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Abstract

Let Xy be a complete hyperbolic surface of infinite type with geodesic boundary which ad-
mits a countable pair of pants decomposition. As an application of the Basmajian identity for
complete bordered hyperbolic surfaces of infinite type with limit sets of 1-dimensional mea-
sure zero, we define an asymmetric metric (which is called arc metric) on the quasiconformal
Teichmiiller space 7 (Xp) provided that X, satisfies a geometric condition. Furthermore, we
construct several examples of hyperbolic surfaces of infinite type satisfying the geometric con-
dition and discuss the relation between the Shiga’s condition and the geometric condition.

1. Introduction

The Thurston metric was originally defined by Thurston [33] as an asymmetric metric
to solve the extremal problem of finding the best Lipschitz map in the homotopy class of
homeomorphisms between two hyperbolic surfaces of finite type without boundary. For
surfaces of finite type with boundary, a modification of the Thurston metric, the so-called
arc metric (see more precisely below) was studied [1,18,19,26].

It’s a natural problem whether the Thurston metric is well-defined in Teichmiiller spaces
of surfaces of infinite type (see [29] for example). In this paper, we define the arc metric,
a modification of the Thurston metric, on the quasiconformal Teichmiiller space 7 (Xj) of
a complete hyperbolic surface X of infinite type with geodesic boundary provided that X
satisfies the geometric condition (%) (see the definition below).

Let X, be a complete hyperbolic surface of infinite type with geodesic boundary which
admits a countable pair of pants decomposition. The completeness for hyperbolic surfaces
or hyperbolic structures that we consider throughout this paper means that each boundary
component of this surface is a closed geodesic and each puncture of this surface has a neigh-
bourhood which is isometric to a cusp, that is, a surface isometric to the quotient of the
region {z = x+iy : y > a} of the upper half-plane H?, for some a > 0, by the isometric group
generated by z — z + 1.

Denote the boundary of X, by dXj and denote the set of boundary components of X by
B(Xo) = {B1.52, ., Bk, ...}. Note that the number of boundary components of Xy and the
number of cusps of X can be countably infinite.

(X, f) is said to be a marked hyperbolic surface if X is a complete hyperbolic surface
of infinite type and f : Xo — X is a quasiconformal mapping which leaves each puncture
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and each boundary component setwise fixed. Two marked hyperbolic surfaces (X1, f;) and
(X, f>») are said to be equivalent if f,o fl‘] is homotopic to an isometry from X; to X,. Denote
the equivalence class of (X, f) by [X, f]. We denote by T (Xy) the reduced quasiconformal
Teichmiiller space of Xy (see [14,17,32]), which is the set of equivalence classes of marked
hyperbolic surfaces. It deserves to mention that all Teichmiiller spaces that we consider here
are reduced, which means that homotopies do not necessarily fix X, pointwise.

For the sake of simplicity, we shall call 7 (Xp) the Teichmiiller space of X, for short
and denote a marked hyperbolic surface (X, f) or its equivalence class [X, f] by X, without
explicit reference to the marking.

The Teichmiiller space 7 (Xy) has a complete distance dr called the Teichmiiller distance
which is defined by

dr([Xy, f1l, [X2, 2]) = l]og inf Klgl,
2 g=frofy!
where the infimum is taken over all quasiconformal mappings g : X; — X, homotopic to
f> o f7" and K[g] is the maximal dilatation of g.

Recall that a pair of pants is a surface whose interior is homeomorphic to a sphere with
three disjoint closed disks removed whose boundary is a (possibly empty) disjoint union of
circles. A generalized hyperbolic pair of pants is a pair of pants equipped with a convex
hyperbolic metric in which every topological hole corresponds to either a closed boundary
geodesic or a cusp. In particular, a hyperbolic pair of pants is a generalized hyperbolic pair
of pants with three closed geodesic boundary components.

A pair of pants decomposition of a hyperbolic surface X is a system of pairwise disjoint
simple closed geodesics P = {C;};e; (for convenience, we ignore the degenerated ones which
are homotopic to punctures) such that X \ (U;;C;) is a disjoint union of the interior of
generalized hyperbolic pairs of pants. Moreover, if P is countably infinite, we say that X
admits a countable pair of pants decomposition. Note that the hyperbolic surfaces of infinite
type in this paper are assumed to admit a countable pair of pants decomposition.

1.1. Related definitions and notations. Let S be a surface with negative Euler charac-
teristic. A simple closed curve on S is said to be inferior if it is contained in the interior of
S. It is said to be peripheral if it is homotopic to a puncture. It is said to be essential if it
is neither peripheral nor isotopic to a point. Let S($') denote the set of homotopy classes of
essential simple closed curves on S'.

If § has non-empty boundary S, we denote the set of boundary components of S by
B(S). An arc on § is the image of a compact interval, which is immersed in §, with its
interior (possibly with self-intersections) contained in the interior of S and its endpoints
lying on 0S. In particular, a simple arc is an arc without self-intersections. An arc is said
to be essential if it is not isotopic (relative to dS) to a subset of S. Note that we do not
require the homotopies to fix S pointwise. Denote by A(S) the set of homotopy classes
of essential arcs on S and by .A’(S) the subset of .A(S) consisting of homotopy classes of
essential simple arcs on §.

For any @ € S(S) U .A(S) and any hyperbolic structure X on S, we denote by £,(X) the
hyperbolic length of @ on X, that is, the length of the (unique) geodesic representative of «
on the hyperbolic surface X.
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If S is a surface of finite type without boundary, the Thurston metric drj, (see [33]) is an
asymmetric metric on the Teichmiiller space 7 (S) defined by

La(Y)
drip(X,Y) =log sup ——,
" ® pests) LaX)
forall X,Y € T(S).
If S is a surface of finite type with boundary, the arc metric d4 (see [18,19]) on 7(S), as
a modification of the Thurston metric, is defined by

Lo (Y)
da(X,Y)=1o su —_—,
A & aeA'(S)IL)JS(S) La(X)
for all X,Y € T7(S). It is essential to consider the union of closed curves and arcs in the
definition of d, for surfaces of finite type with boundary, since there exist two distinct hy-
perbolic structures X, Y (see [26,27]) on S such that {y(a) < {x(a) for all @ € S(S). This
implies that

£a(Y)
log su <0.
& oo LX)

Moreover, it was shown in [18] that
oY) La(Y)

su =lo u .
aeA/(S)[L)JS(S) {(X) & aeA (SUBES) La(X)

log

Therefore, the arc metric d4 can be also defined by the following formula

ta(Y)
X, 1) = log aeA'?;JEB(S) Lo(X)

Recall that a Fuchsian group is a torsion-free discrete group of orientation-preserving
isometries on H?. Let R be a hyperbolic Riemann surface. Denote by I'g the Fuchsian group
of R, which is the Fuchsian group such that R is the quotient of H? by I's.

Denote by A(I') the limit set of a Fuchsian group I acting on the upper half-plane H?,
which is a set of points on R = R U {co} where the orbit by I' accumulates. Moreover, the
complement of A(T') in R is said to be the set of discontinuity, which is denoted by Q(I'). I’
is said to be of the first kind if Q(I') is empty, otherwise it is said to be of the second kind.
Note that the Fuchsian group of a bordered Riemann surface is of the second kind. The
Fuchsian groups we consider in this paper are of the second kind and infinitely generated
unless otherwise indicated.

Let C(A(T)) be the convex hull in H? of the limit set A(I') and let C(A(I)) be the bound-
ary of C(A(T')) in H2. The convex core Cy of a hyperbolic Riemann surface R is the quotient
of C(A(I'g)) by I'g, which is the smallest closed convex subregion of R such that its inclu-
sion map induces a homotopy equivalence. For a hyperbolic surface X, we denote by I'y the
Fuchsian group of the Riemann surface with convex core X.

Derinition 1.1. For a Fuchsian group I', we say that a disjoint union of regions A =
UnenA, in H? is removable for T (see [22]) if it satisfies the following conditions:

(1) Each A, is a simply connected open set in H? which is either a hyperbolic disk, a



4 Q. Cuen anp L. Liv

horodisk tangent to R or an r-neighbourhood of a complete geodesic in H? for some
r > 0 (note that the radius r depends on the choice of the complete geodesic and is not
necessarily uniformly bounded).

(2) The set A is invariant under the action of I'.

Derinition 1.2. We say that X satisfies the geometric condition (%) (see [22]) if there is
a positive constant L and a removable set A for I'x, such that all points of C(A(I'x,)) \ A lie
within a distance L of 0C(A(I'y,)).

1.2. Main theorems.

Theorem 4.8. Let Xy be a complete hyperbolic surface of infinite type with boundary
which satisfies the geometric condition (x). Then the following two functions d and d on
T (Xo) X T (Xo) are asymmetric metrics, where

(Y
d(X,Y) =log sup 7 ( ),
aeAX)US(Xo) La(X)

— (X
d(X,Y) =log sup ;( ),
aeAX)US(Xo) La(Y)

forall X,Y € T (Xp).

The asymmetric metric d is an analogue, for surfaces of infinite type with boundary, of
the arc metrics defined for surfaces of finite type with boundary. We also call d the arc
metric on T (Xp).

Theorem 4.11. Let Xy be a complete hyperbolic surface of infinite type with boundary,
then the following equality still holds for all X, Y € T (Xp).

sup taM) _ su H1
aeAX)UBXy) LX) yearxyusey) y(X)

In particular, if Xy satisfies the geometric condition (%), then the following equality defines
the same asymmetric metric.

L) 6,Y)

log = .
ac A(X)UB(Xo) La(X) YEAX)US(Xg) Ly(X)

1.3. Outline of the paper. In Section 2 we give the Basmajian identity and the general-
ized McShane identity for complete bordered hyperbolic surfaces of infinite type with limit
sets of 1-dimensional measure zero. In Section 3, we consider the geometric condition (%)
and discuss its properties. In Section 4, we define an asymmetric metric on 7 (X) and give
the proofs of Theorem 4.8 and Theorem 4.11. In the last section, we construct several ex-
amples of hyperbolic surfaces of infinite type satisfying the geometric condition (%) and
discuss the relation between the Shiga’s condition and the geometric condition ().

2. Basmajian identity and generalized McShane identity for complete bordered hy-
perbolic surfaces of infinite type

In this section we present the Basmajian identity and the generalized McShane identity
for a complete bordered hyperbolic surface X of infinite type with the limit set A(I'x) of
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1-dimensional measure zero. The Basmajian identity is a direct result of the orthogonal
spectrum theorem given by Basmajian [3] if the limit set of the Fuchsian group I'x has 1-
dimensional measure zero. We sketch the proof of the generalized McShane identity and
refer to [8] for details.

2.1. Basmajian identity for complete bordered hyperbolic surfaces of infinite type.
For the convenience of the exposition of the orthogonal spectrum theorem given by Basma-
jian, we introduce the related notations and terminology (see [3]).

Let M" be an orientable hyperbolic manifold of dimension n > 2. A hypersurface S in
M" is a codimension one complete submanifold endowed with the induced metric. S is said
to be totally geodesic if every geodesic on S is a geodesic in M".

Let S be a totally geodesic hypersurface which is either disjoint from S or equal to §.
Two paths from S to §; are said to be freely homotopic relative to S and S if there is a
homotopy in M" between them which keeps the initial point in S and the terminal point in
S1. The equivalence class of a path « is called the relative free homotopy class of @ and it is
said to be frivial if S = S and @ is homotopic to a single pointin S.

Hypersurfaces S and S are called asymptotic if there exists a path from S to §; such
that its relative free homotopy class is nontrivial and contains paths of arbitrary short length.
In this case, the length of the homotopy class is defined to be zero. If S and §; are not
asymptotic, then each nontrivial relative free homotopy class of a path @ from S to S
contains a shortest path which is the unique common orthogonal in the class [«]. The length
of this homotpy class [@] is defined to be the length of the common orthogonal in [a].

Let C be a (possibly infinite) set of mutually disjoint embedded totally geodesic hypersur-
faces in M". For each non-negative integer k, the k-th orthogonal spectrum of M" related to
S and C is denoted by O (M"; S, C), which is the ordered nondecreasing sequence of lengths
of nontrivial relative free homotopy classes of paths which start in S and go in the direction
of the normal to S, cross C along the way k times, and end in a hypersurface contained in
C perpendicularly. Note that the direction of the normal to S here is chosen appropriately
on one side, such that the lifts starting from S of those paths lie to the same side of S for a
fixed connected component S of a lift of S.

Denote by my, the hyperbolic measure on § inherited from the volume element on M",
and by V,,(r) the hyperbolic volume of the n-dimensional ball of radius r.

Theorem 2.1. (Basmajian [3], The Orthogonal Spectrum Theorem) Let C be a disjoint
set of embedded totally geodesic hypersurfaces in the hyperbolic manifold M" and let S
be an embedded oriented hypersurface which is totally geodesic. Suppose further that S is
either disjoint from C or one of the hypersurfaces in C, and that no nontrivial relative free
homotopy class from S to C has length zero. Then the k-th orthogonal spectrum,

OUM";S,C) = {di},
satisfies:
() Vol, 1(S) = my(Fi) + ) Vi1 (r(d),
i=1

where Fy is the subset of S consisting of all points whose corresponding oriented normal
ray to S intersects C at most k times, and r(x) = log coth(3).
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Applying Theorem 2.1 and the method introduced by Basmajian for the proof of Corol-
lary 1.2 in [3], we have the following proposition.

Proposition 2.2. Let X be a complete bordered hyperbolic surface of infinite type with
the limit set A(I'x) of 1-dimensional measure zero. Then for any B; € B(X), we have

dl(X)

2) {,(X) = > 2log coth(
i=1

),

where {dlj (X)}2, denotes the O-th orthogonal spectrum Oo(X; S}, B(X)) of X related to B;
and B(X).

Proof. As in Theorem 2.1, we let M" = X, C = B(X) = {81,852, ....0 -}, S = B;.
Consider the orthogonal spectrum Oy(X; 5}, B(X)) = {d{ (X)}2, and it follows from Theorem
2.1 that
d/(X)

2

65,(X) = my(F)) + Z 2 log coth( ),

i=1

where F é is the subset of g; consisting of the points from which the oriented geodesics
starting perpendicularly never hit 0X.

Denote by G; the set of all the complete geodesics which start perpendicularly from f3;
and never hit 0X. It is not hard to see that for any geodesic g € G;, the endpoint at infinity
of a lift of g must lie on the limit set of the Fuchsian group I'y. Fix a connected component
Ej of a lift of B; and denote by V/ the set of the endpoints at infinity of the lifts starting from
B; of all the geodesics in G;. It is clear that V; ¢ A(Tx).

Observe that the endpoints of ,E] divides the circle at infinity S into two disjoint open
components. We endow S| with 1-dimensional Lebesgue measure and let R* be the open
component for which the normal to EJ points. Consider the map p; : R* — f; given by
orthogonal projection to /;’; followed by the covering map into the quotient surface X. Then
F é is exactly p;(V;). By the assumption that the limit set A(I'y) has 1-dimensional measure
zero and by the fact that p; preserves sets of measure zero (see Proposition 3.3 in [3]), we
derive that m,(F)) = my,(p,(V;)) = 0. Hence,

d/(X)

lp(X) = Z 2 log coth(

i=1

).
O

2.2. Generalized McShane identity for complete bordered hyperbolic surfaces of in-
finite type. The generalized McShane identity for bordered hyperbolic surfaces of finite
type is given by Mirzakhani [23]. To generalize it to the case of a complete hyperbolic sur-
face X of infinite type with boundary, we apply the method given by Bridgeman and Tan [8].
The way is to consider the boundary flows on the surface X.

Indeed, let 7(X) be the unit tangent bundle of X and 7 : 7;(X) — X be the projective
map. Fix a boundary component 51 of X and denote by W the subset of T (X) consisting of
the vectors with basepoints on 8; which are perpendicular to 8 and point to the interior of
X. Itis obvious that  is a bijection from W to 8. We identify W with 8; under 7 and define
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the measure ¢ on W to be the pull back of the 1-dimensional Lebesgue measure on 5, under
n. In particular, u(W) = £, (X). Then we consider the geodesic g, starting at p = 7(v) € 5
obtained by exponentiating v, where g, is assumed to stop when it hits itself or the boundary
0X.

Let Z c W be the set of vectors in which g, starts has infinite length. It is not hard to see
that for every v € W\Z, g, is a geodesic arc contained in a unique generalized hyperbolic pair
of pants embedded in X bounded by 3, and a pair of simple closed curves y; and y, (where
either vy, y, are both interior simple closed geodesics, or exactly one of them is an interior
simple closed geodesic while the other is a geodesic boundary component or a cusp distinct
from 31). Denote by P the set of all such pairs of pants embedded in X. For each P € P, let

Xp={veW\Z:g,C P}, then W=ZU (UpepXp). Hence, €5 (X) = 3 u(Xp)+ u(2).
PepP
If v, and 7y, are both interior simple closed geodesics, it can be computed by elementary

hyperbolic geometry that u(Xp) = D({g, (X), ¢,,(X), {,,(X)). Otherwise, assume that y; is a
geodesic boundary component (may be a cusp) and y; is an interior simple closed geodesic.
It can be computed that u(Xp) = R(€s,(X), £, (X), {,,(X)). Here the functions D and R are
respectively defined by

T 4

e e

D(xl » X2, x3) =2 log —x1 x+x3 |?
e? +e 2

2
cosh 3 + cosh =52

cosh 3 + cosh ihas
R(x1,x2,x3) = x1 — log .

The difficulty is how to ensure that u(Z) = 0. However, if the limit set of the Fuchsian
group 'y has 1-dimensional measure zero, it is true that u(Z) = 0. This proof is similar to
the proof for my,(F é) = 0 in Proposition 2.2.

Therefore, the generalized McShance identity still holds for X if I'y has 1-dimensional
measure zero. Then we have the following proposition.

Proposition 2.3. Let X be a complete bordered hyperbolic surface of infinite type with
the limit set A(I'y) of I-dimensional measure zero. Let By be a boundary component of X
with €g,(X) > 0. Then we have

3) Z D(L1,€71,€72)+Z Z R(Li,Li,t,) = L,.

{1,725, i=2 yeFy,;
Here L; = {3(X), ), = {,(X) and B(X) = {B1,B2,.... Bk, .-.}. In particular, we include the
cusps as geodesic boundary components of length zero in B(X). F denotes the set of all the
unordered pairs of isotopy classes of interior simple closed curves which bound a pair of
pants with B1. F; denotes the set of all the isotopy classes of interior simple closed curves
which bound a pair of pants with B, and 3;.

Recall that a class @ of Fuchsian groups is quasiconformally invariant [21] if it satisfies
that for any Fuchsian group I € (, if there is a quasiconformal homeomorphism f of H?
such that I = fT'f~! is Fuchsian, then I belongs to ©.

RemArk 2.4. It was remarked in [21] by Matsuzaki that the class of Fuchsian groups
whose limit set has vanishing 1-dimensional measure is not quasiconformally invariant (see
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Example 2 in [30] and Theorem 3 in [7]). Thus it’s possible that the Basmajian identity
and the generalized McShane identity fail to hold for the Teichmiiller space of a hyperbolic
surface of infinite type with the limit set of 1-dimensional measure zero. To overcome this
difficulty, we consider the geometric condition () in the next section.

3. A geometric condition

In this section, we aim to show that the Basmajian identity and the generalized McShane
identity hold for 7 (X) provided that X satisfies the geometric condition (x). The key is to
show the 1-dimensional measure of the limit set A(I'y) of each X € T (X)) is zero.

First we discuss some properties of the geometric condition (%). To state and verify the
related results, we fix some terminology and notations first.

We say that a map f : (X1,d;) — (X»,d>) between two metric spaces is bi-Lipschitz if
there exists a real number L > 1 satisfying

1
Zdl(x’ y) < dZ(x’ y) < Ldl(x’ y)

for any x, y € X;. The real number L is called a bi-Lipschitz constant of f. Two metric spaces
are said to be bi-Lipschitz equivalent if there exists a bi-Lipschitz homeomorphism between
them.

Let Xy be a complete hyperbolic surface of infinite type with geodesic boundary. We
denote by 7,.(Xo) the bi-Lipschitz Teichmiiller space of Xy, which is the set of equivalence
classes of pairs (X, f), where X is a complete hyperbolic surface of infinite type and f :
Xy — X is a bi-Lipschitz homeomorphism with respect to the hyperbolic metrics which
leaves each puncture and each boundary component setwise fixed. Here two pairs (X1, f1)
and (X, f») are said to be equivalent if f, o fl‘1 is homotopic to an isometry from X; to X>.
Denote the equivalence class of (X, f) by [X, f]. It deserves to mention that the homotopies
do not necessarily fix 0X, pointwise.

In T1(Xo), we consider the bi-Lipschitz metric dpy (see [17]) which is defined by

1 .
dp([X1, /1l [ X2, f2]) = 5 log inf  L(g),
2 ngZOff]
where the infimum is taken over all bi-Lipschitz homeomorphisms g : X; — X, homotopic
to fr o fl‘1 and L(g) is the bi-Lipschitz constant of g.

Theorem 3.1. (Matsuzaki [22]) Let I' be a Fuchsian group acting on the upper half-
plane H2. If there is a positive constant L and a removable set A for T such that all points of
C(A())\A lie within a distance L of dC(A(D)), then there is a constant « € (0, 1) depending
only on L such that the Hausdorff dimension of the limit set of I satisfies dim A(I') < a < 1.

Remark 3.2. The condition in Theorem 3.1 is exactly the geometric condition (%) in
Definition 1.1. In the estimate of the Hausdorff dimension dim A(I") in Theorem 3.1 (see [22,
Theorem 1]), the author aimed to show that only the depth of the convex core C(A(I))/I"
without the removable set is important. For a removable set A for I', the components as
horodisks and neighbourhoods of complete geodesics in H? are used to deal with the thin
parts of C(A(I'))/I", while the components as hyperbolic disks are used to deal with the thick
parts of C(A(I))/I". We give the corresponding examples in Section 5, see Example 5.10,
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Example 5.11 and Example 5.12 respectively.

Dermniion 3.3. For a Fuchsian group I', we say that a disjoint union of regions A =
UneniA, in B? is weakly removable for T (see [22]) if it satisfies the following conditions:
(1) Each A, is an open set in H? whose euclidean closure intersects R with the set of 1-

dimensional measure zero.
(2) The set A is invariant under the action of I'.

DeriniTion 3.4. We say that X satisfies the weak geometric condition (o) if there is a
positive constant L and a weakly removable set A for I'x, such that all points of C(A(I'x,))\ A
lie within a distance L of 0C(A(T'y,)).

Remark 3.5. It was proved in [22, Theorem 5] that if X satisfies the weak geometric
condition (¢), then the 1-dimensional measure of A(I'y,) is zero. In other words, if the
conclusion in Theorem 3.1 is weaken to be that the 1-dimensional measure of A(I') is zero,
it suffices to consider a weakly removable set for I instead of a removable set for I'.

Theorem 3.6. (Matsuzaki [22]) Let Nr be a hyperbolic surface of infinite topological
type and let {cy}n=12... be the components of the boundary of the convex core 0Cr C Nr. If

the hyperbolic lengths €(c,) satisfy
Z 0(c,)? < oo,
n

then the Hausdorff dimension of the limit set of I is equal to 1.

Theorem 3.7. (Liu, Papadopoulos [17]) For every complete hyperbolic surface Xy of
infinite type, we have the set-theoretic equality

T (Xo) = Tp.(Xo),
and there exists a constant C such that for every X and Y in T (Xy), we have
“4) dr(X,Y) < dp (X, Y) < Cdr(X, Y).

It is an alternative statement of Theorem 4.3 in [17]. The idea was originally introduced
by Thurston (see [32] p. 268).

Lemma 3.8. Ler Xy be a complete hyperbolic surface of infinite type with boundary. Let
X € T(Xp) and let A = U,enA,, be a removable set for I'x. Then for any subsurface X of
X which contains an essential self-intersecting closed curve that is not y" for any simple
closed curve y and n € Z, the projection n(A) on X of A under Iy fails to cover X.

Proof. Let X be such a subsurface of X and let @ be such an essential self-intersecting
closed curve on X. Assume that m(A) covers Z, then m(A) covers a. This implies that A
contains a connected component of a lift of @ in H?, called &. Note that « is self-intersecting
and cannot be written as y” for any simple closed curve y and n € Z, then & intersects the
boundary at infinity R with at least four points. Moreover, since A; and A; are disjoint for
all i # j, then A has a component A, which contains @ and intersects R with at least four
points. By Definition 1.1, each component of a removable set intersects R with at most two
points. This contradiction proves that A fails to cover X. |
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Lemma 3.9. Let Xy be a complete hyperbolic surface of infinite type with boundary. For
any X = [X, 1l Y = [V, pl in T(Xp), let f = f> 0 fl_l and let K = K[ f] be the maximal
dilatation of f, then

1 B Cray(Y) <K
K £, (X)

forall @ € S(Xp) U A(Xp).

Proof. We recall a result of Wolpert (see [34]), which says that given any K’-
quasiconformal map /& between two hyperbolic surfaces X’ and Y’ without boundary, we
have

1 B Cnay(Y") <K

K’ Co(X)
for all isotopy classes of essential closed curves @ on X’. Note that this result also holds
for isotopy classes of essential closed curves and essential arcs on hyperbolic surfaces with
boundary, by applying an argument of doubling (see e.g. Theorem 2.1 in [19]). Therefore,
forany X = [X, 11, Y = [V, 2] in T (Xp), since f = f> ofl_1 : X — Y is a K-quasiconformal
map, we have

l < ff(oc)(Y) <
K {(X)
for all @ € S(Xy) U A(Xp). O

K,

Now we give some properties of the geometric condition (%) as follows.

Proposition 3.10. Let Xy be a complete hyperbolic surface of infinite type with bound-
ary which satisfies the geometric condition (x). Then for any X € T (Xy), the following
statements hold:

(1) The number of all boundary components of X is countably infinite.

(2) X satisfies the weak geometric condition (o).

(3) The limit set of the Fuchsian group I'x has I-dimensional measure zero.
(4) The sum of the lengths of all boundary components of X is infinite.

Proof. The proof of (1). Recall that the hyperbolic surfaces of infinite type in this paper
admit a countable pair of pants decomposition. This implies that if X has infinitely many
boundary components, then the number of its boundary components is countably infinite.
Note that X = [X, f] for a quasiconformal map f : Xy — X which leaves each puncture and
each boundary component setwise fixed.

It suffices to prove that the number of all boundary components of Xj is infinite. Note
that X is complete and thus each boundary component of Xj is a simple closed geodesic,
which implies that X, has no boundary component of infinite length.

We argue by contradiction. Assume that X has finitely many geodesic boundary compo-
nents and denote them by Sy, 82, ..., 8,- Then

D5 (Xo)® < .

i=1
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By Theorem 3.6, the HausdorfI dimension of the limit set A(I'y,) is 1. However, note that Xy
satisfies the geometric condition (%) and by Theorem 3.1, the Hausdorff dimension of the
limit set A(I'y,) is less than 1. This leads to contradiction.

The proof of (2). By Theorem 3.7, there exists a constant C such that for every [X, f] €
T (Xy), we have dp; ([Xo, id], [X, 1) < Cdr([Xo,id], [X, f]). By the definition of d;, there
exists a bi-Lipschitz homeomorphism g : Xy — X homotopic to f with the bi-Lipschitz
constant L(g) < e2CrXoX) 4 ¢ where € is a sufficiently small positive number. Let M =
£2Cdr(Xo.X) 4 e 'We obtain that

1
) 27P%o (x,y) < px(g(x),9(y)) < Mpx,(x,y),

for any two points x, y on Xy, where py, (resp. px) denotes the hyperbolic distance on X
(resp. X) induced by the hyperbolic structure of Xy (resp. X).

Since Xj satisfies the geometric condition (%), then there exists a positive constant L and
a removable set A = U,nA, € H? for I'x, such that

Px,(x,0Xo) < L,

for any point x on X, except the image of the removable set A ¢ H? under the universal
covering map mq of Xy, where px, (x, 0Xo) = 115)f( Px,(X, y).
Yoo

It follows directly from (5) that
©) px(p,dX) < ML,

for any point p on X except the set g(my(A)) C X.

Let g be a lift of the map ¢g to the universal covering space of X. Set A” = g(A). First
we claim that A” = U,ev g(A,) is a weakly removable set for I'y. Indeed, A’ is a disjoint
union of open sets in H2, since § is a homeomorphism and A is a disjoint union of open sets
in H2. Note that A is I'y,-invariant, and § is equivariant with respect to I'y, and I'x, then
A’ is invariant under the action of I'y. By Definition 1.1, for each n € N, A,, is possibly a
hyperbolic disk, a horodisk tangent to R, or an r-neighbourhood of a complete geodesic in
H? for some r > 0.

Note that § : H> — H? is a bi-Lipschitz homeomorphism with respect to the hyperbolic
metrics, then it induces a homeomorphism from RtoR. IfA,isa hyperbolic disk, then g(A,)
is a topological disk in H? whose euclidean closure does not intersect R. If A, is a horodisk
tangent to R at e R, then the euclidean clousre of g(A,) intersects R exactly at g(¢) € R.
If A, is a neighbourhood of a complete geodesic with two distinct endpoints &1, &, € R, then
the euclidean clousre of §(A,) intersects R exactly at two distinct points g(&1), g(&z) € R.
Therefore, the euclidean closure of each g(A,) intersects R with the set of 1-dimensional
measure zero. By Definition 3.3, A’ is a weakly removable set for ['y.

By (6) and the fact that g(mp(A)) = m(A’), there exists a constant L' = ML > 0 and a
removable set A’ = g(A) for I'y such that

px(p,0X) < L,

for all p € X \ m(A’). This implies that X satisfies the weak geometric condition (¢).
The proof of (3). By Statement (2) and Remark 3.5, the 1-dimensional measure of the
limit set A(I'y) is zero.
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The proof of (4). First we prove that it suffices to show this statement for the special case
X = Xj. Indeed, by Lemma 3.9, for any X = [X, f] € T (Xp), let K be the maximal dilatation
of f, we have

1 lrX)
7 - S S K7
@ La(Xo)
for all @ € S(Xp) U A(Xp).

By Statement (1), X, has infinitely many boundary components and denote the set of
boundary components of X, by B(Xo) = {81,852, ..., Bk ...}- By (7), we have }’ {g(X) < oo if
i=1

and only if Z {p,(Xo) < co. Hence, we only need to consider X = Xj.
Denote b = {3,(Xo). We argue by contradiction. Suppose

Z b,’ < 00,
i=1

Then b; — 0, as i — oo. By the collar lemma (see [9]), there exists a collar neighbourhood
N@B) = {p € Xo : px,(p,Bi) < r(b;)} of B; such that N'(8;) does not intersect any other
simple closed geodesics disjoint from S3;, where py, denotes the hyperbolic distance on X
and r(b;) = arcsinh{1/ sinh(%bi)}.

Note that 7(b;) — oo, as i — oco. For any L > 0 and any removable set A for I'y,, there
exists an integer ng > 0 (depending on L) such that r(b;) > L for all i > ny. Denote by
B(0Xo; L) the set consisting of the points on X, lying within the distance L of dX,. Let
Q= XO \ B(@Xo; L)

Note that O has a connected component which contains at least two distinct isotopy
classes of simple closed curves, then it contains an essential self-intersecting curve @ which
is not y" for any simple closed curve y and n € Z. By Lemma 3.8, my(A) fails to cover
Q, where 7 is the universal covering map of Xy. This contradicts the assumption that X
satisfies the geometric condition (x). O

Remark 3.11. The assumption that X, is complete is necessary for Statement (1) of
Proposition 3.10. Otherwise, there exists a hyperbolic surface of infinite type called tight
flute surface by Basmajian (see [4, 5]) satisfying the geometric condition (%) but has only
one geodesic boundary component which is a simple open infinite geodesic (see Example
5.7).

Combining Proposition 2.2, Proposition 2.3 and Statement (3) of Proposition 3.10, we
have the following corollary.

Corollary 3.12. Let Xy be a complete hyperbolic surface of infinite type with bound-
ary which satisfies the geometric condition (x). Then both the Basmajian identity and the
generalized McShane identity hold for T (Xp).

QuesTion 3.13. Is the geometric condition (%) quasiconformally invariant? That is, if X,
satisfies the geometric condition (%), then for any X € 7 (X)), does X also satisfy the geo-
metric condition (x)? We can also ask the same question for the weak geometric condition

(0).
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The construction of examples of hyperbolic surfaces of infinite type which satisfy the
geometric condition (%) will be given in Section 5.

4. An asymmetric metric on 7 (Xj)

DEriniTION 4.1. An asymmetric metric on a set M is a function 6 : M X M — [0, +00)
satisfying the following conditions.
(a) The separation axiom: for any x,y € M, 6(x,y) = 0 if and only if x = y.
(b) The triangle inequality: 6(x, y) < 6(x,z) + 6(z,y), for all x,y,z € M.
(c) The asymmetric condition: there exists x,y € M, such that 6(x, y) # 6(y, x).

The pair (M, 6) defined as above is said to be an asymmetric metric space (see [25,33]).
In particular, a function f : M X M — [0, +o0] is said to be positive definite if it satisfies the
separation axiom (a).

For a Nielsen convex hyperbolic surface X (equivalently, X can be constructed by gluing
some generalized hyperbolic pairs of pants along their boundary components), the Fenchel-
Nielsen coordinates of X associated with a pair of pants decomposition P = {C;}2, (see [2])
is defined to be {{c,(X), 1c,(X)}2, consisting of the hyperbolic lengths with respect to X of
all the simple closed curves in P and the twisting parameters used to glue the pairs of pants,
where the positive direction of twisting means turning left. It is understood that if «; is pe-
ripheral, then there is no associated twisting parameter, and instead of a pair ({¢,(X), t¢,(X)),
we take a single parameter {¢,(X).

Now we recall some elementary knowledge about measured laminations (see [1,31]) for
the completeness of exposition.

A geodesic lamination A on a hyperbolic surface X is a closed subset of X that is the
disjoint union of simple complete geodesics (note that the geodesic with one end or both
ends transversely hitting the boundary 90X is also considered to be complete) called the leaves
of A. By the definition, a leaf L of 2 on X € T (X)) may be a geodesic boundary component
of X, a geodesic ending at a cusp or a boundary component of X (L may transversely hit a
boundary component or spiral around it ), or even a geodesic with one or both of its ends
never stay in any compact subset of X if X is a surface of infinite type. Note that if L is a
geodesic that hits X at a point p € dX, we require that L is perpendicular to dX at p.

Let A be a geodesic lamination on X. A transverse measure for A is an assignment of
a finite positive Borel measure ¢ on each embedded arc k on X (transverse to A and with
endpoints contained in the complement of 1), such that u satisfies the following conditions:

(1) The support of pis A N k.

(2) u is invariant under homotopies relative to the leaves of A, that is, u(k) = u(k’) for any
two transverse arcs k and &’ that are homotopic through embedded arcs which move their
endpoints within fixed complementary components of u.

A measured geodesic lamination is a pair (4, u), where A is a geodesic lamination and
u is a transverse measure. For simplicity, we call a “measured lamination” instead of a
“measured geodesic lamination” and sometimes denote (4, 1) by . Denote by ML(X) the
space of all measured laminations on X and denote by PML(X) the space of projective
classes of measured laminations on X.

Let X, be a complete hyperbolic surface of infinite type with boundary. Let {u,} , be a
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sequence of measured laminations in ML (Xp). We say that u,, converges to pp in ML(Xp)
if i(u,, @) — i(uy, @) for all @ € A’ (Xp) U S(Xp), where i(u,, @) = 0}11% f(l, du,.

Let S™(Xy) € S(X) be the set of homotopy classes of essential interior simple closed
curves on Xy. Denote by ML (Xy) the closure of R* x A’(Xp) in ML(X,). That is,
for any u € ML (Xy), there exists a sequence {y,}”, in A’(Xo) with a corresponding
sequence of positive weights {7,}7” |, such that {z,y,} ", converges to u in ML(Xp). The
hyperbolic length of u is defined to be £,,(Xo) = 11_)r£10 tnly, (Xo) (see [24,32] for more details).
In particular, £,(Xo) = £,(Xo) for all u € A’n(Xo) U S$(Xp). It is known that £,(Xp) is
independent of the choice of the sequence which converges to it. Therefore,

log sup =log sup M
yed'(xo) Ty(X) e oy Lu@)

£,(Y)

In this section, we consider the following two functions on 7 (Xy) X T (Xo):

£, (Y
d(X,Y) =log sup al ),
aeAX)US(Xo) La(X)

- (X
d(X,Y) =log sup ( ),
aeAXo)USXo) La(Y)

forall X,Y € T(Xp).
Lemma 4.2. (Thurston [33], Proposition 3.5) For any two complete hyperbolic structures
X, Y on a surface S of finite type without boundary, we have
ta(Y) ta(Y)
0est5) D) aensr-ior CaX)

where 1(S) — {0} is the set of homotopy classes of essential closed curves.

Indeed, the proof presented by Thurston [33] is independent of the topological types of
hyperbolic surfaces, thus this equality holds for hyperbolic surfaces of all topological types.

Lemma 4.3. (Proposition 2.8 in [18]) For any two complete hyperbolic structures X, Y
on a surface S of finite type with boundary, we have

Lo G
yeA(S)HUS(S) gy(X) yeS(S9) fy(Xd) ’

where S? denotes the double of S which carries a canonical involution such that the set of
fixed points is S. X¢, Y¢ are respectively the doubled structure of X, Y on S°.

Proposition 4.4. For any two complete hyperbolic structures X, Y on a surface S of finite
type with boundary, we have
&,(Y (Y
L)

(8) = .
yeAsuses) HX)  easvses) Gy (X)

Proof. Observe that A’(S) c A(S). It suffices to verify that for any non-simple essential
arc yp € A(S) — A'(S), the following inequality holds.
L) 6M

&) < s )
ly,(X) yeA'(S)IL)JS(S)fy(X)
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By Lemma 4.3, we have

(Y £,(Y?
10 Dy B
yea(5)uss) X)) yes(gay (X9
By Lemma 4.2, it follows that
£,(Y) €,(Y?)
sup — = sup ~
yeS(S9) fy(X ) yem (§9)—{0} KY(X )

Denote by yg the double of yy with respect to dS. Combining (10) and (11), we derive that

an

6,,(Y)  Lu(¥) £,(Y9) £,(Y)
= o~ < sup = sup —.
570(X) fyg(X ) yemr (S4)—{0} fy(X ) yeA'(SHUS(S) KV(X)

This implies (9). m]

REmARK 4.5. Proposition 4.4 shows that the essential simple arcs taken in the definition of
the arc metric d4 for surfaces of finite type with boundary can be replaced by essential arcs.
However, the method for the proof of Proposition 2.8 in [18] is not valid if S is a surface of
infinite type with boundary. The reason is that the set PML5(S¢) which is the closure of
S(S9) in PML(SY) is not compact and it is possible that the value

£,(YY)
sup
yeS(SY) fy(Xd)

cannot be realized by any measured lamination in ML5(S¢). As a result, the method for the
proof of Proposition 4.4 also fails for the case of surfaces of infinite type with boundary.

QuesTioN 4.6. For any two complete hyperbolic structures X, Y on a surface S of infinite
type with boundary, does the following equality still hold?

LW L)
yeA(S)US(S) gy(X) yeA (SHUS(S) fy(X) .

Lemma 4.7. Let Xy be a complete hyperbolic surface with boundary which has at least
one interior simple closed curve. Then for any a € S™(Xy), the length of a can be approxi-
mated by a sequence of lengths of weighted simple geodesic arcs y, € A’ (Xp).

Proof. It is equivalent to show that S™(X,) C mer (Xo). Note that X, has at least
one geodesic boundary component, then for any a € S™(X,), we can find a geodesic arc
v € A’'(Xp) that essentially intersects @ in one or two points. See Figure 1 (resp. Figure
2) for an example of y corresponding to a separable (resp. non-separable) interior simple
closed curve a.

Let y, be the weighted geodesic arc obtained by taking a power n of a positive Dehn-twist
along « with the weight 1/(i(y, @) n) on y. It is obvious that {myn};‘;l

MUL(Xp), hence (o(Xo) = lim =1t (Xo) and we obtain that S™(Xo) € MLV (Xp). O

converges to @ in

Theorem 4.8. Let Xy be a complete hyperbolic surface of infinite type with boundary
which satisfies the geometric condition (x). Then the two functions d and d on T (Xo)XT (Xo)
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Fig.1. An example of y corresponding to « (separable), where the complement of
« in Xj is disconnected.

Fig.2. An example of y; corresponding to @; (non-separable).

are asymmetric metrics.

Proof. By Lemma 3.9, d and d are valued in [0, +c0). Observe that E(X, Y) = d(Y, X), for
all X, Y € T (Xp), it suffices to consider d. Note that the triangle inequality naturally holds
for d. Now we prove the separation axiom for d by showing that if X # Y € T (Xj), then
dX,Y) > 0.

Assume that d(X, Y) < 0, then £,(Y) < €,(X) for all @ € S(Xp) U A(Xp). In particular, we
have that

(12) £5,(Y) < g, (X),

for all B; € B(Xp).
Moreover, for each j € N, we have that

(13) dl(v) < dl(x),

for all i € N. Here {d{ (X)}2, denotes the 0-th orthogonal spectrum of X related to 5;(X) and
B(X), and {d{ (Y)}2, denotes the 0-th orthogonal spectrum of Y related to 8;(Y) and B(Y),
where §;(X) (resp. B;(Y)) is the corresponding geodesic boundary component on X (resp.
Y).
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By Corollary 3.12 and the Basmajian identity (2), it follows that for each j € N and each
X' € T(X()),

dl(x")

(14) {5, (X") = > 2log coth(
i=1

).

By (13), (14) and the monotonically decreasing of the function log coth(3),

/()

(15) {p,(Y) = ) 2logeoth(=5=) 2 5,(X) = > 2log coth(~

i=1 i=1

d(Y)
2 )

Since the geodesic arc which minimizes the lengths of all the arcs in a given homotopy
class is unique and hits the boundary perpendicularly, then there is a bijection between
A(Xp) and the set of geodesic arcs (possibly with self-intersections) in Xy which are orthog-
onal to 0Xj at their endpoints. Therefore,

UAd/ (X)) = {a(X) : @ € A(Xo)),
UAdI(Y)} = {La(Y) : @ € A(Xo)).
Combining (12) (15) and (16), we have

(16)

A7) Lo(Y) = (o(X),

for all @ € B(Xy) U A(Xp).

Note that X, admits a countable pair of pants decomposition P = {C;},, then X, can
be parameterized by the Fenchel-Nielsen coordinates with respect to P (see [2]). Moreover,
for each interior simple closed geodesic C; in P, the twisting parameter can be uniquely
determined by the length of the shortest simple closed geodesic y; which intersects C; and
the length of the geodesic T¢,(y;) obtained by taking a positive Dehn-twist along C; on ;.

By Lemma 4.7, the length of an interior simple closed geodesic can be approximated by
a sequence of lengths of weighted geodesic arcs y,, € A(Xp). From this and (17), we have
{,(Y) = £,(X) for all @ € S(Xy) U A(Xp). Then X and Y have the same Fenchel-Nielsen
coordinates and hence X = Y, which implies the assumption is false.

The asymmetric condition of d can be deduced from the example constructed by Thurston
(see [33]). Let X be a complete hyperbolic surface of infinite type which satisfies the geo-
metric condition (x) and the following conditions:

(1) X contains an embedded hyperbolic X-piece S (that is, a hyperbolic surface whose
interior is homeomorphic to a sphere with four disjoint closed disks removed) with four
geodesic boundary components 51, 32, 83, 84 of the same length [ satisfying sinh % =1.

(2) Let y; (resp. 7y») be the shortest geodesic arc connecting 8, and 3, (resp. [, and
f3). Denote by a; (resp. a») the third boundary component of the hyperbolic pair of pants
determined by 51, 8, and y; (resp. B2, 53 and ;). We choose X such that £,, (X) is sufficiently
small and the twisting parameter of @ is zero, as indicated in Figure 3.

Note that X satisfies the geometric condition (x). And such a surface X always exists.
Now we deform X by contracting the length of a; appropriately on X, while keeping the
lengths of B; (i = 1,2,3,4) and the hyperbolic structure of the complement of S in X un-
changed. Denote by Y the obtained surface, as presented in Figure 4. It is not hard to see
that d(X, Y) # d(¥, X) if we can choose Y with the contracted length £,, (Y) satisfying
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Fig.3. A hyperbolic surface X of infinite type which satisfies the geometric con-
dition (%) and the conditions (1) and (2).

Fig.4. A deformed surface Y of X.

b,() _ L (Y) 60 _ e X)
6,(X) ™ Lo, (X)’ 6, (V) T Lo, (Y)

Indeed, if Y satisfies the property (18), we have

£, (Y Co, (Y
dX,Y)=1log  sup ;L) = log o ),
2eS(X)UAXo) La(X) Co, (X)

LX) _ jog la®) %(amm = lay (X))

(18)

diY,X)=1o su =1lo ~
® sestoaccy L) F L (V)
Choosing ¢,,(Y) appropriately large (equivalently, contracting the length of @ appropriately
on X), we have d(X, Y) # d(Y, X).

Now we show that such a surface Y with the property (18) always exists. For simplicity,
still denote the length of «; (resp. B;, ;) by «; (resp. B;, v;) for i = 1,2. By the formulae for
right-angled pentagons and right-angled hexagons respectively (see [9]) and the assumption
that sinh% = sinh% =1fori=1,2,3,4, we have

cosh % = sinhﬁf2 sinh % = sinh %,

19 B B
(19) cosh 5 + cosh 5 cosh 5

coshy, = = cosh % + 2.

sinh % sinh %
By (19) and the growth trends of the two functions y = coshx and y = sinhx (resp.

y = cosh x and y = cosh x + 2), as presented in Figure 5 (resp. Figure 6), we can always find

such a deformed surface Y with the property (18).

O
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Y Y
x T
Fig.5. Two functions: y = coshx Fig. 6. Two functions: y =
(above) and y = sinhx (below), coshx + 2 (above) and y = coshx
where x > 0. (below), where x > 0.

REMARK 4.9. By Proposition 4.4, the asymmetric metric d can be viewed as an analogue,
for surfaces of infinite type with boundary, of the arc metric defined for surfaces of finite
type with boundary. That’s why we also call d the arc metric.

The problem that if the function d in Theorem 4.8 is positive definite can be viewed as
a particular version of the marked length spectrum rigidity problem (see e.g. [11, 13]). In
general, let (M, g) be a Riemannian manifold and let X be a set of homotopy classes of the
curves on M one wants to consider. The X-marked length spectrum of (M, g) is the length
vector (£,(g)),ex indexed over X, where £, (g) is the infinimum of the lengths under the metric
g of all the curves in the homotopy class [y] € X. The marked length spectrum rigidity
problem asks whether an inequality between the marked length spectra of two Riemannian
manifolds implies an isometry homotopic to the identity between them.

In our case, the rigidity problem is the marked S(Xy) U A(Xp)-spectrum rigidity problem
in the special case of complete hyperbolic surfaces of infinite type with geodesic boundary.

It is necessary to take arcs into consideration in the definition of d, since for any complete
hyperbolic surface Xy of infinite type with geodesic boundary components whose lengths
are uniformly bounded above, we can find two distinct elements X, Y in 7 (Xy) such that
L(Y) < £o(X) for all @ € S(Xp). To see this, let X = Xj. Denote by X the Riemann surface
such that its convex core is exactly the hyperbolic surface X. Let Y be the Nielsen extension
of X. Note that there exists a quasiconformal homeomorphism from X to ¥. Then we
obtain another hyperbolic surface Y € 7 (X,) which is the convex core of Y. By generalized
Schwarz lemma, we have €,(Y) < €,(X) for all @ € S(Xj). This implies that

Lo(Y)
log su <0.
® ety LX)

Remark 4.10. Let Xy be a complete hyperbolic surface of infinite type with geodesic
boundary. Recall that the set of boundary components of Xy is B(Xo) = {51,582, ---, Bk, ---}. Let
L = (Ly)aeBx,) € RZSO(XO“, where |B(X)| denotes the number of the elements in /3(X,) which
is finite or countably infinite. Denote by T (X, L) the subspace of 7 (Xj) which consists of
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the equivalence classes of marked hyperbolic surfaces with geodesic boundary components
of fixed lengths, that is, the geodesic length £5,(X) of ; under each element X of 7 (Xo, L) is
Lg, for each i € N. For convenience, we denote Lg, by L;.

If X satisfies the geometric condition (%), as discussed in Theorem 4.8, by applying the
generalized McShane identity (3) and the Basmajian identity (2), the following two functions
are asymmetric metrics on 7 (X, L).

£, (Y)
di(X,Y) =log su R
Xry=log sup 7 %

La(Y)
d>(X,Y)=1log su ,
? gaEAg(()) g(l/(X)

forall X,Y € T (Xy, L).

The following theorem shows that one can obtain the same asymmetric metric by taking
the supremum over .A(Xy) U B(Xj) instead of A(Xy) U S(Xp) in the formula which defines
the arc metric d on 7 (Xy) in Theorem 4.8.

Theorem 4.11. Let Xy be a complete hyperbolic surface of infinite type with boundary,
then the following equality still holds for all X, Y € T (Xp).
L) £,(Y)

(20) su = su .
aeA(XO)BB(XO) lo(X) yeA(xo)BS(xo) ,(X)

In particular, if Xy satisfies the geometric condition (%), then the following equality defines
the same asymmetric metric on T (Xp).

(V) ~ log £,(Y)

(2D log sup

aeAX)UB(X,) La(X) yeAX)US(Xo) Ly (X) .

Proof. Obviously,

foz(Y) f)’(Y)
sup < su .
aeAXp)UBX,) LaX)  yearxpusx,) G(X)

It suffices to verify that
(Y (Y
y( ) < su y( )

(22) < )
aeAXp)usxo) LX) yeaxyuBxy) Ty(X)

By Lemma 4.7, we have
S (Xo) € MLA(Xo).
Observe that S(Xy) = S (X,) U B(X,) and
LO) L)
YEA(Xo) é)Y(X) ueMLA(Xo) Eu(X)

Therefore, the inequality (22) holds. If X satisfies the geometric condition (), it follows
from Theorem 4.8 that the equality (21) defines the same asymmetric metric. This completes
the proof of this theorem. m|
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RemMark 4.12. Using the same method for the proof of the equality (20) in Theorem 4.11,
we give an affirmative answer to the following question (see Problem 5.5 in [20]): does the
equality (23) hold on Teichmiiller spaces of surfaces of infinite type with boundary?

fﬂ/ Y g Y
(23) log sup ) = log sup o ).
ae A (Xo)UB(Xy) La(X) ye A (Xo)uS(Xo) Cy(X)

QuesTioN 4.13. For a complete hyperbolic surface Xy of infinite type with geodesic
boundary, is the following function § an asymmetric metric on 7 (Xy)?

0(X,Y) =log sup HI)
' yeaxy) (X))

forany X, Y € T (Xp).

It is clear that ¢ is positive definite for hyperbolic surfaces of finite type with boundary,
by an application of the Bridgeman identity [8].

QuEsTioN 4.14. Let X, be a complete hyperbolic surface Xy of infinite type with geodesic
boundary, are there two elements X, Y in 7 (Xj) satisfying the following condition?

log sup fa¥)
aes(xp) La(X)

< 0.

For a complete hyperbolic surface of finite type with geodesic boundary, it is true. We
can construct some examples by Nielsen extension (see [6, 10]) or strip deformation (see
[12,26]). Does it still work for the case of surfaces of infinite type with boundary?

5. Several examples of hyperbolic surfaces of infinite type which satisfy the geomet-
ric condition (%)

In this section, we construct several examples of hyperbolic surfaces of infinite type which
satisfy the geometric condition (). We find that these hyperbolic surfaces may be incom-
plete. And we prove that there is no direct relation between the geometric condition (%) and
the Shiga’s condition.

5.1. The construction of examples. In order to construct the desired examples, we first
give the following two lemmas.

Lemma 5.1. Let P, be a geodesically convex hyperbolic n-polygon in H? with consecutive
edges ay,an, ..., a,, where the endpoints of the edge «; are denoted by Q; and Q;_1, here
Qo = O, Then p(x,a1) < sup {o(Q;, 1)} for any point x € P,, where p denotes the

2<i<n-1

hyperbolic distance on H? and p(x, ay) = inf p(x, y).
Yyea

Proof. By the continuity of the hyperbolic distance on P,, we only need to consider the
hyperbolic distance from each point of the piecewise geodesic boundary dP, to a;. Note
that P, is geodesically convex, the function f : dP,\a; — Ry which assigns p(x, a;) to
x restricted to each smooth edge except a; attains its maximum only if x is one of the two
endpoints. Therefore,
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sup p(x, 1) = sup {p(Qj a1},
x€0P, \a 2<i<n—1

which implies the desired result. O

Lemma 5.2. Let H,(n > 1) be a right-angled hexagon in H? with pairwise non-adjacent
edges ay,Bn,yn whose lengths are respectively ly, L, l,, where ly > 0, {1,}", is a strictly
increasing sequence of positive numbers and I, — oo as n — oo. Then there exists a
constant M > 0, such that

sup{sup p(x, B,)} = sup{sup p(x, yn)} < M,

n xeH, n xeH,

where p denotes the hyperbolic distance on H>.

Proof. Denote the vertices of H, which are not on the edge vy, by A,, C,, D,, B, re-
spectively in the counter-clockwise order as presented in Figure 7. Denote p(A,,, ¥,) = ay,

(B, yn) = by, P(Cry¥n) = Cny p(Dy,yn) = dy.

b B,
Yn B
D,
an,
An (677} Cn

Fig.7. The right-angled hexagon H, in Lemma 5.2.

Note that sup p(x,5,) = sup p(x,7y,) for alln > 1. By Lemma 5.1, it suffices to show that

xeH, xeH,
supia,, by, ¢y, d,} < M for a constant M > 0.

By the formula for a right-angled hexagon and the formula for a trirectangle (that is, a

quadrilateral with three right angles) [9], we have

cosh/, + coshl,coshly cothl;

24 ha, = < + coth /; coth [.
@4 costtdn sinhl,sinhly sinhly OO0

cosh [y + cosh, coshl, cosh [y 2
25 hb, = < + (coth [})”.
(25 oS On Snhl,sinhl, = (sinhp e T cohl)
(26) sinh ¢,, = sinh a, cosh [y < cosh a,, cosh /.

27 sinhd, = sinh b, cosh [, = v/(coshb,)? — 1 cosh,.
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Substitute (25) into (27), we have

h? [y coth? ]
sinhd, = \/ COS o €O B 5 coth? 1, cosh Iy + cosh? I,(coth* I, — 1)

sinh? [,
(28)
h? o coth? [
< w + 2 coth* /| cosh [y + cosh? I,(coth* 7, — 1)
sinh” [;
Note that cothx — 1, sechx — 0 as x — oo and (cothx) = —csch®x, (sechx) =

—sech xtanh x, we have

lim cosh? x(coth* x — 1)

. coth*x—1
= lim —
x—e  gech” x
(29) . —4coth® xcsch? x
= lim

x>0 2 gech? xtanh x
= lim 2 coth® x

X—00

=2
Combining (24), (25), (26), (28) and (29), we have the desired result. ]

ExampLE 5.3. Now we construct a complete hyperbolic surface X of infinite type which
satisfies the geometric condition (x).

Let {l,};7, be a strictly increasing divergent sequence of positive numbers. Let P, be
a hyperbolic pair of pants with boundary lengths (2/y, 21,,,21,). Then we glue P, with its
copy Pj, along the geodesic boundary component of common length 2/,. Denote by X, the
obtained X-piece for n > 1. Let X, be the surface obtained by gluing the sequence {X,,}* | in
succession along the geodesic boundary component a,, of common length 2/, as indicated
in Figure 8. Note that the amount of the twisting along the gluing curves can be taken
arbitrarily in the above process.

B1 B2 B3

Fig.8. The hyperbolic surface X of infinite type in Example 5.3.

Since any closed ball of radius 1 on the surface Xj is contained in a finite number of
pairs of pants of the given decomposition as show in Figure 8, then it is compact. By the
Hopf-Rinow Theorem, X is complete.

We claim that X, satisfies the geometric condition (%). Indeed, P, can be constructed
by pasting two copies of the right-angled hexagon H,, with pairwise non-adjacent edges of
lengths ly, 1, [, along the remaining edges. Denote by 3, (resp. 3,) the boundary component



24 Q. Cuen anp L. Liv

of P, (resp. P,,) which is contained in 0X, and has length 2/,. For each x € X, there exists
an integer N > 1, such that x lies in Py or P}, Without lost of generality, we assume that
x € Py. By Lemma 5.2, there exists a constant M > 0 independent of N such that

p(x7 6X0) < P(anN) < Ma
which implies the claim.

In order to construct more examples which satisfy the geometric condition (x), we intro-
duce the following notations and propositions given by Basmajian (see [4, 5]).

A flute surface is a hyperbolic surface of infinite type obtained by gluing a sequence of
generalized hyperbolic pairs of pants {P;}° ) in succession along the common length bound-
ary components, that is, any two adjacent pairs of pants P;, P;;; have exactly one common
geodesic boundary component which is denoted by «;, for i > 0. Note that P has at least
one geodesic boundary component @; and P; has at least two geodesic boundary compo-
nents a;, ;1 for i > 1. We say that a flute surface is tight if all the pants holes that have
not been glued along are in fact cusps. In this case, denote by a( the image of a horocycle
under the universal covering of this surface, which is a simple closed curve of length one and
homotopic to a cusp of Py (see Figure 9). We say a subsurface § is a spike if it is isometric
to the region {z = x + iy : 0 < x < 1,y > a} of H?, for some a > 0.

Let ¢; be the length of a; for i > 0. Denote by d; the hyperbolic distance from «; to @;|
and denote by s; the amount of the twisting along a;;; for i > 0. Here the amount of a

positive Dehn-twist along a4 is defined to be the hyperbolic length of a;, .

Fig.9. A tight flute surface Y, (where « is the image of a horocycle under the
universal covering and has length one).

Let {L;}is0 be a sequence of geodesics in H?. We say that {L;} is a nested sequence of
geodesics if L;_; and L;;; lie in different components of H? — L, for each i > 1, and if the
L; are disjoint in ﬁz. {L;} converges to the geodesic L if the endpoints of L; converge to the
endpoints of L on gH?. If the endpoints of L; converge to a single point of JH?, then we
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say that the sequence {L;} converges to a point on the boundary of the hyperbolic plane. It
is known that the limit of a nested sequence of geodesics in H? is unique and is one of the
above two possibilities.

Introduce a positive direction for each L; by designating L, to lie to the right of L;. Let
o; be the unique common perpendicular between the geodesics L; and L;;. The distance
from o; to 04 is measured by traversing L;,i. Let s; = p(07;, 07i41) if Ly is traversed in the
positive direction, and let s; = —p(07;, 07341) if Li;; is traversed in the negative direction. Set
d; = p(L;, Li1+1). Here p is the hyperbolic distance on HZ.

Proposition 5.4. (Basmajian [4]) Let the sequence {L;}i>0 be a nested sequence of
geodesics in H?. Then L; converges to a geodesic if and only if

lim p(Ly, L;) < oo,
where p(Ly, L;) is the hyperbolic distance between L; and L;.

Proposition 5.5. (Basmajian [4], The Pair of Pants Theorem) Suppose y and 8 are nonel-
liptic elements. Let d be the hyperbolic distance between the axes of y and B (if v is para-
bolic, the axis of y is the horocycle based at the fixed point of y whose projection to H? /{y)
has length one). Then (y,[3) form standard generators for a tight pair of pants (that is, the
third boundary component of this pair of pants is a cusp) if and only if c(y) + c(8) = d. Here
c(y) = log?2 if y is parabolic, and c(y) = log coth % if v is hyperbolic, where T(y) is the
translation length of 7y.

We first give an example of incomplete hyperbolic surfaces of infinite type which satisty
the geometric condition (%) by the following proposition.

Proposition 5.6. Let Y, be a tight flute surface with Y d; < co and } |s;| < oo, where the
sum is taken over all i > 0. If there exists a constant M > 0 such that

(30) sinh ( Z d;) cosh%" <M,

i=n—1

foralln > 1, then Y, is incomplete and satisfies the geometric condition (x).

Proof. By the assumptions that ) d; < oo and }’|s;] < oo, it follows from Proposition
5.4 that the nested sequence {a;} converges to a geodesic. We denote it by . We claim that
the length of @ must be infinity. Otherwise, assume that the length of « is a finite positive
number /. Then /; <[+ 1 foralli > N, where N is a sufficiently big integer. By the formula
for a pentagon with four right angles and an angle of zero (see [9]), we have
1 + cosh 15’ cosh %]

[+1
A = 2 I+l + coth? ’
sinh 3 sinh %‘ sinh = 2

coshd; =

for all i > N, which contradicts the assumption that ) d; < co. Therefore, {; — o0, asi — oo
and Y is an incomplete hyperbolic surface with a simple open infinite geodesic boundary.
Now we prove that Y| satisfies the geometric condition (%) if it satisfies the condition
(30).
First we consider the special case that s; = 0 for all i > 0. In this case, Yy can be

constructed by pasting two copies of the geodesically convex ideal region R with infinitely
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many geodesic edges along all the edges of common lengths except @', which is half of the
geodesic a.

A/

Hy | |F, ﬂ&#Fs\QIO

A
do dl d2 -----

Fig.10. The geodesically convex ideal region R (where each spike S, is an open
subset of R, the dashed lines are geodesics y, between G, and E’, and the angle at
E’, between the finite edge G, E, of the spike S, and the common perpendicular a;,
is zero. In this figure, E| = E) = Ey, E, = Ej3).

Now we consider the geodesically convex ideal region R with ideal vertices {A;};°, corre-
sponding to the cusps of Y, as shown in Figure 10. Denote by A, A" the two endpoints of o’
(where A’ is an ideal vertex). Let aj be half of the simple closed curve ap and let a; be the
common perpendicular between the infinite geodesic edge A;A;, and the infinite geodesic
edge ApA fori > 1.

It suffices to find a constant M’ > 0 and a disjoint union S of spikes in R such that any
pointin R\ S is within the distance M’ of @’.

To see this, we denote by E;, F; the two endpoints of o (where F; lies in the edge AgA).
Since the length of a; is /;, then the hyperbolic length of a is %&. For the ideal vertex Ay,
we take a spike S which has a finite edge a;, of length %lo = % For each ideal vertex A;
(i > 1), we take a spike S; such that it goes through the point E7, where E! = E; if [; > [;_,
and E] = E;_; if [; < l;_;. Denote by G; the third vertex of §; except the two vertices A; and
E! (note that each spike S, is an open subset of R and the finite edge m is not a geodesic).
Draw a geodesic segment which starts at G; and intersects the edge ApA perpendicularly at
the point H; fori > 1.

We claim that each spike §; is disjoint from any other spikes. Indeed, we represent the
geodesically convex ideal region R in the upper half-plane model of H? (see Figure 11). It
suffices to consider the position of S;;; in the special case that /; = [;;;. In this case, the
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vertex G, of S, coincides with the point E; (see Figure 12). By the construction of §;,
we have that §; and § ; are disjoint for all i # j.

A

F3
Hs

Fy

Fy
Hqi|

~ N . \ PR \ E2 \\‘
Gy E G G
EO < j :

A Op Ar O1 A O9 Az O3 Ay - A

Fig.11. The geodesically convex ideal region R in H?, where the boundary of R is
drawn in bold lines, and O; is the Euclidean center of the semi-circle corresponding
to the infinite geodesic edge A;A;;1 of R (in this figure, E| = E} = Ey, £, = Ej).

H2

i1
E; = Gi1

Ai Oi A1 Oip1 Aio

Fig.12. The position of the spike §;,; when [; = [;;; (in this figure, E/,| = Ej;1).

Let ¢; be the hyperbolic distance between H; and F; for i > 1. Let d be the hyperbolic
distance between @, and @’. Then } ¢; < }.d; = d < oo.

Let S = U;»0S;. We need to show that there exists a constant M’ > 0 such that any point
in R\ S is within the distance M’ of &’.
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Note that Lemma 5.1 can be generalized to the case of a geodesically convex simply
connected region in H? with infinitely many geodesic edges, and each geodesic arc 7y, con-
necting E, and G, is contained in § ,, it suffices to consider p(E,, a’) for n > 0 and p(G,, @)
for n > 1, where p is the hyperbolic distance on R.

Now we compute p(E,,a’). Draw a geodesic from E, to &’ such that it intersects o’
at the point [, perpendicularly. Then p(E,,a’) = p(E,, I,). The geodesic segment E,l,
is an edge of the trirectangle with consecutive vertices A, I,,, E,,, F, (see the trirectangle
with consecutive vertices A, Iy, Ey, Fp in Figure 10 as an example). By the formula for
trirectangles (see [9]), for each n > 1, we have

. I - €y
(31) sinh p(E,,, @) = sinh (2 di)cosh 2.

To estimate p(G,, a’), we need to estimate the length b, of the geodesic segment G, H,,.
Note that b, < % if E} = E, and b, < 5! if E} = E,_;. Then b, < max{%, 5!} forall n > 1.
Similarly, we compute p(G,, @’) in a trirectangle. For each n > 2,

sinh p(G,, @) = sinh (Z d; + ¢,) cosh b,
(32) e N
=( sinh(z d;) cosh ¢, + cosh(Z d;) sinh ¢,)) cosh b,

i=n i=

- I L
< 2 cosh d sinh( Z d;) max{cosh 5", cosh n2] }

[ee]

L,
d;) cosh 2=1}.
) 2

i=n—1

[s] ln
< 2 cosh d max{sinh( Z d;) cosh > sinh(

i=n—1 i=n

By (31), (32) and the given condition (30), for all n > 1, we get
sinhp(E,,a") < M,
and for all n > 2, we have
sinh p(G,,,a’) < 2M coshd.

Besides,

1 1
sinh p(Ey, a’) < sinhd cosh 3 < coshd cosh 3

sinh p(G1,a’) = sinh(c| + Z d;) cosh l—l < coshd cosh l—l
i=1 2 2
Note that x < sinh x for all x > 0. Let M’ = 2coshd(M + cosh% + cosh %). Then any
pointin R \ S is within the distance M’ of o’.
Now we consider the general case that ) |s;| < co. Denote by p(E,, a’) (resp. p(G,,a’))
the hyperbolic distance between E, (resp. G,,) and «’. Then
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PE, ') < p(Ep, @) + ) Isil,

=n

PG ) < (G @) + ) Isil.
i=n
Note that }; |s;| < oo, the statement is also true for the general case. This completes the proof
of this proposition. O

ExampLE 5.7. Now we construct an incomplete hyperbolic surface Y, of infinite type
which satisfies the geometric condition (x).

Consider a tight flute surface with the sequence {P;};>o of glued generalized hyperbolic
pairs of pants. Since each pair of pants P; is tight for i > 0, it follows from Proposition 5.5
that c(a;) + c¢(a;;1) = d; for i > 0. For each n > 2, we obtain that

[ee]

sinh ( Z d;) cosh%" — sinh { Z (c(ai) + c(am))}cosh%"

i=n—1 i=n—1

L, - l; [
= sinh {log coth nTl +2 ; log coth Zl} cosh 5"

- [; L,
< sinh (2 log coth —) cosh —.
< sinh( l__nz_l gcoth ) cosh 3
Note that the sequence {dy,di,d,...} is completely determined by the sequences
{lo, 11,5, ...}. Let Yy be a tight flute surface with )’ |s;] < oo and the sequence {ly, (1, 5, ...}
satisfying log coth% = % for each i > 0. Then

(o] [ee] l. [ee] 1
d= Zdi :10g2+2210gcothzl =log2+225 =log2 +2 < co.
i=0 i=1 i=1

For n = 1, sinh ( __%_1 d;) cosh%" = sinhdcosh%‘ < oo. Forn > 2, we get

[ee]

= l; L . 1 I
sinh (2 Z log coth Z) cosh 0 = sinh (2 Z 5) cosh —

i=n—1 i=n—1 2
8 Ly
= sinh — cosh —
sin o cos >
Iy Iy
= sinh (8 log coth Z) cosh 5

1
Observe that [; = 4arcothe” — oo asi — oo, cothx — 1, sechx — 0 as x — oo and
(coth x)’ = —csch? x, (sech x)’ = — sech x tanh x, we have
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sinh(8log coth %
lim sinh(8 log coth f) cosh T lim (8log )
X—00 4 2 X—00 sech %

2
4 cosh (8 log coth ) csch” §

= lim
x—00 coth 7 sech 3 tanh 3

= lim 8(coth E)2

X—00 2
=8.
Hence, the surface Y| constructed above satisfies the condition (30). By Proposition 5.6,
it is incomplete and satisfies the geometric condition (x).

To construct some other examples of complete hyperbolic surfaces of infinite type which
satisfy the geometric condition (x), we prove the following proposition.

Proposition 5.8. Let X be a flute surface of which all the pants holes that have not been
glued are boundary components and the series ). d; is divergent. If there exists a positive
constant L such that

Sup{am bn’ C}’la dn} S L,
neN

then X is complete and satisfies the geometric condition (x). Here a,, b,, c,, d, satisfy that

’ ’ /
cosha,  , + cosha; coshp,

cosha, = - - »
’ ’
sinh @), sinh 3/,
’ ’ /
cosh . — cosha,, + cosha,_, coshp;,
n - . ’ - ’
sinh @, sinhf;,
sinh ¢, = sinha, cosha,

’

sinhd,, = sinhb, cosha,_,,

where ], = %KQW(XQ), B, = %fﬁ“(Xo), ap U By = Py N 80Xy, B, = OP, N 0Xy forn > 1, as
shown in Figure 13.

Proof. Since }’ d; diverges, it follows from Proposition 5.4 that {‘7"};0:0 converges to a
point of 9H?, where @, is a lift of a,, in H?. Hence, each geodesic boundary component of
Xy is a simple closed geodesic and Xj is complete.

Fig.13. A flute surface with geodesic boundary components g, 3, for n > 0 and
the series )’ d; divergent (this figure is a special case that the lengths of all a,, are

equal).

Note that P, can be constructed by pasting two copies of the right-angled geodesic
hexagon H, with pairwise non-adjacent edges %ﬁn, %a/,,, %CL’,H_] along the remaining three
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edges. Denote the vertices of H, not on the edge %,Bn by A,, C,, D,, B, respectively in the
anticlockwise order, as indicated in Figure 14.

1
§Bn

Fig.14. A right-angled hexagon H,,.
By Lemma 5.1, for any y € H,,
1 1 1 1 1
o, =B) = max {p(A,, =), P(Bns =Bn)s P(Chs =Bn), P(Dys =B}
2 2 2 2 2
For simplicity, denote 1€, (Xo) = a, 3€5,(X0) = By, p(An, 3B0) = an, P(By, 3B4) = by,

p(Cm %,Bn) = Cpn, p(Dn’ %ﬂn) = dn
Then we have

’ ’ /
_ cosha, | +cosha; coshp,
cosha, = - Py y »
sinh @/, sinh 3/,
’ ’ /
_ cosha; +cosha,, | coshp,
coshb, = s

R
sinh @, sinhf3;,
sinh ¢, = sinha, cosh ),

’

sinhd,, = sinh b, cosha, ;.

For any point x € X, there exists an integer N > 0 such that x € Py. In particular,
x € Hy. By assumption, we obtain that

p(x,Bn) < maxiay, by, cy,dy} < L.

Therefore, p(x, 0Xy) < p(x,By) < L, which implies that X, satisfies the geometric condition
(%). |

ExampLE 5.9. Let X be a flute surface. Let a;,, B, denote the lengths of the corresponding

simple geodesic segments in Proposition 5.8. Suppose that a,,, 5, satisfy the following
conditions:

(1) e, =1l foralln > 0;
(2) (B}, 1s a strictly increasing sequence of positive numbers such that
B, = o0 asn — oo.
We claim that X{) is complete and satisfies the geometric condition (%). Indeed, using the
same notations a,, b, c,, d, as in Proposition 5.8, by direct computation, we obtain that
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cosh/y + cosh g, cosh [
sinh 3/, sinh [y
= csch B, coth [y + coth 3], coth
< 2coth ), coth [,

cosha, = coshb, =

sinh ¢, = sinh d,, = sinh a,, cosh [y < cosh a,, cosh [j.
Note that the sequence {coth 3} strictly decreases, we have that

sup{ay, by, cn, dy} < L,
neN

for a constant L > 0. Moreover, it is easy to see that },d; = co. By Proposition 5.8, X is
complete and satisfies the geometric condition (x), as indicated in Figure 15.

Fig.15. The flute surface X{j in Example 5.9.

ExampLE 5.10. We construct a hyperbolic surface X; of infinite type, which satisfies the
geometric condition (%) with a removable set A for I'x, consisting of horodisks.

Let Z, be a flute surface with o, = 8, = 1 for n > 0, where «, and 3, denote the
same simple closed geodesics as in Proposition 5.8. Then we construct X; by inserting a
generalized hyperbolic pair of pants with one cusp and two boundary components o’ , o’ of
lengths 1 along both sides of a,, for n > 1, as shown in Figure 16. Let A be the removable
set for I'x,, whose projection m(A) on X under I'y, is a disjoint union of open cusps with the
boundary v/, of length 1. Note that the geodesics o/, @, 8, and ¥/, have the same length 1
for all n > 1. It is not hard to see that X; \ 7(A) is contained in a bounded distance of 0X;.
This implies that X, satisfies the geometric condition ().

Fig.16. The flute surface X; in Example 5.10 for the case that the removable set
for I'y, is a disjoint union of horodisks.
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ExampLE 5.11. We construct a hyperbolic surface X, of infinite type, which satisfies the
geometric condition (x) with a removable set A for I'x, consisting of neighbourhoods of
complete geodesics in H? whose radii tend to infinity.

Let Z, be a flute surface with o, = 8, = 1 for n > 0, where «, and 3, denote the
same simple closed geodesics as in Proposition 5.8. Then we construct X, by inserting a
hyperbolic pair of pants with two boundary components a/,, @’ of lengths 1 and the other
boundary component 7y, of length ﬁ along both sides of a, for n > 1, as indicated in
Figure 17. Let A be a removable set for I'y,, whose projection n(A) on X, under I'y, is a
disjoint union of relatively open annuli with two boundary components y,, and y,,, where vy,
is an equidistant curve of the geodesic vy, for a distance r,, = arcsinh{1/ sinh (%Zyn(Xz))} =
arcsinh{1/ sinh(4—1n)} (this is ensured by the collar lemma, see [9]). Note that v, is not a
geodesic and the relation between £,,(X>) and £, (X>) is given by the following formula
(see [9, Example 1.3.2]):

f’yﬁ, (XQ) = f'y,l (XZ) cosh dXz (yn’ 71,1),

where dx, (v, y,) is the distance between y, and y, on X,. By computation,

1 1 4
ty(Xy) = —coshr, = |—+——— > 2,
'}’n( 2) m n J4n2 (4n Slnh(ﬁ))Z

as n — oo. Hence, there exists ng € N and ¢ > 0 such that

2—¢g < fx2(’y;z) <2+ €,

for all n > ny. Combined with the fact that the geodesics o, o/, and 8, have the same length

1 for all n > 1, it follows that X, \ m(A) is contained in a bounded distance of dX,. This
implies that X, satisfies the geometric condition (x). We obtain the desired surface Xj.

73

Fig.17. The flute surface X, in Example 5.11 for the case that the removable set
for Iy, is a disjoint union of neighbourhoods of complete geodesics in H?.

ExampLE 5.12. We construct a hyperbolic surface X3 of infinite type, which satisfies the
geometric condition (x) with a removable set A for I'x, consisting of hyperbolic disks whose
radii tend to infinity.
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For each integer n > 3, let T}, be a trirectangle with one angle 6, = n/n and three right
angles. Denote the four consecutive edges of T, by a,, b,, a, and §,. Let 8, be the angle
bounded by «, and 8, (see Figure 18). For convenience, we also denote the lengths of «,,
by, an, B, by a,, b,, a,, B, respectively. Note that 7, can be uniquely (up to isometries)
determined by 6, and «,. We choose «, such that sin 8, cosh @, = 2 for all n > 3. By the
formula cosh a,, = cosh a,, sin 6, for a trirectangle T, (see [9]), cosha,, = 2 for all n > 3.

We claim that in each 7,, we have

(33) Bn < an.
Indeed, by the formulae for a trirectangle 7, (see [9]), we get
cos 8, = sinha, sinh b,

(34) cosha, cosha,
coshb, coshp,’

Hence,

cos 6, cos 6, cos 6,

sinha, veosh? a, — 1 3

Combined with (34), we have 3, < a,, for all n > 3.

sinh b, = <1< V3 =sinha,.

Fig.18. The trirectangle T, in the right-angled 2n-polygon P, for n = 4.

Denote by L, the length of the geodesic perpendicular to «, through the intersection
point of 8, and a,,, as shown in Figure 18. By (33) and a formula for a right-angled triangle
(see [9]), we obtain that

sinh L, = sin 6, sinh 8, < siné, sinha,, < siné, cosha, = cosha, = 2,
for all n > 3. Therefore,
35) L, < arcsinh?2,

for all n > 3.
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Now we construct a right-angled 2n-polygon P, by gluing 2n copies of 7}, along the edges
of the common lengths a,, and 3, alternately (see Figure 18). Then P, has n sides of lengths
2a, and the other n sides of lengths 2b,. Denote the 2b,-length sides of P, by ey, ez, ..., e,
in the anti-clockwise order. Let B, be the maximal embedding open hyperbolic disk in P,
whose center is the center of P,,.

By the inequality (33) and the construction of P,, the radius of B, is §8,. Note that 8, =
n/n, cosha, = cosha, sind, = 2, it follows that @, — o0 as n — oco. Combined with the
formula for a trirectangle 7, (see [9]) that cosh 3, sinh a,, = sinh «,,, the radius 8, of B, tends
to infinity as n — oo.

Take another copy P, of P, and denote by e, €}, ..., e, the 2b,-length sides corresponding
to the sides ey, e, ..., ¢, of P,. Let B; be the maximal embedded open hyperbolic disk in
P;. Denote by S, the surface obtained by gluing P, and P, along e; and ¢! fori = 1,2, ..., n.
Then S, is a hyperbolic surface with n consecutive boundary components y(ln), y(zn), oy yf,")
of the same length 4a, = 4arccosh2 > 0 for all n > 3. The hyperbolic disks B, and B, are
disjoint from each other and tangent to yl@ fori = 1,2,...,n. Moreover, they have the same
radius S3,,, which tends to infinity as n — oo.

It is not hard to see that S, \ (B, U B)) is within the distance L, of the boundary 45, of
S,. By (35), we have

(36) d(p,0S,) < arcsinh 2,

forall pe S, \ (B, UB))andalln > 3.

We construct X3 by pasting the boundary component y(ln) of §,, and the boundary com-
ponent yfl"“) of §,+1 one by one for n > 3 (see Figure 19). Let A be a removable set for
I'x, whose projection m(A) on X3 under I'y, is a disjoint union of hyperbolic disks B, and B;,
over n > 3. By inequality (36) and the construction of X3, it is not hard to see that X3 \ 7(A)
is within the distance L = 2 arcsinh2 of dX3. This implies that X3 satisfies the geometric
condition (%) and we obtain the desired surface X3.

Fig.19. The hyperbolic surface X5 in Example 5.12 for the case that the removable
set for I'y, is a disjoint union of hyperbolic disks.

5.2. The relation between the Shiga’s condition and the geometric condition (x). To
investigate the relation between the two conditions, we first recall some terminology as
follows.

We say that P = {C;}2, is an upper-bounded pants decomposition of Xy if there exists a
constant M > 0 such that £¢,(Xo) < M for each i € N. Similarly, we say that P = {C;}7,
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is a lower-bounded pants decomposition of X; if there exists a constant m > 0 such that
lc,(Xo) = m for each i € N. Furthermore, P = {C;}72, is said to be a bounded pants de-
composition of Xy if it is both an upper-bounded pants decomposition and a lower-bounded
pants decomposition of Xj. Recall that a hyperbolic surface X of infinite type satisfies the
Shiga’s condition (see [28]) if it admits a bounded pants decomposition.

We claim that there is no direct relation between the Shiga’s condition and the geometric
condition (x).

Indeed, consider the surface Xy in Example 5.3 and the flute surface X in Example 5.9.
The length of the boundary component 3, of Xy (resp. X{)) tends to infinity, as n — oco. In
Example 5.11, the surface X, has a subsequence of boundary components {y,,} whose lengths
tend to zero. Therefore, these surfaces Xy, X;; and X> do not satisfy the Shiga’s condition
while they satisfy the geometric condition ().

On the other hand, we can find a complete hyperbolic surface Y of infinite type which
has infinitely many geodesic boundary components and satisfies the Shiga’s condition but
does not satisfy the geometric condition (x). The surface Y is constructed as follows:

ASLoch OOk

ap

Fig.20. An example Y, which satisfies Shiga’s condition but does not satisfy the
geometric condition ().

Let Zy be a flute surface with @, = 8, = 1 for n > 0, where a, and 5, denote the
same simple closed geodesics as in Proposition 5.8. Then we construct Y, by inserting
a hyperbolic surface of genus n with two geodesic boundary components o/, a’ (which
admits a pair of pants decomposition with all decomposing curves of length 1) along both
sides of @, for n > 1, as indicated in Figure 20. It follows easily that Y} satisfies the Shiga’s
condition. However, it follows from the construction of Yy and Lemma 3.8 that for any
L > 0 and any removable set A for I'y,, the projection m(A) fails to cover Yy \ B(0Yy; L),
where B(0Y); L) consists of the points on Y, lying within the distance L of dY,. This implies
that Y,y does not satisfy the geometric condition (x).

In particular, there exist complete hyperbolic surfaces of infinite type which satisfy both
the Shiga’s condition and the geometric condition (x). The surface Zy mentioned above is
such an example.
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