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Introduction

According to Thurston, for any analytically finite Riemanaorface R, the set
G(R) of all projective geodesic laminations R can be made into a topological space
homeomorphic to a sphere of dimension depending on thedgpadf R. Understand-
ing the spacej(R) is important for various approaches to the Teiciier space and
the mapping class group 0. The spacej(R) was then investigated by several au-
thors from many different points of view. See [3-10], [12,, I%], and references
there in.

In this paper, we consider the spa@g = G(T,) for any integer > 4, whereX,
is an n -punctured sphere endowed with a hyperbolic metride NleatG, is homeo-
morphic to a sphere of dimensiom 2 7.

This work was an attempt to generalize the projective coateéis defined in [3, 4]
to an arbitraryG,. This work and that of Keen, Parker and Series [10] are eisdignt
based on cutting sequence technique developed by Birmarseres [2], and comple-
ment the works of Masur and Minsky [12, 13].

Let G, be the set of all simple closed geodesicsXn .#or =4 or 5, theau
has defined a set of projective coordinates §grso that the completion of these co-
ordinates parametrizg,, (see [3, 4]). The coordinates of eashc G, are geometric
intersection numbers of with 2(n — 3) fixed geodesics irG,, and read off directly
from the topology ofy. Moreover, these coordinates have three remarkable applica
tions. First, the geometric intersection number of any twodgsics ing, can be for-
mulated explicitly in terms of the corresponding coordésatSecondly, the coordinates
of eachy € G, determine a canonical expression-ofis a word in a given set of gen-
erators for the fundamental group(X,). Finally, the coordinates of each € G,
are related to trace polynomials of the transformationsesponding toy in a fam-
ily of regular B -groups uniformizingz, .

For an arbitraryn > 5, following [3, 4], we shall chooses — 3 fixed triples
(7vj. 7% ~3) of geodesics ing, (1< j <n— 3), and compute the geometric intersec-

The work was partially supported by a grant from the NatidBelence Council of the Republic
of China.



724 Y. CHIANG

tion numbers A, yf), called theelementary intersection numbeo$ . The elementary
intersection numbers of will determine a set of parameters for

The geodesicsﬁ are defined explicitly in§1.2. They are chosen intuitively as
described below. First, we line up the punctures3f , &ay.., (,. For every;j ,
the geodesicy} is chosen to separat@, ..., (j+1 from (4o, ..., (. These geodesics
7} determinen — 3 subsurfaces ok, each of which is homeomorphic to a four punc-
tured sphere. Two of them are isometric to spheres with threetures and one hole,
denoted bys{" and £{"~?, and the others are isometric to spheres with two punctures
and two holes, denoted bg{’, 2 < j < n — 4. More explicitly, = is the subsur-
face containing(:, ¢; and (3 with the boundary geodesig}; 25{’"3) is the subsurface
containing¢,—2, ¢,—1 and ¢, with the boundary geodesig® ,; Zf{) is the subsurface
bounded byy} ; and~j,, for 2 < j < n — 4. For every; , we choose? so that
7} and 'yj? form a marking of a four punctured sphere ag and o given in [3].
The geodesicﬁ’ plays the role ofy; given [3] which is obtained fromyjz. by a half-
twist along~}.

The main work of this paper is to find formulas for computingnehtary in-
tersection numbers so that the formulas agree with thatngiwe[4] whenn = 5.
These formulas will be calle@lementary intersection formulago derive these for-
mulas, we introduce 2(— 3) integers for eachy € G,, denoted byl; {) and N; ¢)
for 1 < j < n -3, (see§2.1 and§2.4). These integers are defined analogously to
the projective coordinates given in [3, 4]. Fore G,, every I; ) is defined to be
1/2)i (v, 7}), and the sign of every; +) is determined by the symmetry of a funda-
mental domain for a Fuchsian representationrgf:,) acting on the upper half plane.
With these integer valued functions amd , we provesZb the elementary inter-
section formulas (Theorem 2.10) by applying induction te ttumbern of punctures.
In this paper, we develop a new idea that makes the inductamk Yor n > 5, (cf. Re-
mark 2.3).

As an application of elementary intersection formulas,hat ¢nd of the paper, we
construct a continuous map  froff), into a sphereA, ¢ R3—3) of dimension 2—7
whose restriction tdj, is written explicitly in terms off; andv; .

It would be very interesting to derive a geometric intersectformula as given
in [3, Theorem 2.6] and [4, Theorem 3.1] for any two geodesicg,. With the for-
mula, one proves easily the injectivity of . To prove that théegersi; §) and
N;(y) form a set of projective coordinates for€ G,, one also need the surjectivity
of the mapW¥ :G, — A,. This will follow if ¥(G,) is dense inA, . For the proof,
one may considerr;-train tracks introduced by Birman and Series [1], (cf. [3). 4
The work will appear elsewhere.

1. Preliminaries

1.1. The space of complete simple geodesicdor any integem > 4, a loop
on X, with no self intersections will be calledsample loop An essential simple loop
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on X, is a simple loop which is neither homotopically trivialrntmomotopic to a sim-
ple closed curve around to a punctureXf . A finite union of rallyudisjoint essen-
tial simple loops onx, will be called aultiple simple loop The set of all free ho-
motopy classes of non-oriented essential simple loop&pn detwted byg,, while
the set of all free homotopy classes of non-oriented meltgimple loops is denoted
by GL,. Obviously,G, Cc GL,.

In general, we shall usen] for the free homotopy class represented by a curve
a lying on X,. Every element ofj, contains a unique geodesicon ¥,. By abuse
of notation, we shall also use for the free homotopy class containing

We shall write every element of £, as an integral combination of elements
of G,. For every integer > 1, we useZ} for the set ofm -tupleskg, ..., k,) of in-
tegersk; > 0 with Z’;’zlk,- > 0, and Al! for the set ofn -tuplesy{, ..., ~,) of mu-
tually disjoint geodesics i, .

Let « be an arbitrary multiple simple loop o6, . All connected comg@ats ofa
fall into at mostn — 3 distinct free homotopy classes. There exist, (.., k,_3) €
zr=3 and @1, ...,7m-3) € A"3 such that, for everyj o has exactlyk; connected

n

components freely homotopic tg;. We shall write:

n—3

[a] =k ® - Bky—3y-3= @kﬂj .
=1

Let [G,, R:] be the set of all functions frong, into the setR. of all non-negative
real numbers. We provid¢, with the discrete topology, and providg,[ R.] with
the compact-open topology.

Two elementsf ang ofg,, R.] — {0} are calledprojectively equivalentf there
is a positive number such thgt = . Let@[R.] be the set of all projective
equivalence classes i,[, R.] — {0} provided with the quotient topology. Let, be
the quotient map ofg,, R.] — {0} onto PQ,, R.].

Following [5], we embedj L, into [G,, R.] by using geometric intersection num-
bers of elements o L,. For any two curvesy; and a; on %, let #@1 N «ap) de-
note the cardinality of the intersectiom; N «p. The geometric intersection number
i([oa], [a2]) of [1] with [ay] is defined by

i([oa], [@2]) = min{#(a] N ab) : [a;-] =[a;] for j=1, 2}.
It follows immediately from the definition that, for any cey on %, ,
n—3

n—3
i | Pk 18] =D ki iy [8])
j=1

j=1
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Every a € G£, induces a functiorf®: G, — R, given by
IO =i(a, ) forall e,
Let Z0: GL, — [G., R4] be defined by
IM() =T for all o e GL,.

When there is no risk of confusion, we shall simply writg as «, write Z(
asZ,, and writeZ™ asZ.

It is well known that the compositiomrZ is injective [5, Expog 3], and that
7Z(GL,) = ©I(G,) [5, Expo® 4, Theorem 4], whererZ(GL,) and 7Z(G,) denote
the closures ofrZ(GL,) and #Z(G,) in P[G,, R.], respectively. These results are orig-
inal due to Thurston [15].

Note that an element of P[G,,R.] is in 7Z(G,) if and only if for any !
in [G,, Ry] — {0} with w(!) = £ there exist a sequencl}2; of positive numbers
and a sequencéy, }i2; of geodesics irg, such that the sequende.Z.,, } 2, converges
to . A sequence{l;}2, in [G,, R:] is called convergentto I € [G,, R.] if for every
v € G, the sequencégli(y)}2, converges inR to (y).

1.2. Cyclic reduced words. It is well known that every free homotopy class
in G, corresponds to a unique conjugacy class in the fundamerapgof X, . Now,
we consider a Fuchsian representatiGp of the fundamentalpgof ¥, acting on
the upper half plané/ = {z € C : Imz > 0}, and find a representative for each
conjugacy class irG, by using Birman and Series’ cutting seceidechenique [2].

Let G, be the subgroup oPSL (R) generated by the following transformations

g = 1 20—2) S, = 10 T = 2j+1 2j(j +1)
1- O 1 ’ 2= 2 1 s Ipn—j—2 — 2 2j+1 )

where 1< j < n — 3 are integers.

For every integerj with 1< j < n — 3, let C; be the isometric circle
of T;, and C;. be the isometric circle oijl. Let C,_, be the isometric circle of5,
and C,_, be the isometric circle of; . Let

Co={z€C:Rez =—(n—2)} and Co={z€C:Rez =n—2}.

Note thatS$1(Cp) = Co, and that the polygorD, C ¢ bounded byC; and’}, 0< j <
n — 2, is a fundamental domain fa%, acting én

For simplicity, we shall schematically draf®, as a rectangular region. See Fig. 1
for n = 4, 5, 6, where the points on the boundaryZ@f marked by <" correspond
to punctures ofy, .
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s;toos sstoos st
-1
Tt n & &
Tfl T, T271 1>
Tt T
2 ;! T3
S;l So S;l \Y) S{l So

Fig. 1. The fundamental domaiR, for n =4, 5, 6.
Let I', denote the set of all side pairings B, i.e.,
Ty = {8084 8. S 4 T, Tt j=1,...,n—3}.

For everyX € I',, we label the common side @, and X (0,) by X! on the side
inside D, and by X on the side insid& 7%), (cf. Fig. 1). This sides will be called
the X side of D,,.

For everyg € G, the imageg D,) will be called aG, translateof D,. We trans-
port the above side labelling to alf, -translates7of.

For any closed curve in X, let 4 be a lift of v to &/ which starts on a side of a
G,-translate ofD, and projects toy bijectively, except the endpoints ef Let zg € U
be an endpoint ofy,” and we orienty”so that its initial point iszg. The arcy™ cuts
in order theG, -translatego(D,), g1(D,), - - ., g(D,) of D,. For every integerj with
1< j<k letX; €T, be the label of the common side gf_1D,) and g; 0,),
interior to g; (D,). ThenX; :gjjll o g; for every j, andy is represented by

k
(80 081)o(gr og) o o(g yog) = X0 Xp0--0 X =[] X;.
j=1

Such an expression is calledl’a word representingy. See [4,51.2] for a full discus-
sion.

A T',-word Hl;:l X; will be called reducedif X; # ijll for 1<j<k-11ltis
called cyclically reducedif in addition X; # Xk‘l.

Let v be a simple loop o, represented byi'a -word given above. Fay eve
1< j <k, letl; be the image of the intersection ¢fwith g;(D,) mapped bygjfl,
where D, is the relative closure oD, in U/. Note that eacll; is a simple arc m,
connecting ther_l-side to theX;,s-side, whereX;;+; = X;. Eachl; will be called
a strand of ~.

Let o be a multiple simple loop orx, . A strand of a connected compbnémy
will be also called astrand of «.
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Sy 1 S1 Sy L S1

Tt I Tt j \ Ty Tt j/ Ty

T2_ 1 1> TZ_ 1 1> TZ_ 1 < 1>

Fig. 2. From the left to the right 43, 42, 3.

Tjill T, Tj:ll T, 1 Tjill < T,_1
-1 -1 -1

T, T, T, T, T, > T;
—1 -1 -1

7}+1 T 7}+1 Tjn 7}+1 Tj+1

Fig. 3. From the left to the right 4}, 7%, 73, 2< j <n — 4.

A loop on X, is calledreducedif it is represented by a cyclically reduced
I',-word. A multiple simple loopa on %, is calledreducedif every connected com-
ponent of« is reduced. Note that a simple loop or a multiple simple loop3g, is
reduced if and only if every strand of the loop connects twifetint sides ofD,,. It
is easy to see that every simple closed geodesi&pn is a kdoop. Thus every
free homotopy class of multiple simple loops ah containsduced one.

If v € G, is a geodesic represented by a reduted -wdrd , thénalso rep-
resented by an arbitrary cyclic permutation Wf  .~f is a geodesic which has the
same underlying set witly but opposite orientation, thef' is represented by —1.
Because we are only interested in non-oriented simple |oepsshall identify all re-
ducedTI’, -words which are cyclic permutations wf or cyclic petations of W1,
and call any one of them ayclic reducedI’, -wordrepresentingy. Every cyclic re-
ducedTI’,, -word is cyclically reduced.

As examples, Ietyf € G, be the geodesics given in Fig. 2, Fig. 3 and Fig. 4,
where j andk are integers with<d j < »n —3 and 1< k < 3. See introduction for
a geometric interpretation efj?. Eachyf is represented by a cyclic reduc&y -word
W) as given below:

() Wi=Ty, W2=S1T,1, Wi=5.T,'T;
(i) WH=T;, W2=T; 1T, 3, W3 =TT, 'T; 1 for 2<j<n-—4
(i) Wi g=To-3 W2y=S2T,7 and W ;= ST, 4T, 4.

n
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-1 -1 -1
T, 4 Th—a T,—4 Ty—a T,—4 Tya

% Tz T4 Tz T, % \ Ty-3

S{l So S;l So S{l So

Fig. 4. From the left to the right 4} 5, 72 5, 73_,.

1.3. Subwords and admissible subarcs. Let Q,z =G, — {7} 1< j<n-3}
Let v € G, be a geodesic represented by a cyclic reducgd  -wiird H'j‘.gl X;.
Note thatk > 1. For any two integers ¥ j <k and 1</ <k, the reduced”, -word

1) Wi=X; - Xju-

will be called asubwordof W, whereX ;.; = X;+;,_; whenever 1< i <[ andi +j > k.
We shall relateW’ to v geometrically. For everyi , let; be the strand of

connecting theX,.__ll-side to theX; -side, wher&;_, = X, if i = 1. Assume that
1< <k, ie., W #W. We think thatw’ ‘represents” a subarg’ of v. We choose
~' to be the projection ta, of the unidu{:j'.’ll,-. Each of the arcd,, ..., [jy_1 is

called a strand ofy’.

This arc~’ has two distinct endpoints. One of the two endpoints is thgepr
tion of the endpoint of; on ther__ll-side, and the other one is the projection of
the endpoint ofl;;_; on the X;,_s1-side. The word given in (1) is not clear enough
to indicate the endpoint on thléj‘_ll-side. To distinguish it from cyclic reduced words
representing simple closed geodesics, we write the redligetiord representing/’ as

) XjoaW = X;1X; - X a1,

where )?j,l is to indicate that)?j,lw’ is not cyclic, and to indicate that one of
the endpoints ofy’ is the projection of a point on tha’;_ll-side.

A subarc of a geodesig € G, will be called admissibleif either it is « itself, or
is represented by a reducé&t -word as given in (2).

RemarRk 1.1. Fore =+1, X € T, X1, X, € T, — {X*1}, and an integek > 1,
we shall write
X1X5 - X Xo=X1X X5,
1 : 2 1 2
rtimes

Let v € G, be a geodesic represented by a cyclic reducgd -word). Ry the
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same reasoning as that in [33], there are no admissible subarcs-ofe G, repre-
sented by any one of the following words:

. - s e s 5
5181, 5253 17817 1, 3551, 3,

cek ob cek ) Ted € Te S e
NYANE $5T,_35;, Tj Tj+1Tj > Tj+lTj Tj+l’

wheree, § € {1, -1}, k # 0 is an integer, and KX j < n — 4. Therefore, none
of the words S§S5, S585, TP STTY, T 35T 5, SSTLSY, S5TY 385, TFTP,TF and
T5,TPTF, is a subword ofW A).

1.4. The free homotopy relative todD,. To be able to relate the geometric
intersection number of two geodesicsdp to the intersection of their admissible sub-
arcs, we shall define thigee homotopy relative t@D, on a family of curves onx,
which contains all admissible subarcs of geodesic§,in

The union of a finite number of mutually disjoint simple cwven X, will be
called amultiple simple curvelLet A be the family of all multiple simple curveg
on X, satisfying the following three properties.

(i) g lifts to a finite number of mutually disjoint simple arcs 1,, called thestrands
of 3.

(i) Except the endpoints, each strand @flies in the interior ofD,.

(iii) Each strand of connects two different sides @?,,.

Note that.A4 contains all reduced multiple simple loops &h , and contailhs
admissible subarcs of geodesicsgp.

Two multiple simple curveg’; and 3, in A will be called freely homotopic rela-
tive to 9D,, written by 81 ~ 3, (rel. D,), if for any two distinctX ,X’ e T,

#(strands of3; connecting theX -side and th¥’-side)
= #(strands of3, connecting theX -side and th¥’-side).

Note that two reduced multiple simple loops ah are freely bmpic if and only
if they are freely homotopic relative t8D,. For 3 € A, let

[Blop, ={8" € A : B’ ~ B(rel. 0D,)},

and we shall call a strand g a strand of [G]sp, -

Now, we may define thetrandsof a free homotopy clasa € G£, as follows.
Write o = @;’zlkﬂj, where (1, ...,7n) € A™, andm ,ky, ..., k, are positive inte-
gers withm < n — 3. A strand of somey; is called astrand of a. Similarly, an ad-
missible subarc of someg; is called anadmissible subarof a.

For 1, 52 € A, we define

i([B1op,, [B2lop,) = min{#(81 N 33) : f1 ~ B1 and B3 ~ (2 (rel. D,)} .
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where #3;N35) denotes the cardinality of the intersecti6hn 5. For simplicity, from
now on we shall write

i([Blop, s [Blop,) = i([B1] . [B2D) oD,

for 51, B2 € A. Note that if 5, and 3, are reduced multiple simple loops, then

i([41] . [B2D)op, =i([B1], [B2]).

1.5. Four automorphisms of GL,. We have set up a very symmetric funda-
mental domairD, for G,. As we did in [4], by use of the symmetry @,, we may
cut down our discussion to fewer cases by introducing fotoraorphisms®,, ®,, 71
and7; of G, defined by

©1(X) = X tfor X € {81, S», T;: 1< j<n—3}

O2(81) = S2, ©x(S2) =81, and Ox(Tj) =T,—j2 for 1< j<n—-3.
Ti(S1) = S and Ty(X) = X for X € {S, Tj: 1< j <n—3};
To(S2) = S; '3 and T(X) =X for X € {Sy, T;: 1< j <n-—3}.

It follows from Nielsen’s isomorphism theorem ([14] or [1Iheorem V.H.1]) that
for j = 1 or 2, each of the automorphisnts; affgd induces a homeomorphism
of X, onto itself, still denoted by®; and;.

Let ¢ be any one of the four homeomorphismig, ©,, 7; and 7;. The action
of ¢ on GL, is defined as follows. For every geodesie G,, let () denote the free
homotopy class containing the homeomorphic image ainderp. As before, lety(y)
also denote the geodesic in the free homotopy cla@g. Thus ¢ extends naturally
to GL, such that

n—3 n—3

o | Bk | =Pkie (V) -
=1 =1

where €1, ..., k,—3) € 2873 and ¢y, ..., ,-3) € A3,
Note that ify € G, is represented by a cyclic reduc&) -woid , thep) is
represented by (W).

2. Elementary Intersection Numbers

In this section, we generalize elementary intersection bemnof elements off Ls
[4, §2.1] to elements of;L,, and prove the elementary intersection formulas.

2.1. The integer valued functionslj. Let vf € G, be the geodesics given
in §1.2. For anya € GL,, the geometric intersection numbersy, (yjf) are called the
elementary intersection numbeo$ «.
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Note that if 51 and 3, are two simple closed curves on a 2-sphere, and if they
intersect transversally at every point of intersectiomnti#(3, N 32) is an even integer.
Thusi @1, ay) is an even integer for any twa;, ap € GL,. We shall write

i(a,77)
2

for a € G£,, and for 1< j < n — 3. Note that ify € G, is represented by a cyclic
reducedrl’, -wordW ) = W, then

Ij(Oé) =

I;(v) = #(strands ofa. with an endpoint on the;-side)
= the total number of the letter$; and S, 1 appearing inw ;
I,_3(v) = #(strands ofo with an endpoint on the,-side)
= the total number of the letters, and S, * appearing inWw .

Thus fora € GL,, we have

I1(a) = #(strands ofo with an endpoint on the;-side);
I,_3(c) = #(strands ofo with an endpoint on thes,-side).

Since ©1(y}) = v; and O2(77) = 7,_;_,, the following proposition is an immedi-
ate consequence of the definition.

Proposition 2.1. If a € GL,, then
Ij(a2) = 1;(®1(a)) and Ij(a)=1,—j2(O2(a)) for 1< j<n-3.

By an argument similar to the one in the proof of [4, Proposit2.2 (i), (ii)], we
obtain:

Proposition 2.2. Let o € GL,. For any integerm, 7;"(«) = o when I1(a) = 0,
while 73" (a) = v if 1,_3(a) = 0.

Proposition 2.3. If a € GL,, and if m is an integerthen
(o) = (7" ()  and  [,—3(a) = [,—3(7"(a)) for j=1,2

Proof. Sinceyi and 4. _, are invariant under eacf;, the proof is straightfor-
ward. O

Proposition 2.4. If a € GL,, and if j, k and m are integers withil < k& < 3,
then

i(a, 'yf) = i(7"(a), 'yf) for 1<j<n-3,and
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i(a, 'yf) = (7" (), ’yf) for 1<j<n-3.

Proof. By Proposition 2.2, we havB(y4) =4 for 1 < j <n -3, andTx(7}) =
’yjf for 1 < j < n— 3. The proof is complete. Ul

2.2. Cyclic semi-reduced words. To compute elementary intersection numbers,
we associate to geodesics @ cyclic semi-reduced’, -wordsvhich are defined anal-
ogously to those in [4§2.2].

Let v € G, with I,_3(y) > 0. Assume thaty is represented by a cyclic reduced
[,-word W(y). If S5X or XS5 is a subword ofW {) with ¢ = £1 andX € I', —
{85, 7L, we shall write

S5X =S5T° ;X and XS5 =XT? 5S5.

Similarly, for a geodesiey € G, with I1(y) > 0, if X € T, — {S*, 7}, and if
SX or XS5 is a subword ofW q), then we writeS§X = S§T2X and X S§ = XTDS5.
The resulting cyclicl’, -word is called semi-reducedstill denoted byw A).

As in [4, §2.5], we shall write cyclic semi-reducell, -words in two caicah
forms. First, we subdivid&/ L, into four classes.

Note that every geodesic ig, can not simultaneously have a strand joining
the S5-side to theT,_s-side and a strand joining th§;-side to theT”__13-side fore=1
or —1, (see Remark 1.1).

Let GL;(T,_3) be the set of elements @£, which have no strands connecting
the 7,,_s-side to theS5-side fore = £1. Let

gﬁ; (Tn73) = ®l (gEZ(T/173)> )
and let
GL,(T1) = 02(GL(T,—3)) and GL, (T1) = O2(GL, (T,-3)) .

ConsequentlyG L, (T1) = ©1(GL, (T1)). We remark thatv € GL£,(Ty) if and only if «
has no strands connecting tfig-side to theS;-side fore = +1. The setG, is then
subdivided into four subclasses as:

G (1) = G, NGL(T) and G, (T1) = O1(G,(T1)) .
g;(Tnfi'B) = g/z N gﬁ;(T/zfii) and g,z_(Tnf?:) = @1(g;(7;1,3)> .

Now, by the same reasoning as in [¥.5], everyy € G, with I1(v) > O or
I,_3(y) > 0 is represented by a cyclic semi-redudeéd -wdfd as givermbelo

First, assume thaf,_3(y) = m > 0. There existn triplese(, p;, ¢;) of integers
with e; ==£1, p; > 0 andg; > 0, and there existz reduceld, -wordlg; [F., X;;
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with X1, X;,,, € T, — {$5, TE4), and X, € I, — {5} when 1< i < v; such that

m

€) VEG, (Thg) = W=]]T, 58T W;;
=1

@) YEGHTa) = W=]]T385T, 4w;.
=1

If I1(v) =m > 0, by considering®»(v), then~ is represented by

m
w=][r "syTyw;,
j=1
where €, p;, q;) are integers withe; = +1 and p;q; > 0, and whereW; [ X
are reduced, -words witlX ;3, X;,, € T, — {S7"", T;"'}, and X;; € T, — {5{"'} when
1 <i < vj. Moreover,y € G, (Ty) if and only if p; > 0 andg; > O for all j, while
v € G, (Ty) if and only if p; <0 andg; <O for all ;.
We remark that any word given above is reduced if epgl; > 0.

2.3. Essential blocks and puncture-like blocks. We shall compute elementary
intersection numbers by applying mathematical inductionthte numbern of punc-
tures. From now on, we assume that 5.

To be able to apply mathematical inductionto , we first em@é&q_; into GL,.
Let ®,: G,_1 — G, be the monomorphism defined by

q)n(sl) = Sl ’ q)n(SZ) =Tu-3 and CI)" Gj ) :Tj for 1§ J <n- 4.

The monomorphismb, induces an injective mapdpf ; into G,, also denoted by,
If v € G,_1 is represented by a cyclic reduced (or semi-redudegd);-word W, then
®,(v) is represented by, W ).

Let G*—1 be the image ofj,_1 mapped byd, , and leg£"~V be the set of all
elements ofGL, of the form

n—4

Pk
j=1

where (1, ..., k,—4) € 2274 andy; € G"~D are mutually disjoint geodesics. Note
that if v € LY, then 2, _3(y) =i(y, 7} 3) = 0.

The geodes:iCynl_3 divides ¥, into two connected components. One of them is
a sphere with: — 2 punctures and one hole, denoted B2, and the other one is
a sphere with two punctures and one hole, denotedfy. Note that the punctures
of E,‘f’) correspond to the fixed points of the transformatidasand SZT”__13. Also note
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that 2("~Y is homeomorphic tox, ;, and = is homeomorphic to a 3-punctured
sphere. It follows from the definition that everye gﬁ,(f‘l) contains a representative
lying on ==Y, Thus we can do an induction after we relate free homotopgseka

in G£, to free homotopy classes GL" Y.

To relate free homotopy classes ¢, to that in g[:,(l”‘l), we consider the set
gz:,? of all free homotopy classes L, which have no strands connecting thig-side
to the X -side, where = +1, and wherex ¢ I, — {SF!, 7L}, Let % =G, n gLl

It follows immediately from the definition that iy € G£, with I,_3(v) =0, then
v e GL£°. In particular,G£" Y ¢ 0.

Let v € G, with I, _3(y) =m > 0. Theny € G, (T,_3) N G2 if and only if it is
represented by a cyclic reducdy -word as given in (3), while G (7,,_3) N GO if
and only if it is represented by a cyclic reducEd  -word as mive (4) with p; >0
andg; > 0 for all j.

The admissible subarcs of evefye G£° fall into two classes. One contains ad-
missible subarcs ofy which are freely homotopic relative t6D, to simple curves
lying on £”~Y. The other class contains admissible subarcsy afhich are freely
homotopic relative ta)D, to simple curves lying or=(®). We shall relatey to free
homotopy classes i@ﬁ,ﬁ”*l’ by relating the admissible subarcs fin the first class
to elements oG£,

Any ~ € GL, can be related to an element 6£° as follows.

Proposition 2.5. Let~ € GL,.
() If v € GLIHT, 3), thenT, %(y) € GLE N GLT,_3).

n

(i) If v € GL, (T,_3), then TA(Y) € GLO N GL; (T,_3).

Proof. It suffices to prove (i) fory € G/ (T,—3). There is nothing to prove

if I,_3(v) = 0. If I,_3(y) = m > 0, then~ is represented by the cyclic

semi-reducedr’, -word given in (4). Now, the assertion follosince 7, (W) =
m i+l aejpp—qi—1

Hj:l Tn]—3 S; Tn,—qs W;j. u

With Proposition 2.5, we may restrict our attention to théaassGL° of GL,.

Before continuing our discussion, we choose once for all aientation for
the X -side of D,, where X € {T, 3, T, "% T,_4, T,"%}. Note that 7, ,7,°% is
parabolic since the trace df, 47, % is —2. Let ¢ be the fixed point of the trans-
formation T,1_4T”__13. For X =T,_3 or T,_4, if P, and P, are two points lying on
the X -side, and ifP; lies between{ and P,, then we writeP; < P,. If Q; and Q>
are two points lying on thex—*-side, we writeQ; < Q> wheneverX Qi) < X(Q>).

Proposition 2.6. Let v € G!(T,_3) with 1,_3(y) = m > 0, and let~ be repre-
sented by the cyclic reducdd, -word given(#).
If v has a strand joining the;,_3-side to theT,_4-side, and has a strand joining



736 Y. CHIANG
the 7,_sz-side to theT, % -side, thenW; = T,,_4 or W; = T, ", for some; .

Proof. Let P, < --- < P, be the points where the strands of meet
the 7,,_4-side. For every integel with £ / <k, let P/ be the point on th@nj-side
identified with P, by the transformatioff, 4. Let ! be the strand ofy with an end-
point at P;, and let!’ be the strand ofy with an endpoint atP;.

By assumption/ must connect tHe_3-side and theT,,_4-side, and!’ must con-
nect theT,_s-side and thel -S|de The unloriul/ projects to an admissible subarc
~" of ~ rerpresented b)Tn sTi—aTy_3 Or T” 3T T,, 3.

Assume thaty’ is represented byl Tt sT—aT,—3. Let O be the endpoint of
on the T,,_3-side. We orienty’ so that the projection ofp t&, is the initial point
of v/. Since~ € g° then the subword/V’ = Tn__lsT,,,_4T,l_3 of W must be followed by
a subword of the forn¥,” ,S57, "% for some integers = +1, p > 0 andq > 0.

On the other hand, consider the subafcof v which has the same underlying set
with +/ but with the opposite orientation. Thefi’ is represented b)T, T‘l T, .
Thus T‘1 Tn__14Tn_3 is a subword ofw ! and is followed by a subword of the form

T” " 4S5 T 3 for some integers’ = +1, p’ > 0 andg’ > 0. We conclude that

anLSSEEITn:];/ ’ W Tnp 3S2 —f/ = /1 3S ¢ _1\)?» _1T’1 4TP+1S2 —f/3
is a subword ofW . This proves that; 5_ 4 for some; .
Similarly, if 4" is represented b)T 5T LT, 3, then there is an integef  such
that W, =T, %, O

Blocks of simple closed geodesics.Let v be given in Proposition 2.6. For every
integer j with 1< j < m = I,_3(7), let v; be the admissible subarc of represented
by T, W, T,_s. Every v; will be called ablock of .

Let l(j) be the strand ofy; joining the 7,_s-side to theX ;;-side with P the end-
point on the T,_3-side, and Ietl(J) be the strand ofy; joining the X -S|de to

the 7,_s-side with 0 the endpoint on thﬁj‘yﬁ-yde. LetP’ be the point on thqnjl
side which is identified with? by the transformatidi_s.

Now, we replace!’) by a simple ard! joining 0 to P’ so thatl!” is disjoint
from all strands ofy; except possiblyiij). Let £; be the union of all strands of;
other thanlif). The unionZ; uiif) projects to a simple closed curvg on X,. See
the proof of [4, Theorem 5.3].

If W;=T,_40rT, 4, then; is a simple loop around the puncture corresponding
to the fixed point ofT,Z,ng}. In this case, we shall caly; a puncture-like block
of .

We call +; an essential blockof v if v; is not a puncture-like block. Thus; is
an essential block if and only #f;"e Gi*—9.

Next, lety € GO N G (T,,_3) with I, _3(y) > 0. An admissible subarg’ of ~ is
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called apuncture-like blockf ®1(y’) is a puncture-like block of9,(~), and is called
an essential blockf ®1(y’) is a essential block o®1(y). By Proposition 2.6,y is
a puncture-like block ofy if and only if it is represented b)fn,g,T”LlT,;l3 with ¢ =
+1.

Blocks of free homotopy classes iG LS. For v e G£°2 with I,_3(y) > 0, there
are positive integers;, .. ., k,,, and mutually disjoint geodesigs;, ..., 3, in G° such
that

v=EPkib:,
i=1

wherem is a positive integer witlh < n — 3. An admissible subarg’ of v is called
a block of ~ if it is either a connected component of with 7,_3(7y') = 0, or is
a block of somegs;. A block ' of v is called puncture-likeif it is a puncture-like
block of someg;, and is calledessentialif it is not a puncture-like block. Note that
if v/ is a connected component gfwith 7, 3(y') = 0, theny’ € G*~1. Such an es-
sential block will be called of thesecond kind An essential block ofy will be called
of the first kind if it is not of the second kind.

Remark 2.1. It follows from Proposition 2.6 that iy € G£,(T,_3) has a strand
joining the T, _s-side to theT,_4-side, and has a strand joining tHg _3-side to
the Tn__14-side, theny has a puncture-like block. Similarly, & € GL, (T,—3) has

a strand joining thel,, *;-side to theT,_4-side, and has a strand joining tﬁg‘_g-side
to the 7,"-side, theny has a puncture-like block.

REMARK 2.2. Let~y € Q’E,? with I,_3(y) > 0. If v has no essential blocks, then
I1(y) =0 andI,_3(02(y)) = 0. Note that®,(y) € gﬁ,‘{’*l). Thus the elementary inter-
section numbers ofy will be obtained from that of9,(v) by applying induction to: .
Therefore, we shall only consider the case wherbas essential blocks.

The following theorem plays an important role in the sequel.

Theorem 2.7. Let~ € QL,? with I,_3(y) > 0. If v has essential blockghen
there is ana,, € GL"~Y such that

i(a’y’ ’7374) = l('y’ 7/}74) and i(a’Y’ ’Yj() = l(’}/, ’75)

for 1< j <n—4andl <k < 3. Furthermore «., can be chosen so th&;(we,(y)) =
a,y.
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Since for allj ,k ,

i(®1(aeym) . V) =i(aeym) . ©1(35) =i(01(7), ©1(+5)) =iy, ¥4,

o, can be chosen so th&i(ae,)) = o, since for all j ,k . Thus, we may assume
thaty € GLO N GLIH(T,_3).

First, we prove Theorem 2.7 foy which has no puncture-like blocks. Lét be
the set of all essential blocks ef, and for everyy’ € £ let

t(y') = the number of strands of meeting theT,,_s-side.

If v has no essential blocks of the first kind, then any esseniiaklof v serves
as a.,.

Now, we assume thap has exactlye > 0 essential blocks of the first kind, say
71, ...,%. Let §; be the geodesic ig"—Y corresponding toy; (see the definition
of blocks), and let; be the number of strandsgfrfieeting theT, _s-side. Note that
t(y;) =t; +1, and the strands of; meet the7, %-side in exactlyr; — 1 points. Then
the strands of)_;v; meet theT,%-side in exactlyry = Ej.:l(tj —1) points, and meet
the T, _s-side in exactlyrg + 2¢ points.

We consider the disjoint uniod of strands of all essential blocks of Let Q; <
02 < -+ < Q, be the points wher&€ meets theT,_sz-side, whereg is an integer with
q>1to+2e.

Ciam 1. For every integej witly—2e+1 < j < ¢, the pointQ; is an endpoint
of a strandL; ofS_;v;.

We shall show that Claim 1 implies Theorem 2.7 wherhas no puncture-like
blocks. For every integef with —e+1< j <g, let P, be the endpoint oL; other
than Q;, and letQ’_, be the point lying on ther,%-side which is identified with
Q;—. by the transformatior?,_3. There are mutually disjoint simple ardsj, qg—e+
1< j <gq, in D, satisfying the following two properties:

() EachL’ connectsP; toQ’_,.

(i) Each L’j is disjoint from the strands of any essential block~oexcept possibly
the strandsL,_.+1, ..., Ly.

The setl’ = (£ — Ui, L) U (Ui, ..1L)) projects to a multiple simple loop.,
in gﬁ,(;’*l), and the free homotopy class representedaly still denoted byc.,, sat-
isfies the required conditions sinéex.( v:_,) = > et Yo_a)op, andi (v, V%) =
Y ee iy 7)o, for 1< j<n—4and 1<k < 3.

Proof of Claim 1. There is nothing to prove if has no essential blockg of
the second kind withr () > 0. Assume thaty has exactlyp > 0 essential blocks
Yet1s - - -» Yerp Of the second kind with ~(+;) >0, 1< j < p.
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For everyj with 1< j < e, the block~; is represented by a reducdd -word
T 5W,T,_3, whereW; # T is of the formw; =[[:2, X;; with X1, X;,, € [, —
(1%, 85 and Xj; € T, — {S51} for 1< i < v;. Let

1Y be the strand ofy; joining the 7,_s-side to theX ;-side,

1) be the strand ofy; joining the Xj,\-side to the, s-side,

Qi be the endpoint of") on the 7, s-side fork =1, 2, and

"+ be the point on the’,%-side identified withQ;; by the transformatiah, s.
By the definition of~;, the point Q;k is an endpoint of a strandg.k) of ~ joining
the 7, %-side to theX -side withX € {T,_3, S5}

Suppose that there is an integer  with-2e+1 < m < g such thatQ,, is an end-
point of a strand otij.ﬂ%J,j. Then there is &, such th&@;; < Q,,. Let Q), be the
point on theTn:%-side identified withQ,, by the transformatidh,_s. It follows from
the definition of~,.; that Q/, is an endpoint of a strand  of joining the 7, %-side
to someX -side withx € T, — 775 S3'}. Since Qjx < Qu. then Q% < 0,
and thusLS") must intersect. transversally. This contradiction congdethe proof of
the claim. ]

In the following, we prove Theorem 2.7 for which has puncture-like blocks. For
this case, we need the following two lemmas.

Lemma 2.8. If v € gcf,’mgﬁg(rn_g with I,_3(v) > 0, and if v has a puncture-
like block then every essential block of has no strands meeting tfgf_%—side.

Proof. Letyy be a puncture-like block ofi. There is a strandy of v, connect-
ing the T, _4-side and theT,,_s-side. Let Qg be the endpoint ofy on the 7,,_s-side.
We may choosey, so that Qo < Q wheneverQ is an endpoint of a strand of
on the 7,_s-side. Let O be the point on theTnjls—side which is identified withQg
by the transformatior?,_3;. Note thatQf is an endpoint of a strandy of ~ joining
the 7, %-side to theX -side withX € {7, _3, S, S, '}. Also note that ifQ’ is an end-
point of a strand ofy on the 7, %-side, thenQ} < Q' by the definition ofQq.

Now, suppose that there is an essential boj¢kof v such thaty’ has a strand
I' meeting theT, %-side at a pointQ’. Since Q) < Q', and sincey’ has no strands
joining the 7, %-side to theX -side withX € {7, s, S, S, '}, then!’ must intersect
Lo transversally. This is a contradiction. ]

Lemma 2.9. Let~y € gc,? N GL(T,_3) with I,_3(v) > 0, and for an arbitrary

n

block " of v, let t(v') be the number of strands ef meeting theT,_s-side. Ify has
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puncture-like blocksthen

2 if v/ is a puncture-like block
t(y)=1¢ 2 if 4/ is an essential block of the first kind
0 if v/ is an essential block of the second kind

Proof. It follows immediately from the definition that+’) = 2 whenevery’ is
a puncture-like block ofy.

Let v/ be an essential block of the second kind, i.g., is a simple closed
geodesic inGL" Y. If 4/ has a strand meeting thg,_s-side, theny’ must have
a strand meeting thé””__la-side. This contradicts to Lemma 2.8. Therefare)) € 0.

If 4" is an essential block of the first kind, therl is represented by a reduced
ry-word 7, 5WT,_s, where W # T,%% is of the form W =[]/, X; with X,
X, € T, — {7, s}, and X; € I, — {S5'} for 1 < j < m. There is a strand
lp of 4/ joining the T,,_3-side to theX;-side, and there is another strahdof 4/ join-
ing the X,, -side to thel,,_s-side. Thusr 4') > 2.

Suppose that 7() > 2. There is & € {2,...,m—1} such thatX, =T, 3 or X; =
T,7%. If X, = T,_3, theny has a strand joining th&,~%-side to theX,.;-side. This is
a contradiction to Lemma 2.8. X, ;‘-,;13, then~’ has a strand joining th&, _;-side
to the T”jl3-side. This is a contradiction to Lemma 2.8 again. Therefof¢') = 2.

]

Now, we complete the proof of Theorem 2.7 as follows. ket...,~. be all
the first kind essential blocks of, and assume thay has exactlyp > 0 puncture-
like blocks, sayy.+1, ..., v.+,. Note thatt §;) = 2 for all j by Lemma 2.9.

Let 03 < --- < Qi be the points where the strands efmeet theT,_s-side.
Note thatk > 2p + 2. Sincey € GL£2, and sincer ') = 0 whenevery’ is an es-
sential block ofy of the second kind, them, ..., Qz,+2 are endpoints of strands
of Uf;jwj, and, for » +2 +1< j < k, eachQ; is an endpoint of a strand of
connecting theT, _3-side and theTn‘_13-side whenever2 +& +% j <k.

Cam 2. Qp+1, ..., Qp+2e are the points where the strands orgzm meet
the T, _s-side.

Now, for every integerj with 1< j < e, let L; be the strand on.:lyj with
Qp+e+j @n endpoint, letP; be the other endpoint bf . L@t be the point on
the 7, %-side which is identified withQ ,.; by the transformatior¥;, _s.

There aree mutually disjoint simple ards; in D, connecting P; toQ;ﬁj for
every j such that ever% is disjoint from the strands of any essential block ~of
except possibly the strands,, ..., L.. As before, let€ be the set of all essential
blocks of £ = (£ — WS, L;) U (U5, L") projects to%, a multiple simple loopx,
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in LY. Let a, also denote the corresponding free homotopy class. Noteiftha
is a puncture-like block ofy, theni ¢, vy ,)op, =0=i(/, 7})op, for 1< j <n—4
and 1< k < 3. This completes the proof of Theorem 2.7.

Proof of Claim 2. It suffices to prove that i@ is the endpoint a&fstrand
of Uiy, lying on theT,_s-side, thenQ; < Q < Qpsz+; for all j with 1 < j < p.

Let 7/ be the essential block of of the first kind such thap is one of the two
points where the strands of meet theT, _3-side, and letL be the strand of
with Q as an endpoint.

If 0 € {Q1,..., Q,}, then there is an integer with < m < 2p + 2
such thatQ,, is the endpoint of a strand Lole’yﬁj connecting theT,,_z-side to
the T,_4-side. Thus the other endpoit @& must lie on the 4-side with P <
P,, where P,, is the endpoint of other thap,, . LBt and P, be the points lying
on the T, ,-side which are identified witt? andé, respectively by the tfarmma-
tion 7,_4. Let L’ be the strand ofy with P’ as an endpoint. Sinc®’ < P,, then
L’ must connect thd,_4-side to theT,_s-side. This implies that’ is a puncture-like
block of v, which is a contradiction. Thereforg); < Q for all j with 1 < j < p.

By a similar argument, one proves th@t< Q2.+ for 1 < j < p. ]

2.4. The integer valued functionsN;. To formulate elementary intersection
numbers, in addition to the integer valued functians  defimed2.1, we shall need
othern — 3 integer valued function®; , £ j < n — 3. These functionsv; are ana-
logues of the integer valued functioms, ang defined in [4].

We shall define an integer valued functiof{” on G£, for any given integer
j >0 with j <n— 3 so that

N(y) = NV (0, 1())

whenevery € G£"Y and j < n — 4, where®, is defined ir§2.3. This means that
NP can be regarded as the restriction0f” to G£I' whenever 1< j < n — 4.
Thus Nj(.”) can be simply written agv; . Furthermore, this allows us to @efin in-
ductively by using Theorem 2.7.

First, we define the functions/{"”) and N, If v = @' kvt with (k. ...,
k,_3) € Z!3, we define

N}”)(y) = k; = #(strands ofy connecting theT; -side and tHEj‘l-side),

for j=1orn—3.
Now, we defineNi”)(w) and N”(”_)s(y) for v € GL£,, where

n—3

Cjzn =GL, — @kj'}/} : (kl, cees kn—3) € 21173
Jj=1
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If v eGLHT), let

N{(y) = #(strands ofy joining the 7, -side to thes:-side)
+ #(strands ofy joining the T;-side to theTfl—side),

wheree = +1. If v € GL (T, _3), let

N,E’Qa(’y) = #(strands ofy joining the Tn:13-side to theS5-side)
+ #(strands ofy joining the 7, _z-side to theT, %;-side).

Forj =1orn—3, and fory € GL, (T;) N g/Zn, let
NP() = =N (01(7)

It is clear that the definition oNi”) is independent of: since > 5. Thust”)
will be simply written asN;.

Remark 2.3. Forn =5, letNy andVg be the integer valued functions defined
in [4], and letN; and N, = N,S’ﬂs be the integer valued functions defined above. Then
for v € GLs we have

Ni(y) = Nr(y) and Ny(y) = —Ns(v).

Note that the geodesig,z defined in [4] and the geodesig defined in this article
are imgaes of each other undes. Thus, the following equations are also valid for
v € GLs (see [4, Corollary 3.4]):

i(v.73) = 2\N1(7)| + | I2(7) — ()| + I2(7) — ()
i(7,73) = 2AN1(y) — L] +127) — h()| + L(y) — 11(7)
i(v,75) = 2IN2(7)| + |I(7) — L(Y)| + () — L(7)
i(7,73) = 2AN2(y) — ()| + 1Y) — O] + Ih(y) — I2(7)

In §2.5, we shall prove similar formulas for elementary intetsm numbers ofy €
gL, for an arbitrary integen > 5.

For integersn andj with & j < n — 4, the integer valued function&'"” on
gL, are defined as follows. We first define!"(y) for v € G£J.
() If I,_3(y) = O, then there existk(,...,k,_3) € 2Z7~3 and mutually disjoint
geodesicsyy, . .., ya—4 in GL" ™Y such that

n—4

®) v = Pkivi ©ku-smr_3.
i=1
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Let
n—4

(6) Ay = @ki%' P
i=1

and we define
n — n—1 -
NP () = NP0 (@, (ay)
In particular, ify € GV, thenk, 3=0, a, =7, and
n — n—1 —
NP = NP (@,10) -
(i) If I,_3(y) > 0, and ify has essential blocks, we define
n — n—1 —
Nj( )(,y) - Nj( )(q)n 1(aw)) s

wherea, € GL£"™Y is given in Theorem 2.7.
(iii) If I,_3(v) > 0, and ify has no essential blocks, we define

N =0.

From (i), we know thatv{"~ % is the restriction ofN{" to gL = g,_; for any
two integersj andi with X j < n — 4. Note thatN" " = N*), wherev =n — 1.
From now on, we shall Writevj(.”) asN; for 1< j <n-3.

Now, for an arbitraryy € GL£,, and for an arbitrary integef with & j <n — 4,
we define

0= { N, (T 0)) ity € GLT o),
' N;j(T2()  if v€GL, (T,_a).

To prove thatN; is well-defined, we have to show that

Ny={Y (T,2()) for all y € GL(T, 5) N GLY,
TV N(T)  for all v € GL; (Ty_s) N GLD.

Without loss of generality, we may assume that G°. There is nothing to prove if
I,_3(y) = 0 since in this casé@z(y) = v. Assume thaty € G, (T,_3) with I,_3(v) =
m > 0. Then~ is represented by a cyclic reduc&) -word as given in (3), Way
[T, T, %S5 T, sW; with p; >0 andg; > O for all i. Since

m
W) =[5 s 15w,
i=1
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v has essential blocks if and only F2(y) = 4 has essential blocks. Thug; v)(=
0 = N; (%) whenevery has no essential blocks. Whenhas essential blocksy, is
completely determined by the SUbWOfmﬁ_3W;Tnzl3, 1<i <m, and so isay. This
proves thatN; {) = N;(7) sincea.,, = as.

If v € G°NG/(T,_3), theny is represented by a cyclic reduc&y -word as given
in (4). A similar argument as above, one proves easily tNaty) X N,-(TZ_Z(V)).
Therefore,N; is well-defined.

Note that sinceN,$’24 = NS’_)3 with v = n — 1, from the definition ofN,_3, we
may interpretateV,_4 geometrically. This givesV; a geometric interpretation for e
ery integer; with 1< j < n — 4. From Proposition 2.5, we assume that gco

Let GL,(T,,_4) be the set of ally in gco which satisfy either one of the following
two conditions:

(i) If I,_3(y) = O, theny has no strands connecting tlig_s-side to theT, ,-side,
wheree = +1.

(i) If I,_3(y) > 0, then every essential block of has no strands connecting
the 7,,_s-side to theT; ;-side, wheres = 1.

Let GL, (Ty—4) = OGL(T,—a)). It v = @2 k;7} with (ks ... ky_3) € 2273, then
N () = ky_a = #(strands ofy joining the 7,,_4-side to theT,~%-side).
Let e = +1. If v € GL(T,_4) N GL, With 1,_3(7) =0, then

N () = #(strands ofy joining the T, _4-side to the7 ~%-side)
+ #(strands ofy joining the 7,7 _;-side to theT‘l4 -side).

If v € GL(T,_4) N GL, with I,_s(y) > 0, then

(7) NG = Y NP,

v'eE
where € is the set of all essential blocks ¢f and where

N, (+") = #(strands ofy joining the T, _,-side to theT, %-side)
+ #(strands ofy’ joining the T)7_,-side to theT,_ 14 -side)

for o' € &. WhenS is empty, the integer on the right of (7) is defined to be zero.
If v € GL, (T,-a) NGL,, then N (1) = =N (©1()).

2.5. Elementary intersection formulas. This subsection is devoted to proving
the main theorem:
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Theorem 2.10(Elementary intersection formulas)or an arbitrary integern > 6,
if ve gL, then

i(v.7D) = 2N + 112(7) — ()| + I2(7) — 11(7)
i(v,73) = 2AN1(y) — L()| + [ 12(7) — L) + L(7) — 11(7) »
(7 75-3) = 2[Nas)| + [ 1a—a(y) = Li—z()| + Ln—a(y) — Ii—3(7) .
(7,92 3) = 2INu—3(7) = Li—s()| + | Li—a(7) — Li—s(N)| + Li—a(7) — Li—3(7),

and for every integer; with < j <n —3
i(v.7%) = 2IN;())| +11—-17) — L)+ 1-1(7) — ()
+[1a(y) = LN + 1ia(y) = 1;(7)

i(,79) = 2IN;(0) = L]+ [1-1(0) = L)+ 1-a() — 1;(7)
+ | 10a(7) = LN+ 1 () = 1;(7) -

For the proof of Theorem 2.10, we need the following two imiagd conse-
guences of the definition a¥;

Lemma 2.11. If v € GL,, then N1(v) = N,,—3(O2(¥)).

Lemma 2.12. If (k1,...,k,—3) € 22 and (1, ..., V._3) € A?3, then
n—3 n—3
N; <@ k,-w,-> = Zk,-Nj(yj) for every integer; withl < j <n — 3.
i=1 j=i

For k = 2 or 3, the elementary intersection numbers, {%) andi ¢/, v*_;) are
related as follows:

(7,7 _3) =i (02(7), @207 _3)) =i (O2(7), ) .

From Proposition 2.1, we obtaif(®2(v)) = I,_37) and I(®2(v)) = I,_4(y). Now,
by Lemma 2.11, the elementary intersection formulas ifer, 42 5) andi ¢/, 7> 5)
follow immediately from those for A(, 73) andi €, 3).

On the other hand; v(3) = i(71(7), 1) since~$ = 7, (7). Thus, by Proposi-
tion 2.3, one derives easily the elementary intersectiomdita for i ¢, 73) from that
for i(y, 7?) if

N1(T:(7)) = N1(7) — L(7) .

By use of the word given in (3), one proves easily the follayvimore general results
by a similar argument as that in [4, Proposition 2.8].
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Lemma 2.13. Lety € GL,, and letrv be an arbitrary integer. Then

Ni(TZ (1) =N1(7) N (TP () =N1(y) — v1a(7)
Nu—3 (711/(7)) = Nn—3(7) s Ny—3 (,T2V(7)> = Nn—3(’Y) - VIn—3(fY) .

For the proof of Theorem 2.10, it remains to prove the eleargnintersection for-
mulas fori €, 77), i(v,~%) andi ¢,~3) for 1< j <n—3.

First, we prove the elementary intersection formulaifer, /¢) by applying induc-
tion ton forn > 5. For the case of =15, the assertion is proved in [4, Coroltady.
Assume that: > 5, and that the equation holds fere Q’E,(,”’l).

Now, lety € GL,. If I,_3(y) = 0, write v as given in (5), and letv, gﬁ,‘{”l)
be given in (6). By the definitionN1(y) = Ni(a). Sincei ¢} 5, 3) = 0 for 8 €
gﬁ,‘{’*l), then; §) = I;j(y) for j = 1, 2. The assertion follows for the case since
i(y, ) =i(ay, ¥d).

Assume thatl,_3(y) > 0. Sincei {/, 7?) =i(®1(7), 7?), we may assume that €
GL:(T,_3). Moreover, by considerin@_z(’y), from Proposition 2.4, Proposition 2.5
and Lemma 2.13 we may assume that QL,? NGL(T,_3).

If v has no essential blocks, we haigy) = I»(v) = 0 =i (y, v%). By the definition
of N1, we haveNi(y) = 0 sincel;(y) = 0. Now, the intersection formula far (%)
holds trivially in this case.

If v has essential blocks, then a.() = 1;(y) for j =1, 2, andi ., v3) =i(v,72),
where o, is given in Theorem 2.7. Note that, € GL" P and Ni(7) = Ni(a,).
The proof of the intersection formula fary(y?) is then completed by induction hy-
pothesis.

In the rest of this subsection, we prove the intersectiomédas fori ¢, 712) and
i(v, 7;’!) with 1 < j < n—3, by applying induction ta > 6. If n = 6, then the formulas
are exactly the same as given below.

Lemma 2.14. If n > 6, and if vy € GL,, then

(7. 92_2) = 2INu—a)| + [Li—s) — Li—a(V)] + Li—s(y) — Li—a()
+1,-3(7) = Li—a(V)| + Li—3(7) — Li—a(7)

i(7:75-2) = 2Ny—a(y) — Li—a(y)|
+ 1, 5(y) = Li—a(V)| + Li—s(7) — Li—a(%)
1 —3(7) — Li—a(V)| + Li—3(7) — Li—a(7)

With Lemma 2.14, we first complete induction step as followssume that
n > 6. From Lemma 2.14, we may assume thatlj < n — 4. If I,_3(y) = 0, then
we write v and o, € GLI Y, respectively, as in (5) and (6). Sineé; o) = N;(y)

and Iy @) = (y) for 0 < j — 1< k < j < n — 4, the assertions hold for this case
by induction hypothesis.
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Assume thatl,_3(y) > 0. If v has no essential blocks, thén~)E 0= N; (y) for
1< j<n-—3,andi ¢, yf) =0for 1< j<n—4andfork =2, 3. Ify has essential
blocks, we may assume that € QLS. Let o, € Q’E,‘,’?’l) be given in Theorem 2.7.
By the induction hypothesis again, the proof is complete.

For the proof of Lemma 2.14, we need:

Lemma 2.15. If v € QLZ,? with I,_3(y) > 0, then~ has exactly

‘[n73(7) - 11174('7)| + 11173(7) - 1174('7)
2

puncture-like blocks.

Proof. Without loss of generality, we assume thatc GL,(7,_3). Let £ de-
note the set of all essential blocks of If v’ is a puncture-like block ofy, then
i(Y, v )=0and 2, 4(7) =X ce i, _a)om,-

Let 1,_3(y) =m, and letp > 0 be the number of puncture-like blocks of Then
~ has exactlye =m — p essential blocks of the first kind. I = 0, ther,24(v) >
YveeiY s mm_gop, > 2m =21, 3(y), and L, 3(Y) — Li—a()| + L—3() — L—a(y) =
0=2p.

Now, assume thap > 0. It follows from Lemma 2.9 that

O A dop, = 2 if 4/ is an essential block of of the first kind,
17> Tn=4J9D = o if 4/ is an essential block of of the second kind.

If p=m, then~ has no essential blocks of the first kind, and

21,4 =iy, 1_aop, = 0.
y'e€

Thus |1,—3(7) — Li—a(V[ + Li—3(y) — Li—a(y) =2m =2p.
If 0 < p<m,letn,...,v. be the essential blocks of of the first kind. Then

211174(’7) = Ej‘:li(’)/jv '73{74)8D,, =2 = 21n73(7) - 2p= and
2p = 2{1,-3(7) = Li—a()} = [1i-3(7) = Li—a| + Li—3(7) — Ti—a(7) - U

Proof of Lemma 2.14. It suffices to prove the lemma foe G,. We shall prove
the lemma fory € G, (T,—3). By a similar argument, one proves the lemma 4oe
gn_(Tn—B)-

If v € GH(T,_3), then N,_4(7 ~2(7)) = N,_a(7) by the definition of N, 4. Note
thati ¢y, v*_,) = i(Z, %(7), v*_,) for k = 2, 3, and that 2 ) = 2I,;(Z, %(y)) for
n —5< j <n— 3. By Proposition 2.5, we may assume that G° N G'(T,_3).

If I,_3(y) =0, theny € GV, and

|Li—3(y) = In—a()| + Li—3(7) — Li—a(7) = 0.
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By letting v =n — 1, we have

i(v, 7_a) = 2ANy 3| + 1 —a(7) = L3 + I —a(7) — 1,—3(7)
= Z‘Nn74(’7)‘ + |I/175(7) - 1174(’7)| + 11175(’7) - n74(’7)
+|In—3(7) - n—4(’7)‘ + In—3(’7) - /1—4(7)

Similarly, we obtain the intersection formula fory (~3_,).

If I,_3(v) =m > 0, then~ is represented by a cyclic reducég -wdil as given
in (3). Note thatp; > 0 andg; > 0 for 1 < j < m. For every;j , lety; be the block
of v represented b)fn*_13WjT,z,3, and let3(v;) be the admissible subarc of repre-
sented by

= pi—lcEjpr—a;
Th3T,”37 S’ T, 3W;T, 3.

Note that everyy; is a subarc of3(y;), and thati B(y;), 7*_,) = 2 for k = 2 or
3 whenevery; is puncture-like. Let€ be the set of all essential blocks of From
Lemma 2.15, we have, fot =2 or 3,

i(ry’ 7:1;—4) = |In,—3(7) - I/z—4(7)| + In—S(FY) - 111—4(7) + Z i(ﬁ(’)/j)’ '7/1{—4)89” -
v €EE

If v has no essential blocks, then the lemma holds trivially~aince 1,_3(v) =
Li—a(7) = Np—a(y) = 0.

Now, assume that is not empty. Note that every essential block pfis of
the first kind sincey € G,. Let £ be the union of all strands of which connect
the 7, "%-side to theX -side withx € {7, 3, Sz, S, *}.

For k = 2 or 3, eachy* , has a unique strani meeting tlig%-side. Let Q;
be the endpoint of, lying on thé""jl3-side, and letQ, be the point on tHg _3-side
which is identified withQ} by the transformatior?,%.

Sincei ¢* ,, v ;) = 0, we may assume thdt is disjoint frof. This im-
plies that Q; < Q' wheneverQ’ is an endpoint of some strand i meeting
the T, %-side, and that), < Q wheneverQ is the endpoint of some strand 1of
lying on the T, _s-side. Thus, we have

D i(BON S a)op, = D iy Me-adop, =ilay s n_a),

’YjES ’Yng
where o, € GL"=Y is given in Theorem 2.7. By letting = »n — 1, we obtain

i(aw , 7374) = 2|Nu73(a7)| + |Il,,4(017) - Iu73(aw)|
+ IV—4a7) - IV—3(a7)
i(y . _a) = 2INy—s(ay) — T—s(a)| + |1 —a(ey) — T —3(vy)|

+ Il/—4(a’y) - IV—3(a’y)
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The proof of Lemma 2.14 is complete. ]

3. A Mapping of =Z(G,) into a Sphere

In this section, we construct a continuous mappibg  frefi(G,) into R3¢—3)
whose image set is a sphere of dimensian-Z. The mappingl  will be constructed
in a similar way as that given in [4] for the case of = 5. We sHalt define
the restriction of& onGL, homogeneously, and extend it to17Z(GL,). Note that
7Z(G,) = 7Z(GL,). By a continuity argument as in [44.3], one proves tha? ex-
tends continuously ter—*7Z(G,). Since the restrictionr to 7~ 17Z(G,) is a quotient
map, the required continuous mappidg is then obtained.

For the definition of¥ onGL,, we first construct a functionyy from GL, into
R3—3) whose values are written in terms of elementary interseatiombers. For ev-
ery vy € GL,, we write

PYo(7) = (x1(7), ¥2(7), x3(0), - ., xt_5(), x2_5(7), x3_5())

where x% ¢) = i(,7})/A(y) for 1 < j < n —3 and for 1< k < 3, and where
() = 27:_13 S0y, ~4). Note that the image ofy lies in

n—4
Im'=1InN (t1,t2, ..., 13(,1,3)) S Rg(nig) 11— ZZ |t3j72 - f3j+1| >0,
j=1
where IT ={(t1, 12, ..., t3p—3) € R3—3 : Zjﬁi’ﬁ) t; = 1}. For later use, we define
the function f :R3—3) — R by
n—4
[tz tap-2) =1 =2 |taj o — t3j41] .
Jj=1

Following [4], we define the mapping GL, — R3—3) py
W(y) = (G0, €O EM). - &30, &_5(1). £ _5(7))
where for every < j <n-—3

21;(v)
p(y)

2[N;()|
p()

2IN;(v) — I;()]
p()

&) = &) = and &(v) =

’

and p(v) = 22’11.;13{1j(7)+|Nj(y)\+|Nj(7)—1j(7)|}. It is easy to see thab 1f € A, =

C"3NTI for everyy € GL,, whereC is the set of pointst{, 1, t3) € RS satisfying:

th+i3=11, 11+13=1, or fH+Hh=13.
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A similar argument to that given in [4§4.2] proves thatA, is homeomorphic to
a sphere of dimensionn2- 7.

We shall prove that there is a homeomorphigm of I’ onto IT so that
W =1 0 1pp. Then we obtain:

Theorem 3.1. The function¥ extends taZ(G,) = #Z(GL,) as a continuous
mapping into a sphere of dimensi@ — 7.

It remains to construct the mapping. For~ € GL,, let

n—4 n—4
V)= 1 55 o I10) = 1) = 1= 23 [110) = xhaO)].
j=1 J=1

A direct computation shows that(y) = A(v)v(y), and the followings:

1
&) = XJ(%) for 1<j<n-3,
20y = M) [x3(0) — 30| + {x3() — xi()}
0250 20) ’
() = 3O x0) = M)+ {x300) — 21}
! v(7) 2v(y) '

52 () = xffa(’Y) . |x,}74(’y) - x373(7)| + {x,}74(’y) - x,}74(’y)}
=T ) 20(7) ’
3 () = x,?_s('Y) B |x,}_4('y) - x3_3(7)| + {x,}_4('y) - x,}_4('y)}
=TT 20(7) ’

and for 1< j <n—3

_ 220 goa0) =0+ {aga(0) — ()}

2
S0 =0) 20)
k() — 0L+ x3a0) - £
2v(y) '
) = 30) () =)+ {xja () — x10)}
! v(v) 2v(7)
() = O+ xa() - x50}
2v(y) '

The above equations motivate the functign: I’ — R3¢~3 defined by
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a(re, ra, .., 13—3)) = (t1, t2, . . ., 13:—3)), Where
= i for j=3k—2with 1<k <n—3
flri,ro, ... r3p—3)
r |ra —ra| + (ra —r1) :
t = — for j =2, 3,
L flrira . rae—3)  2f(rira ... P3p—3)
- rj ran—14—rau—1a| * (rau—14 — rai—11)
L fr e F3p—g) 2f(r1, 72, ..., 73(—3))
for j =3n — 10 or 3¢ — 3), and
g = r3e-1 _ |rak—s — rac—2| + (ra—s5 — ra—2)
T flrira, .., 130—3) 2f(r1,ro, ..., 73(—3))
_ |rakes — rac—a| + (rakss — ra—2)
2f(r1,ro, ..., 73(—3))
ty = "3 _|rak—s — rac—2| * (r3k—5 — rz—2)
flri,ro, ... r3p—3) 2f(r1,ro, ..., 73(—3))

_ |rakes — rac—a| + (racss — rae—2)
2f(r1,ro, ..., 73(—3))

forl<k<n-3.

A direct computation proves that; mapsII’ into IT by showing that

3(n—3 n—4

)
1
Z t; = 1 and 1+2£ |t3j_2 — l‘3j+1| =
‘= =i fri,ra,

CT3p—3)

From the definition ofy;, one proves easily that; is indeed a homeomorphism &f
onto IT.
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