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Introduction. The purpose of this note is to calculate ^-groups of the
real projective m-space RP(m) and the complex projective n-space CP(n).
Consider the operations: complexification £: Ko(X)-^Ku(X)y real restriction
p: Ku(X)^Ko(X)i and conjugation *: Ku{X)-*KV{X). The following formulas

PS = 2 : KO(X) -* KO(X) ,
Sp=l+*: K

are well known (c.f. [4]). Let ξ be the canonical real line bundle over PR(m),
and let η be the canonical complex line bundle over CP(n). Then generators
for our groups are defined as follows:

X=ξ-leΞKo(RP(tn)),

μo=pμ

μi= Pg^^K52i(CP(n)) (ι=l, 2, 3),

where g is the generator of Ku(S2) given by the reduced Hopf bundle.
Our theorems are as follows.
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where (t) means the cyclic group of order t.
2) Ko(RP(™)) is generated by X with two relations X2=— 2λ, λ / + 1 = 0 ,

where f=φ(m) is the number of integers s such that 0<s^m and s = 0, 1, 2, 4
mod 8, and KδXRP(m)) is additively generated by g2X (g2

:=Pg2)

Theorem 2. 0) Ko(CP(n)) is the trancated polynomial ring (over the
integers) with one generator μ0 and the following relations:

(a) ifn=2t, then μe

0

+1=0,
(b) ifn=4t+\, then 2/4 f + 1 =0 and μle+2=0,
(c) ifn=4t+3, then μlt+2=0.

i) Kδ\CP(n))=0.

ϋ) Ko2{CP(rίj) is the free module with basis μv /x^o, * , î i/^o"1, and also,
in case n is odd, μ /̂4 (if n=ί modA) or σ (if « Ξ 3 mod4), where 2σ=μxμl and

t= \^y I ([ ] is the Gauss notation).

iv) Kό\CP(ri)) is the free module with basis μ,2, μ2μ^ •••, μ2/4 Ύ, and also, in

case n=3 mod\, μ2μ% with relation 2μ, 2/4=0, where ί = y

v) Kδs(CP(n))=0.

vi) Kό\CP(n)) is the free module with basis μ3y μ3μ0, •••, μ3μl~λ, and also,
in case n is odd, μ3μ

e

0 (if n = 3 mod4) or τ(ifn=l mod4), where 2τ—μφi and

Theorem 3. The ring structures of Koen(CP(n))^^Kδ2ί(CP(n)) are given
by the fallowings:

ii) μl = μl , "i) μl=4-μ2-\-μ2μ0 ,
v )

REMARK. Theorem 2 is an unpublished result of S. Araki, who computed
the result directly from the spectral sequence.

1. Preliminaries

First we recall from [1] that

q = 0 1 2 3 4 5 6 7 mod 8

Ktf(*) = Kv(Sq) = Z 0 Z 0 Z 0 Z 0

JSΓ^ί*) = Ko(Sq) = Z Z 2 Z 2 0 Z 0 0 0

a n d if q is e v e n
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(1.1) S: Z= Ko(S2g) - Ku{S2q) = Z

is monomorphic, in fact, Im £ = Z if q=0 mod 4, while Im £=2Z if # Ξ 2 mod 4.

Then we can easily obtain the next lemma.

Lemma (1 2). The Conjugation

* : RuiS2*) - Ku(S2η

is given by

* = 1 if q is even and * = — 1 if q is odd.

Next we recall from [3] and [6] that the E2 and /?«, terms of the spectral

sequence of ίto-theory are given by

El" « H\X, K&*)),

where K^(X)= Ker [KS(^)^K5(^ ί " 1 )] The Ω-spectrum Γ = {F Λ hq) in ^ o -

theory is given by Yik_i=£liBo (ί=7, •••, 1, 0), where _BO is a classifying space

for the orthogonal group O, ΩBO is the space of loops on Bo and Ω,PBO is the space

Ω(Ω*-\BO). As for differentials d? ": E» ' -*E»*r '-r+1 we have rf? Q=Ωί/?+ 1 > ' and

d^=d?"+\ On the other hand, Theorem 3.4 of [6] asserts that dltΛ, dξ' ' 1

and df'~2 are induced by the cohomology operations denned by the ^-invariants

kstM^Hst+%Z, 8ί, Z2), kat "^Hst+2(Z2, % Z2) and kH H+1^HH+\Z2, 8ί, Z), re-

spectively. Therefore we have (c.f. §2 and Theorem 4.2 of [8])

, Z) — Hp+2(X, Z2),
(1.3) rff"8-1 = Stf: H"(X, Z2) - H»+%X, Z2) ,

^.-s£-2 = g2iS.g2. ^ ^ Z j _^ //ί+3( X ; Z),

where δ2 is the Bockstein operator associated with the exact coefficient sequence

2. Proof of Theorem 1

0) was proved by J.F. Adams [1].

Proof of iv). We begin by applying for PR(m) the spectral sequence of

Ko-th e o ry Let ψ(m) be the number of integers s such that 0<O<m and s =

0, 4, 5., 6 mod 8. Since we find (apart from zero terms) just ψ(m) copies of

Z2 in i?2-terms which have total degree —4, there are at most 2ψ ( W ) elements

in Ko\RP{m)).

On the other hand we show that Ko\RP(nή) contains at least 2 / - 1 elements,

where / = [ y ] Consider
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Γ2S: Ko\RP{m)) - KΪ(RP(m)) = Z 2/,

where / is the Bott isomorphism. By (1.1) we have / 2S {kg2\)=2kv, where
g2 is the generator of R£>{S*). Therefore in Kό\RP{m)) we find lf~x elements
kg2X (Λ=l, 2, •• ,2^-1). If ιw=2, 3 or 4 mod 8, then ψ(m)=f-l, so that
^ό4(i?P(m))=Z2

ι/'Cm), and g2X generates the group.

The proof for the cases m=0, 1, 5, 6, 7 mod 8 is similar to that in the
case 0) (c.f. [1]).

Proof of i). Consider the spectral sequence, if mφ4r-f-3 the term Eγn'~p

is Z2 for p=\ or 2 mod 8 such that —7<p^m—7, otherwise zero. However,
if m=4r+3 we find an extra term Ef+3 - 4 ( r - 1 ) = Z in addition to the above.

By (1.3) the differentials

(2.1) d2: E$t+6 -*ε _>jg8ί+8.-8«-i

(2.2) d2 I £ Ί ί + 7,-8t-l _^ £ 8ί + 9.-8c-2

are isomorphisms except rfi-lt7=0, therefore E^7'~p=0 except E\'6=Z2 and
β4r+3,-4(r-D_2r for m _4 r _)_3 Since dh:>2Γp+7 -ί)-»JE^+*+7 -p-*+1 (total degree 8)

is a zero map for &>2 (c.f. 0)), E\6=Z2 survives to E^. Also £ f + » . - ^ - " = Z
survives to E^. Hence, we have

\Z2 if mφ4r+3,

Kδ1(RP(m))=\ 2 /]_'
[ Z+Z2 or Z if 7//=4r+3 .

Lemma (2.3). /w £: ^5 1(^^(^+3))-^Ky 1(i?P(4r+3))=Z, coe have

Z if r is odd,
I m £ = ,

2Z if r is even.

Proof. By Theorem (3.3) of [5] we have Ru\RP(Ar+Z))=Z. Considering

the commutative diagram

we can easily obtain the result by (1.1) and Ker f=Z2.

Now, considering the commutative diagram

Z = KδHS4"'3) - fo1

ej εi
Z = ^z?1(54 > '+ 3) 5 /?

we obtain A!'ό1(/<:P(4rH-3))=Z+Zs. Finishing the proof of i).
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Proof of v). We can easily obtain the results in the same way as the proof
ofi).

Proof of iii). If m φ 4 r + l the term £ξ+5>~p is Z2 for p = 1 or 2 mod 8 such
that — 5<^><m—5, otherwise zero. However, if m=4r+1 we find an extra term

By (1.3) the differential

(2.4) d2 :

is an isomorphism except rf|r+6 " 8 r ~ 1 = 0 for m=8r-\-6 or 8r+7, therefore

jB8ί+6.-8ί-i=o except Elr+6'-8r~1=Z2 for m=8r+6 or 8r+7.
By di+* -*=0 (k>2) (c.f. iv)) and d%-8u~2=0y we have E?+1-*e-2=

Eψ+7'-8t-2. By (1.3) the differential

(2.5) d3 : £βί+7.-β.-2 _ , £β« + 10.-β,-4

is an isomorphism except rf|r+7 - 8 r- 2r=0 for ra=8r+7, 8r+8 or 8r+9, therefore
Ef+fI'-8t-2=0 except Eΐ+Ί'-*r-2=Z2 for m=8r+7, 8r+8 or 8r+9.

* -p=0 (Jfe>2)

Z for τw=4r+l ,

Z2 for m=8r+6 or 8r+7 ,

Z2 for m=8r+7, 8r+8 or 8r+9 ,

all survive to E^. Hence, we have the following posibilities

Z or Z+Z2 if m = 8 r + l ,
Kό\RP{m)) =

[Z2+Z2 or Z4 if m=8r+7 ,

and Ko3(RP(m)) is a s stated in Theorem 1 for otherwise.
Now, considering the exact sequence

0 = KB*(RP(8r+2)) - fo"(*P(8r+l)) - Ko\S™) = Z,

we obtain J^o3(i?P(8r+l))=Z.
Next, by RP(8r+7)IRP(8r+5)^ 58 r + 6V S8r+7 we have R5\RP(9r+7l

i?P(8r+5))=Z 2+Z 2 . Thus, considering the exact sequence

Kδ\RP(8r+7)IRP(8r+5)) -> Kδ\RP(8r+7)) -> /Γ58(ΛP(8r+5)) - Z ,

we obtain K3s(RP(8r+7))=Z2+Z2. Finishing the proof of iii).

Proof of vii). Similar to the proof of iii).

Proof of ii). The term £f+6 -* is Z2 for p=0y 1, 2 or 4 mod 8 such that
—6<p<m—6, otherwise zero. By (2.1), (2.2) and (2.4) we have £ξ' + 6 - β ί =

£,8C +7.-8 t-i= £.8 ί +8>-8 t-2= 0 e χ c e p t E\r+*-*r=Z2 for m - 8 r + 6 or 8r+7 and
jg8r+7.-8r-i=Za f o r m = = 8 r + 7 or 8r+8. Also, by (2.5) we have £ | + l o - β - 4 = 0
except E\Λ=Z2.
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Obviously Elr+6-*r=Eΐ+6-Br and βfr+ϊ.-βr-i^βr+T.-βr-i^ and since we

have</Γ5'-p=0 for k>\ (c.f. iii)), E?+6'-8r=Z2 (for τn=8r+6 or 8r+7) and
ET+7'~8r-1=Z2 (for m=8r+7 or 8r+8) survive to £ _ Also, since dk: E^6"p

_>^? +*+ 6,-p_*+i ^ t o t aj d e g r e e 7 ) i s a z e r o m a p e for Λ^3 (c.f. i)), E\A=Z2 survives

to £Όo. Hence, we have the following posibilities

if ifi=8r+l, 8r+2, 8r+3, 8r+4 or 8r+5 ,

Rϊ2(RP(m))= \z2+Z2 or Z4 if m=8r(rφθ) or 8r+6,

[Z2+Z2+Z2f Z4+Z2 or Z8 if m=8r+7 .

Now, in order to complete the proof we show the next lemma.

Lemma (2.6). 2K?(RP(tn))=0.

Proof. It is sufficient to ensure that it is true for m=8r+6, 8r+7 or
8r+8 (r=0, 1, •••)• First we show 4K32(RP(m))=0. Considering the exact
sequence

5)) - K3*(RP(8r+7)IRP(8r+5))

we have RB2(RP(8r+7))*Z%. That is iK32(RP(m))=0.
We have the following exact sequence (2.7) for the fibering U~* U/O, Bo

XZ=Ω(C//O) (c.f. p. 314 of [10]).

(2.7) - - /t«S(X) -1 ^ ( Z ) - ^S+ 2(X) - ^ + 1 ( X ) - -

Applying the exact sequence (2.7) for RP(m) and n=— 2, we obtain the exact
sequence

)) Rtf{KP()YZ U{RP{))

If m - 8 r = 6 , 7 or 8, then/=Γ-jl=^(ffί), so that we have Kd2(RP(m))=Z2/ and

Ro~{RP(m))=Zzf. Since Kδ\RP(m))=Z2 or Z + Z 2 and Kϊ\RP(m))=0 or Z
(c.f. Theorem (3.3) of [5]), we have Im 9=Z 2 . Therefore Im/>ίli=Ker3=Z2/-i.
Hence Im£=Ker^ : i : =Z 2 , that is 2 I m £ = 0 and Im£c2/~1X/£ϋ2CR-P(»0)

Now, considering

t )) - Kδ2(RP(m)),

we have 2K52(RP(m))=Im p€cz2^1xKδ2(RP(m))=2Jr-3x4R32(RP(m))=0.
This shows the lemma. Finishing the proof of ii).

Proof of vi). We can easily obtain the results in the same way as the proof
of ii).

This completes the proof of Theorem 1.
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3. Proof of Theorem 2

0) was proved by BJ. Sanderson [7].

Proof of vii). The term Eζ+1-» is Z2 for p=l mod 8 such that - l < / > <
2n— 1, otherwise zero. By (1.3) the differential

d2 E2 —» E2

tΛr

is an isomorphism except d2

ir+2'''8r~1=0 for n=4rJ

Γί. Therefore E%+1'~p=0
except Elr+2t~8r~ι=Z2 for n = 4 r + l . Hence, we have the following posibilities

0 if fi=t=4r+l,

0 o r Z 2 if n=4r+ί .

Now, considering the exact sequence

we obtain Kδ\CP(4r+ 1))=Z2. Finishing the proof of vii).

Proof of v) and i). We can easily obtain the results in the same way as the
proof of vii).

Proof of vi). The proof is given by induction on n. For n=0 our asser-
tion is trivial. Suppose that Kδ6(CP(n)) is as stated for n<4t-\-l. Consider-
ing the exact sequence

r
0 ^ fjr—6/ O8f+2\ J Ί7~—6(Γ1T>fΔ.+ 1 1 \\ ^ ί?'—6(Γ1T>(A+W _ ^ Π

—*• t\o \^ ) K-O \^-L\T"t T~ *•)) A-O \S'*\*t)) ^ >

we have

Rδ6(CP(4t+l)) » /?06(CP(4*))+^.

Let α is a generator of Kδ6(S8t+2)=Ko(S8t+8)y then we have fc6a=g3μ4t+1. On
the other hand we have Sμ3μlt=g\μ—β)(μJr'μ)2t=2g3μAt+1, because β=—μ-\-
μ? μ*t+i from Theorem (7.2) of [1]. Therefore, putting τ=jιa, we have

2τ=μ3μlε. Thus, μ3, μ3μ0, •••, μ3μV~λ, r additively generate K"ό6(CP(4ί+l)).
Next, considering the exact sequence

0 -> ^ό 7(CP(4ί+l)) -> Ko6(^8 '+ 4) -^ Kδ6(CP(4t+2))
fs~— 6(ί~^~PίΛ_4-_|_ 1 \\ £?"—5/Q8ί+4\ A

we have
2ί + l

and /Li3, /i3/i0, •••> M3Mos additively generate the group.

Next, considering the exact sequence

0 - K56(S"+°) L
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we have

Kδ6(CP(4t+3)) - Kό6(CP(4t+2))+Z

and μ,3, μ3μ0, •••, μ3μle+1 additively generate the group, because jιa=μ3μlt+1 for

a generator a of Kδ6(S8t+6).

Moreover, considering the exact sequence

0 - Kδ6(CP(4t+4)) -> Kδ6(CP(4t+3)) - 0 ,

we have

Kδ\CP(4t+4)) ^ Kδ6(CP(4t+3)).

This completes the induction.

Proof of iv) can be treated in the same way as that of vi).

Proof of iii) and ii) can be treated in the same way as that of vii) and vi)

respectively.

4. Proof of Theorem 3

We apply the Chern characters for Kδ2ί(CP(n)). By Lemma (1.2) we have

{ ey-\-e~y—2 if i is even,

y -y 'c - ΛΛ

ey—e y if i is odd,

where y is a generator of the cohomology group H2(CP(n); Z). Therefore we

have

(4.2)

= 4(ey+e-y-2)+(ey+e-y-2)2 if i, odd,

(4.3) chSμiμj = (ey+ey-2)2 if v/even,

(4.4) ch Bμiμj - (ey-e-y)(ey+e-y-2) if i odd, j even.

If n is even ch 6 is a monomorphism (c.f. Theorem 2). Hence, (4.1) and

(4.2) imply i), iii) and vi); (4.1) and (4.3) imply ii); and (4.1) and (4.4) imply

iv) and v).

In case of n=2t— 1, the results of Theorem 3 are induced from that in case

of n=2t by the inclusion map CP(2t- l)dCP(2t). This completes the proof.
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