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1. Introduction

The main purpose of this paper is to prove:

Theorem 1.1. For a Young diagram A = (A1, A2, As,...), sa(z) = sa(zy1, 22, T3,
...) denotes the corresponding Schur function, and, for each node v in the diagram
A, h(v) denotes the hook length of \ at v. Then we have the following identity with a
parameter q:

7 1+wigt! 1
1.1 =
(1.1) ZIA(Q)S»\(I‘”) H H 1—xq" H 1-z;z;’
X i r=0 1<J
where
oy 1+ "™
(1.2) I\(q) = vl;{ POk

and the sum on the left of (1.1) is taken over all Young diagrams .

When ¢ = 0, (1.1) reduces to the identity

(1.3) st(w)=H1_1z,Hl_lx‘x,
B\ i iy v

due to Schur and Littlewood (see [12], I, 5, Ex. 4). On the other hand, when z; = 2
and o = z3 = --- = 0, (1.1) reduces to the ¢ = ¢ case of the g-binomial theorem
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(see, e.g., [2]):

— (17 l1+td '\ . tyl+teq
(1.4) E(Hl_—‘;i>z =11 1_;;.

n=0 \:i=1 r=0

Using the Frobenius character formula relating Schur functions with irreducible char-
acters of symmetric groups, we see that Theorem 1.1 is equivalent to:

Theorem 1.2. For a Young diagram \ with n nodes, x» denotes the correspond-
ing irreducible character of the symmetric group S,, and I»(q) as in (1.2). Then we
have

det(1 + gp(s)

— g -1 2 )
(1.5) In(g) = ISl S;Sﬂm(s ) T —ap(3))’
and
B det(1 + gp(t))
(1.6) Y h@xals) = 2 g ° € S,

|Al=n
t3=s

where p : S, = GL,(Z) is the representation of S, by permutation matrices.
At g = 0, the identities (1.5) and (1.6) reduce to well-known ones.

Let () be the Adams operator of the second order acting on the space of gen-
eralized characters of S,,; ¥(?) is defined by

(1.7) @ (x2)(s) = xa(s?), s € S,
or by
(1.8) @ (x) = x2) - X%,

where xf\zl and xf\zl are the symmetric and anti-symmetric squares of ), respective-
ly (see [15], 2.1). By (1.8), for any pair of Young diagrams A, 4 with n nodes, there

exists a unique integer d, such that

(1.9 PP 00) =Y dauxe-
"

We are interested in the coefficients d,. See [16], [14] for some of the known results
on this and related problems. See also [5] (p.380, Appendix 1.D) from which one can
read off the values of dy, (and also similar coefficients for the Adams operators of
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higher orders) for n < 8.
Using Theorem 1.2 and a known formula [8], [13], [16], [4] for the sum

_ det(1 + gp(s))
507 2 0 g T gty

we get the following.

Theorem 1.3. For Young diagrams X and p with n nodes, let dy, be as in (1.9).
Then we have

i—1 j

_ ¢+

(1.10) h@= 3 dw I =
[]=n v=v(i,j)Ep

where v = v(i,j) denotes the node at the intersection of the i-th row and the j-th
column of the diagram p.

Theorem 1.1-Theorem 1.3 will be proved in Section 3 after some preparations in

. Section 2.

Viewing (1.10) as a set of identities for series in ¢ and comparing coefficients of the
corresponding terms on the both hand sides, we get many relations for dy,’s. The first
three of these are :

(1.11)  dyn) =1 (well-known),
(1.12)  dy(n) + dr(n-1,1) = N7,
(1.13)  2dy(n) + 3dr(n—1,1) + dr(n-2,2) + dr(n—2,12) = (N})? + N3',n > 3,

where
(1.14) N} = |{v € A| h(v) = i},
and we understand

drkymy =0, if k<Ll

Using these results as well as related techniques, we can determine some of the dy,’s
explicitly. Here are examples:

(1.15) dr(n-1,1) = N{\ -1,
(1.16) dr(n-2,2) = N}M(N} —2) + N3 n > 2,
(1.17) da(n-2,12) = =N} + 1,
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(“1)Z% A= (a,...,0p |0, .., 0p)
(1.18) dyany = in Frobenius notation,
0, otherwise.
—1)2X% ifA#N and A=oUo
for o = (0q,...,0p | Q1,...,0p),
1.19) d n—2) =
(119 drz1n-2) —I)Z“", if A= (oq,...,0p | a1,...,a,) With o, #0,
0, otherwise,

where X' denotes the diagram conjugate to A, and A = o U o means X is obtained by
adding just one node to a self-conjugate diagram o.
We can also give an algorithm for the computation of dy, for any diagrams A and p.
Although our algorithm is not very practical in general, it is rather efficient when p is
of hook-shape. This and (1.15)—(1.19) will be discussed in Section 4.

Our main result (1.1) is a partial generalization of the g-binomial theorem (1.4); a
full generalization seems to have the following form.

Conjecture. We have

1+ qa(v)tl(v)+1

e n2 42
(1.20) Z (H m) Py(z;¢%,t%)

A vEA
1—t%z;
T At

1+ tx;q"
—HH 1- z;q" oo

i r=0

where Py(z;q?,t?) denote the Macdonald symmetric functions (see [12], IV), and
a(v) and [(v) are the arm-length and the leg-length (see Section 5) of A at the node
v respectively.

For t = —gq, (1.20) reduces to the Schur-Littlewood identity (1.3), for ¢t = g, to
our (1.1), and, for z; = z and £ = x3 = --- = 0, to the g-binomial Theorem (1.4).
Moreover, for ¢ = 0, (1.20) reduces to the following identity, which was essentially
proved (using representation theory of general linear groups over finite fields) in [6]:

1+ tx; 1-—t2z;x;

121 (14 £ Py (2; 8 : <

( ) Z g + Pr(e; ") = 1:-[1—.171];11— a:z]
a(v)=0

where Pj(z;t?) denote the Hall-Littlewood symmetric functions (see [12]). See Sec-
tion 5 for the identity (1.21) (and another identity proved in the same way).
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2. Preliminaries
2.1. Partitions and diagrams. A partition
2.1 A= (A1, A2, 50,00 0)
is an infinite sequence of non-negative integers \; in non-decreasing order:
AL 2 A2 2 A 2

containing finitely many non-zero terms. In the expression (2.1), zero terms are often
omitted. If m;(\) is the number of times ¢(# 0) occurs as a term of the partition (2.1),
we also write

A= (.., im™) o 1mQ)),

The number of non-zero terms (or parts) of A is denoted by I()\). A partition (2.1)
is often identified with the Young diagram with {()\) rows whose i-th row contains
exactly \; nodes. The number of nodes in the diagram ) is denoted by |\|, namely

A=)
We define the partition A’ conjugate to A by

X = (AL A,

where )} is the number of nodes in the i-th column of the diagram A. If A = X, we
say that X\ is self-conjugate. For the node v = v(i,j) of A at the intersection of the
i-th row and the j-th column, the corresponding hook length h(v) is defined by

h(v) = A+ X, —i—j+1.

We also need Frobenius notation for partitions. Let A = (A1, A2,...) be a partition.
Putting

p=max{i | \; > i} = max{i | \} > i},
and

i =XA—i, Bi=XA-—i, 1<i<p,
we denote the partition A by

A= (al’a%"'aap l 161’/823'“’:317)'
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2.2. Symmetrizing operators and Schur functions. Let F), be the ring of se-
ries in n variables x;,xs,...,Z,. For an element f of F),, and an element s of the
symmetric group S,, we put

fs(zla T2,.. .,.’L’n) = f(ms'1(1)7 Ts-1(2)5- -+ axs'l(n))'
The symmetrizing operator [10]
by — F,

is defined by

-1
en  mi)=(IJ@-2) sy, fek,

i<j 8E€Sn

where
) = g2 2 g, .

The following properties of 7, are easy to see.
2.3) Tn(f)* =mn(f), f € F,,s€ Sp.
24 Ta(f9) = frn(9),
where f, g € F,, and f* = f for any s € S,,.
2.5) n(f) € Z[z1,22,...,2,], if f € Z[z1,22,...,Z,).

(2.6) (2 2y? - - - 22r) = 0,

unless a; + n — 1,1 < i <mn, are all distinct.
Let A = (A1, A2,...) be a partition with [(\) < n. Then the symmetric polynomial

2.7 sx(z1,Z2,...,Tn) = ﬂn(zi\lz;” . --x;\,")

is called the Schur polynomial in n variables corresponding to \. It is easy to see that
SA(T1,Z25 -+« Ty Tnt1)|zpyr=0 = 82(T1, T2, -+, Tn),

which implies that we can define the Schur function [12]

sa(z) = sa(z1,Tay...... )

in infinite variables x = (z;,z3,...... ) by letting n — oo in (2.7).
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Lemma 2.1 ([10]). Let w, and sy(z1,%s2,...,Z,) be as above. Then:
i) Let A = (M1, A2,...) be a partition with l(A\) < n — 1, and m a non-negative
integer. Then we have

7!'"(8)‘(.’111,152, N ,.’En_l)l‘?) =0
ifm=MX+n—ifor some1<i<n-—1, and
Tn(Sx(®1,T2,...,Tn_1)T)) = sgn(w)su(T1,T2,...,%n)

otherwise,where the element w = w(\,m) of Sy, and the partition u = p(A,m)
are uniquely determined by the conditions:

(p)<n
and
M+rn—-Ld+n—-2,...,Ap_1 +1,m)
=wp+n—Lipu+n—2,...,u,).
(ii)) We have

n-l 1 , if n is odd,
s 1—zx =
"(I__Il( ' n)) { if n is even.

1-z122- - Tp,

Proof. (i) Let {wi,...,w,} C S, be a set of representatives of the coset
Sn—1\Sn. Then, by (2.2)-(2.4) and (2.7),

Tn(Sx(Z1,. .., Tn-1)T]) H(z’ - ;)

i<j
=Y Y sgu(sw)(sa(z1,- -, Taoa)® M)
k=18€S, -1
n Wi
=ngn(wk){s,\(:cl,...,xn_l)(:z:l~-xn_1).7:;" Z sgn(s)(w‘s("_l))‘}

>~
I
-

SESn-1
Wi
Sgn(wk){sx(wl,---,fﬂn—l)(xl"'In—l)w': H (-’Ei—fb‘j)}
i<j<n

Wi
sgn(wk){ Z sgn(s)(z}* ---z;\l:‘zé("‘l))"(zl zn_l)z;"}

SE€ESn -1

- IMM:

k

An—
(@i zy? -2 7 w) [ (e — =)
i<j

1l
A
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We have shown

A
Tn(Sx(Z1, .-y Tno1)Zh) = wp(z 1\‘-- "),

Hence Part (i) follows from (2.6) and (2.7).
(ii) We have

n—1 n
H(l — T;%,) = Z(—l)k{ Z Ty Tip - Ty, }zﬁ

i=1 k=0 11<i2< <k <n
On the other hand, by (2.6), we have
Wn(mil.’l,‘iz"'dfik.'ltﬁ):o, k>0,i1 <ig < <ix <n

unless n is even, k = n/2, and (i1,132,...,i) = (1,2,...,n/2). Moreover, by (2.2)
and (2.4), we have

Tn(T122 - - wn/2$"/2) = ()21 (2122 - T0)

= (-1)"* g1z9- -z,
if n is even. Now Part (ii) follows. O

For a positive integer k, we put
Pk (:L') = Z ‘T? )
i

and, for an element s of the symmetric group S,, we put

P5(2) = Ppy (2)Pp (%) -+~ P (2),

where (u1, g2, ... pn) (3; i = n) is the cycle-type of s. For a partition A with|\| =
n, x» denotes the corresponding irreducible character of S,,. This means

2.8) (@) = 157" 3 xa(8)ps (@)

SES,

(Frobenius character formula).
2.3. Adams operator. The following lemma relates the infinite product

1+tx;q" 1-t2z;
@9 10] Eane ) ) el

i r=0 i<j r=0
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appearing on the right hand side of (1.20) to the Adams operator »® (see (1.7) and
(1.8)).

Lemma 2.2. Let A(z;q,t) be the infinite product (2.9). For a partition ), let
ax(q,t) be a function in q and t defined by

(2.10) A(z; g,t) ZGA g,t)sx(x

Then we have

det(1 + tpn(s))

@2.11) ax(g,t) = [Sal™" Y ‘b(z)(x*)(s)det(l — gpn(s))’

SES,

where n = |\|, and p, : S, = GL,(Z) is the representation of S, by permutation
matrices.

Proof. We calculate, as in [12], p.120, Ex.11,

log A(z; q,t) Z Z{log (1+tziq") —log(l — z:q")}

+ E Z{log (1 - t*z;z;¢°") — log(1 — z;2;4°")

i< *
gy
_szzl{ thq +(<vzz)}
@ J 25077
- ;z{—lf J‘if”’“ + lqu%}
1— (=t)*zf 1—t2’° ,
_Z; — ) ;Z (ziz;)*

_ Zl—(—) pk(z)+ 1— 2 pk(x) — po ()
- 1-¢* &k - 1— g2k 2k

1+ t* pr(z) 1 — %% pi(z)?
g et A0

— gk
koddl q k



166 N. KAWANAKA

Hence we get

_ B 1+ t* pi(x) 1 — t2* py(x)?
A(.’E,q,t) - H €Xp (1 _ Ak k Hexp 1 _q2k 2](7

q k
1 1+t p(x)\™ 11 Zl 1- 1% p(2)?)
'\1-¢* & P t“ 1—q%¢ 2k

mk!kmklj!(Zj)’:

14+ tR\™ (112 \"
(i) (imgm) e
where the sum on my, I; is taken over the set of sequences (mq,ms,ms,...;l,l2,...)
of non-negative integers my, I; such that

kak-f-ZJ 2l;) =n.

k odd

Il
NE

Let u be an element of S,, with cycle-type (ui,ps,-..,u,). If we put
mi = |{j|pj =k}, 1<k<n,
then

det(1 - gpa(w) = [T(1 - ¢*)™,
k

and the order of the centralizer of u in S,, is equal to
[ metem.
k

Hence we have

det(1 + tpn(u
A(z;9,) Z|S| IE ﬁ"@%ﬁ?(z)

n=0
~ 1 det(1 + tpn(u))
B z,,:lsnl sezsn { Z det(1 — gpn(u)) }p (®)-

The lemma now follows from Frobenius character formula (2.8).
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3. Proofs of Theorem 1.1-Theorem 1.3

3.1. Proof of Theorem 1.1. It is enough to prove this for a finite set of variables
Z1,Za,...,Tn, i.e. in the case when z,41 = Tpy2 = .-+ = 0. Then (1.1) takes the
following form:

3.1 ZI,\(q)s,\(wl,...,;,;n HH 11+_:U;Qq H 1_lgg-a:~’
A ' -

i=1r=0 1,j=1
i<j

where the sum on the left is over all partitions A with {(A) < n. As noted in Section
1, this is true for n = 1. Let F(n) be the right hand side of (3.1). Then we have

1+ z,q"t! nt
F -1 — = — Lidn).
(n )£[0 g~ P J[J0-2in)
Hence, by induction assumption, we have
14 q
G2 (Y L(@sa(@1,-- Ta1) Z H - =F(n) [ - zizn),
A

m=0i=1 i<n

where the sum on A is over all partitions with [(A\) < n — 1. By applying the sym-
metrizing operator 7,, (see Section 2.2) on the both hand sides of (3.2), we get

(3.3) X; mZO <IA (a) H
= F(n)m, < H(l - z,-wn)).

i<n

)7‘(’“(5)‘(231, ey Tp—1)TR)

Now let Fi(n)* be the left hand side of (3.1). In view of (3.3), for a proof of (3.1), it
is enough to show:

(34) 3 <L\(q II 1= q') (sa(z1, . Ta1)zy)
A m=0 =1
= F(n)*m, ( H(l - x,xn))
i<n
Since the both hand sides of (3.4) are symmetric polynomials in z;,...,Z,, they can
be written as linear combinations of Schur polynomials s,(z1,...,2,),l(1) < n. If

l(u) < n — 1, then the coefficients of s,(z1,...,Z,) on the left and right hand
sides of (3.4) are both equal to I,(q) by Lemma 2.1(i)(ii) and the multiplication rule
([12], p.73, (5.17)) between Schur functions and elementary symmetric functions. If
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= (#1,-.-, ) is such that [(u) = n, then, by Part (i) of Lemma 2.1, the coeffi-
cient of s,(x1,...,T,) of the left hand side of (3.4) is equal to

n Hit+n—j

n—j 1+ qk
Z(—l) T3 (9) H 1T—¢°
j=1 k=1

where u(j) = (w(f)1,p(j)2,--.) is a partition with I(u(j)) < n — 1 defined by:

p()1 = p1, p(G)2 = p2s - pw(d)j-1 = Bj-1,
p(G)j = pit1 — Lp(G)je1 = pive — 1, p(f)n-1 = pn — 1,
and, by Part (ii) of Lemma 2.1, the coefficient of s,(z;,...,z,) on the right hand
side of (3.4) is equal to I,,(q) or I,(q) — I,_(1~)(q) according as n is odd or even,
where y — (1) = (1 — 1,...,pn — 1). Thus (3.4) is equivalent to:

Lemma 3.1. Let p be a partition with (i) = n. In the above notation, we have

n pijt+n—j 1+ qm
(3.5) =2 ("L [ ==
Jj=1 m=1 q
if n is odd, and
pHitn—j
1+q¢q™
(6 Z ho@ 11 1= + eon@,

= m=1

if n is even.

Proof. We put v; = pu; +n — j for 1 < j < n. Multiplying the both hand sides
of (3.5) and (3.6) by

m 14gm\ 7!
(H —q'”) ’

j=1m=1

[u—y

we see that (3.5) and (3.6) are equivalent to:

3.7 [l —Zn:(—l)""“ | ey y
U= = 2 5 Trgn = LT+
Ji#k
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and
1— qu, v n X l/,—l/j 1-— qV,-
(38) | D BCE N | ey |
1<j 1+ q" N k=1 i<j 1+ qu N i#k 1+ qu'
i#£k
J#k
1-— ql/,'—ll]' n 1-— qu,'
+H1+q”‘_VjH1+qui
i<j i=1

respectively. Putting A; = ¢*, we can rewrite (3.7) and (3.8) as

Aj— A & - 1-A;
A;+Ai Z kHA-l—A 1+Ai

i<j k=1 i<j
i#k
J#k
and
" 1- A
n—k
z,<A+A Z( 2 £[A+A H1+A 1_<[A +A 1+ A;
! z#fc
J#k

respectively. We can further rewrite these equalities as

L, A + A; 1+A,c
(3.9) H ZH

1A kl;ékA"_ i 1— Ay
(which is to be proved for odd n) and

- 1+ A; - A+ A; 1+ Ag
. = 1
10 21—Ai ;gAk—A,-1—Ak+

(which is to be proved for even n). Now, by the partial fraction expansion

G.11) H——zz__ti"=z(1_t)A’°HAk_ L4,

i=1 k=1
we see that
TI4 A = 24 Ap +A
(3.12) gl—Ai kll—AkHAk—

We also have

. ( )" ZHA,C+AA

k=1 ik

169
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(put z =0 and ¢t = —1 in (3.11)). Adding (3.12) and (3.13), we get (3.9) and (3.10).
This proves Lemma 3.1. O

The proof of Theorem 1.1 is now complete.

3.2. Proofs of Theorem 1.2 and Theorem 1.3. By putting ¢t = ¢ in Lemma 2.2,
and using Theorem 1.1, we get (1.5). The formula (1.6) follows from (1.5) via the
orthogonality relations for x . This proves Theorem 1.2.

For a proof of Theorem 1.3, we need the following formula (see [8], [13], [16], [4]):

_ det(1 + tpn(s)) ¢+t !
314  [SaTM Y Xu(3) et (1 = apn(3) I 1o

SES, v=v(i,j)Ep

where p is a partition with [g| = n, and v = v(i,5) is as in (1.10). This formula,
together with (1.9) and (2.11), implies

i-1 j—1
_ q + t¢’
(315) a,\(q, t) = Ed)\” H T—q-h—(';)T—,
© v=v(4,j)En
where the sum on the right is over all partitions p with |u| = |A|. Combining (3.15)
for ¢t = q with (2.10) and (1.1), we get Theorem 1.3.

Remark. It would be interesting to generarize Theorem 1.2 (and Theorem 1.3)
to finite reflection groups. The formula (3.14) has been generalized to the case of Weyl
groups by Gyoja, Nishiyama and Shimura [4]. See also [8], [13].

4. The coefficients dy

Comparing the coefficients of ¢°, ¢ and ¢ on the both hand sides of (1.10), we
get (1.11)—(1.13). These formula imply:

@.1 dyiny =1 (well-known),
4.2) dr(n-1,1) = N} — 1,
4.3) dr(n—22) + dr(n-212) = (N})2 = 3N} + N3 +1

Thus (1.10) is not sufficient in determining dy(,—2,2) and dy(,—2,:2) for all n and A.
To determine these and some other coefficients dy,, we shall use:

Theorem 4.1. For a partition )\, we put
a/\(t) = a) (09 t)

in the notation of Lemma 2.2. Then:
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(i) We have
wh  (Tao)(TEnZen@) = S aone)
m o A
and

4.5) (Zsﬂ(x)t“‘l) <Z(“1)E°“'sa(:c)) = Z tMax (s (x),
m o A

where the sums on |1 and A are over all partitions, and the sums on o are over
all self-conjugate partitions ¢ = (ai,...,0ap | a1,...,0p) (in Frobenius nota-
tion; see Section 2.1).

(i) We have

n

4.6) ax (t) = Z(dA(n—r-f—l,l"—l) + dA(n—r,l'))tr$ n= IAla

r=0

where dy(p41,1-1) and dxo,1n) are understood to be 0.

Proof. Putting ¢ = 0 in (2.10) and (2.11), we have

1+ tx; 1- t21L‘i.”le

4.7 177 U5, = Zax(t)sx(m)
1 1<] Iy
and
(4.8) ax(t) =[Sl ™ Y ¥@ (xa) det(1 +tpn(s)), n=|A.
SES,
Since

H(1 —2) [J(1 - zizj) = Y (-1 E s, (a)

i<j
(see [12], I, 5, Ex.9(c)), we have
(4.9) [ +te) [J(1 - 22izy) = Z(—I)z"“'sa(z)t|”'.
i i<j -

By (4.7), (4.9) and (1.3), we get (4.4). The identity (4.5) follows from (4.4) by just
replacing, in the latter, ¢ with =1 and then z; with tz;. This proves Part(i). Part (ii)
follows from (4.8) and

det(l + tpﬂ(s)) = Z(X(n—r+1,l"_1) + X(n—r,l"))(s)tr’

r=0
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which is well-known and is equivalent to the ¢ = 0 case of (3.14).

We now show how we can derive formulas like (1.16)—(1.19) from Theorem 4.1
and Theorem 1.1. Comparing the coefficients of ¢"(r = 0,1,2,...) on the both hand
sides of (4.4) and (4.5) and taking (4.6) into consideration, we have

(4.10) ( Zsu(x)) ( 2 (—I)E“*sa(x))

lo|=r

= Z(d,\(n—r+1,1r—1) + dx(n—r,1r))82(Z)
A

and

@.11) ( ; S (;(—1)2“"5‘,(95))

|p|=r

@)
= Z(d)‘(r’ln_r) + d)‘(r+1,1n—r-—1))8)\(x)
A

respectively, where n = || and the sums on o are taken over all self-conjugate par-
titions 0 = (a1,...,0p | @1,...,ap). For three partitions p, v and A, let c;\w be the
Littlewood-Richarson coefficient in the expansion

4.12) su(z)s,(z) = z cﬁ,,s,\ (z).
A

As is well known, there exists a nice combinatorial rule (the Littlewood-Richardson
rule) for computing c/’;,,. See, e.g., [12], I, 9. By (4.10), (4.11) and (4.12), we have

(4.13) Y (FDX®EY, = dainorpiar-t) + da(norin)
lo|l=r
lul=n—r
and
(4.14) Y (~1)Z %), = dygran-r) + da(rp1an-r1)
lpe|=r
lo|l=n—r
for any partition A and any integer r with 0 < r < n = |)\|, where the sums on

o are as in (4.10) and (4.11). By (4.13) and/or (4.14), we have an algorithm for the
computation of dy, for any partition v = (s,1"~*) of ‘hook-shape’. (Note that the
individual values of the Littlewood-Richardson coefficients c";t, are not needed here; it
is enough to know the sum El#|=|r\l—lvl c), for each pair (A,0) with o = o'.) For
example, if we put r =0 in (4.13) and (4.14), then we get (4.1) (again) and (1.18). If
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we put » =1 in (4.13) and (4.14), then we get (1.12) (again) and

(—l)zo‘", if \=oUofor o =(ai,...,ap | oq,...,0p),

d,\(l") + d/\(%l“—z) = { 0 otherwise

where A = o U o means that the diagram A is obtained by adding just one node to a
self-conjugate diagram o. This, together with (1.18), implies (1.19). If we put r = 2
in (4.13), then we get

dx(n-1,1) + dx(n-2,12) = 0.

This and (4.2) imply (1.17), and (1.17) and (4.3) imply (1.16). (]
ExAMPLES.

() darayry = Ldsenm) = 2,447, = 0,d4,21,1)(7,1) = 2.
(i)  dra)6,2) = Lds,2,1)62) =4 d,4)6,2) = 1,d4,2,1,1)6,2) = 5
(i) diz,1y61,0) = =1 ds20)6,1,0) = =2 daayer) = 0,d@u2,1,1)6,1,) = =2
) ey = { -1, if A=(4,2,1,1) or (3,3,2),

0, otherwise.

-1, if A=(5,13) or (4,1%),
V) dreay =4 1, if A=(3,3,2),

0, otherwise.

REMARK.
(i) By (4.7) and (2.10), we have

oo
I1 (S entt™s,(@)) = S oxla. (@)
r=0 " A
Hence
o0 oo
(4']5) a’/\(q? t) = Z { C;Al,lyg...yk“. H a’ﬂr (t)}qn?
=D SR
le"rlzl)‘|
where, for partitions A, 1, 12, . .., we define ¢, ,, . by

Spy (.'ZI)S#._, (:l") C Sy (:L‘) = Zc;)lug...uk...sr\(m)'
A
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By (3.15), the knowledge of the function ay(g,t) is sufficient for the determina-
tion of dy, for any p with |u| = |A|. Thus (4.4), (4.5) and (4.15), together with
the Littlewood-Richardson rule, give an algorithm for the computation of d,.
Theorem 1.1, which gives an explicit formula for ay(q, q), is sometimes helpful
to shorten the computation.

(i) For a positive integer r, the Adams operator (") of the r-th order is defined by

‘/’(r)(X/\)(S) = X/\(sr)a CES Sn-

Since

r—1

pr(@) = Y (=1)!5(r—t,10) ()

t=0

(see [12], I, 3, Ex.11), we have the following generalization of (1.8):

r—1
4.16) P (0) = Y (D xae-t19)5

t=0

where X (r—¢,1¢) is the symmetrization of x by X(r—¢,1¢) (in the terminology
of [5], 5.2). For any pair of partitions (\,u) with I[(A) = I(u) = n, let df\ru) be
an integer defined by

Dxa) =Y d5)x

m

By (4.16), one can read off the values of df\rﬂ) for r < 5 and n < 8 from the
tables in [5], Appendix I, D. We observe that the absolute values of these num-
bers are relatively ‘small’; perhaps this suggests the existence of a nice theory
for the coefficients df\’p)

5. Symmetric spaces over finite fields

It is known ([3], [7], [6]) that the permutation representation of the general lin-
ear group GL,(F,2) over a finite field F,> of ¢> elements on the ’symmetric space’
GL, (F,2)/GL,(F,) is multiplicity-free. As noted in [6], Theorem 3.2.6 (ii), this fact
can be expressed as a set of identities for Green polynomials. By the relation ([12],
III, 7) between Hall-Littlewood symmetric functions Pj(z,;t) and Green polynomials,
the latter is equivalent to:

— t4 mJ(s
6.1 bat )P( i12) = Sa|™t ) H -t )m =y P2 (T),
() S A-p)m©
Aj=n
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where m;(s) = m;(vs) denotes the number of times j occurs as a part of the cycle-
type v, of s € S,, and by(t) is a polynomial in ¢ defined by

ba(t) = H(1 (1=t (1=t D)
J
(see [6], Remark 3.2.7(ii)). It is easy to see that

(1 — t2)ms(s*)
H (1 — t3)mi(s)

J

= det(1 + tpn(s)),

and that
ba(t?) !
_— = 1 +t (’U)+1 ,
ba(t) vl;‘[\ ( )
a(v)=0

where, for a node v = v(i,j) of the diagram )\, we define the arm-length a(v) =
ay(v) and the leg-length l(v) = lx(v) of X at v by

a() =X —j, l(v) =X —1i.

Moreover, by the proof of Lemma 2.2 with ¢ = 0, we have

I 15 “aw; D 18al™H D det(1 + tpa(s))pe (2).
7 1<J n=0 sES,

Hence, (1.21) follows from (5.1).

Another well-known multiplicity-free permutation representation of a finite general
linear group comes from the action of GL2,(F,) on the symmetric space
GL2n(Fy)/Sps,(Fg). See [9], [1]. It is easy to see that an exact analogue of
[6],Theorem 3.2.6 also holds in this case. (See [11] for a much more general result.)
Using this result and results [17] on unipotent conjugacy classes of symplectic groups
over finite fields, we can prove the following identity. (Since the argument is very
similar to the one shown above, we omit the details.)

1 - tzz;
6p  Xewr [ a-dompe - LD
A

1-z;z;’
vEia(v)=0 i<j bt
I(v) even

where the sum on the left is taken over all partitions A\ such that m;()\) is even for
odd 7, and

o(A) = Y mi(N).

i odd
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Note that, when ¢ = 0, (5.2) reduces to the identity given in [12], I, Ex.5(a).

{11
(2]
31
[4]
(51
(6]
(7]
(8]
91

(10]
(1]

(12]
[13]
(14]

(15]
[16]

[17]
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