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Abstract
Inspired by the work of Kuniba-Okado-Yamada, we study some tensor product representa-
tions of quantized coordinate algebras of symmetrizable Kac-Moody Lie algebras in terms of
quantized enveloping algebras. As a consequence, we describe structures and properties of cer-
tain reducible representations of quantized coordinate algebras. This paper includes alternative
proofs of Soibelman’s tensor product theorem and Kuniba-Okado-Yamada’s common structure
theorem based on our direct calculation method using global bases.
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1. Introduction

1.1. Backgrounds. Let g be a finite dimensional complex semisimple Lie algebra. The
quantized coordinate algebra A,[g]" is the subspace of the dual space of the quantized en-
veloping algebra U := U,(g) spanned by matrix coefficients of integrable modules of U.
This subspace A,4[a]" has a Hopf algebra structure dual to that of U, and in particular A,[g]*
is a non-commutative algebra because of the non-cocommutativity of U. In this paper, we
study representations of this non-commutative algebra A,[g]".

In the early days of representation theory of A,[g]*, Soibelman et al. [27], [25] con-
structed the irreducible representations V,, of A,[g]" corresponding to the elements w of
the Weyl group W. These representations are infinite dimensional except for the case
w = e. Through study of primitive ideals of A,[g]* and highest weight theory for A,[g],
Soibelman [25] has shown that the representation V,, can be constructed as a tensor prod-
uct module. More precisely, there exist infinite dimensional irreducible modules {V; :=
@CEZZO Q(@)leyitier (1 is the index set of simple roots of g) such that

2010 Mathematics Subject Classification. Primary 20G42; Secondary 17B37.



72 H. Ova
Vw = Vil ®“‘®Vil(=i Vi)

for any reduced word i = (iy,...,i;) of w. To put it another way, the A,[g]"-module Vj is
irreducible for any reduced word i of w, and its isomorphism class does not depend on the
choice of a reduced word of w. This result is called Soibelman’s tensor product theorem.
We fix an identification between V,, and V;.

By the way, we can construct an A,[g]"-module V; for any sequence i of elements of /,
which is reducible if i does not correspond to a reduced word of an element of W. To the best
of my knowledge, however, little has been studied about the A,[g]"-modules V; which do
not correspond to reduced words. We also deal with some of such modules. See Subsection
1.2.

More recently, it has been found by Kuniba-Okado-Yamada [13] that there is a common
structure in the positive part U* of U and the irreducible module V,,, corresponding to the
longest element wy of W. Let us explain it briefly. For a reduced word i = (i1,...,iy)
of wy, the vector space V,, has a basis {|c1);, ® --- ® |en)i, (=t |C>i)}cez'>j0a and the vector
space U* has a basis {Eic}ceZ;VO known as a PBW-basis. See Definition 5.1 for the precise
definition. Then the linear isomorphism V,,, — U* given by |¢); = Ef does not depend on
the choice of a reduced word i. We call this fact Kuniba-Okado-Yamada’s common structure
theorem. This theorem suggests that the actions of A,[g]* on V,,, can be regarded as the ones
on U*. We will pursue this point of view in this paper. Kuniba-Okado-Yamada’s proof is
based on case-by-case computation in rank 2 cases. Subsequently, Tanisaki [26] proves this
theorem through his realization of the module V,,, as an induced module. Saito [23] also
gives an alternative proof via an algebra homomorphism from the g-boson algebra to some
localization of A,[g]*. In the present paper, we prove it by a direct calculation method using
global bases. Actually, we consider the cases that g is a symmetrizable Kac-Moody Lie
algebra and an element of the Weyl group corresponding to an irreducible A,[g]"-module is
not necessarily the longest element wy. These are essentially Tanisaki’s settings. Here we
call these cases the generalized cases. See [26, Chapter 8] and Definition 5.14.

1.2. Results and Methods. Let g be a symmetrizable Kac-Moody Lie algebra. Our study
on representations of A,[g]" relies on the theory of global bases. This point is the main
feature of our approach. Global bases which we use in this paper are bases of quantized
enveloping algebras and their integrable highest (or extremal) weight modules [14], [4],
[16], [7].

Global bases have many splendid properties. We collect some of them in Subsection
2.2. One of the most significant properties is the compatibility between the global bases of
quantized enveloping algebras and those of their modules. In A,[g]*, we have the matrix
coefficients ¢4 o determined by the elements of the lower global basis g, and their dual
basis f;, of the highest weight integrable U-module V(1) with highest weight A. Through
the compatibility property, we can write the direct calculation results of the actions of ¢* b
on the vector |0); in V; (i € I) using the structure constants associated with the global bases
of quantized enveloping algebras (Proposition 3.10). Such direct calculation leads to one of
our main theorems (Theorem 5.20), which describes a part of the action of c}b’gb/ on |0); by
the structure constants of comultiplication of U. Here, i is a reduced word of an element of
W.
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By the way, the existence of relations between the representation V; and the structure of
U* is also the claim of Kuniba-Okado-Yamada’s common structure theorem. Indeed, we
give an alternative proof of Kuniba-Okado-Yamada’s common structure theorem together
with Soibelman’s tensor product theorem for the generalized cases as corollaries (Corollary
5.21, 5.23) of our theorem except for the irreducibility of V,, (Proposition 5.30). Roughly
speaking, Corollary 5.21 allows us to compute the actions of the quantized coordinate alge-
bras on V,, via the quantized enveloping algebras.

Next, we investigate the A,[g]"-module V, = V,:)—l ® V,, where V;)-' is the dual module
of V,, in some sense. See Definition 5.14, 5.28 and Remark 5.17. The modules V,, can
be considered as tensor product type modules which do not correspond to reduced words.
We study these modules V,, through the terminology of quantized enveloping algebras, in
the spirit of Kuniba-Okado-Yamada. Our bridge between quantized coordinate algebras
and quantized enveloping algebras is an embedding A,[g]" — U=0 @ U= of Q(g)-algebras
([3, Chapter 9], Proposition 4.11), where UZ" are variants of the Borel parts of U. As a
consequence, we obtain the reasonable structures of the modules V.

Theorem (Theorem 5.32). The actions of the quantized coordinate algebras on V,, are
computed via the quantized enveloping algebras. In particular, the A,[g]"-module V, is
decomposed into finite dimensional weight spaces V,, = @Q€Q+ N Q+(\7w)(, where

(Vw)a = {[\ € Vw | C;lc/l’uﬂ-[\ = q(/l’a)[\for all A € P,}.

Here f), vy are vectors of weight 1 in V(1)*, V(A) respectively satisfying (fy,v) = 1. See
Notation 2.1 for the other standard notation in Lie theory. Moreover; the weight space (V,))o
is one dimensional, and V,, is generated by this space.

When w is not the unit element, any weight vector 0 # A € (V,), generates a infinite
dimensional submodule whose weight set is a subset of (a + Q,) N —w™' Q., and its weight
space with weight « is spanned by A.

Section 6 discusses the case that g is of finite type. In subsection 6.1, we describe the
relation between V,,, and U~ ® U in the sense of the theorem above. In subsection 6.2, we
show that, in some cases, the action of A,[g]* on V,, comes from that of the Drinfeld double
Aglg]™ v UP of A [g]" and U'°P, where U'“* is a variant of U (Theorem 6.7). This is
one application of the theorem above, and a new result concerning tensor product modules
Vi which do not correspond to reduced words. However we should remark that conceptual
reasons why some V,, admit compatible U “°°-module structures are unclear now. It would
be interesting to consider relations between these modules and the quantum double Bruhat
cells studied, for example, in [1] and [2].

In the first draft [22] of this paper, we gave an alternative proof of the positivity (for ADE
type) of the transition matrices from the lower global basis of U™ to the PBW bases through
the calculation in Theorem 5.20 with Lusztig’s result [15, Theorem 11.5], and Soibelman,
Kuniba-Okado-Yamada, Saito and Tanisaki’s results. After submitting it to a preprint server,
Yoshiyuki Kimura informed us that our proof of positivity can be simplified to the proof
which do not require the representations of A,[g]*. See [22, Appendix]. Hence, in this
version, we put this simplified proof in Subsection 5.1 as preliminaries and have changed
the main application of Theorem 5.20 from the proof of positivity to the proof of Soibel-
man, Kuniba-Okado-Yamada, Saito and Tanisaki’s results. The author wishes to express his
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thanks to Yoshiyuki Kimura.
The following are the basic notation and convention in this paper.

Noration 1.1. Let g be an indeterminate. For a Q(g)-vector space V, set V* :=
Homg(,)(V; Q(g)) and denote by (, ) the canonical pairing of V and V*.

For a Q(g)-algebra A, we set [a;,az] := ajax — aza; for aj,a, € A. An A-module V
means a left .A-module. The action of .4 on V is often denoted by a.v (a € A, v € V). In this
case, V* is regarded as a right A-module by (f.a,v) = (f,av) (f € V',ae A,ve V).

For two letters i, j, the symbol §;; stands for the Kronecker delta.

2. Preliminaries

2.1. Quantized enveloping algebras.

Norarion 2.1. Let A = (a;)); je; be a symmetrizable generalized Cartan matrix and g :=
g(A) be the corresponding Kac-Moody Lie algebra (over C). Let }) be its Cartan subalgebra,
{a;}ier (resp. {a/l.v},-el) the set of simple roots (resp. coroots). Note that a;; = (a/l.v,a/ . Set
Q = Yies Zaj (resp. Q¥ 1= Y;c; Zay)') the root lattice (resp. the coroot lattice).

Take a Z-lattice PV of § such that

e OV CPY,

e OCP:={1ebh"|{A,PY)CZ} and

e there exist elements {w;};,c; C P such that (w;, a}’) = 0jj.
Fix elements {@) };c; such that (;, @) = 6;. (We do not assume {@} };; C P".) Define
O+ = Yier Zsoa;. Set P :={d e P|{A, ) > OforallieI}.

Denote by W the Weyl group of g, by {s;};c; the simple reflections, by e the unit of W. For
w € W, denote by I(w) the set of reduced words of w. (i.e. Fori = (iy,...,i) € [(w), w =
s;, -+ s;, and [ is the length of w.) Here we set I(e) := {0}. Take a W-invariant nondegenerate
symmetric bilinear form (, ) on h* such that («;, @;) = 2 for all short simple roots «; and
2(a;, V/(@j, @) = (), A) forall i € I, A € h*. Write A; := (@, @;)/2.

We define the partial order < on Pby u < 4 © A —pu € Q.. For an element o :=
Sicrmia; € Q (m; € Z), we set hta := );c; m;, called the height of .

NortatioN 2.2. Set

n —n

9 —4q

gi = g%, [n] = — forn ez,
" nlin = 1 In =K+ 11 ) 7k ez,
e = [k][k = 1]---[1]
1 ifneZ, k=0,
[7]!:=[n][n—1]---[1] for n € Z>y, [0]! := 1.
Note that [n] " € Z[¢*'] and - [n—]' if n > k > 0. For a rational function
13 kT - NS

X € Q(g), we define X; by the rational function obtained from X by substituting g by g;
(iel).



REPRESENTATIONS OF QUANTIZED COORDINATE ALGEBRAS 75

DernimioN 2.3. The quantized enveloping algebra U := Uy(g) is the unital associative
Q(g)-algebra defined by the generators
E,Fi(iel),K,(heP),
and the relations (i)-(iv) below:
(i) Ko =1, KKy = Ky for h,h' € PV,
(i) KpE; = ¢ E;K),, Kqu =g " FK, forhe PV,iel,

(iii) [E;, Fj] = 6;j——L for i, j € I where K; := Kpq,
l—a,-.,- '

(iv) Z(—l)kxf’ﬁxjxflf‘”f*") = 0fori,j € I withi # j, where X := X/[n];},X =
k=0

Eand F.
For a = Y, m; € Q (m; € Z), we set K, := [];; K;". The Q(g)-subalgebra of U
generated by {E;}ic; (resp. {Filier, {Kn}neps {Eis Kn)icrherv, {Fi, Kiliernepv) is denoted by U™
(resp. U, U°, U0, U=Y).

For @ € Q, write U, 1= {X € U | K;,XK_, = ¢ X forall h € P'}. The elements of
U, are called homogeneous. For a homogeneous element u € U,, we set wtu = «. The
subspaces U} etc. are defined similarly.

The algebra U has a Hopf algebra structure given by the following comultiplication A,
counit € and antipode S':

AE)=E®K'+1®E;, &E)=0, S(E)=-EK,
AF)=F;®1+K®F;, &F)=0, S(F)=-K'F,
A(Kp) = K;, ® Kp, &Ky =1, S(Kp) =Ky,

foriel,he P'.

DermniTion 2.4. We define the Q(g)-algebra, anti-coalgebra involution w : U — U by
w(E) = Fi, w(F;)=E;, w(Ky) =Ky,
fori € I,h € PY. We define the Q(g)-algebra anti-involutions *,i : U — U by
*(E) = Ej, #(Fy) = Fi, #(Kp) = K_p,
W(E) =q;'K7'Fi, W(F) = ¢EiKi, W(Ky) = Kp,
fori € I,h € PY. Note that ¢ is a Q(g)-coalgebra involution. We define the Q-algebra
involution (-) : U — U by

Ei=E, Fi=F;, Ko=Ky, g=q7,
foriel,hePY.

DeriniTiON 2.5. For i € 1, define the Q(g)-linear maps e/, ¢’ : U™ — U~ by

(wtY ,(lv>

e.(Y1Y2) = el(Y1)Y2 + g, ""Y1e/(Y2) and e/(F ;) = 6;,
€ (V1Y) = ¢ e (Y)Yy + Vi (Y) and i€/ (F)) = 6,
for j € I and homogeneous elements Y;,Y, € U™.

For i € I, define the Q(g)-linear maps f, ;f" : U" — U* by
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/ / X i :/ 4 4
FX1X0) = fX0)X0 + g, "X, 106 and f(E)) = 6,
/ X > zv / ’ /
if (X1X3) = CIEWt . >if (XDXy + X1/ (X3) and ; f'(E)) = 0;j,
for j € I and homogeneous elements X;, X, € U*.
We have * o e’ o x|~ = e, %0, f ox|y. = f.
For any homogeneous elements X € U, Y € U™ and p € Zs(, we have

-3p(p=1) / / 7
AX) =EP@q, " K (X + Y X @K wxX',

X’eU* homogeneous,
wt X #pa;

-ipp-1), 4 ”
=q, """V X) @K wxpa B+ D X @K wx X,

1
X"eU™" homogeneous,
wtx”#pa;

1 _
AY) = FPK iy o )" @M+ Y YK @Y,

i
Y’eU~ homogeneous,
wt Y’ #-pa;

1 -1 , / "
=¢"" (YK @ FP + Y YKy @Y

Y”eU~ homogeneous,
wt Y #—pa;

For homogeneous elements X € U*, Y € U™ and p € Zs(, we have
( fi/) P(X) = qf)(th,a,-v)—l’(pH)m, (e;)p (Y) = qf(Wt Y,a,-v>+p(p+1)m'
For X e Ut and Y € U™, we have
SOOK = KO0 00K = K el
Qi_qi_l I 61:'—61;1

in U. See [18, Chapter 1, 3] for details. (Our definition of comultiplication is slightly
different from the one in the reference [18].)

2.1 [Fi, X] =~

Derivition 2.6. The modified quantized enveloping algebra U = P, .. 1Uyr is defined
as in [18, Chapter 23]. Here \Uy := U/(Zpepe(Kn — ¢YMNU + X cpe UK, — g07)). We
follow the notation of [18, Chapter 23] except for a, := m(1) (1 € P). Here 7, ; denotes
the canonical projection U — U, for A, A’ € P. These elements satisfy a,a, = oray and
AU/l’ = Cl,an,y.

By abuse of notation, the comultiplication U — [] A2 00,0 A U 1 ® U x, of U will also
be denoted by A.

The maps w, *, ¥, (-) are naturally regarded as the ones on U. In particular, @; = ¥(a,) =
a, and w(ay) = *(ay) = a_,.

DeriniTION 2.7. Let V be a left (resp. right) U-module. For any A € P, we set
Vii={veV|Kpv=qg"% (resp. v.Kp, = g"Vv) for all h € PV}.
Let C (resp. C") be the category of left (resp. right) U-modules V with the weight space
decomposition V = €P 1ep Va- The category C (resp. C") is closed under the tensor product
of U-modules.
A left (resp. right) U-module V” is said to be unital if it suffices the following conditions:
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e For any v € V', we have a,.v = 0 (resp. v.a, = 0) except for finitely many A € P.
e Forany v € M’, we have ) cpay .’ =" (resp. X ept.ay = V).
Let C’ (resp. C'") be the category of left (resp. right) unital U-modules. The tensor product
V' ® W’ of unital U-modules V’, W’ has the unital U-module structure via A.
Any object V = @AEP V, of C can be regarded as an object of C’; for 1,4’ € P,X €
Up-v,v=Yepvy €V withy, €V, setmyv(X).0:= Xy.
Conversely, any object V' of C’ can be regarded as an object of C; for X € U and v" € V’,
we set X.v' = Y cp(X.ap).v'. Then, V/ = @, , Viand V) = a,.V'.
These correspondences give rise to the isomorphism of tensor categories between C and
C’. Similarly, C" is isomorphic to C"".
From now on, we do not distinguish the category C (resp. C') from the category C’
(resp. C'").
We say that V is integrable if
e V is an object of C (or C"), and
o the actions of E; and F; on V are locally nilpotent for all i € 1.
The tensor product of integrable modules is also integrable.
Let V be an integrable U-module. A vector v € V of weight A € P is said to be extremal
if there exists a set of vectors {v,},ew such that

® U, =10,
. Y wA

e if (@Y, wA) > 0, then E;.v, = 0 and FI«Q’ v ».vw = Vg
) —(a¥

e if (a/,wA) <0, then F;.v, = 0 and El( o), w = Usap-

For A € P, we denote by V(A1) the U-module generated by v, with the defining relation that
v, is an extremal vector of weight A. The module V(4) is integrable.

ReMark 2.8. For A € Pandi € I, we have the isomorphism V(1) — V(s;4) of U-modules
given by

E if(la!)>0

vy - Xfl(/lﬂ,-vﬂ) .
F if(1,a)) <0.

) vs,2 Where X := {
DeriniTioN 2.9. Let V be an object of C (resp. C’). For f € V* and v € V, define an

element c}/.,v € U” (resp. € U") by

X (f,X0)(X € Uresp. X € U).

Let MC¢ (resp. MC¢) be the subspace of U* (resp. U*) spanned by all elements of the
form cj‘f.,v (V’s are objects of C resp. C’). Then, MC¢ and MC¢ are Q(g)-algebras whose
multiplications are defined as the dual of the comultiplications A. Then the Q(g)-linear map
MCe — MCC/,CJY’U - C}/,v is an isomorphism of Q(g)-algebras. Hence we will identify

\%4 * : \%4 T
Cry € U w1thcf’v e U".

For A € P, the element eV

7y Will be briefly denoted by C},U-

DErinition 2.10. Let V be an integrable U-module. For i € [ and € € {£1}, there exist
Q(g)-linear automorphisms Tl.” o I';. on V and the Q(g)-algebra automorphisms Tl.” o Tl.” ‘onU
defined as in [18, Chapter 5, 37]. It is known that these maps satisfy the following properties
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[18]:
o T/ =(T" )" onVandU.
o T} (Xv) =T, (X).T} (v)forve Vand X € U (b € {’, "}).
e The maps {TEE},EI satisfy the braid relations. Hence, for w € W, the map T,?)’E =

T’ ---T;E withi = (if,..., i) € I(w) is well-defined on Vand U (b € {’, "'}).

11,€

cwolj cw=T/ x0T ox=T/ ad()oT; o()=T) onU (e’ ).

e’
Proposition 2.11 ([18, Proposition 5.3.4]). Let V and V' be integrable U-modules. Then,

k

kk=1)

17,0 a7 | @ -aHEP e FPo) = 17, o T/ )®),
k>0 s=1

foranyielandbve VYV
2.2. Global bases.

DeriniTion 2.12. We refer to [5] for the definition of the category of Kashiwara crystals
(B, wt, {&}ier, {@itier, (8i}ier. { filier) associated with (P, {e}ier. {a/}icr). Recall that ¢;(b) =
&i(b) + <a;’,wtb> for b € B, which is one of their axioms. A morphism ¥ : By — B; of
crystals is said to be strict if ¥ commutes with the Kashiwara operators &;’s and f;’s (i € I),
and to be an embedding if the associated map ¥ : By [ [{0} — B, [[{0} is injective.

For crystals B; and B;, the tensor product By ® B; of B and B, is defined as follows [5]:

(i) Bi®B; = B; X B, as a set, (An element (b1, b,) € B; ® B, will be denoted by b; ® b;)
(i1) wt(by ® by) = wtby + Wt b,,
(iii) &i(b) ® by) = max{g;i(b)), gi(b2) — (@, Wt by)},
(iv) @i(b1 ® by) = max{g;(b)) + (), Wtby), pi(by)},
(V) (b1 ® by) = {Z’ibl Q?bz if 901'(191.) > &i(by),
by ® é;b, otherwise,
fbi® by if @i(by) > si(by),
b ® ﬁbz otherwise,
where we set 0@ b =b®0 = 0.

For a crystal B, a new crystal B := {b“ | b € B} is defined as wtb® = —wtb, g;(b*) =

0i(b), 0i(b*) = £,(b),&(b*) = (f;b)* and f(b*) = (&;b).

i) filb1 ® by) = {

DeriniTion 2.13. For A € P, we define the crystal T, = {t,} by wtt, = A, &i(t)) = ¢;(t)) =
—oco, and ¢&;t; = ]Z;l,l =0.
For i € I, the crystal B; := {b;(n) | n € Z} is defined as
-n ifj=i, n if j=1,
fis ®(bi(n)) ={
A

wtb;(n) = na;, €j(bi(n)) = { o
—oo if j# —oo if j #1,

&:bi(n) = bi(n + 1) and fib;j(n) = bj(n — 1).

We denote by B(co) (resp. B(U), B(Uay), B(A)(A € P)) the crystal associated with U~
(resp. U, Ua,, V(1)). See [4], [7] for the precise definitions. The unique element of B(co)
with weight 0 will be denoted by b.,. Set B(—c0) := B(co)®. Then, the crystal B(—co) is
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isomorphic to the crystal associated with U*. We have
B(U) = ]_[ B(Uay) and B(Uay) ~ B(c0) ® T; ® B(—0)(1 € P)
A€P

as crystals [7, Theorem 3.1.1]. Henceforth, we regard the elements of B(c0) ® T, ® B(—0) as
those of B(Ua,). We refer to [8, Appendix B] for a dictionary of calculations on this crystal.

The anti-involution * induces the bijections on B(co) and B(U). ([5, Theorem 2.1.1],
[7, Theorem 4.3.2]) Moreover, these bijections give the new crystal structures on B(co) and
B(U), defined by the maps wt* := wt o, £l i= gjox, ! 1= @jo*, &} 1= *OéiO*,fi* = *Oin*.
Note that wt* = wt for B(c0).

Proposition 2.14 ([5, Theorem 2.2.1]). For i € I, these exists a unique strict embedding
Wi : B(0) = B(0) ® B; of crystals given by beo > boo @ b;(0).

~K

Moreover, ¥;(b) = el.gj(b)l; ® b,-(—sl’.‘(i)))for all b € B(o0).
Corollary 2.15 ([24, Lemma 3.4.6]). For any b € B(co), we have
&i(b) + ¢; (D) = €/ (b) + ¢i(b) = max{k € Zso | ((f;)'D) = &i(b)).
In particular, &i(b) + (,0;"(13) = s;.k(lg) + go,~(l§) > 0.

Corollary 2.16. Let i € I and b € B(o). Suppose that & and &, are any composition of
the operators é;, fi, e; and fl* such that &,(b) # 0 and k(D) # 0.
Then, we have &, (b) = k»(b) if and only if
(weki(b), @) = (Wtka(b), @) and & (%1 (D)) = &} (%a(D)).

Proof. Write W¥i(B) = by ® bi(mo). ¥,k () = by ® bi(m)). ¥i(ka(B) = by ® by(my) and
By := (/B | p € Zuo) U LB | p € Z20)) \ (O,

Then, by the definition of the crystal structure on B(c0)® B;, we have by, b, € Bg ), Therefore,
we have

k(D) = ka(b) & Yi(ki(D)) = Yi(ka(D))(& by = by and my = my),
& (wthy, @)y = (wt b, @) and & (K b)) = 8?(7(2(15)),
& (Wtky(b),a)) = (Wtky(b), @)y and &} (%; (b)) = &} (ka(D)).

O

Proposition 2.17 ([7, Corollary 4.3.3]). For by € B(0), b, € B(—o0) and A € P, we have
#(b1 @ 11 ®by) = #(b1) ® 1_ i, —wi, ® *(D2)
as elements of B(U). In particular, wt* b=-2 for b € BUay).
DermniTioN 2.18. For a subset J C I, we denote by U; the subalgebra of U generated by
{Ej, Fj, KavYjes-

A crystal B is called normal if, for any subset J C I such that (a;);es is of finite type,
B is isomorphic to a crystal of an integrable U,;-module as a crystal associated with the data

(Ply,., zay st} jes, {a}}jen).
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For a normal crystal B, b € Band i € I, we have
&i(b) = max{m € Zy¢ | &/'b # 0} and ¢;(b) = max{m € Zy | fi’”b # 0}

For a normal crystal B and i € I, we define the bijection S; : B — B by

F Py i o, wib) 2 0
Sib = ~(a) ,wtb)

b if (e, wth) <0

~ for b € B.
el
Note that S 12 = id. The maps {S;};c; satisfy the braid relation ([7, Theorem 7.2.2]). Hence,
themap S, :=S;, ---S; is well-defined for any w = s;, - - - 5, € W.
For a normal crystal B, an element b € B is called extremal if
e 2;S,b=0forallwe W with (a;, wwtb) >0, and
e fiS,b=0forall we W with (o) ,wwtb) <0.

REMARK 2.19. We have the following properties:

e The crystals T)(A € P), B;(i € I) and B(+o0) are not normal.

e The crystals B(U) and B(A)(A € P) are normal. ([16], [7])

e For 4 € P, the crystal B(1) can be identified with the subcrystal {b € BlUay)| *
b is extremal} of B(Ua,). ([7, Proposition 8.2.2])

e For 4 € P and i € I, there exists the isomorphism B(1) — B(s;A1) of crystals given
by b (§;(b*))*(=: §;b). ([7, Proposition 8.2.2])

Notarion 2.20. Let us denote by {G‘(l?)},;e B(eo) (TESP. {GJ'(Z?)},;e B(—c0)> {G(b)}beB(U),
{gb}benry) the lower global basis of U~ (resp. U*, U, V(A)(A € P)). We refer to [4], [16], [7]
for the definitions of them.

Remark 2.21. The following are well-known properties of the lower global bases.

o w(G (b)) = G*(b*) for b € B(c0).

e G¥(b) = G¥(b), G(b) = G(b) for b € B(x), b € B(U). ([4], [16])

e +G¥(D) = G7(+b), *G(b) = G(xb) for b € B(+0), b € B(U). ([5], [7])

e For 1 € P,, we have {G1(l~7).vﬂ},~,€B(ioo) \ {0} = {gp}peB(1). Moreover, the maps
B(1) = B(0)T),b— b®t) with g, = G (b).vy and B(—1) = T_, ® B(—=0),b
t_, ® b with gy = G*(b).v; are the embeddings of crystals. ([4])

e For A € P, we have {G(b).va}jep) \ {0} = {gb}resr. Moreover, the map B(1) —
B(U),b — b with g, = G(b).v, is the strict embedding of crystals. ([7])

e For A € Pand b € B(c), we have

Ghbet,®b”) =G (b)a,, and G(be ® 1; ® b*) = G*(b*)a,.

The U-module isomorphism V(1) — V(s;4) in Remark 2.8 sends the global basis to
the global basis. ([7])

Proposition 2.22 ([24, Proposition 3.4.7, Corollary 3.4.8], [17, Theorem 1.2]). Leti € |
and

n: U = @ F" Kere| — Kere/,
ne’so !
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n U = @nezzo Ker;e'F;” — Ker e,
be natural projections. Then, for b € B(co) with £i(b) = 0, we have
‘(G (b)) = T}, (7'G™ (1,(D))),
where t; : {b € B(c0) | gi(b) = 0} — {b € B(x) | 8;‘(13) = 0} is the bijection given by
N f?ﬁ,*(b)(é?)g;(i;)g'
DerintTioN 2.23. For b € B(U) (resp. b € B(A)(A € P)), define an element F(b) € U*
(resp. f € V(A)*) by G(b') > 6, for b € B(U) (resp. gy +> 0y for b’ € B(2)).

In the rest of this subsection, we summarize the properties of the lower global bases
relevant to the structure constants and prove one lemma (Lemma 2.33) and one proposition
(Proposition 2.35).

Nortation 2.24. For any b € B(0),b € B(U),i € I and k € Zs(, we write
FRG By = ) G @) NG By= ), diyG @),

-~ b’b/ -~
b’eB(o0) b’eB(c0)

EPGH) = ) ENIGE),
beB(U) |

: (k)i g(k),i (k)i +1
with fE,E' , dE,E’ , Eb,b' € Zlg*t'].
Remark 2.25. For any b e B(co),b e B(U),icIandk e Zs(, we have

GHFY = Y PG @), @G dy= ) a6,
I’ eB(c0) ‘ I’ €B(c0)
EX Fb) = Z EM' F().
beBU)

Remark that the summations in the equality in U* may be infinite.

Proposition 2.26 ([6, Proposition 5.3.1], [7, Proposition 6.4.3]). The following state-
ments hold:

(i) Forb,b’ € B(x), i € I and k € Zs(, we have

i b)+k ~ o~
_ 8( ) lfb, — f;kb
(k),i k ~
hw —k(&i(B")—k) l 7 =
b e qq " Nz1q) i eiB') > £i(b) + k
=0 otherwise,

(i) Forb,b’ € B(0), i € I and k € Zsg, we have

i—ks;(l;)+%k(k+l) if B = éfls
(k)i —kei(B)— S k(k—1) . 77 7
diyeqq, " VZg) ifed) > eib) — k

=0 otherwise.
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(iii) For b,b’ € B(U),i € I and k € Zs, we have

i b +k . .
_ vi(b) il =
(k),i k :
b e qg Pz if gih) > @ilb) + k and wtt b = wt* b
=0 otherwise,

(iv) For b,b’ € B(A1)(A € P), we have

frEX ) = oy, and FrEX = 0ifk > @ib),
JoFED = frow,,  and f,F® = 0if k> g(b).

Remark 2.27. To show Proposition 2.26 (ii) from [6, Proposition 5.3.1] and [7, Proposi-
tion 6.4.3], we should note the following equality:

(A+wtb,a))+2

g —(/l+wtl3,a,.v)—2
El‘G_(i?).l)/l =

()G (b)) - q; (€)G (b))
] 0)
qi — 4;

for 1 € P, and b € B(co). The details are left to the reader.

Proposition 2.28 ([4, Theorem 7]). The following statements hold.:

(i) The set {G™ (D) pepooye ok I8 @ Q(q)-basis of FOU~ for any k € Zy,.

(i1) The set {G‘(E)}EeB(oo);glf(l;)Zk is a Q(q)-basis of U‘Fl(k) for any k € Zs.
Corollary 2.29. For b,b’ € B(o),i € I and k € Zs, we have

fgig,’i = 0 unless &/(b') > &} (b).
Proposition 2.30 ([7, Proposition 6.4.2]). For A € P, i € I and k,l € Zs,, we have
UEPa, + UF{a, = P Q)G (b).
b

Here b ranges over {be BUay) | tp;‘(b) > kor e;.k(b) > [}.

ReMaRk 2.31. Let A € P, i € I, b € B(Uay) and k,I € Zsy. If (4, /) = | -k, then
¢:(b) > k implies & (b) = ¢} (b) + (4, ;) > I. Hence, the condition ¢} (b) > k or £ (b) > I is
equivalent to £ (b) > [. Similarly, when (1, @)') < [ — k, the condition ¢} (b) > k or &}(b) > [
is equivalent to go;f‘(l'a) > k.

Corollary 2.32. For b,b’ € B(U),i € I and k € Zs¢, we have
E;(',k;,’/i = 0 unless &;(b') > £/ (b) and ¢} (b') > ¢} (b).
Proof. By Proposition 2.30 and Remark 2.31,
(b i’
UE®a .y + UFSPa ., = P aaca™),
b7eBUa_ ). (b")2¢; (b)

for sufficiently large k. Hence, the right-hand side is a left ideal of U. Similarly, the vector
space (P, eBWUa_ e )t ()26 Q(q)G(b") is a left ideal of U. ]
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Lemma 2.33. Let A € Pand i € I with{A,a/) > 0. Take b € B(A). Assume that there
exists b € B(c0) such that G~(D).v; = g and 8;‘(5) ={4, ozly Y. Then,

G (@)*D).v;, = gy and @)D = 7@ (f)* VD),
~ ~ ((FYiDEY  ~ ~
where &( fi*)"""(b)b = éf'((f" r b)( fl.*)"""(b)b. See Definition 2.7 for the definition of vs,.

Proof. The equality G‘((éj‘)“’”‘iv >l~7).vsi = g, follows from Proposition 2.26, Proposition
2.28 with Remark 2.25. The details are left to the reader.

Now, &/((€)“4b) = 0 = &X(r;(2™*(£")#®b)). Hence, by Corollary 2.16, it remains to
prove that wi(&))“"b = wt 7, (£)#)b).

Let A, := X ey max{(4, a/jv.),O}wj € P.. Then, G (b).vy # O implies G~ (b).v), # 0.
Hence, ¢;(b) + (A,;) = ¢i(b) + (A;,) > 0. Therefore, p;(b) = @i(b ® 1; ® bY) =
@i(b) + (1.a)).

Hence, £ (b)+¢i(b) = (A, )Y +¢i(b) = ¢i(b) and, by Corollary 2.15, &((f)*®b) = &(b).
Therefore, we obtain

wt T, (@M (£)7Pb) = si(wtb + (gi(b) — gi(b))ay)
si(wth — ((4, @)y + (wth, @) Y)ay)

wth + (A, o Ya; = Wt(é;‘)“"’fv)E.

O

Nortation 2.34. For a Laurent polynomial P € Z[g*'] and an integer m € Z, the degree
< m part of P will be denoted by P,,.

Proposition 2.35 (Similarity of the structure constants). Recall Notation 2.24. For any
b,b’' € B(co),i € I and k € Zso, we have

(k).i I GECACH N A C) (&t
f" 7 - qi d" Smax s
bb" ) < nik(ely-1) ko berh

where &, 1= &) —k and E?la"l;’ = éf"(b/)l;’.

)<—A,~k(g;k)—1),

Proof. By Proposition 2.26, we have

22 (@ EG Y= ) D, G @”).
ENEB(OO) l;//rGB(oo)
si(B")2e(b)+k £:(b"")ze(b" ) ~£i(B')

Let C be the coeflicient of G‘(E?‘axf)’)(# 0) in (2.2). Then,

_ (k)i (&i(B')),i
C - Z f[;’[;// d}")u’é;naxi)r .
E”EB(oo)
£i(0)>gi(D'")=&1(b)+k

By Proposition 2.26, we have

k)i (&i(B)),i —k(gi(D")—k—1)—L&:(B ) (&:1(b")-1)
Z fZJ,ZI” d[;”’é;"a"g’ € q[ Z[q] N
b eB(c0)

&0 )>&:1(b" )z e:1(b)+k
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Moreover, if £;(0’) = &;(b”) and dl(jj(f’mzil’], # 0, then ”8’(“5” = é}“a"E’(i 0) (equivalently,

b” = D’). Therefore, we have

3&(B)Ei(B)-1) Ak
)

where (o) = —A; (k(g[;, — 1) + &5 )(&:(b) - 1)) /2.
On the other hand,

()" P (FPG(B))
o 26:(0 k+(e:1(B')+k n| @) P
qu— 1B e (B +)s— L (s >[ ,S ] FE9 ey ®-5G(b).
s=0 i

This follows from a direct computation and this calculation result is written in the reference
[4, (3.1.2)]. By Proposition 2.26, we have

F;k—s) (e;)si(ii')—SG— (E)
_ (8,(1) )=8),i plk—s),i 2z
Y D, AT G,

b €B(c0) b €B(c0)
&i(B'")2ei(b)—5/(b')+5 (B )2e/(b" )+k—s

We consider the case b’ = ~f‘1a"15’. The inequality 0 > (") + k — s does not hold unless
s = k. Hence, we have

S

ek bk [ &(D)
C - q [ ' E’E’.maXEI.
1

! k

I herefore,
l( / (8,( ) 1) k
(qi 28 )b f( )1)

Hence, we obtain the equality

(f(k)i) = q%siw(efk)‘” &i(b) g
bb" ) < nik(ely-1) ' ko | bamy

k b emaxh/

_ (q—s,-(B')k+%k<k+1>[ &i(b) ] o k)z)
<(*) l i <(e)

)<—A,~k(a;k)—1).

DerNiTION 2.36. Let A € P, U (—P,). Then, there exists a unique nondegenerate sym-
metric Q(g)-bilinear form (', ), on V(A1) such that

(r, v = 1 and (x.u,v), = (4, Y(x).v), for u,v € V(1) and x € U.

Forv € V(1), we set v* := (u — (u,v),) € V(1)*.

Since dim V(1), < oo for any 4 € P and (, ), is nondegenerate, there uniquely exists a
basis {g;,/}bggu) of V(A) such that (gZ)* = f for all b € B(1). See Definition 2.23 for the
definition of fj.

Note that (v, v,), = 1 for all extremal vectors v, (w € W). See Definition 2.7. Hence,
U = gb, = ng for some b,, € B(A).

Denote by vy, (resp. fy1) the element v, € V(A)y, (resp. vy, € V(A); ). Remark that
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dim V(1),, = 1 and v, = v,y if wAd = w’'A when 1 € P, U (—P,).

3. Representations of the quantized coordinate algebra A [sl,]

In this section, we investigate the actions of the matrix coefficients of extremal weight
modules on the infinite dimensional irreducible modules V;, V! of the quantized coordinate
algebras. Proposition 3.10 is one of the main calculations in this paper.

3.1. A method of calculation.

DeriniTion 3.1, The quantized coordinate algebra A,[sh] of sl is the subalgebra of
U,(sly)" generated by ¢;; := F‘Szvf.cfwmuw.E‘SZ-i (i, j € {1,2}). Here, since I = {x}, the elements
Ey, Fy, @y (k € I) are simply denoted by E, F, @ respectively.

Moreover, ¢;;’s satisfy the following relations and, in fact, the relations of ¢;;’s are ex-
hausted by them:

ciicin = qecpcin (i=1,2),  cijeaj = qezjerj (j=1,2),
[c12,¢21]1 =0, [c11, e2] = (g — g Deicar,
c11¢22 — qcca = 1.

LetV, = @m Zoo Q(g) |m) be an infinite dimensional Q(g)-vector space with a basis indexed
by non-negative integers. We define an A,[sl>]-module structure on V., by

) if m=0,
c“..lm>|—> |m_1> ifm€Z>0,
cia. : my — —g"™* ! |m) for m € Zs,
ca1.: lmy V— ¢™ \m) for m € Zsy,

. my — (1 =" D) im + 1) form € Zsy.

By its construction, it is easy to see that this is a simple A,[sl>]-module. The corresponding
algebra homomorphism A,[s,] — Endg,(V.) is denoted by ..

Derinition 3.2, For i € I, we denote by U; the Hopf subalgebra of U generated by
{E;,Fi,K;}. Lety; : U; — U be the natural inclusion of the Hopf algebra. Then, there
exists the algebra homomorphism ¢ : U* — U] given by f +— f oy

We can regard Q(q) ®q(y,) Ag[12] as a subalgebra of U} and denote this subalgebra by
A;. The irreducible representation m. corresponding to A; will be denoted by x; and its
representation space will be written as V; = @,ez.,Q(q) [m);.

Note that L?(C}/.’U) € A; for any integrable U-module V, f € V*andv € V. For A € PU(-P,)
and w € W, we have

@y iraten <o,
L (C, = v
! fsl-w/l’vw/l C;C;’ »IU/D if <Cyl\/7 w/l> 2 O.
DeriniTiON 3.3, Let A € P, U (—P,). Set

* ._ *
V)™ = ZveP Vi, = @bew) UDSp-
See Definition 2.23 for the definition of f;,. Note that dim V(1), < oo for all v € P when
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A € P, U(=P,). We regard V(A)* naturally as a right U-module. The right U-module V(2)*
is an irreducible integrable highest weight right U-module with highest weight A.

Proposition 3.4 ([18, Proposition 31.2.6]). Let V be an integrable left U-module and
A1, Ay € P,

FP0=0forallk>(;,e)),i€l, and }

‘7 = eV, _
{U A=A E;k).v =0forallk > (Ay,a)), i€l

Then the maps

Homy(V(41) ® V(=42), V) — ‘:/,Q = 0V, ®v-p,),
Homy(V(-=2) ® V(41),V) = V,0 = 0(v_s, ®vy,)

are Q(q)-linear isomorphisms.

Proposition 3.5 ([18, Proposition 31.2.6]). Let V' be an integrable right U-module and
Ay, A € Py

v.F?k) =0forallk > {Ay,a;),i€l, and }

‘7’ = eV’
{ v =4 U.E;k) = Ofor all k > <12’ a,lv>’l € I

Then the maps
HomU(V(_/ll)* ® V(/lZ)*a V,) - ‘:/”Q = Q(f—/ll ® fﬂz)a
Homy(V(22)* @ V(=41)*, V') = V,0 - o(f1, ® f-1,)
are Q(q)-linear isomorphisms.

By Proposition 2.11 and 3.4, we obtain the following corollaries. The details are left to
the reader.

Corollary 3.6. Let V be an integrable left U-module and w € W. Then, for any weight
vector v € V, there exists a homomorphism o : V(1) ® V(w™' wtv — 1) — V of U-modules
given by 0(Vua ® Uy wip-1)) = U whenever (A, a')’s are sufficiently large for all i € I.

Corollary 3.7. Let V' be an integrable right U-module and w € W. Then, for any weight
vector f € V', there exists a homomorphism o' : V()* ® V(w™' wt f — )* — V' of right
U-modules given by o' (fur ® fuw1 wif-1) = f whenever (A, «;)’s are sufficiently large for
allie I

From now on, we study the representations ;.

Lemma 3.8. Let i € I and V an integrable U-module. If L;‘(C}/U).lO),- # 0 for weight
vectors f € V*,v eV, then

wt [ — wtv € Za; and (wt f + th,a/l-v) <0.
Proof. The fact wt f — wtv € Za; clearly follows from L?(C}/-’U) # 0. We can write

vV _ my mp m3 My
Cro= Z Qmyma,ms.ma €23 €21 €12 €1y
my,my,m3,ma€Zx0
with sy msm, € Q(g). Then, we have (wt f+wtuo, af;’) = —2m +2my for any au, mymym, *
0. Hence, if (wt f + wtv, @) > 0, then my > O for all @, yy mym, # 0, and Lf(cXU).IO) =0 by
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definition. This contradicts our assumption. m|

Lemma 3.9. Let A € Pand i € I with {A, afly> > 0. Take by, by € B(A) with gp, € U™ .v,.
Let by € B(co) be the element satisfying G (by)vy = Ib,-
Suppose that L’."(c; ) # 0. Then, we have
i\ foy by
(1) gp, € U".vy and wtb) — wt b, € Za;,
(ii) 3(wtb) —wiby,@)) < @i(by) < H(wtby + wiby, @) — (wthy, @) ).

Proof. The statement (i) follows from Lemma 3.8 and the fact that

(*) The subspace U~.v, is spanned by the global basis elements and stable under the
Uj-action when (1, ;') > 0. (Note that E;.v; = 0.)
Now, (fbl,Efk)Fgl).gbz) # 0 for some k,l € Zsg with k — [ = %(wtbl — Wt b, oz;’). Hence,
fo-EP # 0. By Proposition 2.26, we have ¢i(by) > k > $(wth; — wthy, a)).

It remains to prove that ¢;(h;) < %(wtbl +Wthy, a)) — (wt b, @!). By the statement (i),
the fact () and Proposition 2.26, we have ity € U~ .v,. Hence, —Q, 3> wtby + (b)), —
A =wth) —wthy + wthy + (@i(b1) — (Wt by, a/l.v))oz,-. Note that wtb; — wt b, € Za;. Focusing
on the coefficient of a;, we obtain the desired inequality. m|

The following proposition is one of the most important assertions in this paper, but it
looks complicated. Hence, we indicate here the places where each of assertions will be

used:

(k)i

o the former statement, explicit description of p by

Corollary 3.12,
e the latter statement, estimation of pole orders of the Laurent polynomials p
be used only in the proof of Corollary 3.11 and 3.12.

will be used only in the proof of

(k),i
bi,by’

will
In fact, we will not use Proposition 3.10 itself but use Corollary 3.11 and 3.12 in the subse-
quent sections.

Proposition 3.10 (A method of calculation). Let A € P and i € I with(A,a;) > 0. Take
by, by € B(A) with wtb; — wtby, = —na; for some n € Z such that ¢;(by) > —n. Assume that
there exists b; € B(co) such that G~(b)).v) = gp,(l = 1,2). Note that these assumptions are
necessary for the condition that Lf(c}bl ,gbz) # 0 for g, € U™.vy. See Lemma 3.9.

Set

A = Zajwj € P, with gj
Jel

{= slby) ifj=i
> eiby) ifjel\fi).

Then we have

@i(b1) Mb, by
HEGRIVEDY [(—Wq? >, L H(l—q?’)]m],bz»

k=0 b’ b €B(0) =1
¢i(b1)
(=1 ), Pholmsy,)i for short
=: Py, 1, 1M, b, ; for short,)
k=0

where
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O = t,D,'(bl) — k and mp, p, ‘= —(wth; + Wtbz,a’ly>/2,

Ik == mp, p, (@i(b1) + 1) + @A, @) — @r(r + 1)/2,
e i p(pi(br)An),i (k)i
Ly b = d by b ffa b E*(i?”)@tgl®l~)%,*(l;1)®l‘,1]®l~7ﬁé'

Recall Notation 2.24. Moreover

(k)i

k). I,
Py, € q; " Zlq),

where
Iy, = K 4 (&5, = £](B1) = Dk + @i(b1)(L. ') = ¢i(b1) = ., + 1),
Ep,b, := min{el (b)), —(Wthy, @) — ¢;(b)}.

Before proving Proposition 3.10, we show its two corollaries.

Corollary 3.11. We follow the notation and the assumptions in Proposition 3.10. Then

(k)i —pi(b1)?
Py, €47 ZL

ql
fork =0,...,¢0i(b)).
Proof. It suffices to show that Hg?’;z > —¢;(by)*>. Here we regard Hg‘l)iz as the qua-

dratic function of k. Now &y, 4, — &/(b1) — 1 < &'(by) — &X(b)) — 1 = =1 and 1P =

o hib
@i(b1)({4, ) — £/(b1)) > 0 by Proposition 2.28 (ii). Therefore we have Hg?;z > —gi(b))?
for k = 0,...,¢i(h;) by the shapes of graphs of quadratic functions with leading term k.
O

Corollary 3.12. We follow the notation and the assumptions in Proposition 3.10. Fur-
thermore, we assume that A; := (A, ) > =3(wt b,, @)). Then,

k)i * /T
(P ) <tsiass3wibayy = O unless k = gi(by) and &;(by) = 4.

Recall Notations 2.1 and 2.34. Moreover, if k = ¢;(by) and 8;‘([31) = A;, then

(p(‘ﬁi(bl)),i) B _ (q%mb]-”z(mblva_l) (1) )
<A+2Awthyw?y) = |4 by (B b
b1,by (Ai+2wthy, @) l by l(hl ) <Ai(i+2Awtby,@))).

where E(Ii) = (5?)87(51)1;1 = (&/)b;. See Proposition 2.22 for the definition of 7.

REmARk 3.13. By Proposition 2.26, we have

1 .
31y by (M) 5y =1) (M ),

: o € .
i de,‘r[’](b(l”) Z[Q]

Proof of Corollary 3.12. By Corollary 2.15 and the assumption 4; > —3(wt b, @), we
have
8:([;1) > —QD,'(El) = A —@i(b)) > —<Wt52,‘w’ly> — @i(by).

Hence, &p, p, = —(Wtha, @) — ¢i(b1) = —(Wthy, @)y — 4; — ¢i(by).
We first consider the case k # ¢;(b;). We may assume my, 5, > 0 since p,gklf’l; =0
otherwise by construction. Then,
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1 - o o
_E(Sbl,bz —&b)-1)= §(<Wt by, @)+ A + @i(by) + € (b1) + 1)

l((wtbg,w Y+A4;+1)

[\

- 1
> —(wthy, @) + 5> vi(b1).

The first inequality follows from Corollary 2.15, and the last inequality follows from Lemma
3.9 (ii). (Note that we do not assume L’f‘(c” ).|0); # 0 now, but the inequalities in Lemma

Jo1 90,
3.9 (ii) follows from the assumptions in Proposition 3.10.) Therefore, H(O)l > H(l) ’2 > >
(pi(b1)=1),i (k)i
1L, . Hence, (pb1,bz)<A,~(HZ“]”"(:2'>7””—2) =0.

Moreover, by e’.“(lsl) > A; — @i(by) and —p;(by) > (wt b, w}’) (Lemma 3.9 (i1)), we have

IED™ -2 = —y(by) + £1(by) + (Wb, @) + @i(b1)(i — £](5y)
> A + 3<th~92,wly>.
Note that A; — s;‘(El) > 0 by Proposition 2.28. Hence, (p,g]‘l)’i2)< A K wtbyw?y) = 0.
Next, we consider the case k = ¢;(by) (¢r = 0). Then, by Proposition 3.10,

My by

(@ilb )i _ mbl h2<¢:<bl)+n)z (w,(b1)+n)l (i) l_[ )
Ppp, = f *(h')®111®b‘“ #(b1)®ty, ®bY (1-q;7)
=1

b €B(0)
By the way, ¢;(+(b1) @1, ®b%) = ¢;(b1) +£i(b1) = @i(b1) + €/ (b1) = @ib1) = (4 =& (b1)) <
©i(b1). The second equality follows from Corollary 2.15. Hence, by Proposition 2.26,

b {1 if £2(b1) = A; and b’ = (f)# Vb,

(B @1, ®D% +(b1)®ry, ®bE, 0 otherwise.

This proves the first half of the statement. From now on, we further assume that sj‘(El) = A
Set

N = ~(i(by) + m(&((f)**Vb1) = @i(b) —n — 1)
= —(pi(b)) + n)(gi(gl) — ¢i(by) —n — 1) by Corollary 2.15,
= —(@i(b1) + n)(mp, p, — 1)

= —(pi(b1) + Wmy, p, + ©i(b1) + mp, p, + (Wthy, @)

cf. Proposition 2.35. Note that 85(51)—(pi(b1)—l’l = my, », and we may assume that my, 5, > 0.
Hence,

N > —(@i(by) + mymy, j, + (Wthy, )
—(@i(b1) + mymp, p, + A + 2Awthy, @) ).
Then, by Proposition 2.26 (ii), Lemma 2.33 and Proposition 2.35,

(pi(b1)),i
Py, e
Mp, by
|y, @ibD)AR) (@i(by)+n).i 21
=" fhz(f *)4i1by 1_[“—%)
=1
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Mp, by
| w6, @ib1)+R) , (i(by)+n),i 21
=14; o (f52,(]‘~}*)¢i(b1)1~71)<AiN l_[ (- @ )]
=1 ¢

mbl by

My, by (b)) +m)[ Ly, ) Grpy, 1y —1) 81’([71) (M by ol 21
=19; v (Qiz v [ m di;z .:_42(5(:‘)> l_l(l -q;)
b],bz i i 1 <A,‘N =1 .

ml—lbl'bz Ly by Moy 5y =1) (1, )i
_ _ 2Apilbr)+n+l)y My by My by = M| by )5l
- [ (1 qi )ql dz)z’_(_i_l(i)(li))]
=1 <Ai(pi(b1)+n)/ ¢

Ay (mp by =) (i )i
7 b B0,

where ()y denotes ()_a.1.+2(wth,.ovy)- Lhis proves the corollary. O

The rest of this subsection is devoted to a proof of Proposition 3.10. Proof of Proposition
3.10. Set A, := Ay + wthy. Then, (/lz,a}’) =&+ <wtb1,a}’) > gi(b) + <wtb1,a}’) =
@j(by) > 0forall j €l Hence, 1, € P,.

Therefore, f,,.F = 0 for all k > (4;,a}) and f,, Y = 0 for all k > (,a}) by
Proposition 2.26 for all j € I. Hence, by Proposition 3.5, there exists a homomorphism
¥ V(=24)* @ V()" — V() of right U-modules given by f_), ® fi, — fp,. (Note
that V(1)* might not be integrable but the right U-submodule generated by f;,, in V(1)" is
integrable.) Then, the dual Q(g)-linear map ¥* : (V(1)*)* — (V(=1;)* ® V(1,)*)* given by
f = foW¥isahomomorphism of left U-modules.

For A’ € P and b € B(1'), define ev;, € (V(A')*)* by f + (f, gp). Then, we have

Y (evp,) = Z Ciy b €V ®evyr with ¢ € Q(q).
beB(-11)b"eB(L,)
Note that this is possibly infinite sum but well-defined in (V(—=1;)* ® V(12)*)".
Then, we have

A -1 A>
A

c = Cp pC c .
ﬂ)] 9b, Z b'.b f— ]»gb’ f/lz G’

B eB(=A1),b" €B(d)
This is possibly infinite sum but well-defined in U*. Moreover, by Lemma 3.8,

w0 A L w, = s, A )
L (Cﬁn ’gbz).|0>l - Z b w50, i (Cf—al,gb' )Li (Cf/tz,vs,%z).m)l'
b'eB(-A1y)

-

Hence we investigate the element >y ep ) Ci oy, 4 (€ g
» Ja

(G (by). evy,) = G‘(Ez).‘{’*(evw).
Set

). We now have ¥*(evy,) =

Y(ev,,) = Z Cly 4 €V ®eVyr With ¢, € Q(g), and
b eB(-A)b"€B(Ay)

g = Z €y £, 90 € V=),
peB(-ay L7

Note that if c;, 0 # 0 then wtd’ = A — Ay + ka;, and B(—A41),-4,+ke, 15 a finite set. Since
S0,

(L)) = 0, we have E;¥(ev,)) = P*(E.ev,) = 0. Thus, E.(X\%" g, @ F¥ ) = 0.

Therefore,
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— +k(k— ‘,D(b ) \ :

’ k kgi(by)+k(k—1 i\U1 k ’
;k ( ]) qi (b1)+k( ) El( ) 05
2

fork=0,...,{1s, a/}’) = ¢;(by), which are easily checked by induction on k.
Write

. NI I
AG () =) ;" "GiKi, @ F" + > GuKowe, ®Go,
1=0 G(1),G(2):homogeneous
WtG(z)QZS()(Z,'

here G; := (;¢')(G™(b,)). See Definition 2.5. Then,

& - | @ilb)
7 Pr\Pk— 1
Cb’,vmz 9 = Z qiz [ lk ] G‘PkK‘Pk(Yi'g;c
b'eB(—A1;) k=0 i

¢i(b1) ,
— Z( 1)_k ‘,0“/1(1) z‘Pk(‘pI\*’l)G‘pkEl(k)
k=0
where ¢ 1= @i(b) — k. Set ly := G, E .gi (k = 0,...,¢i(by)). Since hy € V(=1;) and

wthy = —A; + (¢i(by) + n)a;, we have hy = E(‘a’(b')“q) 1, for some ¢; € Q(q).

Claim 1.

_ &i(by)
G ) = [ i(b1) +n

(@i(b1)+n) sﬂl(b1)+n "My by
= F; Jy)es Cy'

@i(b1)+n by b,
231 2
i

Proof of Claim 1. We have

/11 )_ Ck E(%(bl)+n) *( f ): ckE(np,(b|)+n) a,(b]).

L (c Cy)

The direct computation of the right-hand side now completes the proof. Note that ;(b;) —
@i(b1) —n = mp, p,. m

We prepare one more claim on the element ¢,

f 190
Claim 2. Set by := by ® 1_y,_yyj, ® b2 = x(x(b)) ® 1), ® DY) € B(e0) ® Ty, ® B(=0).
See Proposition 2.17. Then, c}dl = F(by) as an element of U*.
1>

Proof of Claim 2. Letb®1,® b’ € B(c0)® T, ® B(—o0)(u € P). By Proposition 2.17 and
Proposition 2.30, we have f_,, G(b®1, ® b') = f_;,. % (G(+(D) ® 1_,_yij iy ® #(0))) = 0
unless &’ = b and u = —1; — wtb. Hence,

(for GO ®1, ®b).90) = ((f-0, G @1, ®D")).g)) =0

unless &’ = b and u = —A; — wtb. Moreover, for b € B(co), we have

<f—/11 s G(E ® tf/llfth ® l;g:)gé) = 57/117wtl~7,7/11—wt51 <f—/11 s G_(E)g€)>
= 6—/11—wt[;,—/ll—wtl~71 <f—/11 ® f/?.z, G_(E)'(g(/) ® U/lz))
= 0_ 1 -wib-d-wiby {f-t1 ® f, G (B).¥"(ev.))
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= O0_ 3 —wtb—a,-wih, Jb1> G~ (b).v)

= (5—/11 —wt B,—/ll —th;l 6[1,[71 .

Combining all the above results, we obtain
(e, g, )-10):
= DL Gt e, )0

b'eB(-1y)
¢i(by)

Nk wk(l,wiv)—-wk(wk‘rl) e\ '
Z( a) g G R, 10y

901(171)
k¢</10>—-¢(<p+1) (b i(b m (b
Z (_ ) k 2 Pr\Pr <f I’F(sﬂ( 1)+n) h > ‘P( 1+n 22”1 by ‘fz( 1) |0>1
k=0
@i(b1) Mpy by
I i(b k 21
= > Ca) g o FEO G ER goy | | (1= g2lmy, )i
k=0 =1
¢i(b1) Mb by
I i (b k 21
= > (=g g F b)), FE G an gy a ) | | (1= gm0
k=0 =1
¢i(b1) Mp, by

Z( DY Lk,,/,,,,]_lu— 2o, )i

b b eB(co)
where

Iy := myp, p,(@i(b1) + 1) + @A, av> — (i + 1)/2,

(tﬂk) i f(wx(b1)+n) B E(k) i

Ly i=d .
kb’ b 2 b b #(b)®1y, 85 (1)@t @b

The last equality follows from Remark 2.25 and Proposition 2.17. This proves the first part
of the proposition.

Claim 3. L, ; ;» = 0 unless 8?([;’) < &y p, + k and &) < &i(by). Here Eb by =
min{e; (b1), (Wt by, @) — @i(b1)).
Proof of Claim 3. If E(k)’ # 0, then, by Corollary 2.32,

#(b")®ty, @b +(b1)®1,, @b
max{g;(b”), e((b1)} = &i(+(b") @ t), ® bY)
(3.1 < & (x(b)) ® t, ® b)) = max{e;(b), &i(b1)}.

Note that £;(b;) = &;(h;). Hence, the condition (3.1) is equivalent to &(b”) < &(b).

(k)i ...
Moreover, if E W5t @B B0, B # 0, then, by Corollary 2.15, Proposition 2.26 and
Sz(bl) - 8,([)1),

@i (b1) + &i(by) = pi(x(b)) ® 1y, ® bY)
> i) @1y, @b2) +k
= max{g;(0") + &i(b1), 0} + k(= ¢} (b"") + &i(by) + k)
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and wt & + ka; = wtb,. These conditions imply s;"(i)l) +k > s;‘(l;”).
If £#04 2 0, then, by Corollary 2.29, ¥(5") > &/(B') and wtb” = wth’' — (pi(by) +

l;’,l;”
n)a;.
: (‘Pi(hl)"'n)’i (k),i w10 < s/ T 7r _
Hence, if f;;,,;;u E*(B”)@a,®ng,*(131)®u,®iagz # 0, then £/(') < &/(b)) + k and wtb' =
wtby + (¢i(b1) — k)a;. These conditions imply £(b") < &5, + k. Note that £/(b") <
—(th;’,wiv). O

Applying Proposition 2.26 and Claim 3, we have

d(iﬁ)lb c qi—soke:(5'>—%¢k<¢k—1>z[q] c ql_—msbl,hz+k>—%¢k<¢k—1>z[q]’

fgf;(,lf])+”)’i c qi—wi(b]>+n><ei(z3">—¢i<b1>—n>Z[q] c qi—«of(bl)+n)<si(b1>—sof<b1)—n)z[ 4l
_ i_mbl,hz(‘ﬁf(bl)"'n)z[q],

BN et € 2lg) = g g

for the factors of every nonzero L, j, ;.. These estimates prove the remaining part of the
proposition. O

3.2. The involution ¢*.
DeriniTion 3.14. We have the Q(g)-algebra involution y* : U* — U* given by f +— fo.
ExampLE 3.15. In Ay[sl;], we have

Yr(en) = ciLyi(cn) = e, ¥ (ca1) = cia, ¥ (e) = 2.

Remark 3.16. The map ¢* induces the Q(g)-algebra involution A; — A; for i € I, which
is also denoted by y/*.

REMARK 3.17. Let A € P, U (—P,). Forv,v" € V(1), we have W*(Cf»«,v/) = cf,*’v.

DeriniioN 3.18. For i € I, we define an A;-module V/ := @m€Z>q Q(g){m|; by

Cll':<m|i'_>{0 %fm:O,
(m—1); ifme Z.,
cr2. : {ml; ¥— g7 (ml; for m € Zs,
cr1.: (m|; — —q;."“(mh form e ZZO’

. (mli— (1= " ) m+1];  for m € Zsy.
The following proposition immediately follows from the definition of V.

Proposition 3.19. For i € I, we denote by Vlfﬂ* the A;-module which corresponds to the
Q(q)-algebra homomorphism mt; o " : A; — Endg,) (Vi)
Then the Q(q)-linear map V;V — VI, Im); & (ml; is an isomorphism of A;-modules.

Derinition 3.20. We have the Q(g)-anti-algebra involution ( o §)* : U* — U* given by
F — FoyoS. Note that y o § is the Q(g)-algebra, anti-coalgebra involution given by
Eiv —q'Fi, Fi —qE;and K, — K_, (i € I,h € PY).
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ExampLe 3.21. In A [sl], we have
W 0 S)(ci1) = ¢, (f 0 §)(c12) = —gica1, W 0 S)*(c21) = —q; 12, (W 0 S)*(c22) = c11.

RemMark 3.22. The map (¢ o §)* induces the Q(g)-anti-algebra involution A; — A; for
i € I, which is also denoted by (¥ o §)*.

Derinition 3.23. We define the Q(g)-bilinear form (, ); : V; X V; = Q(q) by

(e)isle i = e [ J(1=a27".
k=1
Then this form satisfies (C.A,A”); = (A, (¥ o S)*(C).A’"); for any C € A; and A, A" €V,
which can be checked directly using Example 3.21.

The A;-module V] is the dual module of V; in the following sense.

Proposition 3.24. Ser V' := @meZ>0 Q(g)(Im);, =)i(C V). Define the left A;-module
structure on V; by (C.E,A) = (E,(CoS).A) for C€ A, E€ V and A € V;. Then, V* is an
Aj-submodule of V! and the Q(q)-linear map V! — Vl.*, (m|; ¥ (m);, —); is an isomorphism
of Ai-modules.

4. The structure of the quantized coordinate algebras

In this section, we fix the definition of the quantized coordinate algebra A,[g]" and the
embedding of the algebras Q : Aylslt — U=0 ® U=°. Such an embedding is written in the
reference [3, Chapter 9]. (The conventions are slightly different from ours.) We describe the
U-bimodule structure on A,[g]* in terms of U=° ® U= (Proposition 4.17).

DEriNiTION 4.1. The quantized coordinate algebra A,[g]™ (resp. A,[g]7) of g is the Q(q)-
vector subspace of U™ spanned by the elements

(¢}, | f € V()*,ve V(A)and A € Py(resp. A € —P,)).

Then, A,[g]* is a subalgebra of U* and isomorphic to b AexP, V()*®V (1) as a U-bimodule.
(See [6, Chapter 7].)

Remark 4.2. If g is of finite type, A,[g]" = A,[g]"(=: Aylg]) and it has a Hopf algebra
structure induced from that of U.

RemMark 4.3. We have the Q(g)-anti-algebra involution w* : U* — U* given by f +— fow.
Then, this map induces w* : A,[g]* — Ay[g]™. In particular, A,[g]™ is the opposite algebra
of A la]™.

From now on, we mainly deal with A,[g]*. (The algebra A,[g]~ will be used in Subsection
5.2)

DeriniTion 4.4, Define the Q(g)-algebra homomorphism R,(resp.R_) : U* —

(U= (resp. (U=°)") by f + [ ly=o (resp. f [y=o).
Set A,[b]* := R, (A,[a]") and A [b7]* := R_(A,[a]").
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DerNiTION 4.5. Let U be a variant of the quantized enveloping algebra whose generators
of its Cartan part are indexed by the elements of P (denoted by {K,},cp). (That is, U has the
relations K;K = Ky p, K)E; = ¢ E;K, etc. The element K; corresponds to K,..) The
Q(g)-algebra U has a Hopf algebra structure similar to the one of U.

Moreover, we define the subalgebras U=, U< etc. and the weight spaces U, of U sim-
ilarly to U=, U=, U, etc. Note that U* (resp. U~) can be naturally identified with U*
(resp. U").

DerNTION 4.6 (Drinfeld pairing). There uniquely exists a Q(¢)-bilinear map (, )™ : UZ’x
U= — Q(g) such that
(1) (AX),Y; @ Vo)t = (X, Y Y,)* for X € U2, Y,,Y, € U=,
() (X2 ® X1, A(Y))* = (X, X»,Y)" for X;, X, € U, Y € U=°,
(i) (E;, K)' = (K, F)t* =0forieland A€ Phe PV,
(iv) (Kp, Kt =g forde Phe PV,
(V) (E, F)© = —(5,7# fori,jel.
i~ 4,
We also define the Q(g)-bilinear map (, )~ : U** x U — Q(g) in the same way. (For
example, (E;, K;,)™ = (K, Fi)™ = 0,(K, Kp)™ = ¢ etc.)
These bilinear form has the following properties:
e Forie Phe PYand X € U*,Y € U™, we have (K; X, K;Y)" = ¢““"(X,Y)" and
(KiX, KnY)™ = ¢ (X, Y)"
e Fora,f€ 0, (,)* IU;XU:ﬁ: O unless a = B.
e (, )Y u:xu-, 1s nondegenerate.
Define the Q(g)-linear maps as follows;
O, : U0 - (U, Y (-, 1),
O_: U - (U, X X,-).

Then, @, is an injective Q(g)-algebra homomorphism and ®_ is an injective Q(g)-anti-
algebra homomorphism.
Define the Q(g)-algebra isomorphisms by

¥, :=wo®': d (U) - U,
Y_:=yo® ' O_(U*0) — U,

Here, the maps w, ¢ on U is defined similarly to the ones on U. See Definition 2.4.

DEriniTiON 4.7, Set
(5 Jpos := (@ 0 w)(), w()* |yexu: UT X UT = Q(g),
(5 dneg := W), )* lu-xv-: U x U™ — Q(g).
Then, (, )pos and (, )peg satisfies the following properties:
® (, Jpos = (W(), W( Dneg, (1, Dpos = (1, Dipeg = 1.
o (EX Xl = (X0 o (X Ko = = (X

1 1

1 , 1 ,
o (FiYy, Yz)neg = 1_—q2(Ylaei(Y2))neg, (1 F, YZ)neg = 1__q2(Y1’ie (YQ))neg-

l 1
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® (, Jpos and (, )neg are symmetric.
® ( Jpos lugxuzr=0and (, Ineg lu-,xv-,= O unless @ = B. (o, B € Q4)
e (, )pos |U§><U:{ and (,, )neg IUZUXU;, are nondegenerate. (@€ Qy)

By the fact that dim U}, < oo for all @ € Q. and the nondegeneracy of the forms, there
exists a basis {G*(b)"};. B(xe0) Of U™ such that

(G*(D)",G*(B"))pos = 633y (b, € B(—0)).
(resp. (G™(B)", G~ (D' )neg = 03 (b, b’ € B(x0)).)

The basis {GJ—'(E)V},;GB(WO) is called the upper global basis of U* (with respect to (, )pos
(resp. (, )neg))- Note that w(G~(b)") = G*(b*)” for b € B(co).

Lemma 4.8. Let F € U* be an element such that F.K; = ¢*"' F and K,.F = ¢“"F for
all h € P and some A,u € P. Then, we have R.(F) € ®,.(U=") and R_(F) € ®_(U>°). In
particular; Ay[6*]" € ®,(U=) and A [b7]" ¢ ®_(U=").

Proof. For any G € U,(a € Q), we have (F,G) = Ounless @ = 1 — p.

Since (, )* IUI—;‘XU:u—m is nondegenerate, there uniquely exists G’ € U:( 1) such that
(G,G")" =(F,G) forall G € Uj{_#. Hence, for h € PY and G € U*, we have (R.(F), K;,G) =
gMNE, Gy = ¢Y(G, G = (KyG, K_;G')* = (D (K_,G"), K;,G). We can show R_(F) €

®_(U>") similarly. o

The following lemma is straightforward.

Lemma 4.9. Let F be an element of ®,(U=°) satisfying F.K, = ¢ F. Then ¥,(F) =
XK, where X is a unique element of U* such that (X,=)pes = F oy o w |y+. That is,
X = YhenoF WG (D))G* (b))

Let F’ be an element of ®_(U?°) satisfying Ky.F' = ¢ F'. Then Y_(F') = YK_,
where Y is a unique element of U~ such that (Y,~)ne = F’' |y-. That is, ¥ =
ZheneoF', G ()G (b)".

In particular, for A € P, and b € B(1), we have

W (Ro(cp ) = G (B) Ky and W_(R(c(yy. ) = G~(B) 'K .
19 (gb) sU2

Here, b is an element of B(c0) such that G (D), = gb-

We have the injective Q(g)-linear map Q : U* — (U= ® U=%)* dual to the surjective
multiplication map U= ® U= — U. Then, Q is a Q(g)-algebra homomorphism. The
algebra A,[b7]" ® A,[b"]" is regarded as a subalgebra of (U= @ U0y,

Lemma 4.10. We have Q(A,[g]*) C Ay[b7]" @ A,[bF]".
Proof. For 1 € P, f € V()*,v € V(2), we have
.1 Q(c},) = Zbew) R_(c},) ®R.(c} ).

Since the weights of V(1) are contained in A — Q, and all weights spaces are finite dimen-
sional, the above summation is finite. O
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Proposition 4.11. The composition Q : A,[a]* 2, A 07T ® A [bF]* Lo =0 g 720

is a well-defined injective Q(q)-algebra homomorphism. Moreover, the following hold:
(1) The multiplicative subset S := {c}bvﬁ Yaer, of Aglal* consists of non-zero divisors and
it is a left and right Ore set, that is, S-CﬂAq[g]Jr-cﬂM # 0 and C-Sﬂc?ﬁm Aglal™ #0
forall C € Aj[g]l* and A € P.; hence, we can consider the algebra of fractions
Aq,[g]:rg with respect to S. See, for instance, [3, Appendix A.2].

(i1) The map Q can be extended to the injective Q(q)-algebra homomorphism A,[g]s —
U= ® U>° and (A,[a]) = B ., U K1 ® UK.

Proof. The first half of the statement follows from Lemma 4.8 and 4.10. Hence, we prove
(1) and (ii) from now on. By Lemma 4.9 and the calculation (4.1), we have

4.2) Q(C?g,t)*,u) =G (b)'K_, ® K, and Q(Cfa,gz) = K, ® G (h°)'K,.

for A € P,, b € B(1) and b € B(co) with G™(b).v; = g,. In particular, Q(cjcm) =K, ®K,.
Therefore, the elements of S are non-zero divisors. Fori € I,

QT )=(F)' K, ® Key, = (1 = g))FiK 5, ® K5,

f:\‘,-w,wvw,-
AT, ) =Ko, ®(E) Key = (1 = ¢)K -, ® EiK .

i

Hence, for X € Ut and Y € U™, we have YK_, ® XK, € Q(Aq[g]’“) whenever (v, al.v>’s are
sufficiently large for all i € /.

Take an arbitrary A € P, and an arbitrary C € A,[g]". By Lemma 4.9, we write Q) =
2pcpape0, Y-puK-y ® XouKy with Xo, € Uy and Y_g, € UZ,. Then,

(e, )AC) = 4 PY 5Ky ® Xoy KK 1 ® K,

uePaBeQ.
It follows from the above argument that Y_5,K_, ® X, ,K, € Q(Aq[g]+) for all u € P and
a,f € O, whenever (v, a}’)’s are sufficiently large for all i € . Fix such an element vy € P,.
Then,
Q™ IAUC) = Qe |, e
0 Y0°"v0

f/l+v0 SUA+,

)QAC) € QA [s])Act,)-

A
Sfasva Sasva

Hence, S - C N A,[g]" - C}M{ # (0. Similarly, we can prove C - S N C;W - Aglgl™ # 0. This
proves (i).
Since the elements Q(c}bw) = K_, ® K, are invertible in U=0 ® U>°, the Q(g)-algebra

homomorphism € can be extended to the injective Q(g)-algebra homomorphism Aglall —
U=0 ® U*0. By (4.2), we have Q(A,[s]%) > D ,., UK_, ® U*K,. On the other hand, by
Lemma 4.9 and the calculation (4.1), we have Q(Aq[g];) C EB/EP U K_, ® U*K,. This
proves (ii). m|

DEeriNITION 4.12. For w € W, we define the Q(g)-linear subspace A,[g]*™ and “™A [g]
of A,[g]* by

DA, [g] := spang,fch | Tve V), € Py,
Agla]"™ = spangg {ef,, | f € VID*, A€ P).

Then, they are Q(g)-subalgebras of A,[g]". The map " induces the isomorphism ¥~ :
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Aglg]"™ — MDA [g].
Corollary 4.13. The Q(q)-algebra A,lgl} is generated by “™A,[g], Ayla]™ and
{(c} ) haer,-
Corollary 4.14. For A € P, we set
U~ :=PHe@)GB)’ and U* (1) := PG B)".

beB(c0) beB(—o0)
s;‘(E)S(/La;/) for all i€l tpi*(l;)s(/l,a,.v) for all i€l

Then, for w € W, the Q(q)-linear maps

By A Lg] = @ p, UTDKAC U0, ¢k (Fy 0 R(CL ).

B Aol = @B, UK (€ U, ¢h, - (P oR)(C},)
are the isomorphisms of Q(q)-algebras. In particular, the set ,S = {C;l‘m,vﬁ} aep, (resp. Sy =
{C;l’z,v,,,—u Yaep,) is a left and right Ore multiplicative set in w(hi)Aq[g] (resp. Aq[g]w_l(hi)) and the
map hY (resp. h*) can be extended to the Q(q)-algebra isomorphism hY : "’(hi)Aq[g]w s — U3
(resp. hZ : Aq[g]z;ljhi) — U=9), which is also denoted by h" (resp. h").

Proof. The statements for AS (including the fact that EB 1P, U*(1)K,, are closed under
multiplication) follow from Proposition 2.28 and the calculation (4.2). By Proposition 2.11,
the following Q(g)-linear isomorphisms are the isomorphisms of Q(g)-algebras:

w(hi) Aq!?] - e(hi) Aglal, ¢t o S Ty (=0 = ¢} s
Aglal” ™ = Aglal*®™. e, = (f =Ty o)) = ¢, .

See also [18, Lemma 39.1.2]. These proves the statements for A} (w € W). m]

Lemma 4.15. For A € P, and weight vectors | € V(1)*, v € V(1), we have

O(c}) = D LG BWG ENOG (B) Kyipon s @G B ) K-y
b,b’€B(c0)
Proof. By Lemma 4.9, we have
Q(c},)
= ), (FooR)(c},) @ (s 0 R(C,)
beB(A)
= 2| DG Bg o (G E NG (B) K- yip ® GT(B) Ko
beB() \b,b’ eB(c0)

= ), LG OUG ENIG B Ky ® GG K i
b,b'eB(0)

Corollary 4.16. Define ()*: UoU - UQUbyY®X — X®Y. Then,
QW (O) = (@ W)(EXO)™)
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forall C € Aylgl.
Proposition 4.17. Leti € I, A € P, and weight vectors f € V(1)*, v € V(). Write

O} ) = D YKy ® XK,

UEP
withY, € U™ and X,, € U*. Then,
q—(wtv,aiv)—l
Q(C;,Ei‘v) == 1—a? Z YﬂK—u ®fi,(Xu)K s
4 <P
q—(th#,aiV
Q(C;l‘le) - Z ﬁie/(yﬂ)[{—uwf ® X, Ky,
Lep 4q;
" Z YMK_# ® (EiXM _ qutXu+2 wto,a; )X#E,')K ’
HEP
q—(wtf,(z;’)—l
A A i ’
Q(Cf.(ﬁ(E,'),U) = ﬁ Z ei(YlJ)K—ﬂ ® X”K/u
i HEP
q(wt Yy.a!)
~ ; —
QT y(ry0) = Z N YK, ®if"(X,)K,

HEP i
+ Y (FY =g " FOK @ XK,

UEP
Proof. We only prove the first two equalities since the others are similarly proved (or
follow from Corollary 4.16).

Claim 4. For A’ € P, and weight vectors " € V(A)*, v € V(X), set Xy
Lienieo)(f s (G (B)V)G(B°) and Yy = Ypepeo(f's G~ (b).0)G™ (D). Then,

Y — (T ’ T.w 1 Ii

Z(f,:,b(F,-G b)) VGH (Y)Y = —— S/ (X
beB(co) ~ 4

D LG NGB = (1 = gDEX
};EB(OO)

D e G ENGTE) = (= g)XpwEi,
beB() |

DG BFNG B = e (Vp).
beB() B qi

Proof of Claim 4. Set X}, , := Njepeo)(f’s Y(F,:G™(0)).v)G*(b*)". Note that X s €
U, Fowte Then,

’ 1 Y N
(X e _)pos = (Xf",u” Ei_)pos = 1——q2(fl (Xf’,v’)v _)pos-

By the nondegeneracy of the form, this proves the first equality. The others are proved
O

similarly.

Write G := G (D) Kyip_wi s ® GT(B) K_ 141, Then, we have
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Q)= Y, (G BWG BNEDGC(1 & K)

b,b’€B(c0)
=g, "N (.G BWEG ()G 5(1 € K, and
b,b’€B(c0)
Q(c},m)
> LG BWG BNFinGs (1@ K
b,b’€B(c0)
_ qi—1+<wtv,aiv> Z . G_(l;)lﬂ(EiG_(l;/)).v>G~,;J;/(1 ® Ki_l)
b,b’€B(c0)
= > GG BFWG B )G (1 e K
b,b’ € B(c0)
—(wth’ -2 wto,a))— 2 e
(G (B)) - (G B)) \ -
S <f G- (bw[ NG~ (G ) .v> Grp(1® K™,
b, eB(oo q; - 1

The desired equalities are obtained from Claim 4 and these equalities by direct calculation.
The details are left to the reader. O

5. Representations of the quantized coordinate algebras A [g]*

In this section, we investigate the representations of A,[g]* using the global bases and
PBW-bases. First, the transitions between these bases are studied as preliminaries. Next,
we prove the main results of this paper (Theorem 5.20, 5.32). As corollaries of Theorem
5.20, we give alternative proofs of Soibelman’s tensor product theorem (Corollary 5.21,
Proposition 5.30) and Kuniba-Okado-Yamada and Tanisaki’s common structure theorem
together with Saito-Tanisaki’s theorem (Corollary 5.23, Remark 5.24). The original papers
of these facts are given before each statements.

5.1. The transition from the global bases to PBW-type elements.

DermniTiON 5.1. Letw € Wandi = (iy, iz, ...,1;) € I(w). Set

Ec . E(CI)T/ 1(El(,Cll_l))T5I N 1(E1(10122)) T; . 1(E§161))’ and
Il l/ 12’
Fc . F(CI)T// I(F(Cl 1))T// 1(F(Cl 2)) TV I(FFCI))(: W(EY)),
i1 SiySi_y» i SipSiy s i i
where ¢ = (c1,¢2,...,¢1) € Z . The ordering of the powers might seem strange but this is

convenient for later use. These are called PBW-type elements. In fact, {EC}CGZI and {F }cezz
are linearly independent sets of U* and U~ respectively [18, Proposition 40. 2 1].

Let us denote by U™ (w) (resp. U™ (w)) the Q(g)-vector subspace of U™ (resp. U~) spanned
by {Eic}cez; , (resp. {F ic}cEZlZ ,)- Here U *(e) = Q(g). Theses subspaces does not depend on the
choice of i € I(w) [18, Proposition 40.2.1]. Note that w(U~(w)) = U*(w). We mainly deal
with U~ (w) in this subsection.

It is known that the subspace U~ (w) satisfies U~ (w) = U™ N T;)’,I’I(U 20y, In particular,
this is a Q(g)-algebra.
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Proposition 5.2 ([26, Lemma 2.8]). For w € W, U~ (w) is a left coideal of U=". (That i,
AU (w)) c U@ U™ (w).)

Proposition 5.3 ([18, Proposition 38.1.6]). Foralli € I,
Kere, ={Y e U™ | T/, (Y) € U} and Ker;e' ={Y e U™ | T/,(Y) € U}.
Proposition 5.4 ([18, Proposition 38.2.1]). For Y1,Y> € Kere; (i € I), we have
(Y1, Yo)neg = (T7) ™ (YD (T7) ™ (¥2))nee-
Proposition 5.5. Letw € W, i = (iy,...,i) € I(w) and set
Fei= ﬁq%“k‘”““(l — g} |FITy (DT,

i 7 -1 SipSip_y»
k=1

I(F?l’z) e T;i,l“‘sfz’l(F;l),

l-2

fore=(cy,...,c) € ZZzO' Then, we have

. , ;
(F{, F{ neg = ¢ for e, ¢’ € Zy,,.

Proof. Using Proposition 5.3 and €/(F EC)) =q;“*'F ;C_l), we have

-1dQe;~d-1) e
iy (G )Fic 00 g ¢ € 7., and d € Zso,

(@) (F)=¢q

where F id_(o """ 0¢) .= 0if e > d,. Therefore, the proposition follows from the property of the

bilinear form (, )yee and Proposition 5.4. ]

DEeriNiTION 5.6. By Proposition 5.5, (', neg |-w)_oxU-w)_, 18 nondegenerate for a € Q.
Hence, we can take the orthogonal complement U~ (w)%, of U™ (w)_, in UZ, with UZ, =
U (w)-q® U (w),. Set U= (w)* := @ae& U~ (w)t,.

Let U*(w)* := w(U~(w)*). Note that U*(w)* is the orthogonal complement of U*(w)
with respect to (', )pos.

The following corollary follows from the definition of the form (, )ne, and Proposition
5.2.

Corollary 5.7. Forw € W, U (w)™ is a left ideal of U™.

Nortarion 5.8. Let w € W. For X € U*, the image of X under the natural projection
U* — U*/U*(w)* will be denoted by [X],. Fori € I(w), the vectors {[E{],}c and {[F{]u}e
form bases of U* /U (w)* and U~ /U~ (w)* respectively.

Proposition 5.9. Letw € W ({ndﬁxi = (i1,...,i) € I(w). For b € B(c0), we write
(G~ (D) = Teezt, il [ FiTw with ie € Q).
Then we have

i
~ 1
b _ ze(a=1) Z JEin - glerie L gleni
1§c - [l_[ iy 4 E,T,-’l](f?zf]) 1;14,7,71]1(5172) dZ’l’l;oo ’
k=1 by,....bi-1€B(c0) -
with & (bx-1)=0 for all k

See Proposition 2.22 for the definition of ;.
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ReMARK 5.10. For w € W, i € I(w) and b € B(c0), we have
(G BN = ) ey €L T

Proof of Proposition 5.9. By Proposition 5.5, we have ;2 = (F .G (D))neg-
Set D :=[]i_, q lkck(ck Y- g; ). Then, we have

(F5,G™(Dneg = DUFYTY (Fi) T oy ((FiD). G (B)neg

-1 SipSip_

=D(1 -q;) UTg (Fi)- T" ey (FED (€ G ™ (D)nes

l-1 SipSip_y
Lee~1 — T
= Y i IE O G e
By Proposition 2.28 (i) and Proposition 5.3, we have (I:“i(""“""l”’o),G‘(l}’))neg = 0 unless
sil(i)’) = 0. Moreover, when s,-,(l?’) = 0, by Proposition 2.22 and 5.4, we have
(Fi(CI,...,CI—l,O),G—(E/))neg — (F‘(CI,W,CH,O) ilﬂ'(G_(E/)))neg
= (F(Cl +-1.0) TU](””(G (T”(b )))))neg
= (B 1(G™ (3, (B))ne
= (Fl(,c' """ CH), G_(El—l)))nega

Cr-1)

wherei = (i,...,i_1)and b_; = T,'](Z?/). The last equality follows from F I(C P € Ker e’
(by Proposition 5.3) and G~(b,_1) — n'(G™(b;_1)) € U"F;,.
Therefore, the proposition follows by induction on /. |

Remark 5.11. By Proposition 2.26 and the proof of Proposition 5.9, we have ;| ’c’ =1if

U+ 1
7 ~max ~max 7,
enx ... eMp,
270 11

{ck = &, (73, &M -7, 2"p) for k = 1,1, and

boo = E?llaxT,'

where Emaxl;’ = ”S'(i’/)l}’ for b’ € B(co), and otherwise igé € gZ[q]. Moreover, if there exists
¢o € ZL  such that ,{c =1, then

i{lc’ = O unless ¢ > ¢y.

Here d = (di,ds,...,d) > d' = (d},d),...,d)) means that there exists k € {I,...,[} such
thatd, = d,....dw1 = d, |, di > d,. Thls fact is known as the unitriangularity property

Itis known ([15, Theorem 11.5]) that dgkzl € Zso[g*'] for any b,b’ € B(co), k € Zspandi €
I when g is of symmetric Kac-Moody type Hence, in this case, Proposition 5.9 implies that
{ € Zsolq] for any b e B(o)and ¢ € Z>

Let g be of finite type and wy the lo_ngest element of W. In this case, such positivity
was originally proved by Lusztig in his original paper of the canonical bases [14, Corollary
10.7] for “adapted” elements i € I(wp) ([14, 4.7]), through his geometric realization of
the elements of the canonical bases and PBW bases. More recently, this fact for arbitrary
i € I(wy) was proved by Kato [9, Theorem 4.17], through the categorification of PBW
bases by using the Khovanov-Lauda-Rouquier algebras. By the way, McNamara has also
established the categorification of PBW bases via the Khovanov-Lauda-Rouquier algebras
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for arbitrary finite types [19, Theorem 3.1] (the dual PBW bases) and symmetric affine types
[20, Theorem 24.4]. As a consequence, he has obtained the positivity results for symmetric
affine types [20, Theorem 24.10]. Remark that our method essentially provides no data
concerning “‘the imaginary part”.

Kimura also remarks on such positivity in [10, Remark 2.24].

5.2. The actions of A,[g]* on their tensor product modules.

DerNTION 5.12. Fori = (iy,...,i) € I' (I € Z.g), we have the Q(g)-algebra homo-
morphism AU > (U®:---® U)" (I-fold), dual to the multiplication map, and ¢ :
U®---U) — (U, ®---®U,)" given by the restriction. Here the Q(g)-algebra structures
of (U®---®U)" and (U;, ®---®U,,)" are induced from the natural Q(g)-coalgebra structure
of U®---®U and U;, ® - - - ® U;, respectively.

The following lemma can be checked straightforwardly.

Lemma 5.13. Let V be an integrable U-module, f € V*, v € Vandi = (iy,...,i) € I
(I € Zsg). Then we have (i o Al)(c‘f/’v) €A, ® - ®A,;.

DerNiTION 5.14. For i = (iy,...,i;) € I' (I € Z.y), we define representations n;—’ :
Aglal* — Endg)(Vi,) ® - -- ® Endg,)(V;,) by

ﬂii = (71','1 ®"'®7T,',) OL;k ¢} A[ |Aq[g]i’ .

These representations are well-defined by Lemma 5.13.

We write simply the corresponding A,[g]*-modules V; or V; ®- - -®V;, (although the Q(q)-
algebras A,[g]* are not bialgebras when g is of infinite type). It will cause no confusion if
we use the same notation for the A,[g]*-module V; and A,[g] -module V;. We define the
Aglg]*-modules V!, V; ® ---® V;, ® Vj’.1 ® - ® V}, etc. similarly.

Form = (ml,...,ml)EZl

Lo We set

Im); := |my);, ® -+ ®[my); € Vs and (ml; := (myl;, @ --- @ (myl;, € V.

Define the A,[g]*-module Vj := Q(g)I0)y as C.|0)y = (C, 1)|0)y for C € A,[g]*, and denote
by m; the corresponding algebra homomorphism A,[g]* — Endg,)(Vp). Set Vj := Vy and
(Ol == 10)o.

Remark 5.15. Henceforth all statements are obvious in the case w = e. Therefore we
prove them only for w # e.

Norartion 5.16. For an ordered n-tuple k = (ky, ..., k,), set K:= (ky, ..., k1) (n € Zsy).

REMARK 5.17. Leti € I' (I € Z.y). We denote by Vi‘/' " the Aylg]*-module which corre-
sponds to the Q(g)-algebra homomorphism 7;" o " : Ay[g]* — Endgg)(Vh).

Then, the Q(g)-linear isomorphism Vi'/’* — V;/ ,/m); — (mf; is an isomorphism of Aglgl*-
modules.

The A,[g]*-module VE, , in fact, is obtained from the A,[g]*-module V; by a “torus element
twist”, but we do not treat such a twist in this paper. See [11, Chapter 3] for details.
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Lemma 5.18. Let w,w’ € W such that the length of ww'’ if the sum of that of w and w'.
Take b € B(c0). Assume that [G~(b)],, # 0. Then G‘(l;).vw/ 1 # 0 whenever (A, a;/)’s are
sufficiently large for all i € 1.

Proof. Leti = (i1,...,i) € [(w) and i = (i}, ...,i),) € I(w’). Then,
T, (G (B)vwn) = T (G (B)).vw)
=T ,“S’_II(T;{J(,T:'& (G’(B))).vsi,z...si;, 2
14 2
= iI;f,l(”i;' (Tig,l,l (-1 - - Ti',l"lni'l (G D)),
and T/ (2’ (T! (a'r-1---T!" 7'(G~(b))--+) € U~ by Proposition 5.3. On the other hand,
” r-1 r
by our assumption and Proposition 5.3, there exists ¢ € leo such that
0 # (G~ (D), F{)neg
= (TG (D)), F{)neg
= (T}, ("G D), T} (F)neg
= (Ty (" (Ty @ T3 G (B) ). Ty (Ff g

Hence, T}/ l(71‘7’(Tl.’,’ ](ﬂi;'—l Ty l(ﬂi'l (G~(b))---) # 0. This proves the lemma. m]
I -1’ I

Lemma 5.19. Lete + w € W, i = (i1,...,i) € I(w), A € P, and by,b; € B(1). Take
b; € B(c0) such that G~(b)).v; = gp,- We can write as follows:

2
A"
—_ * /l . .. * /l . R * /l .
= Z G HOY @@L (ch  I0), @ ®u(ch )10,
by,..., b[qEB(/l)
Then, in the nonzero summand of the right-hand side,
(1) wthy_; — wtby € Za’,'k and mbk-l,bk(:: —(Wtby_1 + Wt by, 0522)/2) >0,
.. I . .
(1) si8;, s (Wthg—y) = wth; + Zj:k Mp. .\ b:SiSiy =" Sij, @i, i particular,
) -
Zj:k Mp, | b;Siy """ sl-f]a/,-j < —wtbh,
(ii1) ‘;Dik(bk—l) < —htwth,;

fork=1,...,L
Proof. The statement (i) follows from Lemma 3.8. Set wt by_; = wt by —nia;, with ny € Z.
Then, myp,_, p, = —np — (Wt bk_l,aivk>. Hence, fork=1,...1,
SipSipy S (Wthg—1) = i85, -+ Sip (WD + my,_, p ;)
!
=wth + Zj:k My b, SipSiy =" Sif i

This proves (ii). Since wtby_; — ¢; (br-1)a;, is a weight of V(A), sj,---s;,(Wthy_1) —
@ (br-1)si, - - - s;,;, 1s also a weight of V(4). Hence,
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=04 35, -+ 8y (Wthg—1) — @i, (1) sy, - - - sy, — A
~ !
= wth; + ijk My b, SipSiiy * Siy iy + Qi (Bk-1)Siy -+ Sy, @iy

This proves (iii). O

The following is one of the main theorems in this paper.

Theorem 5.20. Lete # w e W, i= (i,ir,...,i0) € I(w), A € P, and by, b; € B(1). Take
b € B(c0) such that G_(l;l).v,l = gp,. Write

ﬂ;—(c/flbo’gbl)'lo>i - Zcezlzo i{fo’bll‘:)i (i§£0’bl © Q(q))

Then the coefficients i{f‘)’bl are Laurent polynomials in g with integer coefficients. Moreover,
when A’ € P, tends to oo in the sense that (/l’,a/ly) tends to oo for all i € I, the coeffi-

cient igﬁ"’*'”’w with G=(b;).vy = g, converges 1o i{ f’ (See Proposition 5.9) in the complete
discrete valuation field Q((g)). l

In fact, we have more detailed results as follows; set A;j := min{(s;,, - s;4, @;) +
38, - Sy, @;,) — ';;} Ais(htth;)zlthz <a <0,k=1,...,1}. Recall Notation 2.1.
Suppose that A;j, > 0. Then

Do.b _
G’ ’)d”;l = 0 unless gp, € U™ .vyy, and

if G™(bo)-vun = g, € U™ .vun (by € B(e0), &} (by) = 0), we have

I
 rbobi - 1_[ sec=1) g glenic | gleni
(ile )</1iv51 [( i, 75 EI,TEI(Ez_l) i’l—l,";i](i’l—z) 131,‘1',-_]1(1;0)

k=1 <A

where the summation (&) runs over by, ...,b_; € B(1) with g;, = G‘(l;k).vsl.k+I sy A for some
bi € B(0) (k =1,...,1—1). Note that A, goes to 0o when A tends to o for any fixed by.

Proof. It follows from, for instance, Corollary 3.11 that coefficients ; f"’bl are Laurent

polynomials in ¢ with integer coeflicients. The next assertion follows from Proposition 5.9,
Lemma 5.18 and the latter half of the theorem. We compute 7ri+ (C}]Cho»gh])'l())i as in the right
hand side of the equality in Lemma 5.19 and from the rightmost component. Then the
desired results follow by using Corollary 3.11, Corollary 3.12, Remark 3.13 and Lemma
5.19 repeatedly. |

The following is known as Soibelman’s tensor product theorem. This has been originally
proved in [25] (finite case), [21], [26] (symmetrizable Kac-Moody case). Note that the
quantized coordinate algebra in [21] is larger than ours. The irreducibility will be proved in
Proposition 5.30.

Corollary 5.21. Let w € W. Then the isomorphism class of V; (resp. V{) as an Ay[g]"-
module does not depend on the choice of i € 1(w). Moreover, the A,[g]*-module V; (resp. Vi)
is generated by |0); (resp. (Of;), and, for any 1, j € I(w), an isomorphism Vi — Vj (resp. V{ —
Vj’) of Aylal-modules is given by |0); + |0); (resp. (O; = (O[;).
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DeriNTioN 5.22. We will identify the A,[g]*-modules V; (resp. V/) (i € I(w)) via the
isomorphisms in Corollary 5.21 and write them as V,, (resp. V). Denote by x;, (resp. 7,")
the corresponding Q(g)-algebra homomorphism A,[g]" — Endg)(Vy)(resp. Endg,) (V)
and by |0),, (resp. (0|,) the vector |0); (resp. (0};).

Proof of Corollary 5.21. The statements for V, are obtained from those of V; using the
involution ¢*. Hence, we only prove the theorem for Vj.

Let V be an integrable U-module, f € V* a weight vector with wt f = gand v € V.
Suppose that the right action of E; and F; on f is nilpotent for all i € /. By Corollary 3.7,
there exist I € P, and a right U-module homomorphism ¢" : V(1')* ® Vw lu-2)* - v*
such that o'(fur ® fuw1u—ry) = f. Then, by the argument similar to the beginning of the
proof of Proposition 3.10,

w =

(5.1) o= D @], e for some as € Q(q).

fm(w_ Lyu-ar) v’
beB(),b'eB(w ' u—-A")

This summation is well-defined in U™.
We may assume that -1 := w™'u — A’ € —P,. Then,
(5.2) @, )10
2 G g MO @@ (G )10 © @ e, )0

hl ..... h[-] EB(—/l”)
=4 (cf", )10, @ > e )10y, ® -+ ® (e, )10y
i f—w/l"sU—xiz--»xi,/I" En i ffsiz»--s,»la”ﬁgbz M N foysgp 710
by,....bi-1€B(=A")
= 0,0 tf (7 )10);, ® - @1 (¢ )10);
gu’ V-1 7l f’“'/w’v"iz”'fiﬂ” V7 i f’”k"’”lﬂ”’v’”k+1"'S"IA” V1

.y
® @Y, )0

!
= 6y (| (=) 00N (=: DO,

k=1

here the second equality follows from Lemma 3.8 and the fact that the elements of —s; wA” —

Zoa;, are not weights of V(—A4"), and the last equality follows from Ll’.‘k(c}”‘” o w) =
TSy Sty

” v
=5y A7 @y )

iy . See Definition 3.1 and 3.2. Note that D,~, does not depend on the choice
of i because Zf{:l(s,-kﬂ ---sil/l”,al?;) = (" —wA”, Y, @) and 22:1(&“1 ces, ) =
A" = wA”, Y;c; @;). Therefore, we have

(mi, ® - @m) 04 o AD() )I0Y = Dary D @i (€}, ) IO%:
bEB()
Note that the right-hand side is a finite sum.

Hence the proof of the theorem is completed by showing that the Q(g)-linear isomorphism

‘PIJZ(i)Y Vi = U U (w)*, le); — [ES], satisfies

Pl (i (0).10)%) = h%(C).[1], for all C € “™A,[g],

+,i
KO

(See Corollary 4.14.) where the U/>°-module structure on U* /U~ (w)" is given by
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E;[u], = [E;ju], and K,.[1], = [1], forie Iand A € P.

Note that U*(w)* is the left ideal of U™ by Corollary 5.7. Therefore, it suffices to show that

(a) (hli))_l(K/l).|0>i(: c}wbvd.IO)i) = |0); for all 4 € P,; therefore, the space
n;r(w(hi)Aq[g]).IO)i has the w(hi)Aq[g]w s-module structure.

(b) (W)1(G*(H)).|0) = Seez!, i%e); for all b € B(co) (See Proposition 5.9 and Re-

mark 5.10).
The statement (a) follows from the calculation similar to (5.2).
(A _ w( A fer
By the way, Q(c . G*(E).v/l) = K_,®hY(c G (13_).1)/,)‘ See Proposition 4.11 and Corollary

4.14. Hence, by Proposition 4.17, there exist unique polynomials {f;, ;, (X)}; jepo) 1N X =
(xi)ier With coefficients Z[g*!] such that

2Aa) =
hﬂc;%(;,(,;m):Z,,GB(W)f,;,,;,(q,. NG (B'))K,,

where 5’5,(q?<ﬂ’a’y >) denotes the element of Z[g*'] obtained by substituting q?u’a"v ) for x;
(i €D)in f55(x).

By Proposition 4.17, the polynomials { f; j, (%)} i () Satisty the properties f; 5 (0) = 65
and f; 5 (x) = O unless wth = wtb’. In particular, for any b € B(co), the number of b with
Jpiy(x) # 0 is finite. Therefore, the calculation results of n;r(cjsm o (B)AUA)'|O>i for various
A € P, are uniformly described by using the polynomials {j ; (X)}} cp) and the constant
term in this description corresponds to (h‘f)‘l(G*(Z))).IO)i. Hence, the statement (b) follows

from Theorem 5.20. O

In the proof of Corollary 5.21, we showed the following corollary. This is Kuniba-Okado-
Yamada and Tanisaki’s common structure theorem, which has originally been proved in
[13] (Finite and the longest element of W case) and [26] (Symmetrizable Kac-Moody and
arbitrary w € W case). Incidentally, our formulation and convention are slightly different
from those of original papers. See also Remark 5.24.

Corollary 5.23. Let w € W and i = (i1,...,i;) € I(w). We define the U=Y-module
(resp. U=-module) structure on U*|U*(w)* (resp. U~ /U~ (w)*) by

X [ul, = [Xiuly, forie l, X = E (resp. F) and K,.[1], = [1], for 1 € P.

Note that U*(w)* is a left ideal of U* by Corollary 5.7.

Define the Q(q)-linear isomorphisms ‘I’%’Y by

Proy : Vo = UHU )", le)i — [Efly

Wioy + Vi = UT/U @)%, (eli = [Flurr.
Recall Notation 5.16. Then, for C € w(hi)Aq[g], C' e Aq[g]”fl(hi) and A € V,, E €V, we
have

WL (i (C).A) = hE(C).FEE (A) and Wil (7 (C').E) = hU(C). ¥y (2.

+,w

In particular, the maps W, do not depend on the choice of i € 1(w).
Moreover, for an integrable U-module V and weight vectors v € V, f € V* such that the
right action of E; and F; on f is nilpotent for all i € I, we have
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o ((my® --®m;)ou o Al)(CXU) acts on U U (w)* via ‘PE’(L)”Y as an operator of degree
w! wt f — wtu, and
e (m ®--®m)oy o Al)(c]‘f’v) acts on U~ JU~(w™H* via Yoy as an operator of

degree wt f — wwtu.

RemMark 5.24. In this setting, for i € I,
R =g e (e ) = E;, and

fww-»Fi-Um fww-’vw-
i i i i

W =g € D = F

fmi 'Ei’vw_lw; @i ’Uw_lwi
Hence this corollary includes the statement of the Kuniba-Okado-Yamada conjecture [13,

Conjecture 1], which has originally been proved by Saito [23, Corollary 4.3.3] and Tanisaki
[26, Proposition 7.6] independently.

DerintTion 5.25. For w € W, we have the decomposition into Q(g)-subspaces

Vo = e, Froy) (U /U ) Ma)(=: D e, (Vida)s
Vi, = Dieo. Vo) (U /U@ ™) )= Bep (Vi)-a).

These decompositions are said to be the weight space decomposition. The weight spaces
of V,, and V, are simultaneous eigenspaces corresponding to the actions of the elements ,S
and S, respectively.

Corollary 5.26. Let w € W. Then the isomorphism class of Vi (resp. V{) as an A,[a] -
module does not depend on the choice of i € I(w). Moreover, the A [g]™-module V; (resp. V)
is generated by |0); (resp. (Of;), and, for any 1, j € I(w), an isomorphism Vi — Vj (resp. V| —
Vj’) of Aylal™-modules is given by |0); = |0); (resp. (Of; = (Ol)).

DeriniTion 5.27. We will identify the A,[g] -modules V; (resp. V/) (i € I(w)) via the
isomorphisms in 5.26 and denote by 7, (resp. x,) the corresponding Q(q)-algebra homo-
morphism A,[g]” — Endgy(V,,)(resp. Endg,) (V).

Proof of Corollary 5.26. The statements for V, are obtained from those of V; using the
involution ¢*. Hence, we only prove the theorem for Vj.

For an integrable U-module V and weight vectors v € V, f € V*, there exist 4,1" € P,
and a left U-module homomorphism o” : V(-1) ® V(A") — V such that o’(v_, ® vy) = v by
Proposition 3.4. Then, by the argument similar to the beginning of the proof of Proposition
3.10, we have

1% -2
Crp = Z Ay Cry Chouy for some ap € Q(g).
beB(-1),b'eB(X)
This summation is well-defined in U*. Hence,
* A v * A -A * A v
Godxcly= > aw@ oA, )G oA, ).
beB(=1).b'eB(Y')
The right-hand side is, in fact, a finite sum. By the calculation similar to (5.2), we obtain

(mi, @ ®m) 0 ; o AN IO = Y apy, i (5, )10k
beB(-A)
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On the other hand, by Corollary 5.21, any element of V; is of the form n;r(C).IO)i (C €
Aglal™). Therefore, the A,[g]"-module V; is generated by |0);. The other statements follows
from Corollary 5.21 and the argument in the first half of the proof of Corollary 5.21. O

Before ending this subsection, we mention a bilinear from on V,, and prove the irre-
ducibility of V.

DeriniTiON 5.28. Letw € W and i = (i1, ..., ;) € I(w). Then we define the Q(g)-bilinear
form (, )y : Viy X V,y = Q(q) by

I my
(s, Yo = (Y ), D g ), )i = S | | [ JC1 = 0297
s=1 t=1
Then this form satisfies (7 (C).A, A")y, = (A, 7, (( 0 §)(C)).A"), for C € A [g]*, A, A €
V., and does not depend on the choice of i. Note that y o S is a Q(g)-algebra involution of
U.

Corollary 5.29. Let w € W. Define a Q(q)-bilinear form ( , ), on UT/U*(w)* by
([XTws X1 = (Pu(X), pu(X"))pos Where p,, : U* = Ut(w) ® Ut (w)* — U*(w) is the
projection. Then,

(A, A )y = (P8 (), Pl (M), for all A, A € V.

Proof. This statement follows from the direct calculation of the form (, ), on U* /U™ (w)*
for PBW-type elements. (See Proposition 5.5.) |

Proposition 5.30. For w € W, the A [g]*-modules V,, and V;, are irreducible.

Proof. Suppose that there exists A,4[g]"-submodule V’ such that 0 ¢ V' ¢ V,,. Then
V' = EBQGQ(V’ N (Vw)a). Note that V' N (V,)o = 0 because the A,[g]*-module V,, is
generated by |0),. Therefore (|0),, V'), = 0.

Let 0 # A’ € V'. Since the form (, ), is nondegenerate, there exists A € V,, such that
(A, A", # 0. By Corollary 5.26, there exists C~ € A,[g]™ such that 7, (C™).|0),, = A. Then
(A, Ay = (10)y, (Y 0 §)*(C7)).A"),, = 0, which contradicts (A, A”),, # 0. O

As in the proof of Proposition 5.30, we also obtain the following proposition.
Proposition 5.31. For w € W, the A,[g]”-modules V,, and V,, are irreducible.

5.3. The reducible A,[g]"-modules V,,. The A [g]*-module V,, := V' ®V,, is reducible
but has a reasonable structure, which is compatible with the embedding Q.

Theorem 5.32. Let w € W. As in Corollary 5.23, we regard U~ /U~ (w)* ® Ut /U (w)*
as a U= @ U2 -module and, via Q, an Aylgls-module. See Proposition 4.11.

Then the A,lg]*-module structure on V,, := V' 1 ® Vi can be extended to the Aglals-
module structure and, as an A,4[g]s-module, V., is isomorphic to U~ U~ (w)* @ U*/U* (w)*
where a corresponding isomorphism Wy, is given by 0,1 ® [0}, = [1], ® [1],.

In particular, the Aylg]"-module V,, is generated by (0|, ® |0),, and decomposed into

the finite dimensional eigenspaces of the actions of S, and any two linearly independent
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eigenvectors generate different infinite dimensional submodules.

Moreover, fori, i’ € I(w) (length l) and ¢, ¢’ € leo’

(5.3) oy (@ @1e)) = [Flu® [E T+ . (Y], ® X,
YeU™,XeU"* homogeneous
wt Y>wt Fic,wt X<wt Eic,/
ReMARrRK-QUEsTION 5.33. The summation in the right hand side of (5.3) is nontrivial, that

. =4 —_— -1 . . . .
is, P2y # Yoy © Yroy- Hence we have the nontrivial Q(g)-linear automorphism

—w! w Fw -
1" = Yoy © lIJI?OY) o (Ykoy) :

on U™ /U (w)* ® U"/U*(w)*. We do not know whether the map " is obtained without
using representations of the quantized coordinate algebras, and has any significance in the
structure theory of the quantized enveloping algebras. (See also Subsection 6.1.)

Proof of Theorem 5.32. For A € P,, C}W.«OIW ®10),) = {0],-1 ®|0), by the calculation
similar to (5.2). On the other hand, Q(C}MA) = K_, ® K;. Hence the actions of c’f’W’s
for A € P, on (Aq[g]e(hi))(e(hi)Aq[g]).((Olw-l ® |0),) is invertible and, by Corollary 4.13, this
subspace has a Aq[g]g—module structure.

Now, for homogeneous elements N* € U*(w)* and X* € U*,

A—1 - I P -1 S ’ " -1

Q' (N ®X") = CruChoy (cfmw) and Q' (X" ®@N") = Cl;',v#cl}ﬂ ,,U'(C/;ﬂ u,y,,,/)
for some A, ', A", p, ', 1" € P, v € V(D awix f € VA )y un-r € Vu ;ertx_ and
V'€ V(' )w-win+ With Q(c}jw) = N K_, ® Ky and Q(CJ;;/,U) = K, ® N*K,,. Then, by
Corollary 5.23,

(Ol ®10)) = (¢}, Oly1) @10, = 0.
Similarly, ¢ ,.((Ol,~1 ®|0),,) = 0. Therefore,
Q' (N @ XN).({0],1 ®0),) = QX @ N*).({0l, 1 ®10),,) = 0.

Hence, the map P ,_, U"K_,®U" Ky — A,[8]%.(0],-1®|0),) given by X > Q~1(X).((0],-1®
|0),) (cf. Proposition 4.11) factors through EBAE}, UK UK, - U /U (w)*reU'
U*(w)*, X — X.([1],®[1],). Let us denote by ® the induced homomorphism U~ /U~ (w)* ®
Ut /U (w)" — Aglal§.({0l,1 ®[0)y).

What is left is to show the equality

DUF1w® B 1) = @k @1 + D (P ) (Y1) @ (Pii) ™ (X1,
YeU™,XeU"* homogeneous
wt Y>wt Fic,wt X<wt Eic,’

for any ¢, ¢’ because this implies the injectivity of o, Aylal§- (Ol ®10),) = V,, and the
equality (5.3). We have

D([Ffl, ® [ES 1) = Q' (FF @ ES).([11, ® [11,))
= Q7 N(F{ @ ES).({0],1 ® [0),).
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There exist 4,4 € P, v € V() _y, £ and f € V(A)}, ., Fe such that Q(Cja,u) =K, ®Ei°,'K R
Q(C}M) = F{K_y ® Ky. Then, Q_l(Fic ®EY) = g i)c}bvcjcw c};j/’%/v)_l. Hence, by
Corollary 5.23,

O (Ff ® E7).(0 ®10))

= g™ e} (€@ 10))

= g™ (e}, (D@ (] 0N + Y (e}, @) @ (], I0n)
beB(A),wt b#wA

=@+ D W) (Y1) ® (W)™ (1X1).

YeU™,XeU" homogeneous
wt X' <wt Ei",/

The last equality follows from Corollary 5.23 and the inequality w™'(wtb) < A for all b €
B(1) with wtb # wA.
On the other hand, Q~'(Ff ® Ef) = ¢ "™ e} ¢} (cf*' 7', Hence the similar

argument shows that

O71(Ff ® EY).(0F ®10))

— ’ — w*] — w \—
=@l + D (e ) (V1) @ () (X1,
YeU™,XeU* homogeneous

wtY>wtF¢

These equalities completes the proof. |
Corollary 5.34. For w,w’ € W with w <, w’ (<, is the weak right Bruhat order), the
Aglsl*-modules V,:)—l ®Vy (resp. V;/-l ®V,) are generated by (0|,-1®|0),, (resp. (0],/-1®|0),).

Let w € W. By Remark 5.17 and Theorem 5.32, we have the A,[g]"-module homomor-
phism I, : (Vy)”” ® V(= V) = Q(g)(= Ve) given by [0),, ® [0)y, = 1(= [0)g).

Corollary 5.35. Letw € W. For A, € V,, we have I' ,(AQ A’) = (A, N),.
Proof. Let A € P, and v,v" € V(A). Then,

A — A A w0 A
o O8= D ey, © 0 EOS ()

in (U® U)*, where $* : U* — U* is the Q(g)-algebra anti-involution given by F' — F o §.
Then, for A, A’ € V,,

(5.4) Lu((my(c. )-A) ® ')
= Tu(((my, 0 Y)(cy ) -A) ® A')
= Z Lu(((7, 0 7)€y g, ) @ T (e, g NA @S (¢ (A B A))

b1,b2€B(A)
= Z Lou(((f, 0 ") @ mh)(cp y,)-(A @ T (S *(C}b,,,))-/\'))
beB(A)

= > @gnTuA® TS (c} ,)A)
beB(A)
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= Tu(A® (W 0 )" (e}, )N,

Moreover, fori € I(w) and (0,...,0) # m € leo’ there exist 4 € P, and weight vectors

f e V)*, ve V(A) with wt f # wto such that (7 o y*) ® n;)(c},u).(IO)i ®10);) = 10); ® Im);
by Theorem 5.32. Then,

(5.5) [y(10) ® [m);) = (f, )I',(10% ® [0)i) = 0.
By the properties (5.4), (5.5) and [',,(|0),, ® |0),,) = 1, we obtain the corollary. ]

6. Finite type case

In this section, we assume that g is of finite type. Denote by wy the longest element of W
and by N its length.

6.1. Description of /*°. We investigate the map /*°. See Remark-Question 5.33 for the
definition of 7*°.

Theorem 6.1. Ler X € U*, Y € U™ and i € I(wo). Write X = Yaezv ilaEf and Y =
Dzt COFS GEy ol € Q).

For A € P, we set

1@y o0 1O = Y iy FE @ B

cdezl) "7

When A € P, tends to oo in the sense that {A, oziv> tends to o foralli € I, i f’dY’X converges to
44 i(é( in the complete discrete valuation field Q((q)) for any ¢,d € ZIZVO.

Proof. We need only consider the case X = G*(E‘f) and Y = G~ (b,) for some by, b, €
B(0).

For sufficiently large A € P, we can write G (b)), = gp, and G (by).v, = gp, for some
bi,br € B(A). Then,

A B N — '+ A B + A .
¢ g (RO =D (g, 9Ty )0 @ (5, (€5, )-10)0):

It is known that (gp, g»)1 € Zlg] ([4, Proposition 5.1.1]) for any b,b’ € B(1). Hence the
theorem is now obtained from Theorem 5.20. O

ExampLE 6.2. For X € U",Y € U™, we can compute the element whose image under the
map [* is equal to Y ® X by Theorem 6.1.

Let g = sl;. Let us compute the element Hz,l € U~ ® U* such that I‘”“(Hz,l) =F?PQE.
For n € Z¢, by Proposition 4.17,

2 Y
QCre .y Fu,)

1
= (1 - qzn)(l - q2n—2) (q _ q3 FK—(n—Z)m ® K(n—Z)w+F(2)K—11w ® (1 - qzn)EKmU) .

We have only to consider the terms in fl(c’(”}?(z) one)* F ).(1 ® 1) which do not depend on n.
Hence, o
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8 1
Hyj= ——F®1+F”QE.
q9-q

6.2. Some representations of the Drinfeld double A,[g] > U'°P, Let U’ be a variant
of the quantized enveloping algebra whose generators of its Cartan part are indexed by the
elements of Q (denoted by {K, }4c0)-

DeriniTion 6.3. Define the Q(g)-algebra structure on the Q(g)-vector space A,[g] ® U’ as
follows:
o Aylgl » Aylgl®@ U, F = F®land U — Ay[g]® U’',X — 1® X is an injective
Q(g)-algebra homomorphism,
e (Fel(IeX)=F®XforFeAgland X € U’,
e (1®X)F®1) = Z(X)(X(1).F.S_1(X(3)))(1 ® X(z)) for F € Aq[g] and X € U’ with
(1®A) o A)X) = Xx) X)) ® X2) ® X3).
This Q(g)-algebra is called the Drinfeld double of A,[g] and U ‘P _denoted by Aglgl = U cop,
(Here “cop” is just a symbol.) We abbreviate F ® X to FX for F € A [g] and X € U".

In the rest of this paper, we show that the A,[g]-module structure on V,, comes from the
Aylgl = U "°P_module structure in some cases.

DEerNITION 6.4. Define the Hopf algebra automorphism tw : U — U by E; —ql.‘]E,»,
Fi— —qiF;and K; — K, forieland A € P. Note thattw = woyoS.

The following proposition essentially appears in the reference [12] (under the different
convention). We can check it by the direct calculation using Proposition 4.17.

Proposition 6.5. The map Q >« (tw @ id) o Ao w) : A gl < UP > U@ U,F® X
QF)(tw ® id)(A(w(X))) (F € Aylal, X € U’) is an injective Q(q)-algebra homomorphism.

Lemma 6.6. Let J be a subset of I and W the subgroup of W generated by {s;}jc;. Write
the longest element of W; as wj. Then,

benen @G (B) = [\ Ker je’ = U~ (wowy).
&,(b)=0 for all jeJ jeJ

Proof. The first equality follows from the equality
— TNV _ . ,
ZEEB(oo),a;@:O Q(@)G™(b)" = Ker;e

for i € I. Let us denote by U; the Q(g)-subalgebra of U~ generated by {F;};c; and Set
(U))+ := U; N Kere. Recall that € is the counit of U. Then, the second equality follows
from

(), Kerje' =Y € U™ | (XU (U )1 )neg = O}

because the left-hand side includes U~ (wowy;o) by Proposition 5.3 and the dimension of
each weight space of the right-hand side coincides with that of U~ (wow;o) by the existence
of PBW-bases and w;o(A™ \ A7) = A~ \ A} (A™ and A] are the set of negative roots of g and
a((aji) jres) respectively). O
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Let J c I. By Lemma 6.6, we have
U™ (wowyo)* = X jey UTFjand Ut (wows0)* = X je; UTE;.

Write X* = E and X~ = F. Let M(0)~ (resp. M(0)*) be a Verma U-module with highest
(resp. lowest) weight 0. (i.e. M(0)¥ := U/ Ye; UXE + ¥cp UKy — 1).) The fixed highest
(resp. lowest) weight vector is denoted by m™ (resp. m™).

Then 3 i, U¢X7.m¢ is a U-submodule of M(0)* and

U U™ (wow;0)" — M(0)7/ Z UXEm™, [uguy, —> m* modZ UXF.m*
jel jel
gives an isomorphism of U3%-modules.  Therefore the U3°-module structure on

U™ /U™ (wow,p)* gives rise to the U-module structure. Combining this fact with Theorem
5.32 and Proposition 6.5, we obtain the following theorem:

Theorem 6.7. Let J be a subset of 1. Then the A,[g]l-module structure on Vwow ,o can be
extended to the Ay[g] »< U "©P_module structure.
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