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Abstract
In this article we give an explicit construction of versal Galois coverings for any

given finite subgroup ofGL(n,Z). By this construction we give a positive answer to
Question 1.4 in [5].

Introduction

Let X and Y be normal projective varieties. Let� : X ! Y be a finite surjective
morphism. We denote the rational function fields ofX and Y by C(X) and C(Y),
respectively. Under these circumstances, one can regardC(Y) as a subfield ofC(X)
by �� : C(Y)! C(X).

DEFINITION 0.1. � is said to be a Galois covering ifC(X)=C(Y) is a Galois
extension. We call� a G-covering when the Galois group of the field extension is
isomorphic to a finite groupG.

REMARK 0.2. Note that there exists a naturalG-action onX such thatY = X=G.

In [2], Namba gave a method for constructing newG-coverings from a givenG-
covering as follows: Let� : X ! Y be a G-covering. LetW be a normal projective
variety.

NOTATION 0.3. We denote the stabilizer ofx 2 X by Gx. Also we define
Fix(X, G) by

Fix(X, G) = fx 2 X j Gx 6= f1gg.
DEFINITION 0.4. A rational map� : W 99K Y is called aG-indecomposable ra-

tional map toY if �(W) 6� �(Fix(X,G)) and� does not factor through�H : X=H ! Y
for any H , where X=H is the quotient variety ofX by a subgroupH � G and�H is
the quotient morphism.
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140 S. BANNAI

Fix a G-indecomposable rational map� : W 99K Y. Let W0 be the graph of�.
Then we can obtain aG-covering Z over W by taking theC(W0�Y X) normalization
of W. We also obtain aG-equivariant rational map from�: Z 99K X such that�(Z) 6�
Fix(X,G). We can construct many newG-coverings in this manner. However, we may
not be able to construct everyG-covering by this method, as the construction depends
on the existence of aG-indecomposable rational map. This leads us to the notion of
a versalG-covering introduced in [5] and [6].

DEFINITION 0.5. $ : X! Y is called a versalG-covering if, for anyG-covering� 0 : Z ! W, there exists aG-equivariant rational map� : Z 99K X such that�(Z) 6�
Fix(X, G).

REMARK 0.6. � induces aG-indecomposable rational map� from W to Y, and
Z coincides with theG-covering constructed by the method above by using�. Note
that the versalG-covering here is not unique.

By the definition anyG-covering can be obtained as a “rational pullback” from
a versalG-covering. As for the existence of versalG-coverings, Namba proved the
following.

Theorem 0.7 (Namba [2]). For any finite group G, there exists a versal G-
covering.

Namba explicitly constructed a versalG-covering for each finite groupG. How-
ever his method of construction gave versal coverings with dimensions equal to the
order of the given groupG, and it does not seem to be practical to use it in order
to construct new Galois coverings. In [6], Tsuchihashi constructed versalG-coverings
over the projective spacePn for the symmetric groups and for a generalization of the
symmetric groups using toric varieties. In this paper we generalize Tsuchihashi’s re-
sult partially and construct versal coverings of dimensionn for any subgroupG of
GL(n, Z). Our result is the following.

Theorem 0.8. Let N be a freeZ-module, 1 a projective fan in NR. Let X(1)
be the toric variety associated to the fan1. Let G be a subgroup ofAutZ(N) which
keeps1 invariant. Then G acts naturally on X(1) and

$ : X(1)! X(1)=G
is a versal G-covering.
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1. Construction and proof of versality

In this section we will prove Theorem 0.8. We will first construct projective toric
varieties with G-action and constructG-coverings by taking the quotient variety and
the quotient morphism. Then we prove that theG-coverings that we have constructed
are versal.

We will mostly follow Fulton [1] for notations concerning toric varieties. LetN
be a freeZ-module of rankn. Let M be the dual module ofN. We denote the dual
pairing by hu, vi for u 2 M and v 2 N. We denote a fan by1, and denote the toric
variety associated to the fan1 by X(1). We will say a fan to be a projective fan
when X(1) is a projective variety. For basic properties of toric varieties, we refer the
reader to Fulton [1] and Oda [3, 4].

A toric variety X(1) with G-action for a given finite subgroupG of GL(n,Z) can
be constructed as follows.

Suppose that1 is a completeG-invariant fan (i.e. for anyg 2 G and any� 2 1
there exists� 0 2 1 such thatg(� ) = � 0). Then g : N ! N, for any g 2 G, induces
an automorphism of varietiesg℄ : X(1) ! X(1). Thus we can define aG-action on
X(1). We will abuse notation and denoteg℄ by g. By the following lemma there
exists a complete projective invariant fan for any finite subgroup G of GL(n, Z).

Lemma 1.1. For any finite subgroup G of GL(n,Z), there exists a complete pro-
jective G-invariant fan.

Proof. Take a fan10 of NR corresponding to (P1)n. It is a fan obtained by de-
composingNR with hyperplanes. By taking the images of these hyperplanesby G and
by decomposingNR with this new set of hyperplanes , we obtain aG-invariant fan1
of NR. By the proof of Proposition 2.17 in [3], a complete fan obtained as a hyper-
plane decomposition is projective, hence1 is projective.

By taking the quotient varietyX=G of X by G, and taking the quotient morphism$ : X! X=G we obtain aG-covering. We will now prove some lemmas in order to
show that theG-coverings constructed in the fashion above are versal.

Lemma 1.2. Let X(1) be a complete projective toric variety with G-action. Then
there exists a G-invariant TN-invariant very ample divisor on X(1).

Proof. SinceX(1) is projective, there exists aTN-invariant very ample divisorD
on X(1). Let D0 be

D0 =
1jGD0 j

X
g2G

g(D)
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where GD = fg 2 G j g(D) = Dg. Then D0 is a G-invariant TN-invariant divisor. It
remains to show thatD0 is ample.

For any TN-invariant ample divisorsD1 and D2 the sumD1 + D2 is also ample.
This is true since ifD1 and D2 are ample, the piecewise linear functions D1 and D2 corresponding toD1 and D2 respectively are strictly convex. Then D1+D2 is also
strictly convex which implies the ampleness ofD1 + D2.

Each g(D) is ample soD0 is an ample divisor and for somem, mD0 is a very
ample G-invariant TN-invariant divisor.

Let 1(1) be the set of one dimensional cones of1. Let D�i be theTN-invariant
divisor corresponding to�i 2 1(1). Let vi be a primitive generator of�i . Let D =P�i21(1) ai D�i be a G-invariant TN-invariant cartier divisor (wich impliesai = a j if
there existsg 2 G such that g(�i ) = � j ). Then PD = fu 2 MR j hu, vi i � �ai ,8vi 2 1(1)g � MR is alsoG-invariant. From [1] p.66, the global sections of the sheaf
O(D) is generated by!u, u 2 PD \ M.

H0(X(1),O(D)) =
M

u2PD\M

C � !u.

Hence we can define a (right)G-action on the global sections of the sheafO(D) by
(!u) � g� 7! !(u)g�.

Define u(� ) 2 M by hu(� ), vi =  D(u)j� . Then from [1] p.62,0(U� ,O(D)) =�u(� ) � A� . Thus we have local trivialization isomorphisms�� : 0(U� ,O(D)) �= A�
given by!u 7! �u�u(� ). Let � and � 0 be maximal cones of1 and suppose there ex-
ists g 2 G such that g(� ) = � 0. Since D is G-invariant we have (u(� 0))g� =
u(� ). Then

�� (!u � g�) = � (u)g��u(� ) = � (u�u(� 0))gast = �� 0(!u) � g�.
Hence this action on the global sections ofO(D) coincides with the geometric action
of G on X(1).

Lemma 1.3. For a finite set of vectorsfu1, : : : ,us 2 Mg, there existsv 2 N such
that fhui , vigi =1,:::,s are mutually distinct.

Proof. We prove this by induction on the rank onM. For rank(M) = 1 take
any u 6= 0.

Let rank(M) = k. Fix a basis forM and letui = (ai1, : : : , aik ). Define a projection
p onto a lattice of rankk�1 by (ai1, : : : ,aik ) 7! (ai2, : : : ,aik ). Then by the hypothesis
of induction there existsv0 = (b2, : : : , bk) such thathp(ui ), v0i are distinct for distinct
p(ui ). Let b1 = 2 maxfjhp(ui ),v0ijgi =1,:::,s + 1. Thenv = (b1, : : : , bs) satisfies the desired
condition. This can be checked directly.
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Let ui = (ai1, : : : , aik ), u j = (a j1, : : : , a jk ), i 6= j . If ai1 > a j1 then

hui , vi � hu j , vi = (ai1 � a j1)b1 +

 
kX

t=2

ai t bt

!
�
 

kX
t=2

a jt bt

!

> b1 +

 
kX

t=2

ai t bt

!
�
 

kX
t=2

a jt bt

!

� 1 (by the choice ofb1).

If ai1 = a j1 then p(ui ) 6= p(u j ) and

hui , vi � hu j , vi = 0 +

 
kX

t=2

ai t bt

!
�
 

kX
t=2

a jt bt

!

6= 0 (by the choice ofv0).
Hencefhui , vigi =1,:::,s are distinct.

Lemma 1.4. Let � 0 : Z ! W be a G-covering. Let G = fg1, : : : , gjGjg.
(1) There exists z2 Z such that zi = gi (z) (i = 1, : : : , jGj) are mutually distinct.
(2) For any �1, : : : , �jGj 2 C there exists a rational function f on Z such that
f (zi ) = �i .
(3) If �i 6= 0 for all i , then there exists a G-invariant affine open set U such that there
exists a point z in U satisfying(1) and a function f satisfying(2) and in addition f
and f�1 are regular on U.

Proof. Let U 0 = Spec(R) be an G-invariant affine open set ofZ where G acts
freely. Then clearly any pointz of U 0 satisfies (1).

For any finite number of distinct pointszi 2 U 0, i = 1, : : : , s and for any�i 2 C,
i = 1,: : : ,s, there exists a regular functionf on U satisfying f (zi ) = �i . This is proved
by induction on the number of points. The case wheres = 1 is trivial. Let s = k and
let mi � R be the maximal ideal corresponding to the pointzi . Thenmi nS j 6= i m j 6= ;.
For eachi take a regular functionfi 2 mi nS j 6= i m j . Then

f1 � � � fk�1(zi )

�
= 0, i = 1, : : : , k� 16= 0, i = k

.

By the hypothesis of induction, there exists regular functions h, h0 satisfyingh(zi ) = �i

for i = 1,: : : ,k�1, andh0(zk) = (�k�h(zk))=( f1 � � � fk�1(zk)). Then f = h+ f1 � � � fk �h0
satisfies f (zi ) = �i for i = 1, : : : , k. Hence we have a regular function satisfying (2).

Let V = Spec(Rf ). ThenU =
T

g2G g(V) satisfies (3).



144 S. BANNAI

Let � 0 : Z ! W be anyG-covering. Let f be a rational function onZ. For f ,
u 2 M, v 2 N, define f u,v by

f u,v =
Y
g2G

f hu,g(v)i � (g�1).

Then f u,v satisfies the following properties (1) and (2) for anyu1 andu2 2 M and any
g0 2 G.

f u1,v � f u2,v =
Y
g2G

f hu1+u2,g(v)i � (g�1)

= f u1+u2,v(1)

f u,v � (g0) =
Y
g2G

f hu,g(v)i � (g�1(g0))
=
Y

g002G

f h(u)g0,g00(v)i(g00�1)

= f (u)g0,v.
(2)

Let V = Spec(R) be a G-invariant affine open set ofZ where f and 1= f are regular.
Define a ring homomorphism�vf : R ! C[M] by �vf (�u) = f u,v. Then from equa-
tions (1) and (2) above,�vf is a G-equivariant ring homomorphism. Thus we obtain a

G-equivariant morphism of varieties�vf ℄ : V ! TN = Spec(C[M]).
We will show that we can choose a rational functionf of Z and v 2 N so that�vf (Z) 6� Fix(X(1), G).
Let D be a G-TN invariant very ample divisor ofX(1). Then

H0(X(1), O(D)) =
M

u2PD\M

C � !u

as before. Puth = dim(H0(X(1),O(D)), and fu1 = 0, u2, : : : , uhg = PD \ M. Put
g(i ) = j when (ui )g = u j . Note again thatPD is G-invariant.

Let 8jDj be the morphism associated to the divisorD and embedX(1) into Ph�1.
For x 2 X(1), 8jDj(x) is given by

8jDj(x) = [!0(x) : !u2(x) : � � � : !uh(x)].

Restricting toTN ,

8jDjjTN (x) = [1 : �u2(x) : � � � : �uh(x)]

since!0 6= 0 on TN .
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Take z 2 Z so thatfgi z j gi 2 Gg are distinct. Takef 2 C(Z) so thatj f (z)j 6= 1, 0
and f (gz) = 1 for g 6= 1G. Let V = Spec(R) be an affineG-invariant open set where
f , f �1 are regular. Takev 2 N so thatfhui , vi = ci gi =1,:::,h are distinct. Then

8jDj Æ �vf (z) = [1 : f (z)c2 : � � � : f (z)ch ]

8jDj Æ �vf (gz) = [1 : f (gz)c2 : � � � : f (gz)ch ]

= [1 : f (z)cg(2) : � � � : f (z)cg(h) ]

and we can see thatf�vf (gz)gg2G are distinct so�vf (z) =2 Fix(X(1), G).
Thus we have proved Theorem 0.8.

2. Examples

Here we give some examples of versalG-coverings. Generally it is difficult to
compute the quotient, but in some cases it is possible.

EXAMPLE 2.1 (Namba). We will restate Namba’s construction of versalG-
coverings from our point of view. LetG = fg1, : : : , gng be any finite group of order
n. Let N be a lattice of rankn and letfeg1, : : : , egng be a basis ofN. Then G can be
identified to a subgroup of Aut(N). The action ofG on N is defined byg(egi ) = eggi .
Let 1 be the complete fan ofN consisting of cones generated byf�eg1, : : : ,�egng.
Then1 is a complete projectiveG-invariant fan andX(1) �= (P1)n. Then$ : X(1)!
X(1)=G is a versal galois covering from Theorem 0.8. Thus a versalG-covering exists
for any finite group.

EXAMPLE 2.2. Let N be a lattice of rank 2 andfe1, e2g be a basis ofN. Let1 be the complete fan ofN generated byv1 = v1, v2 = e2, v3 = �e1 + e2, v4 = �e1,v5 = �e2,v6 = e1�e2, as in the figure above. ThusX(1) is isomorphic toP2 blown-up
along three points.
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Let G be the subgroup of Aut(N) generated by

� =

�
0 1
1 �1

�
, � =

�
0 1
1 0

�

Then G = h�, � j �6 = �2 = (��)2 = 1i �= D12 where D12 is the dihedral group of
order 12.1 is an invariant fan ofG and by Theorem 0.8,$ : X(1)! X(1)=G is a
versal Galois covering. One can compute the quotient as the weighted projective space
P(1, 1, 2). This is done by taking the very ample divisorD =

P6
i =1 Dvi and compute

the D12-invariant ring of

1M
i =1

H0(X, O(i D)).

It is generated by algebraically independent elements of weight 1, 1, and 2.

Proposition 2.3. Example 2.2gives a positive answer toQuestion 1.4in [5].
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