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Abstract

In this article we give an explicit construction of versall@s coverings for any
given finite subgroup oGL(n,Z). By this construction we give a positive answer to
Question 1.4 in [5].

Introduction

Let X andY be normal projective varieties. Let: X — Y be a finite surjective
morphism. We denote the rational function fields ¥fand Y by C(X) and C(Y),
respectively. Under these circumstances, one can reg@rd as a subfield ofC(X)
by 7*: C(Y) — C(X).

DEFINITION 0.1. = is said to be a Galois covering {€(X)/C(Y) is a Galois
extension. We callr a G-covering when the Galois group of the field extension is
isomorphic to a finite groufs.

REMARK 0.2. Note that there exists a natufadaction onX such thaty = X/G.

In [2], Namba gave a method for constructing n@acoverings from a giverG-
covering as follows: Letr: X — Y be aG-covering. LetW be a normal projective
variety.

NoTATION 0.3. We denote the stabilizer of € X by G4. Also we define
Fix(X, G) by

Fix(X, G) = {x € X | Gy # {1}}.

DEFINITION 0.4. A rational mapv: W --» Y is called aG-indecomposable ra-
tional map toY if v(W) ¢ = (Fix(X,G)) andv does not factor throughy: X/H — Y
for any H, where X/H is the quotient variety oX by a subgroupH ¢ G andxy is
the quotient morphism.

2000 Mathematics Subject Classification. Primary 14E20p&aary 14M25.



140 S. BANNAI

Fix a G-indecomposable rational map: W --» Y. Let Wy be the graph ofv.
Then we can obtain &-coveringZ over W by taking theC(Wy xy X) normalization
of W. We also obtain &-equivariant rational map from: Z --» X such thatu(Z) ¢
Fix(X,G). We can construct many ne@-coverings in this manner. However, we may
not be able to construct eve§-covering by this method, as the construction depends
on the existence of &-indecomposable rational map. This leads us to the notion of
a versalG-covering introduced in [5] and [6].

DEFINITION 0.5. @: X — Y is called a versaGG-covering if, for anyG-covering
n’: Z — W, there exists &-equivariant rational map.: Z --» X such thatu(Z) ¢
Fix(X, G).

REMARK 0.6. u induces aG-indecomposable rational mapfrom W to Y, and
Z coincides with theG-covering constructed by the method above by usingNote
that the versalG-covering here is not unique.

By the definition anyG-covering can be obtained as a “rational pullback” from
a versalG-covering. As for the existence of vers@-coverings, Namba proved the
following.

Theorem 0.7 (Namba [2]). For any finite group G there exists a versal G-
covering

Namba explicitly constructed a vers@l-covering for each finite grou®. How-
ever his method of construction gave versal coverings withedsions equal to the
order of the given grougs, and it does not seem to be practical to use it in order
to construct new Galois coverings. In [6], Tsuchihashi tamsed versalG-coverings
over the projective spac®" for the symmetric groups and for a generalization of the
symmetric groups using toric varieties. In this paper weegalize Tsuchihashi’s re-
sult partially and construct versal coverings of dimensiorior any subgroupG of
GL(n, Z). Our result is the following.

Theorem 0.8. Let N be a freeZ-module A a projective fan in N. Let X(A)
be the toric variety associated to the fan Let G be a subgroup ofutz(N) which
keepsA invariant Then G acts naturally on ¢\) and

o X(A) - X(A)/G

is a versal G-covering
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1. Construction and proof of versality

In this section we will prove Theorem 0.8. We will first constt projective toric
varieties with G-action and construcG-coverings by taking the quotient variety and
the quotient morphism. Then we prove that Becoverings that we have constructed
are versal.

We will mostly follow Fulton [1] for notations concerning rio varieties. LetN
be a freeZ-module of rankn. Let M be the dual module oN. We denote the dual
pairing by (u,v) for u e M andv € N. We denote a fan byA, and denote the toric
variety associated to the fan by X(A). We will say a fan to be a projective fan
when X(A) is a projective variety. For basic properties of toric e#ids, we refer the
reader to Fulton [1] and Oda [3, 4].

A toric variety X(A) with G-action for a given finite subgrou@® of GL(n,Z) can
be constructed as follows.

Suppose that\ is a completeG-invariant fan (i.e. for anyg € G and anyo € A
there existss’ € A such thatg(c) = ¢’). Theng: N — N, for any g € G, induces
an automorphism of varietieg;: X(A) — X(A). Thus we can define &-action on
X(A). We will abuse notation and denotg by g. By the following lemma there
exists a complete projective invariant fan for any finite gnolop G of GL(n, Z).

Lemma 1.1. For any finite subgroup G of Gh,Z), there exists a complete pro-
jective G-invariant fan

Proof. Take a fanA’ of Nr corresponding toY)". It is a fan obtained by de-
composingNg with hyperplanes. By taking the images of these hyperpléye& and
by decomposing\Ng with this new set of hyperplanes , we obtairGainvariant fan A
of Ng. By the proof of Proposition 2.17 in [3], a complete fan ob&l as a hyper-
plane decomposition is projective, hengeis projective. ]

By taking the quotient variety)/G of X by G, and taking the quotient morphism
w: X — X/G we obtain aG-covering. We will now prove some lemmas in order to

show that theG-coverings constructed in the fashion above are versal.

Lemma 1.2. Let X(A) be a complete projective toric variety with G-actiofhen
there exists a G-invariant J-invariant very ample divisor on Q).

Proof. SinceX(A) is projective, there exists &y-invariant very ample divisoD
on X(A). Let D’ be

1
D'=—— > g(D)
|G| e
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whereGp = {g € G | g(D) = D}. Then D’ is a G-invariant Ty-invariant divisor. It
remains to show thab’ is ample.

For any Ty-invariant ample divisordD; and D, the sumD; + D, is also ample.
This is true since ifD; and D, are ample, the piecewise linear functiotig, and
Yp, corresponding td; and D, respectively are strictly convex. Thejp,.p, is also
strictly convex which implies the ampleness bf + D,.

Each g(D) is ample soD’ is an ample divisor and for somm, mD' is a very
ample G-invariant Ty -invariant divisor. ]

Let A(1) be the set of one dimensional cones/f Let D, be the Ty-invariant
divisor corresponding ta; € A(1l). Let v be a primitive generator of;. Let D =
ZrieA(l)ai D, be aG-invariant Ty-invariant cartier divisor (wich impliesy = a; if
there existsg € G such thatg(r) = 7;). Then Pp = {u € Mg | (u,vj) > —a,

Vv € A(1)} € My is alsoG-invariant. From [1] p.66, the global sections of the sheaf
O(D) is generated by", ue Ppb N M.

Ho(X(A),0(D))= @ Co".

ue PpbNM

Hence we can define a (righG-action on the global sections of the sh&afD) by
(wU) . g* > w(u)g*.

Define u(e) € M by (u(e),v) = ¥p(u)l,. Then from [1] p.62,T(U,, O(D)) =
x') . A,. Thus we have local trivialization isomorphismgs : T'(U,, O(D)) = A,
given by ¥ > xU=U0). Let o and o’ be maximal cones oA and suppose there ex-
ists g € G such thatg(c) = ¢’. Since D is G-invariant we have y(¢'))g* =
u(o). Then

No (" - gF) = WITUO) = } (OGSt = g (V) - g7,

Hence this action on the global sections@{D) coincides with the geometric action
of G on X(A).

Lemma 1.3. For a finite set of vector$us,. ..,us € M}, there existev € N such
that {(ui, v)}i=1..s are mutually distinct

Proof. We prove this by induction on the rank &h. For rank(M) = 1 take
anyu #z 0.

Let rankM) = k. Fix a basis forM and lety; = (&,,...,&,). Define a projection
p onto a lattice of rankk—1 by @,,...,&,) — (&,,...,a,). Then by the hypothesis
of induction there exists’ = (by, ..., bx) such that{p(u;), v') are distinct for distinct
p(u;). Let by =2maxX|({p(ui), v')|}i=1..st1. Thenv=(by,...,bs) satisfies the desired
condition. This can be checked directly.
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Letu = (a,,..., &), Uj =(@j,...,a), i #7j. If &, > aj, then

k k
(Ui, v) — (uj,v) = (&, —aj,)bs + <Z & ) - (Z ajtbt)

t=2 t=2

oe(Zan) (o)

>1 (by the choice oty).

If &, =aj, then p(u;) Z p(u;) and
k k
(Ui, v) = (Uj,v) =0+ (Zm) - (Z ajtbt>
t=2 t=2
#0 (by the choice ofv).
Hence {{u;, v)}i=1,.s are distinct. O

Lemma 1.4. Letn’': Z — W be a G-coveringLet G={g,..., g}

(1) There exists z Z such that z=gi(2) (i =1,...,|G|) are mutually distinct
(2) For any ai,...,ag € C there exists a rational function f on Z such that
f(Zi) =

(3) If oy #ZO0for all i, then there exists a G-invariant affine open set U such thatthe
exists a point z in U satisfyinl) and a function f satisfying2) and in addition f
and f1 are regular on U

Proof. LetU’ = SpecR) be anG-invariant affine open set o where G acts
freely. Then clearly any point of U’ satisfies (1).

For any finite number of distinct poing € U’, i =1,...,s and for anye; € C,
i =1,...,s, there exists a regular functioh on U satisfying f(z) = «;. This is proved
by induction on the number of points. The case wherel is trivial. Lets =k and
let mj C R be the maximal ideal corresponding to the paint Thenm; \Uﬁi m; # 0.
For eachi take a regular functiorf; € m; \Uj#i m;. Then

=0, i=1,...,k-1
fl...fkl(zi){?ol i =k .
By the hypothesis of induction, there exists regular fuoretih, h’ satisfyingh(z) = &;
fori=1,...,k=1, andh’(z) = (ek —h(z))/(f1- - - fk—1(zk)). Thenf =h+fy--- fi-h’
satisfiesf(z) = «; for i =1,...,k. Hence we have a regular function satisfying (2).
Let V = SpecRs). ThenU = (1, 9(V) satisfies (3). ]
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Let #': Z — W be anyG-covering. Letf be a rational function orz. For f,
ue M, veN, define f'¥ by

fuv = 1_[ fug@) | (g—l).

geG

Then f“? satisfies the following properties (1) and (2) for amyandu, € M and any
geG.

fuLv | fuzv = H f (urtuz,g(v) | (g_l)
(1) 9<G

= f us+ug,v

for(g) = [ f9 - (g7%g))

geG
@) = ] fesso gy
g’eG
= g

Let V = SpecR) be aG-invariant affine open set o where f and 1/ f are regular.
Define a ring homomorphism}: R — C[M] by u%(x") = f%*. Then from equa-
tions (1) and (2) abovey} is a G-equivariant ring homomorphism. Thus we obtain a
G-equivariant morphism of varietieg}*: V. — Ty = SpecC[M]).

We will show that we can choose a rational functibnof Z and v € N so that
wt(Z) € Fix(X(A), G).

Let D be aG-Ty invariant very ample divisor oX(A). Then

Ho(X(a),0(D))= @ C-o"

uePpnM
as before. Puh = dim(H(X(A), O(D)), and {u; = 0, uz,...,us} = Pp N M. Put
g(i) = j when (;)g =u;. Note again thatPp is G-invariant.

Let ®p; be the morphism associated to the divigdrand embedX(A) into P"—1.
For x € X(A), ®p|(x) is given by

®p(X) = [02(X) 1 @"2(X) : - - - s " (X)].
Restricting toTy,

Pppjln (¥) = [1: () 11 X" (X)]

sincew® # 0 on Ty.
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Takez € Z so that{giz| g € G} are distinct. Takef € C(Z) so that|f(z)| # 1,0
and f(g2 =1 for g # 1. Let V = SpecR) be an affineG-invariant open set where
f, =1 are regular. Take € N so that{(u;, v) = ¢ }i=1._n are distinct. Then

\

QPpout@=[1:f@%:---: f(2)"]
Pipjoni(@g=[1: (g% :---: f(92™]
=[1: (%@ ;... f(2)%m]

and we can see thdj} (92)}qec are distinct sou’ (2) ¢ Fix(X(A), G).
Thus we have proved Theorem 0.8.

2. Examples

Here we give some examples of versalcoverings. Generally it is difficult to
compute the quotient, but in some cases it is possible.

ExampLE 2.1 (Namba). We will restate Namba’'s construction of ver&al
coverings from our point of view. LeG = {gi, ..., 0} be any finite group of order
n. Let N be a lattice of rankn and let{eg,,. .., ey} be a basis oN. ThenG can be
identified to a subgroup of AuN). The action ofG on N is defined byg(ey) = eyg -
Let A be the complete fan oN consisting of cones generated Iyey,, ..., £ey,}.
Then A is a complete projective&-invariant fan andX(A) = (PY)". Thenw: X(A) —
X(A)/G is a versal galois covering from Theorem 0.8. Thus a veBsabvering exists
for any finite group.

ExAmMPLE 2.2. LetN be a lattice of rank 2 ande;, &} be a basis ofN. Let
A be the complete fan oN generated by; = vy, v = €, v3 = —€ + €, v4 = —€y,
U5 = —€, V6 = € — €&, as in the figure above. Thu$(A) is isomorphic toP? blown-up
along three points.
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Let G be the subgroup of Aul{) generated by

_{0 1 g = 01
*“\1 -1) P71 o
ThenG = (o, B | «® = % = (@B)? = 1) = D1, where Dy, is the dihedral group of
order 12. A is an invariant fan ofG and by Theorem 0.8z : X(A) — X(A)/G is a
versal Galois covering. One can compute the quotient as #ighted projective space

P(1, 1, 2). This is done by taking the very ample dividdr= Zi6:1 D,, and compute
the Dio-invariant ring of

o0

P Ho(X, 0(iD)).

i=1
It is generated by algebraically independent elements aftwel, 1, and 2.
Proposition 2.3. Example 2.2gives a positive answer tQuestion 1.4in [5].
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