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Abstract
We study the global existence of solutions to an n-dimensional parabolic-parabolic system for

chemotaxis with logistic-type growth. We introduce superlinear production of a chemoattrac-
tant. We then show the global existence of solutions in Lp space (p > n) under certain relations
between the degradation and production orders.

1. Introduction

1. Introduction
In the present paper we study a chemotaxis system with logistic growth:

(E)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t
= Δu − χ∇ · (u∇v) + f (u) in Ω × (0,∞),

τ
∂v

∂t
= Δv − v + g(u) in Ω × (0,∞),

∂u
∂ν
=
∂v

∂ν
= 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

Here, Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω, and the space dimension
n ∈ N is an arbitrary positive integer. The unknown functions u(x, t) and v(x, t) are the
population density of bacteria and the concentration of a chemical substance at the position
x and time t, respectively. The term −χ∇ · (u∇v) expresses the advection of bacteria due to
chemotaxis. The coefficient χ is a positive constant, which shows chemotactic intensity. The
function f (u) is the proliferation and the reduction in numbers due to death of bacteria (we
refer to the combined effects of proliferation and reduction in numbers simply as growth).
Typical f (u)’s are quadratic u(1 − u) and cubic u(1 − u)(u − γ), 0 < γ < 1/2, logistic
growth functions [12]. The coefficient τ is a positive constant, which shows the time scale
of reaction and diffusion of v. The function g(u) is the secretion of chemical substance v by
bacteria. A typical g(u) is a linear function; and some nonlinear forms of g(u) have been
proposed, such as the saturating function u/(1+ γu), as used in the nonlinear signal kinetics
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model. For these topics, see the book by Murray [15], and the review articles by Hillen and
Painter [4] and by Tindall, Maini, Porter and Armitage [23].

We consider the global existence of solutions to (E). In the context of global existence, the
degradation of the growth f (u) can be considered as an inhibitory effect on the increase of u.
Indeed, if there is no growth ( f (u) ≡ 0) and the production g(u) is linear, then the system (E)
reduces to the classical parabolic-parabolic Keller-Segel system [10]. In the Keller-Segel
system, it is known that when n = 2, a finite-time blow-up with a δ-function singularity of u
occurs if χ‖u0‖L1 is sufficiently large [3, 7]. In contrast, when n ≥ 3, no restriction on χ and
‖u0‖L1 is necessary for the occurrence of blow-up [26]. For other topics on the Keller-Segel
system, see Horstmann’s review papers [5, 6] and the references therein. On the contrary,
if f (u) is quadratic and g(u) is linear, then blow-up does not occur and global existence of
solutions is assured even if ‖u0‖L1 and χ are large. This has been shown for n = 2 by one of
the authors et al. [19] and for n ≥ 1 with convex Ω and large μ by Winkler [27]. See also the
recent related works [1, 11, 14].

We henceforth assume that the function f (u) is a real, smooth function of u ∈ [0,∞) such
that f (0) ≥ 0 and

f (u) = u − μuα for sufficiently large u ≥ 0;

and the function g(u) is given by

g(u) = u(1 + u)β−1 for u ≥ 0,

where the exponents α and β satisfy the relations

(1) α > 1 and 0 < β ≤ 2,

and μ is a positive constant. From the results quoted above, we find that in the n-dimensional
domain (n ≥ 2), a blow-up can occur when α = 1 and β = 1 with a special choice of μ = 1,
and the blow-up of solutions is prevented and the global existence of solutions is assured
when α = 2 and β = 1. We can then conjecture that the critical degradation order αcr is in
the interval 1 ≤ αcr ≤ 2 under linear production β = 1; however, it has not been determined
for the parabolic-parabolic chemotaxis-growth system (E). Recently, Xiang [29] showed
global existence of solutions under β = 1 when α > 19/9 if n = 3 and when α > n − 1 if
n > 3.

In the two- and three-dimensional cases, the authors [16, 17] introduced sublinear pro-
duction order β < 1, and showed a sufficient condition 2(n + 4)/(n + 6) < α ≤ 2 and
0 < β < (n + 6)(α − 1)/[2(n + 2)] for the existence of global and bounded solutions to (E)
in a Hilbert space H(n/2)−1

2 (Ω) × H(n/2)+ε
2 (Ω) ⊂ Ln(Ω) × (Ω) (their results would include

Xiang’s results [29] when n = 3 if the existence of local solutions were assured for α > 2).
The authors have also shown in the previous paper [18] the global existence of solutions
in Lp-space of arbitrary space dimension n with p > n, where (α, β) is merely allowed for
0 < β < (α − 1)/2.

In this paper, we revise the results obtained in [18] considerably by combining the semi-
group method and the energy estimates and by applying the technique of trace operator [9,
13] (see Step 2 of Proof of Lemma 9). The main theorem of this paper is as follows:
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Theorem 1. Assume that the exponents α and β satisfy the relations (1) and

(2) β ≤ α

2
and β <

n + 2
2n

(α − 1).

Let p be an arbitrarily fixed exponent with

(3) max{2, n, (α − 2)n} < p < ∞.
Then, for each pair of nonnegative initial functions (u0, v0) ∈ Lp(Ω)×H1

p(Ω) ⊂ Ln(Ω)×(Ω),
the system (E) admits a unique global solution (u, v) in the function space

(4)

⎧⎪⎪⎨⎪⎪⎩
0 ≤ u ∈ ([0,∞); Lp(Ω)) ∩ ((0,∞); H2

p,N(Ω)) ∩ 
1((0,∞); Lp(Ω)),

0 ≤ v ∈ ([0,∞); H1
p(Ω)) ∩ ((0,∞); H3

p,N(Ω)) ∩ 
1((0,∞); H1

p(Ω)).

Moreover the solution satisfies the estimate

(5) ‖u(t)‖Lp + ‖v(t)‖H1
p
≤ ψ

(
‖u0‖Lp + ‖v0‖H1

p

)
, t ≥ 0

with some increasing function ψ(·).
The definition and notation of function spaces will be given below and in Section 2. Theo-
rem 1 above does not yet cover the case (α, β) = (2, 1) for n ≥ 2 shown by Winkler [27], but
the theorem requires no assumption on the largeness of μ nor the convexity of Ω considered
in [27]. Our new results also contain the uniform boundedness of solutions with respect to
the size of initial data.

We conclude this introduction by referring the results on the parabolic-elliptic chemotaxis
systems. The parabolic-elliptic simplifications correspond to the situation where the chemi-
cal substance diffuses very quickly, which implies that the time scale τ tends to 0 in (E). For
the n-dimensional parabolic-elliptic system with α-th order growth and linear secretion, that
is, in the case of τ = 0 and β = 1 in (E), the problem on the global existence and blow-up
of solutions has largely been solved by Winkler [25, 28]: global existence and boundedness
are assured when α > max{n/2, 2 − (1/n)} [25]; also, there exists a blow-up solution when
1 < α < 3/2 + 1/(2n − 2) with n ≥ 5 [28].

This paper is organized as follows. We provide preliminary results that we utilize in sub-
sequent sections. In Section 3 we show the local existence of solutions by using a semigroup
method (Theorem 5). In the final section we construct several a priori energy estimates by
combining semigroup and energy methods. After obtaining the a priori estimates, we give
the proof of the main theorem.

Notations. Let Ω be a smooth bounded domain in Rn. For 1 ≤ p ≤ ∞, the space of
complex-valued Lp functions in Ω is denoted by Lp(Ω) with the usual norm ‖ · ‖Lp . The
complex Sobolev space in Ω of order k, k = 0, 1, 2, . . ., and exponent p, 1 ≤ p ≤ ∞, is
denoted by Hk

p(Ω) with norm ‖ · ‖Hk
p
. More generally, the Sobolev space of fractional order

s > 0 and exponent 1 ≤ p ≤ ∞ is denoted by Hs
p(Ω) with norm ‖ · ‖Hs

p . The space of
complex-valued continuous functions on Ω is denoted by (Ω) with norm ‖ · ‖ . Let X be
a Banach space and I an interval of R. (I; X) and 

1(I; X) denote the space of X-valued
continuous functions and of X-valued continuously differentiable functions, respectively.
(I; X) denotes the space of X-valued bounded functions. For simplicity, we will use a
universal notation C to denote various constants that are determined for each occurrence
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by Ω in a specific way. In a situation where C also depends on some parameter, say η, it
will be denoted by Cη. In addition, by a universal notation ψ(·) we will denote continuous
increasing functions, which may change depending on the context.

2. Preliminaries

2. Preliminaries
In this section we shall list some well-known results in the theories of function spaces

and linear operators [19, 22, 24, 30].

Interpolation of Sobolev spaces. For 0 ≤ s0 < s < s1 < ∞ and 1 < p < ∞, Hs
p(Ω) is the

interpolation space [Hs0
p (Ω),Hs1

p (Ω)]θ between Hs0
p (Ω) and Hs1

p (Ω), where s = (1−θ)s0+θs1,
with the estimate

(6) ‖w‖Hs
p ≤ C‖w‖1−θ

Hs0
p
‖w‖θ

Hs1
p

for w ∈ Hs1
p (Ω).

See [30, Theorem 1.35].

Embedding theorem of Sobolev spaces. Let 1 < p < ∞.
If 0 ≤ s < n/p, then Hs

p(Ω) ⊂ Lr(Ω) for any p ≤ r ≤ pn/(n− ps) = [(1/p)− (s/n)]−1 with
continuous embedding

(7) ‖w‖Lr ≤ Cs,p‖w‖Hs
p for w ∈ Hs

p(Ω).

If s = n/p, then Hs
p(Ω) ⊂ Lr(Ω) for any finite p ≤ r < ∞ with continuous embedding

(8) ‖w‖Lr ≤ Cs,p‖w‖Hs
p for w ∈ Hs

p(Ω).

If n/p < s < ∞, then Hs
p(Ω) ⊂ (Ω) with continuous embedding

(9) ‖w‖ ≤ Cs,p‖w‖Hs
p for w ∈ Hs

p(Ω).

See [30, Theorem 1.36].
If 1 ≤ r ≤ p < ∞, then Lr(Ω) is embedded in (Hs

p′(Ω))′, the dual space of Hs
p′(Ω) with

respect to L2-inner product, for (n/r) − (n/p) ≤ s < ∞ and p′ = p/(p − 1) with continuous
embedding

(10) ‖w‖(Hs
p′ )
′ ≤ Cr‖w‖Lr for w ∈ Lr(Ω).

Gagliardo-Nirenberg’s inequality. Let 1 ≤ q ≤ p ≤ ∞. Then the embedding H1
p(Ω) ∩

Lq(Ω) ⊂ Lr(Ω) holds for

(11)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
q ≤ r ≤ pn/(n − p) if 1 ≤ p < n;

q ≤ r < ∞ if p = n;

q ≤ r ≤ ∞ if n < p ≤ ∞,
with the estimate

(12) ‖w‖Lr ≤ Cp,q,r‖w‖aH1
p
‖w‖1−a

Lq
for w ∈ H1

p(Ω),

where a is given by
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(13)
1
r
= a

(
1
p
− 1

n

)
+

1 − a
q

.

See [30, Theorem 1.37].

Norms of a product of two functions. For 1 < p < ∞ and s > n/p, from (9),

(14) ‖uv‖Lp ≤ Cp‖u‖Lp‖v‖L∞ ≤ Cp,s‖u‖Lp‖v‖Hs
p for u ∈ Lp(Ω), v ∈ Hs

p(Ω).

As a corollary,

(15) ‖∇ · (u∇v)‖Lp ≤ ‖∇u · ∇v‖Lp + ‖uΔv‖Lp ≤ ‖∇u‖Lp‖∇v‖L∞ + ‖u‖L∞‖Δv‖Lp

≤ Cp,s(‖u‖H1
p
‖v‖H1+s

p
+ ‖u‖Hs

p‖v‖H2
p
)

for u ∈ H1
p(Ω) ∩ Hs

p(Ω), v ∈ H2
p(Ω) ∩ H1+s

p (Ω).

When n < p < ∞, since H1
p(Ω) ⊂ L∞(Ω) by (9), it holds that

(16) ‖∇ · (u∇v)‖Lp ≤ Cp‖u‖H1
p
‖v‖H2

p
for u ∈ H1

p(Ω), v ∈ H2
p(Ω).

Domains of fractional powers of Laplace operators in Lp-spaces. Let Ω ⊂ Rn be a
bounded domain with smooth boundary ∂Ω, and A0 = −Δ+ 1, Δ being the Laplace operator
with Neumann boundary condition. Then, for each 1 < p < ∞, A0 is considered as a closed
operator in Lp(Ω), the domain of which is H2

p,N(Ω) (see [2, Theorem 2.4.1.3], [24, Theorem
5.3.4] or [30, Theorem 2.15]). Let us denote Ap = A0|Lp ; then (Ap) = H2

p,N(Ω). Moreover,
by the shift property (see [2, Theorem 2.5.1.1] or [24, Theorems 5.3.4 and 5.4.1]) it holds
that (Ap|H1

p
) = H3

p,N(Ω) with norm equivalence.
The domains of fractional powers of Ap are characterized by

(17) (Aθ
p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
H2θ

p (Ω) for 0 ≤ θ < 1
2
+

1
2p

H2θ
p,N(Ω) for

1
2
+

1
2p

< θ ≤ 3
2

with norm equivalence. Here, Hs
p,N(Ω) for s > 1+ (1/p) denotes a closed subspace of Hs

p(Ω)
such that

Hs
p,N(Ω) =

{
w ∈ Hs

p(Ω);
∂w

∂n
= 0 on ∂Ω

}
for s > 1 +

1
p
.

Indeed, we can see that Ap has a bounded H∞ functional calculus (see Yagi [30, Sec.16.1.2])
in Lp(Ω) and H1

p(Ω), and by Yagi [30, Theorem 16.5], that the interpolation (Aθ
p) =

[Lp(Ω),H2
p,N(Ω)]θ and ((Ap|H1

p
)θ) = [H1

p(Ω),H3
p,N(Ω)]θ hold for 0 < θ < 1 with norm

equivalence. Then, carefully following the proof of [30, Theorem 16.11], we can verify the
rest part of (17). For the detail see Appendix.

Analytic semigroups generated by Laplace operators in Lp-spaces. For each 1 < p <

∞, A0 defined above generates in Lp-space an analytic semigroup e−tA0 (it is independent of
p in the sense that e−tApw = e−tA2w for w ∈ Lp(Ω)∩L2(Ω)). For γ ≥ 0 it satisfies the estimate

(18) ‖Aγ
0e−tA0w‖Lp ≤ Ct−γe−δ0t‖w‖Lp , t > 0, w ∈ Lp(Ω),
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with some fixed constant δ0 > 0. See [8, Sec. 2] (see also [26, Lemma 1.3], [30, Theo-
rems 2.19 and 2.27] and [22, Sec. 13.7]).

A differential geometric property of functions with Neumann boundary condition. Let
Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. If the function w ∈ 2(Ω) satisfies
∂w/∂ν = 0 on ∂Ω, then it holds that

(19)
∂|∇w|2
∂ν

≤ 2κΩ |∇w|2 on ∂Ω,

where κΩ is an upper bound for the curvatures of ∂Ω; κΩ = 0 when Ω is convex. See [13,
Lemma 4.2]. See also [9].

Boundedness of trace operators. LetΩ ⊂ Rn be a bounded domain with Lipschitz bound-
ary ∂Ω. Let 1 < p < ∞ and s > 1/p. Then, the trace T : f �→ f |∂Ω is a bounded linear
operator from Hs

p(Ω) to Lp(∂Ω). Hence, we have

(20) ‖w‖Lp(∂Ω) ≤ Cs,p‖w‖Hs
p(Ω), w ∈ Hs

p(Ω).

See [30, Theorem 1.39] or [24, Theorem 4.7.1].

3. Local solutions

3. Local solutions
By similar argument to that in [17, 18, 19] or [30, Chap. 12], we can show the existence

of local solutions to (E). We first review the existence theorem by Yagi [30, Chap. 4] (see
also [20]) for local solutions to an abstract equation in a Banach space. Let X be a Banach
space with norm ‖ · ‖X . We consider the following Cauchy problem for a semilinear abstract
evolution equation in X:

(21)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dU
dt
+ AU = F(U), t > 0,

U(0) = U0.

Here A is a sectorial operator of X satisfying that its spectral set is contained in a sectorial
domain Σ = {λ ∈ C; | arg λ| ≤ φ} with some 0 ≤ φ < π/2, and ‖(λ − A)−1‖(X) ≤ M/(|λ| + 1),
λ � Σ with constant M. The nonlinear operator F is a mapping from (Aη) to X, where
0 < η < 1, and it also satisfies a Lipschitz condition:

(22) ‖F(U) − F(Ũ)‖X ≤ ϕ
(
‖AγU‖X + ‖AγŨ‖X

)
×
[
‖Aη(U − Ũ)‖X +

(
‖AηU‖X + ‖AηŨ‖X

)
‖Aγ(U − Ũ)‖X

]
, U, Ũ ∈ (Aη),

where γ is an exponent such that 0 < γ ≤ η < 1, and ϕ(·) is some increasing continuous
function. The initial value U0 is taken in (Aγ). Then, from [30, Theorem 4.1] (or [20,
Theorem 3.1]) we have the existence theorem of the local solutions to (21):

Theorem 2 ([30, Theorem 4.1]). Under the above assumptions, for any U0 ∈ (Aγ), (21)
possesses a unique local solution U in the function space:⎧⎪⎪⎨⎪⎪⎩

U ∈ ((0, TU0 ];(A)) ∩ ([0, TU0 ];(Aγ)) ∩ 
1((0, TU0 ]; X),

t1−γU ∈ ((0, TU0 ];(A))
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with the estimate

t1−γ‖AU(t)‖X + ‖AγU(t)‖X ≤ CU0 , 0 < t ≤ TU0 ,

where TU0 and CU0 are positive constants depending only on the norm ‖AγU0‖X.

By applying Theorem 2, we can show the existence of the local solutions to (E). The
following proposition has been proved in [18].

Proposition 3 ([18, Proposition 3]). Let n ∈ N, assume the relation (1) for α and β, and
let p be an exponent satisfying

(23) max{n, (α − 2)n} < p < ∞.
Then, for each pair of initial functions (u0, v0) ∈ Lp(Ω)×H1

p(Ω) ⊂ Ln(Ω)×(Ω), the problem
(E) admits a unique local solution (u, v) in the function space

(24)

⎧⎪⎪⎨⎪⎪⎩
u ∈ ((0, T ]; H1

p(Ω)) ∩ ([0, T ]; Lp(Ω)) ∩ 
1((0, T ]; (H1

p′(Ω))′),
v ∈ ((0, T ]; H2

p,N(Ω)) ∩ ([0, T ]; H1
p(Ω)) ∩ 

1((0, T ]; Lp(Ω))

with the estimate

t
1
2

{
‖u(t)‖H1

p
+ ‖v(t)‖H2

p

}
+
{
‖u(t)‖Lp + ‖v(t)‖H1

p

}
≤ C, 0 < t ≤ T,

where p′ = p/(p − 1), and T and C are positive constants depending only on the norm
‖u0‖Lp + ‖v0‖H1

p
.

By a solution (u, v) to (E) in the function space (24) we mean that the pair of functions (u, v)
contained in (24) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt
〈u, w〉L2 = −〈∇u,∇w〉L2 + χ〈u∇v,∇w〉L2 + 〈 f (u), w〉L2

for any w ∈ H1
p′(Ω) and 0 < t < ∞,

τ
∂v

∂t
= Δv − v + g(u) in Ω × (0,∞).

Next, we will show the local existence of solutions in the second function space:

Proposition 4. Let n ∈ N, assume the relation (1) for α and β, and let p be an exponent
satisfying n < p < ∞. Then, for each pair of initial functions (u0, v0) ∈ H1

p(Ω) × H2
p,N(Ω),

the problem (E) admits a unique local solution (u, v) in the function space⎧⎪⎪⎨⎪⎪⎩
u ∈ ((0, T ]; H2

p,N(Ω)) ∩ ([0, T ]; H1
p(Ω)) ∩ 

1((0, T ]; Lp(Ω)),

v ∈ ((0, T ]; H3
p,N(Ω)) ∩ ([0, T ]; H2

p,N(Ω)) ∩ 
1((0, T ]; H1

p(Ω))

with the estimate

t
1
2

{
‖u(t)‖H2

p
+ ‖v(t)‖H3

p

}
+
{
‖u(t)‖H1

p
+ ‖v(t)‖H2

p

}
≤ C, 0 < t ≤ T,

where T and C are positive constants depending only on the norm ‖u0‖H1
p
+ ‖v0‖H2

p
.

Proof. The system (E) can be expressed as a semilinear parabolic equation
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(25)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dU
dt
+ AU = F(U), t > 0,

U(0) = U0 =

⎡⎢⎢⎢⎢⎢⎢⎣u0

v0

⎤⎥⎥⎥⎥⎥⎥⎦
in a product Banach space X = Lp(Ω) × H1

p(Ω). Here, we define the linear operator A by

A =
[−Δ + 1 0

0 τ−1(−Δ + 1)

]
, (A) = H2

p,N(Ω) × H3
p,N(Ω).

The nonlinear operator F is defined by

F(U) =
[−χ∇ · (u∇v) + f̄ (u) + u

ḡ(u)

]
, U =

[
u
v

]
∈ (Aη) = H1

p(Ω) × H2
p,N(Ω)

with η = 1/2. Here, f̄ (u) and ḡ(u) denote some smooth extensions of f (u) and g(u) for the
variable u ∈ C satisfying f (u) ≥ 0 for u < 0 and g(u) = 0 for u < −1, respectively. The
initial value U0 is taken in the function space (Aγ) = (Aη), that is γ = η. Under this

setting, we need to verify only the Lipschitz condition (22). For U =
[
u
v

]
, Ũ =

[
ũ
ṽ

]
∈ (Aη),

‖F(U) − F(Ũ)‖X ≤ χ‖∇ · (u∇v − ũ∇ṽ)‖Lp

+ ‖u − ũ‖Lp + ‖ f̄ (u) − f̄ (ũ)‖Lp + ‖ḡ(u) − ḡ(ũ)‖H1
p
.

For the first term, applying (16), we see

‖∇ · (u∇v) − ∇ · (ũ∇ṽ)‖Lp ≤ ‖∇ · ((u − ũ)∇v)‖Lp + ‖∇ · (ũ∇(v − ṽ))‖Lp

≤ Cp,s(‖u − ũ‖H1
p
‖v‖H2

p
+ ‖ũ‖H1

p
‖v − ṽ‖H2

p
)

≤ C(‖AγU‖X + ‖AγŨ‖X)‖Aγ(U − Ũ)‖X .
For the third and forth terms, using (1) and Hs

p(Ω) ⊂ L∞(Ω) by (9), we can easily see that

‖ f̄ (u) − f̄ (ũ)‖Lp ≤ C(1 + ‖u‖L∞ + ‖ũ‖L∞)α−1‖u − ũ‖Lp

≤ C(1 + ‖u‖H1
p
+ ‖ũ‖H1

p
)α−1‖u − ũ‖Lp ,

‖ḡ(u) − ḡ(ũ)‖H1
p
≤ ‖ḡ(u) − ḡ(ũ)‖Lp + ‖ḡ′(u)∇(u − ũ)‖Lp + ‖{ḡ′(u) − ḡ′(ũ)}∇ũ‖Lp

≤ C(1 + ‖u‖L∞ + ‖ũ‖L∞)(‖u − ũ‖Lp + ‖∇(u − ũ)‖Lp) +C‖u − ũ‖L∞‖∇ũ‖Lp

≤ C(1 + ‖u‖H1
p
+ ‖ũ‖H1

p
)‖u − ũ‖H1

p
.

Thus F(U) satisfies the Lipschitz condition (22). We complete the proof. �

Now we can state our main theorem of this section:

Theorem 5. Let n ∈ N, assume the relation (1) for α and β, and let p be an arbitrarily
fixed exponent satisfying (23). Then, for each pair of nonnegative initial functions (u0, v0) ∈
Lp(Ω) × H1

p(Ω) ⊂ Ln(Ω) × (Ω), the problem (E) admits a unique local solution (u, v) in the
function space
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(26)

⎧⎪⎪⎨⎪⎪⎩
0 ≤ u ∈ ([0, T ]; Lp(Ω)) ∩ ((0, T ]; H2

p,N(Ω)) ∩ 
1((0, T ]; Lp(Ω)),

0 ≤ v ∈ ([0, T ]; H1
p(Ω)) ∩ ((0, T ]; H3

p,N(Ω)) ∩ 
1((0, T ]; H1

p(Ω))

with the estimate

(27) ‖u(t)‖Lp + ‖v(t)‖H1
p
≤ C, 0 < t ≤ T,

where T and C are positive constants depending only on the norm ‖u0‖Lp + ‖v0‖H1
p
.

Proof. It is clear that the local solutions belong to the function space (26) from Proposi-
tions 3 and 4. The nonnegativity of solutions has been proved in [18, Theorem 4] with the
aid of the truncation method [30, Section 12.1.3]. Hence we conclude the proof. �

4. A priori estimates and global solutions

4. A priori estimates and global solutions
In this section we will construct several a priori estimates. The a priori estimates hold

with each of the inequalities of α and β in the lemmas. Throughout this section, except
for in the global existence theorem, we assume that 0 ≤ u0 ∈ H2

p,N(Ω) ⊂ H1∞(Ω) and
0 ≤ v0 ∈ H3

p,N(Ω) ⊂ H2∞(Ω) with n < p < ∞. In this case, applying [30, Theorem 4.2], we
can verify that 0 ≤ u ∈ ([0, T ]; H2

p,N(Ω)) and 0 ≤ v ∈ ([0, T ]; H3
p,N(Ω)) with the estimate

‖u(t)‖H2
p
+ ‖v(t)‖H3

p
≤ CU0 for 0 ≤ t ≤ T , where CU0 is some positive constant. For a local

solution (u, v) to (E) and exponents z > 0 and ω > 0, we define

Iz
ω(t) =

∫ t

0
ωe−ω(t−s)

∫
Ω

uzdxds.

The following lemma will be used frequenty in this section.

Lemma 6 (Gronwall’s inequality). Assume that a smooth real function h(t) satisfies the
differential inequality

h′(t) + ah(t) ≤ K(t), t0 ≤ t ≤ T,

with a positive constant a and an integrable real function K(t). Then, h(t) is estimated by

h(t) ≤ h(t0)e−a(t−t0) +

∫ t

t0
e−a(t−s)K(s)ds, t0 ≤ t ≤ T.

Lemma 7. Let (u, v) be a local solution to (E), and assume that

α > 1.

Then, it holds that

(28) ‖u‖L1 =

∫
Ω

u dx ≤ e−t‖u0‖L1 + a1|Ω|

with a constant a1 = max{ f (u) + u; u ≥ 0}. In addition, for an arbitrary constant ω > 0,

(29) Iαω(t) ≤ 2
μ

{
(a + a1ω) |Ω| + ω‖u0‖L1

} ≡ Īαω

holds with a constant a = max{ f (u) + μuα/2; u ≥ 0}.



60 E. Nakaguchi and K. Osaki

Proof. (Just the same as [17, Lemmas 4.1 and 4.2] or the first half part of [18, Lemma 5].)
Integrating the first equation of (E) over Ω, we have

d
dt

∫
Ω

u dx =
∫
Ω

f (u) dx ≤
∫
Ω

(a1 − u)dx.

Then, by Lemma 6, we obtain (28). From these inequalities, we see that

μ

2
Iαω(t) ≤

∫ t

0
ωe−ω(t−s)

∫
Ω

{a − f (u)}dxds =
∫ t

0
ωe−ω(t−s)

{
a|Ω| − d

ds
‖u‖L1

}
ds

≤ a|Ω|(1 − e−ωt) + ωe−ωt‖u0‖L1 +

∫ t

0
ω2e−ω(t−s)‖u‖L1ds

≤ (a + a1ω)|Ω| + ω‖u0‖L1 ,

which yields (29). �

Lemma 8. Let (u, v) be a local solution to (E), and assume that

α > 1 and 0 < β ≤ α

2
.

Then, for any exponent 2 ≤ q ≤ α/β,

(30) ‖v‖q
H1

q
≤ Cqe−δqt‖v0‖qH1

q
+Cq

(|Ω| + ‖u0‖L1

)
holds with some positive constants Cq and δq.

Proof. When q = 2 (see [17, Proposition 4.4]), multiplying the second equation of (E) by
−Δv + v and integrating it over Ω, we see that

τ

2
d
dt

∫
Ω

(
|∇v|2 + v2

)
dx ≤ −1

2

∫
Ω

(Δv)2dx − 2
∫
Ω

|∇v|2dx − 1
2

∫
Ω

v2dx +
∫
Ω

(1 + u)2βdx,

that is,

(31) τ
d
dt

∫
Ω

(
|∇v|2 + v2

)
dx +

∫
Ω

(
|∇v|2 + v2

)
dx

+

∫
Ω

(Δv)2dx + 3
∫
Ω

|∇v|2dx ≤ 2
∫
Ω

(1 + u)2βdx.

Thus, by Lemma 6 again, we verify

‖v‖2H1
2
≤ e−t/τ‖v0‖2H1

2
+ 2

∫ t

0
e−(t−s)/τ

∫
Ω

(1 + u)2βdxds.

When q > 2 (just in the same way as the second half part of [18, Lemma 5]), we utilize
the semigroup e−tA0/τ of A0 = −Δ + 1, Δ be the Laplace operator with Neumann boundary
condition. Then the second equation of (E) gives

(32) v(t) = e−tA0/τv0 +
1
τ

∫ t

0
e−(t−s)A0/τg(u(s))ds.

Operating A1/2
0 to this equality and applying (17) and (18), we have
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‖v‖H1
q
≤ Cq‖A1/2

0 v‖Lq

≤ Cq‖A1/2
0 e−tA0/τv0‖Lq +

1
τ

∫ t

0
Cq‖A1/2

0 e−(t−s)A0/τg(u)‖Lqds

≤ Cqe−δ0t/τ‖A1/2
0 v0‖Lq +

∫ t

0
Cq(t − s)−1/2e−δ0(t−s)/τ‖g(u)‖Lqds

≤ Cqe−δ0t/τ‖v0‖H1
q
+

∫ t

0
Cq(t − s)−1/2e−δ0(t−s)/τ‖(1 + u)β‖Lqds.

The last term can be estimated as∫ t

0
(t − s)−1/2e−δ0(t−s)/τ‖(1 + u)β‖Lqds

=

∫ t

0
(t − s)−1/2e−δ0(t−s)/τ‖1 + u‖βLqβ

ds

≤
(∫ t

0
(t − s)−q′/2e−δ0(t−s)/τds

)1/q′ (∫ t

0
e−δ0(t−s)/τ‖1 + u‖qβLqβ

ds
)1/q

,

where q′ = q/(q − 1). Here we notice that q′/2 < 1 and the singular integral converges.
Hence we have

‖v‖H1
q
≤ Cqe−δ0t/τ‖v0‖H1

q
+Cq

(∫ t

0
e−δ0(t−s)/τ

∫
Ω

(1 + u)qβdxds
)1/q

.

Combining both cases when q = 2 and when q > 2, we have

(33) ‖v‖q
H1

q
≤ Cqe−δqt/τ‖v0‖qH1

q
+Cq

∫ t

0
e−δq(t−s)/τ

∫
Ω

(1 + u)qβdxds

for q ≥ 2 with some positive constants Cq and δq. Applying (29), we prove (30) for 2 ≤ q ≤
α/β. �

Lemma 9. Let (u, v) be a local solution to (E), and assume that

α > 1, 0 < β ≤ α

2
and β <

n + 2
2n

(α − 1).

Then, for any 2 ≤ q ≤ α/β satisfying q > 2nα/[(n + 2)(α − 1)], and for any exponent
1 < θ ≤ {q(n + 2)/(2n) − 1} (α − 1),

(34) ‖1 + u‖θLθ ≤ e−qt/(2τ)‖1 + u0‖θLθ + ψθ,q
(
‖1 + u0‖L1 + ‖v0‖H1

q

)
holds with some increasing function ψθ,q(·). In addition, for an arbitrary constant ω > 0,

(35) Iα+θ−1
ω (t) ≤ 4

μ

{(
1 +

ω

θ

)
ψθ,q

(
‖u0‖L1 + ‖v0‖H1

q

)

+ ω

(
1
θ
‖1 + u0‖θLθ + ζ

2τ
q
‖v0‖qH1

q

)}
≡ Īα+θ−1

ω

holds with some constant ζ > 0.
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Proof. We describe the proof in several steps.

Step 1. Multiplying the first equation of (E) by (1 + u)θ−1 and integrating it over Ω, we see
that

1
θ

d
dt

∫
Ω

(1 + u)θdx = −(θ − 1)
∫
Ω

(1 + u)θ−2|∇u|2dx

+ χ(θ − 1)
∫
Ω

u(1 + u)θ−2∇u · ∇vdx +
∫
Ω

(1 + u)θ−1 f (u)dx

≤ −θ − 1
2

∫
Ω

(1 + u)θ−2|∇u|2dx +
χ2(θ − 1)

2

∫
Ω

(1 + u)θ|∇v|2dx

+

∫
Ω

(1 + u)θ−1 f (u)dx.

For the second term on the right-hand side, using (12), we note that

χ2(θ − 1)
2

∫
Ω

(1 + u)θ|∇v|2dx ≤ χ2(θ − 1)
2

∥∥∥(1 + u)θ
∥∥∥

Lκ/(κ−1)

∥∥∥|∇v|2∥∥∥Lκ

=
χ2(θ − 1)

2

∥∥∥(1 + u)θ
∥∥∥

Lκ/(κ−1)

∥∥∥|∇v|q/2∥∥∥4/q
L4κ/q

≤ χ2(θ − 1)
2

∥∥∥(1 + u)θ
∥∥∥

Lκ/(κ−1)
·Cq

∥∥∥|∇v|q/2∥∥∥2/κ
H1

2

∥∥∥|∇v|q/2∥∥∥(4/q)−(2/κ)
L2

≤ Cqη
−κ+1 χ2κ(θ − 1)κ

∥∥∥|∇v|q/2∥∥∥2
H1

2
+ η ‖∇v‖(2κ−q)/(κ−1)

Lq

∫
Ω

(1 + u)θκ/(κ−1)dx

with κ = q(n + 2)/(2n) and an arbitrary η > 0. Hence we have

(36)
1
θ

d
dt

∫
Ω

(1 + u)θdx

≤ −θ − 1
2

∫
Ω

(1 + u)θ−2|∇u|2dx +Cqη
−κ+1 χ2κ(θ − 1)κ

∥∥∥|∇v|q/2∥∥∥2
H1

2

+

∫
Ω

[
η ‖∇v‖(2κ−q)/(κ−1)

Lq
(1 + u)θκ/(κ−1) + (1 + u)θ−1 f (u)

]
dx.

Step 2. We present the differential inequality on ‖v‖q
H1

q
for q ≥ 2. For the present assume

q > 2. Firstly, multiplying the second equation of (E) by vq−1 and integrating it over Ω, we
see that

(37)
τ

q
d
dt

∫
Ω

vqdx = −(q − 1)
∫
Ω

vq−2|∇v|2dx −
∫
Ω

vqdx +
∫
Ω

vq−1g(u)

≤ −(q − 1)
∫
Ω

vq−2|∇v|2dx − 1
2

∫
Ω

vqdx +
C′q
2

∫
Ω

(1 + u)qβdx.

Next, differentiating the second equation of (E), we have

τ
∂

∂t
|∇v|2 = 2τ∇v · ∇vt = 2∇v · ∇Δv − 2|∇v|2 + 2∇v · ∇g(u).

Noting that Δ|∇v|2 = 2|D2v|2 + 2∇v · ∇Δv and (Δv)2 ≤ n|D2v|2, where |D2v|2 = ∑
i, j

∣∣∣DiDjv
∣∣∣2,

we see
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τ
∂

∂t
|∇v|2 ≤ Δ|∇v|2 − 2

n
(Δv)2 − 2|∇v|2 + 2∇v · ∇g(u).

Multiplying this inequality by |∇v|q−2, integrating it over Ω and applying (19), we obtain

2τ
q

d
dt

∫
Ω

|∇v|qdx ≤
∫
Ω

|∇v|q−2
{
Δ|∇v|2 − 2

n
(Δv)2 − 2|∇v|2 + 2∇v · ∇g(u)

}
dx

=

∫
∂Ω

|∇v|q−2 ∂|∇v|2
∂ν

dx −
∫
Ω

∇|∇v|q−2 · ∇|∇v|2dx

−
∫
Ω

|∇v|q−2
{

2
n

(Δv)2 + 2|∇v|2
}

dx +
∫
Ω

2|∇v|q−2∇v · ∇g(u)dx

≤ 2κΩ

∫
∂Ω

|∇v|qdx −
∫
Ω

q − 2
2
|∇v|q−4

∣∣∣∣∇|∇v|2
∣∣∣∣2dx −

∫
Ω

2
n
|∇v|q−2(Δv)2dx

−
∫
Ω

2|∇v|qdx +
∫
Ω

2|∇v|q−2∇v · ∇g(u)dx.

For the first term on the right-hand side, applying (20) and (6) with any 1/2 < s < 1 and
ε > 0, we see that

2κΩ

∫
∂Ω

|∇v|qdx = 2κΩ
∥∥∥|∇v|q/2∥∥∥2

L2(∂Ω) ≤ C
∥∥∥|∇v|q/2∥∥∥2

Hs
2(Ω)

≤ C
∥∥∥|∇v|q/2∥∥∥2s

H1
2

∥∥∥|∇v|q/2∥∥∥2(1−s)
L2

≤ ε
∥∥∥∥∇ (
|∇v|q/2

)∥∥∥∥2

L2
+Cε

∥∥∥|∇v|q/2∥∥∥2
L2
.

For the last term on the right-hand side, we see
∫
Ω

2|∇v|q−2∇v · ∇g(u)dx = −
∫
Ω

{
(q − 2)|∇v|q−4∇|∇v|2 · ∇v + 2|∇v|q−2Δv

}
g(u)dx

≤
∫
Ω

(q − 2)|∇v|q−3
∣∣∣∣∇|∇v|2

∣∣∣∣ (1 + u)βdx +
∫
Ω

2|∇v|q−2|Δv| (1 + u)βdx

≤ q − 2
4

∫
Ω

|∇v|q−4
∣∣∣∣∇|∇v|2

∣∣∣∣2dx +
1
n

∫
Ω

|∇v|q−2(Δv)2dx +
∫
Ω

|∇v|qdx

+C′′q (n + q − 2)q/2
∫
Ω

(1 + u)qβdx.

Hence, noting that
∣∣∣∣∇ (
|∇v|q/2

)∣∣∣∣2 = (q2/16)|∇v|q−4
∣∣∣∇|∇v|2∣∣∣2, we have

(38)
2τ
q

d
dt

∫
Ω

|∇v|qdx +
4(q − 2)

q2

∫
Ω

∣∣∣∣∇ (
|∇v|q/2

)∣∣∣∣2 dx

+
1
n

∫
Ω

|∇v|q−2(Δv)2dx +
∫
Ω

|∇v|qdx

≤ ε
∫
Ω

∣∣∣∣∇ (
|∇v|q/2

)∣∣∣∣2 dx +Cε

∫
Ω

|∇v|qdx +C′′q (n + q − 2)q/2
∫
Ω

(1 + u)qβdx.

Adding (38) to (37) and taking ε = 2(q − 2)/q2, we see
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(39)
2τ
q

d
dt

∫
Ω

(|∇v|q + vq)dx +
∫
Ω

(|∇v|q + vq)dx

+
2(q − 2)

q2

∫
Ω

∣∣∣∣∇ (
|∇v|q/2

)∣∣∣∣2 dx +
1
n

∫
Ω

|∇v|q−2(Δv)2dx +
8(q − 1)

q2

∫
Ω

∣∣∣∣∇ (
vq/2

)∣∣∣∣2 dx

≤ C
∫
Ω

|∇v|qdx +Cq

∫
Ω

(1 + u)qβdx.

This inequality holds also for q = 2 (see (31)). The right-hand side is bounded in terms of
‖u0‖L1 and ‖v0‖H1

q
in view of Lemmas 7 and 8 since qβ ≤ α.

Step 3. Adding (39) multiplied by some weight ζ > 0 to (36) , we see

(40)
1
θ

d
dt

∫
Ω

(1 + u)θdx + ζ
(
2τ
q

d
dt
‖v‖q

H1
q
+ ‖v‖q

H1
q
+

2(q − 2)
q2

∥∥∥|∇v|q/2∥∥∥2
H1

2

)

≤ Cqη
−κ+1 χ2κ(θ − 1)κ

∥∥∥|∇v|q/2∥∥∥2
H1

2
+C‖∇v‖qLq

+

∫
Ω

[
η ‖∇v‖(2κ−q)/(κ−1)

Lq
(1 + u)θκ/(κ−1) + (1 + u)θ−1 f (u) + ζCq(1 + u)qβ

]
dx.

Since qβ ≤ α < α + θ − 1 and θκ/(κ − 1) ≤ α + θ − 1 from the assumptions, suitable choice
of η and ζ yields

(41)
d
dt

(
1
θ
‖1 + u‖θLθ + ζ

2τ
q
‖v‖q

H1
q

)
+

q
2τ

(
1
θ
‖1 + u‖θLθ + ζ

2τ
q
‖v‖q

H1
q

)

≤ ψθ,q
(
‖v‖H1

q

)
− μ

4

∫
Ω

uα+θ−1dx,

and hence, by Lemma 6,

1
θ
‖1 + u‖θLθ + ζ

2τ
q
‖v‖q

H1
q
≤ e−qt/(2τ)

(
1
θ
‖1 + u0‖θLθ + ζ

2τ
q
‖v0‖qH1

q

)

+

∫ t

0
e−q(t−s)/(2τ)ψθ,q

(
‖v‖H1

q

)
ds.

Application of (30) to the right-hand side of this inequality leads to (34).

Step 4. The proof of (35) is very similar to that of (29), as follows: using (41),

μ

4
Iα+θ−1
ω (t) ≤

∫ t

0
ωe−ω(t−s)

{
ψθ,q

(
‖v‖H1

q

)
− d

dt

(
1
θ
‖1 + u‖θLθ + ζ

2τ
q
‖v‖q

H1
q

)}
ds

≤ ψθ,q
(
sup
t≥0
‖v‖H1

q

)
+ ωe−ωt

(
1
θ
‖1 + u0‖θLθ + ζ

2τ
q
‖v0‖qH1

q

)

+

∫ t

0
ω2e−ω(t−s)

(
1
θ
‖1 + u‖θLθ + ζ

2τ
q
‖v‖q

H1
q

)
ds

≤
(
1 +

ω

θ

)
ψθ,q

(
sup
t≥0
‖v‖H1

q

)
+ ω

(
1
θ
‖1 + u0‖θLθ + ζ

2τ
q
‖v0‖qH1

q

)
.

Thus we complete the proof of the lemma. �
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Lemma 10. Let (u, v) be a local solution to (E), and assume that

α > 1, 0 < β ≤ α

2
and β <

n + 2
2n

(α − 1).

Suppose that for some exponent σ > 1 and r > 2nα/[(n + 2)(α − 1)] the integral Iα+σ−1
ω (t) is

bounded by

(42) Iα+σ−1
ω (t) ≤ (1 + ω)ψσ,r

(
‖1 + u0‖Lσ + ‖v0‖H1

r

)
≡ Īα+σ−1

ω

for an arbitrary constant ω > 0. Then, for any exponent q ≥ 2 satisfying r ≤ q ≤ (α + σ −
1)/β,

(43) ‖v‖q
H1

q
≤ Cqe−δqt‖v0‖qH1

q
+Cq ψσ,r

(
‖1 + u0‖Lσ + ‖v0‖H1

r

)

holds with some positive constants Cq and δq. Moreover, for any exponent σ ≤ θ ≤
{q(n + 2)/(2n) − 1} (α − 1),

(44) ‖1 + u‖θLθ ≤ e−qt/(2τ)‖1 + u0‖θLθ + ψθ,q
(
‖1 + u0‖Lσ + ‖v0‖H1

q

)
holds with some increasing function ψθ,q(·). In addition, for an arbitrary constant ω > 0, it
holds that

(45) Iα+θ−1
ω (t) ≤ (1 + ω)ψθ,q

(
‖1 + u0‖Lθ + ‖v0‖H1

q

)
≡ Īα+θ−1

ω .

Proof. We can prove the lemma in the similar argument as in Lemmas 8 and 9.
Firstly, the inequality (33) holds also in this case. Since qβ ≤ α + σ − 1, by Lemma 6

again, we verify

‖v‖q
H1

q
≤ Cqe−δqt‖v0‖qH1

q
+Cq bq,α+σ−1

(
|Ω| + Iα+σ−1

q/2τ (t)
)
.

By (42), we obtain (43).
The estimate (44) is verified from the inequality (41) together with (43), since qβ ≤

α + σ − 1 ≤ α + θ − 1 and θκ/(κ − 1) ≤ α + θ − 1 with κ = q(n + 2)/(2n). The proof of (45)
is just the same as that of (35).

Thus we complete the proof of the lemma. �

For obtaining the final a priori estimate, we apply Lemma 10 iteratively. We then show
the following a priori estimate.

Proposition 11. Let (u, v) be a local solution to (E), and assume that

α > 1, 0 < β ≤ α

2
and β <

n + 2
2n

(α − 1).

Then, for any exponent p > 2, it holds that

‖1 + u‖pLp
+ ‖v‖p

H1
p
≤ Ce−pt/(2τ)

(
‖1 + u0‖pLp

+ ‖v0‖pH1
p

)
+ ψp

(
‖1 + u0‖Lσ + ‖v0‖H1

r

)
(46)

with some exponents 1 < σ < p, α/β < r < p and some increasing function ψp(·).
Proof. The proof is given by induction. Firstly we have estimates (28) on ‖u‖L1 . Let

θ0 = 1.
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Secondly we have (30) on ‖v‖H1
q

for 2 ≤ q ≤ α/β by Lemma 8 and (34) on ‖1 + u‖Lθ for
1 < θ ≤ {q(n + 2)/(2n) − 1} (α − 1) by Lemma 9. Let

q1 =
θ0 + α − 1

β
=
α

β
, θ1 =

(
n + 2

2n
q1 − 1

)
(α − 1).

For each integer k and given θk, we can obtain by Lemma 10 the estimates (43) on ‖v‖H1
q

for
2 < q ≤ (θk + α − 1)/β and (44) on ‖1 + u‖Lθ for 1 < θ ≤ {q(n + 2)/(2n) − 1} (α − 1). Define

qk+1 =
θk + α − 1

β
=

(n + 2)(α − 1)
2nβ

qk, θk+1 =

(
n + 2

2n
qk+1 − 1

)
(α − 1).

Since (n + 2)(α − 1)/(2nβ) > 1 by assumption, we can easily see that

qk → ∞ and θk → ∞ as k → ∞.
Hence, for any p > 1, there exists a finite integer k0 such that qk0 > p and θk0 > p, and the
desired estimates are obtained. �

By using the a priori estimates shown above, we prove the main theorem for the global
existence of the solutions.

Proof of Theorem 1. From Theorem 5 for each pair of nonnegative initial functions
(u0, v0) there exists a unique nonnegative local solution (u, v) on the interval [0, T ] with the
estimate (27), and the existence time T depends only on the norm ‖u0‖Lp+‖v0‖H1

p
. In addition,

from Proposition 11, the norm ‖u(t)‖Lp + ‖v(t)‖H1
p
, 0 ≤ t ≤ T , is estimated from above by a

uniform constant CU0 also depending only on the norm ‖u0‖Lp + ‖v0‖H1
p
. Hence, the interval

can be extended to [0, T + T̃ ], where the extended time T̃ and the norm ‖u(t)‖Lp + ‖v(t)‖H1
p
,

0 ≤ t ≤ T + T̃ , are estimated by the same constant CU0 . The existence interval can be again
extended, to [0, T + 2T̃ ]. Repeating this procedure proves the global existence theorem with
the estimate (5). �

Appendix . On the domains of fractional powers of Laplace operators in Lp-spaces

Appendix A. On the domains of fractional powers of Laplace operators in Lp-spaces
Here we discuss the characterization of the domains of definition of fractional powers of

Laplace operator A0 = −Δ + 1 with Neumann boundary condition on a bounded domain
Ω ⊂ Rn with smooth boundary, as a closed operator in Lp(Ω) for each 1 < p < ∞.

We have already known the following facts.

Theorem A.1 ([2, Theorem 2.4.1.3], [24, Theorem 5.3.4], [30, Theorem 2.15]). For each
1 < p < ∞, A0 is considered as a closed operator in Lp(Ω), the domain of which is H2

p,N(Ω).
If we denote Ap = A0|Lp , then it holds that (Ap) = H2

p,N(Ω) with norm equivalence.

Theorem A.2 ([2, Theorem 2.5.1.1], [24, Theorems 5.3.4 and 5.4.1]). Let k be a positive
integer and 1 < p < ∞. Then u ∈ Hk+2

p (Ω) ∩ H2
p,N(Ω) yields A0u ∈ Hk

p(Ω). Moreover, if
u ∈ H2

p,N(Ω) satisfies A0u ∈ Hk
p(Ω), then u ∈ Hk+2

p (Ω). That means, as the first example, if
we denote Ap = A0|H1

p
, that the identity (Ap) = H3

p,N(Ω) holds with norm equivalence.

To interpolate these results between k = 0 and k = 2, we apply the theory of bounded H∞
functional calculus in Lp(Ω) given by Yagi [30, Sec.16.1.2].
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Theorem A.3. For the operator Ap = A0|Lp , the identity

(A.1) (Aθ
p) = [Lp(Ω),H2

p,N(Ω)]θ =

⎧⎪⎪⎨⎪⎪⎩
H2θ

p (Ω) for 0 ≤ θ < 1
2 +

1
2p

H2θ
p,N(Ω) for 1

2 +
1

2p < θ ≤ 1

holds with norm equivalence.

Proof. Firstly, it is obvious that Lp(Ω) is a reflexive Banach space and Ap is a sectorial
operator in Lp(Ω) with angle ωA = 0. Hence, we can directly verify the following condition
given in [30, Theorem 16.5] with A = Ap, X = Lp(Ω), X∗ = Lp′(Ω) and 〈·, ·〉 their duality
product:

(H) For every angle ωA < ω < π and every exponent 0 < θ < 1, the integrable condition
along the V-shaped contour Γω : λ = ρe±iω (0 ≤ ρ < ∞)

(A.2) Iω,θ =
∫
Γω

|λ|2θ−1
∣∣∣〈A2(1−θ)(λ − A)−2F,G〉∣∣∣ |dλ| ≤ Cω,θ‖F‖‖G‖∗, F ∈ X, G ∈ X∗,

holds with some constant Cω,θ > 0.
We omit the detail here. Then, by [30, Theorem 16.5] it is verified that Ap has a bounded
H∞ functional calculus in Lp(Ω). Again by [30, Theorem 16.5], we have the first identity of
(A.1). The rest part of the theorem has been already shown in [30, Theorem 16.11]. �

The next theorem shows the interpolation result between k = 1 and k = 3.

Theorem A.4. For the operator Ap = A0|H1
p
, the identity

(A.3) (Aθp) = [H1
p(Ω),H3

p,N(Ω)]θ =

⎧⎪⎪⎨⎪⎪⎩
H1+2θ

p (Ω) for 0 ≤ θ < 1
2p

H1+2θ
p,N (Ω) for 1

2p < θ ≤ 1

holds with norm equivalence.

Proof. It is also obvious that H1
p(Ω) is a reflexive Banach space with duality product

〈〈·, ·〉〉 of H1
p(Ω) × H1

p′(Ω), and that Ap is a sectorial operator in H1
p(Ω) with angle ωA = 0.

Hence, again we can prove the condition (H) above by direct calculation to see that the
Laplace operator Ap = A0|H1

p
has a bounded H∞ functional calculus in H1

p(Ω). Then, we
have the first identity of (A.3) again by [30, Theorem 16.5]. For the proof of the rest part of
the theorem, we must follow carefully the proof of [30, Theorem 16.11].

Step 1: (Aθp) ⊂ H1+2θ
p,(N)(Ω). We can easily see that [H1

p(Ω),H3
p,N(Ω)]θ ⊂ [H1

p(Ω),H3
p(Ω)]θ =

H1+2θ
p (Ω). To see the boundary condition for 1/(2p) < θ < 1, take a sequence {uk} ⊂

(Ap) = H3
p,N(Ω) converging to u in (Aθp). This implies that every u ∈ (Aθp) satisfies the

Neumann boundary condition on ∂Ω.

Step 2: (Aθp) ⊃ H1+2θ
p,(N)(Ω). We divide this step into three parts.

(i) 1
2 ≤ θ ≤ 1. Let u ∈ H1+2θ

p,N (Ω). Then, for any v ∈ H3
p′,N(Ω) = (A∗p), similarly in the

proof of [30, Theorem 16.11], we see
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∣∣∣〈〈u, (A∗p)θv〉〉∣∣∣ =
∣∣∣∣∣ 1
2πi

∫
Γ

λθ 〈〈u, (λ − A∗p)−1v〉〉 dλ
∣∣∣∣∣

≤ ‖A0u‖H2θ−1
p

∥∥∥∥∥ 1
2πi

∫
Γ

λθ(λ − A0)−1v dλ
∥∥∥∥∥

(H2θ−1
p )′

≤ C‖A0u‖H2θ−1
p

∥∥∥∥∥Aθ− 1
2

0 v

∥∥∥∥∥
H2−2θ

p′
≤ C‖u‖H1+2θ

p
‖v‖H1

p′
.

Here we utilize [30, Theorem 1.43] for the boundedness of A0 = 1 − ∑
k D2

k : H2θ+1
p (Ω) →

H2θ−1
p (Ω) and Theorem 3 for the boundedness of the fractional powers of A0|Lp = Ap. This

inequality yields that, for each fixed u ∈ H1+2θ
p,N (Ω), the linear form 〈〈u, (A∗p)θv〉〉 is a bounded

linear functional of v ∈ H1
p′(Ω), that is, there exists w ∈ H1

p(Ω) such that 〈〈u, (A∗p)θv〉〉 =
〈〈w, v〉〉 for any v ∈ H1

p′(Ω). Hence, w = Aθpu and u ∈ (Aθp).
(ii) 1

2p < θ < 1
2 . Let u ∈ H1+2θ

p,N (Ω). Then, for any v ∈ H3
p′,N(Ω) = (A∗p), by an argument

quite similar to (i), we see
∣∣∣〈〈u, (A∗p)θv〉〉∣∣∣ ≤ C‖u‖H2θ+1

p

∥∥∥∥∥ 1
2πi

∫
Γ

λθ(λ − A0)−1v dλ
∥∥∥∥∥

H1−2θ
p′
≤ C‖u‖H2θ+1

p
‖v‖H1

p′
.

Here we utilize again [30, Theorem 1.43] for the boundedness of Dk : H1−2θ
p′ (Ω) →

(H2θ
p (Ω))′. Thus, for each fixed u ∈ H1+2θ

p,N (Ω), there exists w ∈ H1
p(Ω) such that 〈〈u, (A∗p)θv〉〉

= 〈〈w, v〉〉 for any v ∈ H1
p′(Ω). Hence, w = Aθpu and u ∈ (Aθp).

(iii) 0 < θ < 1
2p . We can verify that u ∈ H1+2θ

p (Ω) is contained in (Aθp) by the same
argument as (ii) except for the boundary conditions.

Hence we complete the proof. �

As the consequence, we conclude (17) in Section 2.
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