if separates ¯ to two annuli 1 and 2 so that is a component of∂ for = 1
and 2. A properly embedded arc on̄ is of type 3 if connects a point on
and a point on for = 1 or 2. A properly embedded arc on̄ is of type 4

if connects a point on 1 and a point on 2. A properly embedded arc on̄ is
of type 5 if the two points of∂ are contained in , and if and a subarc of
together with cobound an annulus on̄ for ( ) = (1 2) or (2 1). We note that
an arc of typeB on ¯ is of type 0, 1, 2, 3, 4 or 5.

The following lemma is essentially the same as Lemma 1 (1) in [6]. We refer
to [6] for a proof.

Lemma 5.15. Let β be an arc of typeB which is of type 0 on ¯ . Then there
are an orientable surface 1̄ and an immersion 1 : 1̄ → satisfying the following
properties;
(i) The Euler characteristics of 1̄ is equal to or greater than that of̄ ,
(ii) Every component of 1 is an arc of typeB,
(iii) The number of arcs of typeB in 1 is strictly less than that in , and
(iv) There is a subarc 1 of ∂ 1̄ such that 1( 1) = ( ), and that 1(∂ 1̄ − 1) is
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contained in .

We may assume, by Lemma 5.15 and Propositions 4.1 and 5.1, that there is no
arc of typeB which is of type 0 on a twice-punctured disc̄ .

Let β be an arc of typeB which is of type 1 on ¯ , and β be the disc on
¯ which is cobounded byβ and a subarc of∂ ¯ . We may assume, by Lemma 2.2,

that the restriction of to β is an embedding. We can isotope the string ( ) of the
1-string tangle ( ( )) along the embedded disc (β) in to the string (β) of
the 1-string tangle ( (β)). It follows that it has no effect on the knot type of
to replace ¯ with ( ¯ − ( β ; ¯ )). So we suppose, in the following, that there is
no arc of typeB which is of type 1 on ¯ .

Now we consider configurations of a pair of arcs of typeB on ¯ which are
identified by . If one of the arcs of typeB is of type 2, then we may assume,
by Lemma 2.2, that a configuration of the pair is, up to symmetry of ¯ , that of
Fig. 5.6 (1), (2) or (3). If one of the arcs of typeB is of type 3, then we may as-
sume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of ¯ , that
of Fig. 5.6 (2)–(6) or (7). If one of the arcs of typeB is of type 4, then we may
assume, by Lemma 2.2, that a configuration of the pair is, up tosymmetry of ¯ , that
of Fig. 5.6 (6) or (8). If one of the arcs of typeB is of type 5, then we may as-
sume, by Lemma 2.2, that a configuration of the pair is, up to symmetry of ¯ , that
of Fig. 5.6 (7) or (8).

Lemma 5.16. Suppose that a configuration of a pair of arcs of typeB on ¯

which are identified by is that ofFig. 5.6 (1), (2), (3), (5), (7)or (8). Then there is
an immersion 2 : 2̄ → with the following properties;
(i) The surface 2̄ is homeomorphic to either an annulus or a twice-punctured disc,
(ii) Every component of 2 is an arc of typeB,
(iii) The number of arcs of typeB in 2 is strictly less than that in , and
(iv) There is a subarc 2 of ∂ 2̄ such that 2( 2) = ( ) and that 2(∂ 2̄ − 2) is
contained in .

Proof. Suppose that a configuration of a pair of arcs of typeB on ¯ which are
identified by is that of Fig. 5.6 (1). Performing an oriented double curve surgery to

( ¯ ) along the singular arc, we obtain an immersion1 : 1̄ → which satisfies the
conditions (ii), (iii) and (iv). Similar arguments as in theproof of Lemma 2.2 show
that the surface 1̄ is homeomorphic to either a union of an annulus and a twice-
punctured disc, or a twice-punctured disc. Let̄2 denote the connected component of

1̄ such that 1 is a subarc of∂ 2̄. Let 2 be the restriction of 1 to 2̄. Then the
immersion 2 : 2̄ → satisfies the conditions (i)–(iv).

The same arguments as above prove the cases in the configurations of Fig. 5.6 (2),
(3), (5), (7) and (8).
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The same arguments as in the proof of Lemma 5.16 prove the following two lem-
mas.

Lemma 5.17. Suppose that a configuration of a pair of arcs of typeB on ¯

which are identified by is that ofFig. 5.6 (4). Let 1, 2, , denote endpoints of
arcs of typeB as illustrated in the figure. If (1) = ( ) and (2) = ( ), then there is
an immersion 2 of a twice-punctured disc 2̄ into such that every component of

2 is an arc of typeB, that the number of arcs of typeB in 2 is strictly less than
that in , and that there is a subarc2 of ∂ 2̄ with 2( 2) = ( ).

Lemma 5.18. Suppose that a configuration of a pair of arcs of typeB on ¯

which are identified by is that ofFig. 5.6 (6). Let 1, 2, , denote endpoints of
arcs of typeB as illustrated in the figure. If (1) = ( ) and (2) = ( ), then there is
an immersion 2 of a twice-punctured disc 2̄ into such that every component of

2 is an arc of typeB, that the number of arcs of typeB in 2 is strictly less than
that in , and that there is a subarc2 of ∂ 2̄ with 2( 2) = ( ).

By Lemmas 5.16, 5.17 and 5.18, we may suppose either that2̄ is an annulus
such that 2 consists only of arcs of typeB, or that 2̄ is a twice-punctured disc
such that a configuration of every pair of arcs of typeB on 2̄ which are identified
by 2 is that of Fig. 5.6 (4) or (6) with 2(1) = 2( ) and 2(2) = 2( ). If 2̄ is an
annulus, then Proposition 5.1 shows that is the trivial knot.

In the rest of the proof of Proposition 5.14, we suppose that2̄ is a twice-
punctured disc, and that every pair of arcs of typeB on 2̄ which are identified by

2 is either the pair as in the configuration of Fig. 5.6 (4) with2(1) = 2( ) and
2(2) = 2( ), or the pair as in the configuration of Fig. 5.6 (6) with2(1) = 2( )

and 2(2) = 2( ).
We may assume, by Lemma 2.4, that2 contains at most one pair of arcs of

type B as in the configuration of Fig. 5.6 (4), and at most two pairs ofarcs of typeB
as in the configuration of Fig. 5.6 (6). Now we consider configurations of arcs of
type B on 2̄. If 2 consists of only one pair of arcs of typeB as in the configuration
of Fig. 5.6 (4), then a configuration of arcs of typeB on 2̄ is that of Fig. 5.7 (1). In
the configurations of Fig. 5.7, we suppose that endpoints of arcs of typeB which have
the same labels are identified by2. If 2 consists of only one pair of arcs of typeB
as in the configuration of Fig. 5.6 (6), then the configurationis that of Fig. 5.7 (2). If

2 consists of only one pair of arcs of typeB as in the configuration of Fig. 5.6 (4)
and one pair of arcs of typeB as in the configuration of Fig. 5.6 (6), then the config-
uration is that of Fig. 5.7 (3), (4) or (5), up to symmetry of̄2. If 2 consists of only
two pairs of arcs of typeB as in the configuration of Fig. 5.6 (6), then the configura-
tion is that of Fig. 5.7 (6), up to symmetry of̄ 2. If 2 consists of one pair of arcs
of type B as in the configuration of Fig. 5.6 (4) and two pairs of arcs of type B as
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Fig. 5.7. (continued)

in the configuration of Fig. 5.6 (6), then the configuration isthat of Fig. 5.7 (7)–(13)
or (14), up to symmetry of 2̄.



ADDITIVITY OF CLASP NUMBER OF KNOTS 829

Lemma 5.19. A configuration of arcs of typeB on 2̄ is not that of Fig. 5.7
(2)–(5), (7)–(11)or (14).

Proof. First we deal with the configuration of Fig. 5.7 (2). Let 2
1, 2

2 denote
the components of∂ 2̄ as illustrated in the figure. Note that both2( 2

1) and 2( 2
2)

are simple closed curves on . The simple closed curve2( 2
2) intersects 2( 2

1) trans-
versely in one point at the image of the point labeled 1. This implies that each of

2( 2
1) and 2( 2

2) is a non-separating simple closed curve on a 2-sphere, a contradic-
tion.

Similar arguments as above prove that a configuration of arcsof type B on 2̄ is
not that of Fig. 5.7 (3), (4) or (5).

Next we deal with the configuration of Fig. 5.7 (7). Let21 and 2
2 denote the

components of∂ 2̄, and let 2 denote the arc (∂ 2̄ − ( 2
1 ∪ 2

2 ∪ 2)) as illustrated
in the figure. We denote byγ the subarc of 2 such that∂γ consists of the two
points labeled 2 and 6, and we denote byγ the subarc of 2

2 such that∂γ consists
of the two points labeled 2 and 6, and thatint γ is disjoint from the points labeled 3
and 5. Then the union 2(γ ) ∪ 2(γ ) forms a simple closed curve on . The sim-
ple closed curve 2( 2

1) intersects 2(γ )∪ 2(γ ) on transversely in one point at the
image of the point labeled 4. This implies that both2( 2

1) and 2(γ ) ∪ 2(γ ) are
non-separating simple closed curves on a 2-sphere, a contradiction.

Similar arguments as above prove that a configuration of arcsof type B on 2̄ is
not that of Fig. 5.7 (8)–(11) or (14).

Lemma 5.20. Suppose that a configuration of arcs of typeB on 2̄ is that of
Fig. 5.7 (1). Then the clasp number of is at most one.

Proof. Let 2
1, 2

2 denote the components of∂ 2̄, and β1, β2 denote arcs of
type B as illustrated in the figure. Let 2 be the arc (∂ 2̄−( 2

1∪ 2
2∪ 2)). The image

2( 2
1 ∪ 2

2 ∪ 2), which is unique up to isotopy and symmetry on , is illustrated in
Fig. 5.8 (1). The simple closed curve2( 2

1) bounds a discδ on such that 2( 2
2) is

not contained inδ. Isotope 2( ( 2
1;

2̄)) ∪ δ slightly into int . Then we obtain an
immersion 3 of an annulus 3̄ into . This isotopy changes the union of the arcs

2(β1) = 2(β2) and 2( 2)∩ δ to a singular arcγ of 3( 3̄) such that (3)−1(γ) con-
sists of one arc of typeA and one arc of typeA′ on 3̄. Hence 3 consists of one
arc of typeA and one arc of typeA′. Proposition 5.3 shows that the clasp number of

is at most one.

Lemma 5.21. Suppose that a configuraton of arcs of typeB on 2̄ is that of
Fig. 5.7 (6). Then the clasp number of is at most one.



830 H. MATSUDA

2( 2
1)

2( 2
1)

2( 2
2)

1

1

1

1

2

2

22

3

3

3

4
4

4

5

5
6

6

(1) (2)

(3) (4)

Fig. 5.8.

Proof. Let 2
1, 2

2 denote the components of∂ 2̄ as illustrated in the figure. Let
2 be the arc (∂ 2̄− ( 2

1∪ 2
2∪ 2)). The image 2( 2

1∪ 2
2∪ 2), which is unique up

to isotopy and symmetry on , is illustrated in Fig. 5.8 (2). The simple closed curve
2( 2

2) bounds a discδ on such that the image of the point labeled 2 is not con-
tained in δ. Isotope 2( ( 2

2;
2̄)) ∪ δ slightly into int . Then we obtain an immer-

sion 3 of an annulus into . Similar arguments as in the proof of Lemma5.20 show
that 3 consists of one arc of typeA and one arc of typeA′. Proposition 5.3 shows
that the clasp number of is at most one.

Lemma 5.22. Suppose that a configuration of arcs of typeB on 2̄ is that of
Fig. 5.7 (12). Then is the trivial knot.
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Proof. Let 2
1, 2

2 denote the components of∂ 2̄ as illustrated in the figure. Let
2 denote the arc (∂ 2̄ − ( 2

1 ∪ 2
2 ∪ 2)). The image 2( 2

1 ∪ 2
2 ∪ 2), which is

unique up to isotopy and symmetry on , is illustrated in Fig. 5.8 (3). The simple
closed curve 2( 2

1) bounds a discδ on which contains no endpoints of the simple
arc 2( 2). Isotope 2( ( 2

1; 2̄)) ∪ δ slightly into int . Then we obtain an immer-
sion 3 of an annulus into . Similar arguments as in the proof of Lemma5.20 show
that 3 consists of two arcs of typeB. Proposition 5.1 shows that is the trivial
knot.

Lemma 5.23. Suppose that a configuration of arcs of typeB on 2̄ is that of
Fig. 5.7 (13). Then is the trivial knot.

Proof. Let 2
1, 2

2 denote the components of∂ 2̄ as illustrated in the figure. Let
2 denote the arc (∂ 2̄ − ( 2

1 ∪ 2
2 ∪ 2)). The image 2( 2

1 ∪ 2
2 ∪ 2), which is

unique up to isotopy and symmetry on , is illustrated in Fig. 5.8 (4). The simple
closed curve 2( 2

1) bounds a discδ on which contains no endpoints of the simple
arc 2( 2). Isotope 2( ( 2

1; 2̄)) ∪ δ slightly into int . Then we obtain an immer-
sion 3 of an annulus into . Similar arguments as in the proof of Lemma5.20 show
that 3 consists of two arcs of typeB. Proposition 5.1 shows that is the trivial
knot.

By Lemmas 5.19–5.23, we may suppose that2̄ is a twice-punctured disc and
2 = ∅. The same arguments as in the proof of Lemma 5.5 show that is the trivial

knot.
This completes the proof of Proposition 5.14.

Appendix

Kadokami obtained the following table in his Doctoral Dissertation [2]. This table
gives us the clasp number of prime knots of eight or fewer crossings except 818. We
refer to Rolfsen’s table [12] for the nomenclature of knots.The clasp number of 818

is not known yet.
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knot ( )
31 1
41 1
51 2
52 1
61 1
62 2
63 2
71 3
72 1
73 2
74 2
75 2
76 2
77 2
81 1
82 3
83 2

knot ( )
84 2
85 3
86 2
87 3
88 2
89 3
810 3
811 2
812 2
813 2
814 2
815 2
816 3
817 3
819 3
820 2
821 2
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