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Abstract
We study the global existence of solutions to an n-dimensional parabolic-parabolic system for
chemotaxis with logistic-type growth. We introduce superlinear production of a chemoattrac-
tant. We then show the global existence of solutions in L, space (p > n) under certain relations
between the degradation and production orders.

1. Introduction

In the present paper we study a chemotaxis system with logistic growth:

P

a—”t‘ = Au—yV- Vo) + f)  inQx (0, c0),

Y Ao— v+ gw) in Q x (0, c0)
T— =Av—v u ,00),

(E) ot g

ou  Ov

E—E—O on&Qx(O,oo),
u(x,0) = up(x), v(x,0)=rv9(x) inQ.

Here, Q c R" is a bounded domain with smooth boundary dQ, and the space dimension
n € N is an arbitrary positive integer. The unknown functions u(x, r) and v(x, ) are the
population density of bacteria and the concentration of a chemical substance at the position
x and time ¢, respectively. The term —y'V - («#Vv) expresses the advection of bacteria due to
chemotaxis. The coeflicient y is a positive constant, which shows chemotactic intensity. The
function f(u) is the proliferation and the reduction in numbers due to death of bacteria (we
refer to the combined effects of proliferation and reduction in numbers simply as growth).
Typical f(u)’s are quadratic u(1 — u) and cubic u(1 — u)(u — y), 0 < y < 1/2, logistic
growth functions [12]. The coefficient 7 is a positive constant, which shows the time scale
of reaction and diffusion of v. The function g(u) is the secretion of chemical substance v by
bacteria. A typical g(u) is a linear function; and some nonlinear forms of g(u) have been
proposed, such as the saturating function u/(1 + yu), as used in the nonlinear signal kinetics
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52 E. NakaGucHr AND K. OsaxI

model. For these topics, see the book by Murray [15], and the review articles by Hillen and
Painter [4] and by Tindall, Maini, Porter and Armitage [23].

We consider the global existence of solutions to (E). In the context of global existence, the
degradation of the growth f(u) can be considered as an inhibitory effect on the increase of u.
Indeed, if there is no growth (f(x) = 0) and the production g(u) is linear, then the system (E)
reduces to the classical parabolic-parabolic Keller-Segel system [10]. In the Keller-Segel
system, it is known that when n = 2, a finite-time blow-up with a §-function singularity of u
occurs if y|luollz, is sufficiently large [3, 7]. In contrast, when n > 3, no restriction on y and
|luollz, is necessary for the occurrence of blow-up [26]. For other topics on the Keller-Segel
system, see Horstmann’s review papers [5, 6] and the references therein. On the contrary,
if f(u) is quadratic and g(u) is linear, then blow-up does not occur and global existence of
solutions is assured even if ||ug||;1 and y are large. This has been shown for n = 2 by one of
the authors et al. [19] and for n > 1 with convex Q and large ¢ by Winkler [27]. See also the
recent related works [1, 11, 14].

We henceforth assume that the function f(u) is a real, smooth function of u € [0, co0) such
that £(0) > 0 and

f(w) = u—pu® for sufficiently large u > 0;
and the function g(u) is given by
gu) = u(l + wf' foruz0,
where the exponents « and S satisfy the relations
(1) a>1 and 0<B<2,

and y is a positive constant. From the results quoted above, we find that in the n-dimensional
domain (n > 2), a blow-up can occur when @ = 1 and 8 = 1 with a special choice of u = 1,
and the blow-up of solutions is prevented and the global existence of solutions is assured
when @ = 2 and S = 1. We can then conjecture that the critical degradation order a; is in
the interval 1 < a.; < 2 under linear production 8 = 1; however, it has not been determined
for the parabolic-parabolic chemotaxis-growth system (E). Recently, Xiang [29] showed
global existence of solutions under 8 = 1 when @ > 19/9 if n = 3 and when @ > n — 1 if
n>3.

In the two- and three-dimensional cases, the authors [16, 17] introduced sublinear pro-
duction order S < 1, and showed a sufficient condition 2(n + 4)/(n + 6) < @ < 2 and
0<pB < m+6)a—1)/[2(n+ 2)] for the existence of global and bounded solutions to (E)
in a Hilbert space Hg’/ 271Q) x Hé”/ Q) ¢ L(Q) x C(Q) (their results would include
Xiang’s results [29] when n = 3 if the existence of local solutions were assured for @ > 2).
The authors have also shown in the previous paper [18] the global existence of solutions
in L,-space of arbitrary space dimension n with p > n, where (a, ) is merely allowed for
0<B<(a-1)/2.

In this paper, we revise the results obtained in [18] considerably by combining the semi-
group method and the energy estimates and by applying the technique of trace operator [9,
13] (see Step 2 of Proof of Lemma 9). The main theorem of this paper is as follows:



PARABOLIC-PARABOLIC SYSTEM FOR CHEMOTAXIS 53
Theorem 1. Assume that the exponents a and 3 satisfy the relations (1) and
o' n+2
2) B<— and B<——(@-1).
2 2n
Let p be an arbitrarily fixed exponent with
3) max{2,n, (o —2)n} < p < co.

Then, for each pair of nonnegative initial functions (ug, vo) € L,(Q)XH ;(Q) c L,(Q)xC (ﬁ),
the system (E) admits a unique global solution (u,v) in the function space

@ 0 < u € C([0, 00); L, () N C((0, 00); H, () N C'((0, 00); Ly (),
0 < v € C([0, 0); Hy(Q)) N C((0, 0); H () N C1((0, 00); H,, ().

Moreover the solution satisfies the estimate

) (@), + W@y < (lluollz, + llvollyz:)» £ =0
with some increasing function y(-).

The definition and notation of function spaces will be given below and in Section 2. Theo-
rem 1 above does not yet cover the case (@, 8) = (2, 1) for n > 2 shown by Winkler [27], but
the theorem requires no assumption on the largeness of ¢ nor the convexity of Q considered
in [27]. Our new results also contain the uniform boundedness of solutions with respect to
the size of initial data.

We conclude this introduction by referring the results on the parabolic-elliptic chemotaxis
systems. The parabolic-elliptic simplifications correspond to the situation where the chemi-
cal substance diffuses very quickly, which implies that the time scale 7 tends to 0 in (E). For
the n-dimensional parabolic-elliptic system with a-th order growth and linear secretion, that
is, in the case of T = 0 and 8 = 1 in (E), the problem on the global existence and blow-up
of solutions has largely been solved by Winkler [25, 28]: global existence and boundedness
are assured when @ > max{n/2,2 — (1/n)} [25]; also, there exists a blow-up solution when
l<a<3/2+1/2n-2)withn>5][28].

This paper is organized as follows. We provide preliminary results that we utilize in sub-
sequent sections. In Section 3 we show the local existence of solutions by using a semigroup
method (Theorem 5). In the final section we construct several a priori energy estimates by
combining semigroup and energy methods. After obtaining the a priori estimates, we give
the proof of the main theorem.

Nortarions. Let Q be a smooth bounded domain in R”. For 1 < p < oo, the space of
complex-valued L, functions in Q is denoted by L,(€2) with the usual norm || - ||.,. The
complex Sobolev space in Q of order k, k = 0,1,2,..., and exponent p, | < p < oo, is
denoted by Hf,(Q) with norm || - || HE- More generally, the Sobolev space of fractional order
s > 0 and exponent 1 < p < oo is denoted by H;,(Q) with norm || - llz;. The space of
complex-valued continuous functions on Q is denoted by C (ﬁ) with norm || - ||c. Let X be
a Banach space and I an interval of R. C(I;X) and C'(I; X) denote the space of X-valued
continuous functions and of X-valued continuously differentiable functions, respectively.
B(I; X) denotes the space of X-valued bounded functions. For simplicity, we will use a

universal notation C to denote various constants that are determined for each occurrence
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by Q in a specific way. In a situation where C also depends on some parameter, say 7, it
will be denoted by C,,. In addition, by a universal notation y(-) we will denote continuous
increasing functions, which may change depending on the context.

2. Preliminaries

In this section we shall list some well-known results in the theories of function spaces
and linear operators [19, 22, 24, 30].

Interpolation of Sobolev spaces. For 0 < 59 < s <s; <ocoand 1 < p < co, H}(Q) is the
interpolation space [H;“(Q), H;l ()] between H;"(Q) and H;‘ (), where s = (1—-6)s¢+0s;,
with the estimate

©6) il < Cllull il for we Hy (@),
See [30, Theorem 1.35].

Embedding theorem of Sobolev spaces. Let 1 < p < oco.
If0 < s <n/p, then H(Q) c L.(Q) forany p < r < pn/(n—ps) = [(1/p) —(s/n)]"" with
continuous embedding

) lwllz, < Cspllwllg;  for w € Hy(Q).
If s = n/p, then H;(Q) C L,(Q) for any finite p < r < oo with continuous embedding
8) llwllz, < Cspllwllg;  for w € H(€).
Ifn/p < s < oo, then H;(Q) - C(ﬁ) with continuous embedding
©) lwlle < Cypllwlly  for we H3(Q),

See [30, Theorem 1.36].

If1 <r < p < oo, then L, (Q) is embedded in (H;, (€2))’, the dual space of H;, (Q) with
respect to Ly-inner product, for (n/r) — (n/p) < s < oo and p’ = p/(p — 1) with continuous
embedding

(10) lwllzs,y < Collwllz,  for w & L,(Q).

Gagliardo-Nirenberg’s inequality. Let 1 < g < p < co. Then the embedding H ;(Q) N
L, (Q) C L, () holds for

g<r<pn/(n—-p) ifl1<p<n;
(11) g<r<oo if p=n;

g<r<oo ifn<p < oo,
with the estimate
1- 1
(12) llwllz, < Cp,q,r”wHi]Il,”w“an for w e H,(Q),

where a is given by
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(13) l:a(l—l)+1_".

See [30, Theorem 1.37].

Norms of a product of two functions. For 1 < p < co and s > n/p, from (9),
(14) lluovll, < Cpllullz,llvll., < Cpsllullz, vl for u € Ly,(Q), v e Hy(€).

As a corollary,

(15) IV @V0)lz, < IVu - Volly, + ludvllz, < [Vull, IVollz., + [l 1A,
< sl ol + el ol )

foru € H)(Q) N H)(Q), v e Hy(Q) N H,"(Q).
When n < p < o0, since HII,(Q) C Lo(Q) by (9), it holds that
(16) IV - @Vo)ll, < Collullypllolle  for u € HY(Q), ve HAQ).

Domains of fractional powers of Laplace operators in L,-spaces. Let Q C R" be a
bounded domain with smooth boundary 02, and Ag = —A + 1, A being the Laplace operator
with Neumann boundary condition. Then, for each 1 < p < o0, Ay is considered as a closed
operator in L,(£2), the domain of which is Hf)’ ~(€) (see [2, Theorem 2.4.1.3], [24, Theorem
5.3.4] or [30, Theorem 2.15]). Let us denote A, = Ar,; then D(A)) = Hf)’N(Q). Moreover,
by the shift property (see [2, Theorem 2.5.1.1] or [24, Theorems 5.3.4 and 5.4.1]) it holds
that D(A | H) ) = H;’ ~(€2) with norm equivalence.
The domains of fractional powers of A, are characterized by

1 1
HY(Q) for 0<6< =+ —
0 2 2p
(17) D(Aj) = L ;
20
Hp,N(Q) for 5 + 5 << 5

with norm equivalence. Here, H ; , (&) for s > 1+ (1/p) denotes a closed subspace of H ;(Q)
such that

H;,N(Q) = {w € H,(Q); Z—I: =0 on 69} for s > 1+ %
Indeed, we can see that A, has a bounded H., functional calculus (see Yagi [30, Sec.16.1.2])
in L,() and H[],(Q), and by Yagi [30, Theorem 16.5], that the interpolation D(Af,) =
[Lp(Q),H;N(Q)]g and D((AleII,)G) = [H[],(Q),H;’N(Q)]g hold for 0 < 6 < 1 with norm
equivalence. Then, carefully following the proof of [30, Theorem 16.11], we can verify the
rest part of (17). For the detail see Appendix.

Analytic semigroups generated by Laplace operators in L,-spaces. Foreach 1 < p <
00, Ay defined above generates in L,-space an analytic semigroup e~ (it is independent of
p in the sense that e "4rw = 72y for w € L, ()N Ly(L)). For y > 0 it satisfies the estimate

(18) lAge " wllL, < Cr7e™ |l 1>0, we L,(),
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with some fixed constant 6 > 0. See [8, Sec. 2] (see also [26, Lemma 1.3], [30, Theo-
rems 2.19 and 2.27] and [22, Sec. 13.7]).

A differential geometric property of functions with Neumann boundary condition. Let
Q c R” be a bounded domain with smooth boundary dQ. If the function w € C*(Q) satisfies
Ow/dv = 0 on 0Q, then it holds that

dVuwl?

(19) < 2k |[Vw]*  on 4Q,

where kg is an upper bound for the curvatures of 9Q; ko = 0 when Q is convex. See [13,
Lemma 4.2]. See also [9].

Boundedness of trace operators. Let Q c R" be a bounded domain with Lipschitz bound-
ary 0Q. Let 1 < p < oo and s > 1/p. Then, the trace T : f — flsq is a bounded linear
operator from H 5 (Q) to L,(0Q). Hence, we have

(20 lwll, 00 < Cspllwllm ), w € H(Q).

See [30, Theorem 1.39] or [24, Theorem 4.7.1].

3. Local solutions

By similar argument to that in [17, 18, 19] or [30, Chap. 12], we can show the existence
of local solutions to (E). We first review the existence theorem by Yagi [30, Chap. 4] (see
also [20]) for local solutions to an abstract equation in a Banach space. Let X be a Banach
space with norm || - ||x. We consider the following Cauchy problem for a semilinear abstract
evolution equation in X:

d—U +AU =FU), t>0,
(21) dt

U(0) = Uy.
Here A is a sectorial operator of X satisfying that its spectral set is contained in a sectorial
domain £ = {1 € C; |arg 4| < ¢} with some 0 < ¢ < /2, and ||[(1 — A)‘lllg(x) <M/ + 1),
A ¢ X with constant M. The nonlinear operator F' is a mapping from D(A") to X, where
0 <7 < 1, and it also satisfies a Lipschitz condition:

(22) IF(W) - F(D)llx < ¢ (IA7Ullx + 14 Tllx)
x [IIA7(U = D)lix + (IA"Ullx + 14T lIx) IIAY(U = D)llx|, U, T € D(A"),

where 7y is an exponent such that 0 < v < 5 < 1, and ¢(-) is some increasing continuous
function. The initial value Uy is taken in D(A?). Then, from [30, Theorem 4.1] (or [20,
Theorem 3.1]) we have the existence theorem of the local solutions to (21):

Theorem 2 ([30, Theorem 4.1]). Under the above assumptions, for any U, € D(AY), (21)
possesses a unique local solution U in the function space:
U € C((0, Ty,]: D(A)) N C([0, Ty, 1 DAY)) N C1((0, Ty, 1; X),
'77U € B((0, Ty, 1; D(A))
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with the estimate
1_
tNAU@x +1A"U@x < Cy,, 0 <t < Ty,
where Ty, and Cy, are positive constants depending only on the norm ||AYUp||x.

By applying Theorem 2, we can show the existence of the local solutions to (E). The
following proposition has been proved in [18].

Proposition 3 ([18, Proposition 3]). Let n € N, assume the relation (1) for a and 8, and
let p be an exponent satisfying

23) max{n, (@ —2)n} < p < oo.

Then, for each pair of initial functions (ug, vo) € L,(Q)XH II,(Q) c L,(Q)xC (ﬁ), the problem
(E) admits a unique local solution (u, v) in the function space

o u € C((0, T1; HY(Q)) 1 C([0, TT; Ly(Q)) N C((0, TT; (HL(Q))),
v € C((0, T1; H2 () N C(10, TT; Hy(Q)) N C'(0, T1; Ly(€2))
with the estimate
2 (@l + @l ) + {lu@ll, + @l <€ 0<r<T,

where p’ = p/(p — 1), and T and C are positive constants depending only on the norm
lluollz, + llvoll-

By a solution (u, v) to (E) in the function space (24) we mean that the pair of functions (u, v)
contained in (24) satisfies

d
E“" wyp, = —(Vu, Vw)r, + xuVv, Vw), + {(f(u), w),
for any w € Hll],(Q) and 0 < 1 < oo,
ov .
TE =Av—-v+gm) inQ X (0,c0).

Next, we will show the local existence of solutions in the second function space:

Proposition 4. Let n € N, assume the relation (1) for @ and B, and let p be an exponent
satisfying n < p < oo. Then, for each pair of initial functions (uy,v9) € H },(Q) X H;’N(Q),
the problem (E) admits a unique local solution (u,v) in the function space

u € C((0,TT; Hy, () N C([0, T1; Hy(€) N CH((0, TT; Ly(Q)),
ve C(0, T Hy () N C(0, T1; Hy, () N C((0, T H ()

with the estimate
1
2 {Ilu@llgz + MOl ) + {lu@llgy + lo@llp} <€, 0<t<T,
where T and C are positive constants depending only on the norm ||ug| H+ [lvol| H2

Proof. The system (E) can be expressed as a semilinear parabolic equation
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dU

— +AU =F(U), >0,
P ), t>
(25)

Up
U@)=0U0,=

o
in a product Banach space X = L,(Q) X H },(Q). Here, we define the linear operator A by

-A+1 0

A=l 1 (=A + 1)

], D(A) = H, \(Q) X H), ().

The nonlinear operator F is defined by

—xV - (uVv) + f(u) +u

Fu) = [ g(u)

u
, U= H € D(A") = Hy(Q) X H, (Q)

with 7 = 1/2. Here, f(u) and g(u) denote some smooth extensions of f(u) and g(u) for the
variable u € C satisfying f(u) > 0 for u < 0 and g(u) = O for u < —1, respectively. The
initial value Uy is taken in the function space D(AY) = D(A"), that is y = n. Under this

] € D(A"),

<

setting, we need to verify only the Lipschitz condition (22). For U = [z U = [

IF(U) = F(D)lix < xIIV - Vv = aVo)z,
+lu = @ll, + 1F@) = F@ll, +1g@) = gl

For the first term, applying (16), we see

IV - Vo) = V- @V0)llz, < IV - (@~ )Vo)llz, + IV - @0 = 5)l,
< Cpsllue =l ol + el o = Bl )

< C(IA"Ullx + 1A Ul)lIAY(U = O)llx.

For the third and forth terms, using (1) and H ;(Q) C Lo(Q) by (9), we can easily see that

I1f ) = F@lle, < CA + llulle,, + el )™l = @l
< CQL+ ludllpgy + Nl )™ e = @l
150) = g@)lgy, < NgQ) = G, + 15 @V = iz, + 1§ @) - §' @) Vill,
< C(1+ [lulle,, + @l )l = @llz, + 1190 = @Dllz,) + Cllu = @l |V,

< C(L+ lullgy + Nall g )lee = itll -

Thus F(U) satisfies the Lipschitz condition (22). We complete the proof. m]

Now we can state our main theorem of this section:

Theorem 5. Let n € N, assume the relation (1) for a and 5, and let p be an arbitrarily
fixed exponent satisfying (23). Then, for each pair of nonnegative initial functions (ug, vgy) €
L,(Q)xH },(Q) C L,(Q) X C(Q), the problem (E) admits a unique local solution (u,v) in the
function space
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(26) {0 < u € C([0,T1: Lp(Q) N C((O, T Hy () N C'((0, T1; Ly(Q)),
0 <v e C(0,T1; Hy(Q) N CO, T1; H () N C1(0, T H ()
with the estimate
@7 lu(®llz, + @l < C. 0<t<T,
where T and C are positive constants depending only on the norm ||ug| L, + llvoll -

Proof. It is clear that the local solutions belong to the function space (26) from Proposi-
tions 3 and 4. The nonnegativity of solutions has been proved in [18, Theorem 4] with the
aid of the truncation method [30, Section 12.1.3]. Hence we conclude the proof. m]

4. A priori estimates and global solutions

In this section we will construct several a priori estimates. The a priori estimates hold
with each of the inequalities of @ and f in the lemmas. Throughout this section, except
for in the global existence theorem, we assume that 0 < uy € H;N(Q) c HL(Q) and
0 <€ H\(Q) c HL(Q) withn < p < co. In this case, applying [30, Theorem 4.2], we
can verify that 0 < u € C([0, T]; H;N(Q)) and 0 <v e C(0,T]; H;’N(Q)) with the estimate
[ (o)l m+ [lo()| < Cy, for 0 <t < T, where Cy, is some positive constant. For a local
solution (u, v) to (E) and exponents z > 0 and w > 0, we define

!
Ii,(t)sze‘“(”)fuzdxds.
0 Q

The following lemma will be used frequenty in this section.

Lemma 6 (Gronwall’s inequality). Assume that a smooth real function h(t) satisfies the
differential inequality

@) +ah() <K@, th<t<T,

with a positive constant a and an integrable real function K(t). Then, h(t) is estimated by

!
h(?) < h(tp)e™ ") + f e IK(s)ds, ty<t<T.

fo

Lemma 7. Let (u,v) be a local solution to (E), and assume that
a>1.

Then, it holds that

(28) lullz, = fgudx < e uollz, + a1l

with a constant a; = max{f(u) + u; u > 0}. In addition, for an arbitrary constant w > 0,
(29) 150 < 5 (@ + @119 + olluoll, ) = T2

holds with a constant a = max{f(u) + uu®/2; u > 0}.
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Proof. (Just the same as [17, Lemmas 4.1 and 4.2] or the first half part of [18, Lemma 5].)
Integrating the first equation of (E) over €, we have

ifudx=ff(u)def(al—u)dx-
dt Jo Q Q

Then, by Lemma 6, we obtain (28). From these inequalities, we see that

' ' , d
Brm< f we 1Y f {a - f(u))dxds = f we ) L alQ| — —||ull, t ds
2 0 Q 0 dS

!
< alQ|(1 — ™) + we™|uollz, + f w?e™ I |ul|, ds
0
< (a+ a w)|Q| + wlluollr,,

which yields (29). ]

Lemma 8. Let (u,v) be a local solution to (E), and assume that
a>1 and O<ﬁ§%.
Then, for any exponent2 < q < a/pB,
(30) lloll?, < Cge™ " llugll?,, + Cy (12 + lluollz,)
q q
holds with some positive constants Cy and 6.

Proof. When g = 2 (see [17, Proposition 4.4]), multiplying the second equation of (E) by
—Av + v and integrating it over €2, we see that

d 1 1
%E , (|Vv|2 + vz) dx < ) L(Av)zdx - 2fQ [Vol*dx — 3 L vidx + fg(l +u)Pdx,

that is,
31 Tif(le|2+vz)dx+f(lelz—i-vz)dx
dr Jo o

+ f (Av)’dx + 3 f [Voldx < 2 f (1 + w)*dx.
Q Q Q

Thus, by Lemma 6 again, we verify

!
||u||§12| < e—’/f||u0||§1£ +2 f e oI f (1 + u)*Pdxds.
0 Q

When g > 2 (just in the same way as the second half part of [18, Lemma 5]), we utilize
the semigroup e 40/7 of Ay = —A + 1, A be the Laplace operator with Neumann boundary
condition. Then the second equation of (E) gives

1 !
(32) u(f) = e My + - f e~ 9N/ g(u(s))dss.
0

Operating A(l)/ ? to this equality and applying (17) and (18), we have
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1/2
lollzy < CyllAg ol

1 !
1/2 - 1/2 —(—
< Cq”A()/ e tAo/TvOHLq + ;f Cq“A()/ e S)Ao/‘rg(u)Hqus
0
!
< Cpe™ A vollz, + f Cy(t = 5) 2 0T g(u)|,, ds
0

!
< Cye™ M wollp: + f Cyt = )™ 2”91 + wf)|p, ds.
0

The last term can be estimated as

t
[ =z s
0

t
= f (1= 9" P I ull] ds
0

' 1/q t 1/q
< (t— S)—Q’/ze—(so(t—s)/Tds e—5o(l—s)/‘r”1 + uHQﬁ ds
- 0 0 Lyg ’

where ¢° = ¢g/(¢g — 1). Here we notice that ¢'/2 < 1 and the singular integral converges.
Hence we have

f l/q
Wl < Coe™loglln + Cy| | €7 | (1 + wPdxds| .
! ! 0 Q

Combining both cases when g = 2 and when g > 2, we have

f
(33) oll?, < Cpe " lugll?,, + C, | e | (1 + u)Pdxds
Hq Hq 0 )

for g > 2 with some positive constants C, and 6,. Applying (29), we prove (30) for2 < g <
a/p. m|

Lemma 9. Let (u,v) be a local solution to (E), and assume that
+2
a>1, 0<B<2 and B<'Z(a-1).
2 2n

Then, for any 2 < g < «/p satisfying g > 2na/[(n + 2)(@ — 1)], and for any exponent
1<6<{gn+2)/2n)—1}(a-1),

- 2
(34) I+ ull], < e+ ugll], + woq (11 + uollz, + llvoll )

holds with some increasing function yrg 4(-). In addition, for an arbitrary constant w > 0,
a+6-1 4 w
G5 1w < (L + g ) e (ol + livoll )

1 ) L | R
¥ w(anl Fuglll, + g;nvon@)} =

holds with some constant { > 0.
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Proof. We describe the proof in several steps.

Step 1. Multiplying the first equation of (E) by (1 + ©)?~! and integrating it over Q, we see
that

li 07, — _(p_ 6-2 2

Gdtfg(1+u)dx— C 1)L(1+u) \Vul*dx
+x(O-1) f u(1 + u)?2Vu - Vodx + f (1 +w) ! fuydx
<__ f(1+u)" 2Vufdx + X2 (9 )f(1+u)9|vu|2dx

+ f (1 + ) f(u)dx.
Q

For the second term on the right-hand side, using (12), we note that

29—1
x@-D f (1+uw)[VoPdx < X2 ( D+, . C
X(9 1)
s, Ive,

. Cq |||Vv|q/2||2//< H|V Iq/2||(4/q)_(2/K)

2
x(0-1) 0
— ||(1 + u) Lo
< an—K+lX2K(9 _ 1)/< |||Vv|q/2”2£ +7 ”VU||ZK_q)/(K_1) f(l + M)GK/(K—I)dx
Q
with k = g(n + 2)/(2n) and an arbitrary > 0. Hence we have

(36) ——f(1+u)9dx

< f (1 + w2\ VuPdx + Cp™+ (0 - 1)K|||Vv|"/2HH.

+ f [ Vol (14 ™D 4 (1 + ) f )| dxe
Q q

Step 2. We present the differential inequality on ||U||7,_11 for g > 2. For the present assume
q

g > 2. Firstly, multiplying the second equation of (E) by 19! and integrating it over Q, we
see that

d
37 —< f “dx = ~(q - 1) f V12 |Voldx — f vidx + f v g(u)
th Q Q Q Q

1 ¢
—(q - 1)f v 2|Vl dx — = f vdx + =L f(l +u)Pdx.
Q 2 Ja 2 Jo

Next, differentiating the second equation of (E), we have
|Vv|2 2tV0 - Vo, = 2Vo - VAv = 2|Vu]* + 2V - Vg(u).

Noting that A|Vu[* = 2|D%* + 2Vv - VAv and (Av)? < n|D?u?, where |D** = 3, ; |D;D; v|
we See
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0 2
TEWUP < AIVo]> = Z(Av)? = 2|V + 2V - Vg(u).
n
Multiplying this inequality by [Vu|9~2, integrating it over Q and applying (19), we obtain

2t d

2
f [Volidx < f [Vo|i~2 {Ale|2 - Z(Av)* = 2|Vo]* + 2Vu - Vg(u)} dx
q dt Q Q n

AV
= f |Vol9~2 ﬂdx— f V|Vol972 - V|Vu]*dx
00 dv Q

2
- f |vv|q—2{—(Au)2+2|vu|2}dx+ f 2IV|?"2Vu - Vg(u)dx
Q n Q
-2 2 2
<20 | Volidx - f L2 w4 vIVoP | dx - f Z[Vult2(Av)dx
Q. a 2 on

—f2|Vv|qu+f2|Vv|q_2Vv-Vg(u)dx.
Q Q

For the first term on the right-hand side, applying (20) and (6) with any 1/2 < s < 1 and
e > 0, we see that

2

qdx = q/2
2kq fa Vodx = 260 ||V, e

<C |||Vv|q/2||2;<9)

< C [va{ o]~ < e[ (|w|q/2)||; + Co[Ivut?], .

For the last term on the right-hand side, we see
f 2IVol=2Vu - Vg(u)dx = — f {(q — )|Vl 4V |Vu? - Vo + 2|Vv|"’2Av} g(u)dx
Q Q

< f (q- 2)|Vv|‘1‘3|V|Vv|2| (1 + uwfdx + f 2Vl 2|0 (1 + wfdx
Q Q
-2 2 1

<1< f |Vu|‘1‘4|V|Vv|2| dx + ~ f IVol9=2(Av)2dx + f Vol9dx
4 Q nJao Q

+C (n+q-2)"" f(l +u)Pdx.
Q

Hence, noting that |V (lelq/2)|2 = (¢2/16)[Vol7* |VIVoP[, we have

2t d 4(q—2)f e
38) —— Vulld vV (IVo) d
()thfgl"'“ = | 7)) ax

|
+ = f IVol=2(Av)’dx + f [Vol9dx
nJao Q
2
<e f |V (lelq/2)| dx +C, f IVolddx + C (n + g — 2)°° f (1 + u)Pdx.
Q Q Q

Adding (38) to (37) and taking € = 2(q — 2)/q%, we see
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27 d
39) L& f Vol + v%)dx + f Vol + v7)dx
q dt Jo Q
2q -2 2 1 8(q — 1 2
y2a-2 f [V (190172)|" dx + - f Volt2(A0dx + 24D f v (2] ax
q Q nJo q Q

<C f IVolidx + C, f (1 +uy®dx.
Q Q

This inequality holds also for ¢ = 2 (see (31)). The right-hand side is bounded in terms of
|lollz, and ||Uo||H; in view of Lemmas 7 and 8 since ¢ < a.

Step 3. Adding (39) multiplied by some weight £ > 0 to (36) , we see

1d 9 2t d 2(4 B 2) /2112
(40) 9 fg;(l + u) dx+§(;Z”U”1qq; + ||v||;1{; + T |||Vv|q HH;
—K K K 2
< Ca @ = 1 [IV0l2[[, + ClVull,
* f [ IVol P (1 4+ D 4 (1 ) f) + £C, (1 + w# dx.
Q

SincegB <a<a+60—1and6bk/(k—1) < a+ 60— 1 from the assumptions, suitable choice
of n and ¢ yields

d (1 9 2t 4 q (1 9 2t 4
@ = (5|I1 +ullg, + KZIIUIIH;) 5o gt +ullz, + g;nunﬂ}
< Vo4 (||U||H),) - %l f W1 g,
Q
and hence, by Lemma 6,
1 9 2t —atjan [ 0 2t
5||1 +ullg, + §;|IUIIH'; <e T EII1 + uolly, + fgllvollH;

!
—q(t—5)/(2
+ fo e 1y (ol ) ds.

Application of (30) to the right-hand side of this inequality leads to (34).

Step 4. The proof of (35) is very similar to that of (29), as follows: using (41),

!
M avo-1 —w(t—s) d (1 0 27
R fo we™ ! {we,q(nqu;)—E(gul+u||L9+4;||vuz,ql ds

—ur (1 2t
<Vaq (SUP ||U||H;) + we t(5||1 + Mollzg + CEHUOH;})

>0
d 1 2T
2 —w(t—s) | — 0 q
+f0a) e (0||1+u||L9+§—q IIUIIH;)ds

o 1 2t
< (1 + E)lﬁe,q (sup IIUIIH,;) + w(g'” +uolly, + 4;””0“2;)'

>0

Thus we complete the proof of the lemma. O
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Lemma 10. Let (u,v) be a local solution to (E), and assume that
a n+2
a>1, 0<f<—- and f<——>(-1).
2 2n

Suppose that for some exponent o > 1 and r > 2na/[(n + 2)(a — 1)] the integral IZ*‘T‘I(Z) is
bounded by

(42) 17N < (1 + W) Yoy (Ill + uollz, + ||1)0||H3) = Joro-l

for an arbitrary constant w > 0. Then, for any exponent q > 2 satisfyingr < q < (@ + o —

/B
(43) il < Cge™lloollf, + Cyhrs (11 + sl + llolly)

holds with some positive constants C, and 6, Moreover, for any exponent ¢ < 6 <
{gin+2)/2n) — 1} (@ - 1),

0 —qt/(2 6
(44) I+ ll], < e PN+ ugll], + g (I + uollz,, + llvoll)

holds with some increasing function g 4(-). In addition, for an arbitrary constant w > 0, it
holds that

(45) 12770 < (1 + w) Yo, (||1 + uollz, + ||uo||H;) = 201,

Proof. We can prove the lemma in the similar argument as in Lemmas 8 and 9.
Firstly, the inequality (33) holds also in this case. Since g8 < @ + o — 1, by Lemma 6
again, we verify

-6, -1
il < Cge™llollf, + Cy byaso (101 + I3~ ).

By (42), we obtain (43).

The estimate (44) is verified from the inequality (41) together with (43), since gf <
a+oc-1<a+6-1landOk/(k—1) < a+6-1withk = g(n + 2)/(2n). The proof of (45)
is just the same as that of (35).

Thus we complete the proof of the lemma. |

For obtaining the final a priori estimate, we apply Lemma 10 iteratively. We then show
the following a priori estimate.

Proposition 11. Let (u,v) be a local solution to (E), and assume that
+2
a>1, 0<B<2 and < Z(@-1).
2 2n
Then, for any exponent p > 2, it holds that
(46) 1L+ ull] + ol < Ce (||1 +uolly, + ||UO||[I;,1,) + 0y (I + uollz, + ool )
with some exponents 1 < o < p, a/B < r < p and some increasing function yr,(-).

Proof. The proof is given by induction. Firstly we have estimates (28) on ||ul|z,. Let

6o = 1.
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Secondly we have (30) on ||v||H; for2 < g < a/B by Lemma 8 and (34) on ||1 + ullz, for
1<60<{gn+2)/(2n)—1}(a—1) by Lemma 9. Let

n+2
2n

h+a-1 «
ql = -0 —’ 0] =
B B
For each integer k and given 6, we can obtain by Lemma 10 the estimates (43) on ||v|| H) for
2<q<(Gk+a-1)/Band (44) on ||l + ullz, for 1 <6 < {g(n+2)/(2n) — 1} (a — 1). Define
h+ta—-1 (n+2)(a-1)
B - 2nB

Since (n + 2)(a — 1)/(2nB) > 1 by assumption, we can easily see that

q1 = 1)(0— D).

n+2
2n

r+1 = Q> 1 = ( Qi1 — 1)(0/ - 1.

qr > o and Gy > o0 as k — oo.

Hence, for any p > 1, there exists a finite integer ko such that gx, > p and 6y, > p, and the
desired estimates are obtained. m|

By using the a priori estimates shown above, we prove the main theorem for the global
existence of the solutions.

Proof of Theorem 1. From Theorem 5 for each pair of nonnegative initial functions
(uo, vo) there exists a unique nonnegative local solution (i, v) on the interval [0, 7] with the
estimate (27), and the existence time 7" depends only on the norm |||, +||voll H)- In addition,
from Proposition 11, the norm [[u(?)||z, + |lv(?)]] H)» 0 <t <T,is estimated from above by a
uniform constant Cy, also depending only on the norm [[uollz, + [[voll HY- Hence, the interval
can be extended to [0, T + T'], where the extended time 7" and the norm |[u()]|., + [lo(@)| HY»
0<t<T+T, are estimated by the same constant Cy;,. The existence interval can be again
extended, to [0, T +2T]. Repeating this procedure proves the global existence theorem with
the estimate (5). m]

Appendix . On the domains of fractional powers of Laplace operators in L,-spaces

Here we discuss the characterization of the domains of definition of fractional powers of
Laplace operator Ap = —A + 1 with Neumann boundary condition on a bounded domain
Q c R" with smooth boundary, as a closed operator in L,(€2) for each 1 < p < co.

We have already known the following facts.

Theorem A.1 ([2, Theorem 2.4.1.3], [24, Theorem 5.3.4], [30, Theorem 2.15]). For each
1 < p < o0, Ag is considered as a closed operator in L,(Q2), the domain of which is le,, N(9))
If we denote A, = Ao, then it holds that D(Ap) = H;z;,N(Q) with norm equivalence.

Theorem A.2 ([2, Theorem 2.5.1.1], [24, Theorems 5.3.4 and 5.4.1]). Let k be a positive
integer and 1 < p < co. Then u € H,™(Q) N H, \(Q) yields Aou € Hy(Q). Moreover, if
u e lej’ ~(Q) satisfies Aou € Hf,(Q), then u € Hf,*z(Q). That means, as the first example, if
we denote A, = Ay HY that the identity D(U,) = H;’N(Q) holds with norm equivalence.

To interpolate these results between k = 0 and k = 2, we apply the theory of bounded H,,
functional calculus in L,(€2) given by Yagi [30, Sec.16.1.2].
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Theorem A.3. For the operator A, = Ao|,, the identity

H¥Q) for 0<0<i+ L
(A.1) D(A)) = [Ly(Q), H, y(Q)]g =1 ” :ow
r b pNIEEI0 H;"QN(Q) for % + ﬁ <0<

holds with norm equivalence.

Proof. Firstly, it is obvious that L,(€2) is a reflexive Banach space and A, is a sectorial
operator in L,(€2) with angle w, = 0. Hence, we can directly verify the following condition
given in [30, Theorem 16.5] with A = A,, X = L,(Q), X* = L,(Q) and (., -) their duality
product:

(H) For every angle wy < w < m and every exponent 0 < 6 < 1, the integrable condition
along the V-shaped contour ', : 1 = pe*™® (0 < p < o0)

(A2) I, = f AP (A2 - A)PF,G)| 1Al < CugllFINGIL, F € X, G € X7,
Fm

holds with some constant C,, 4 > 0.
We omit the detail here. Then, by [30, Theorem 16.5] it is verified that A, has a bounded
H,, functional calculus in L,(€). Again by [30, Theorem 16.5], we have the first identity of
(A.1). The rest part of the theorem has been already shown in [30, Theorem 16.11]. ]

The next theorem shows the interpolation result between k = 1 and k = 3.

Theorem A.4. For the operator A, = Ag| HY the identity

HP(Q) for 0<6< ﬁ

A3 DY) = [HY(Q), H? ,(Q)]g =
&.-3) () = [H, (). H, vl {HI‘;NZH(Q) f0r$<0S1

holds with norm equivalence.

Proof. It is also obvious that H I',(Q) is a reflexive Banach space with duality product

((-,)yof H },(Q) X H;/(Q), and that 2, is a sectorial operator in H },(Q) with angle wy = 0.
Hence, again we can prove the condition (H) above by direct calculation to see that the
Laplace operator A, = Aglg: has a bounded He, functional calculus in H },(Q). Then, we
have the first identity of (A.3) again by [30, Theorem 16.5]. For the proof of the rest part of
the theorem, we must follow carefully the proof of [30, Theorem 16.11].
Step 1: D(UY) C H;II%,")(Q). We can easily see that [H)(Q), H;’N(Q)]g C [H)(Q), Hy(Q)]y =
H},*Z"(Q). To see the boundary condition for 1/(2p) < 6 < 1, take a sequence {u;} C
DA, = HZ’N(Q) converging to u in D(AY). This implies that every u € D(A) satisfies the
Neumann boundary condition on 9€2.

Step 2: DY) > H;II%,(’)(Q). We divide this step into three parts.

(i)f<0<1 Letue H;;VZH(Q). Then, for any v € HS,’N(Q) = D), similarly in the
proof of [30, Theorem 16.11], we see
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1
s Q600 = |5 fr 2 (=) o

1
< \|Agul| 201 H— f /l"(/l—Ao)‘lvd/l‘
P 2ni Jr

(le,s_l )/

< C”A()M”H,z,@fl ‘

o—1
A, v
H2—29

< Clllgg-» ol

Here we utilize [30, Theorem 1.43] for the boundedness of Ag = 1 — Y, D¢ : H;**'(Q) —
HIZ,"‘I(Q) and Theorem 3 for the boundedness of the fractional powers of Agl,, = A,. This
inequality yields that, for each fixed u € Hll;;vz@(Q), the linear form ((u, (%) v)) is a bounded
linear functional of v € H 117, (Q), that is, there exists w € H II,(Q) such that ({u, (‘21;‘,)91))) =
((w, vy) for any v € H;,(Q). Hence, w = Au and u € DAY).

(i1) ﬁ <0< % Letue H;j\%g(Q). Then, for any v € H;,’N(Q) = D(?I;), by an argument
quite similar to (i), we see

|<<I/L, (%;)ev»l < C||M||H12)e+1

1 0 -1
‘2—7”, fr %2 - Ag) vd/lHH”e < Clluler ol
%

Here we utilize again [30, Theorem 1.43] for the boundedness of Dy : H},,’ZO(Q) -
(H,'(Q))". Thus, for each fixed u € H,'7*(Q), there exists w € H,,(€2) such that ((u, (%;)"0))
= ((w,v)) for any v € H[l,,(Q). Hence, w = ‘Eliu and u € D(QIIH,).

(iii) 0 < 6 < ﬁ We can verify that u € H)*(Q) is contained in D(2)) by the same
argument as (ii) except for the boundary conditions.

Hence we complete the proof. m|

As the consequence, we conclude (17) in Section 2.
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