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Abstract 
 

In this paper, we discuss computation methods for 
minimax regret solutions to linear programming 
problems whose objective coefficient vectors are not 
known exactly but guaranteed to lie in polytopes. A 
solution algorithm for a minimax regret problem has 
been proposed based on the relaxation procedure. 
However, in the algorithm, we should solve 
non-concave sub-problems sequentially. To the 
non-concave sub-problem, many approaches 
including two phase and two-level programming 
approaches have been proposed. As new approaches, 
we discuss applications of an outer approximation 
method and a cutting plane method to the 
sub-problem. Moreover, a combination of the outer 
approximation and cutting hyperplane methods is 
proposed. We compare the computational efficiency 
of the solution algorithms by a numerical experiment. 
The results show that the outer approximation 
method and its combination with the cutting 
hyperplane method are the most efficient.  

 
Keywords: Minimax Regret Solution, Linear 
Programming, Uncertainty, Outer Approximation, 
Cutting Hyperplane 
 

1.Introduction 
 

In this paper, we discuss computation methods for 
minimax regret solutions to a linear programming 
problem whose objective function coefficient vector is 
not known exactly but in a single polytope. To such a 
problem, a possibly optimal solution and a necessarily 
optimal solution are proposed as natural extensions of an 
optimal solution to the conventional programming 
problem (see Inuiguchi and Sakawa [1]). However, a lot 

of possibly optimal solutions usually exist and, in many 
cases, no necessarily optimal solution exists. 

The minimax regret solution has been proposed as a 
possibly optimal solution which minimizes the deviation 
from the necessary optimality (see Inuiguchi and 
Sakawa [2, 3]). It is a necessarily optimal solution when 
the latter exists. Because of those good properties, a 
minimax regret solution is regarded as a reasonable 
solution to a programming problem with uncertain 
objective function coefficients (see Inuiguchi and 
Sakawa [2, 3]). 

However, computation methods of the minimax regret 
solution have not yet investigated considerably. A few 
computation methods were proposed for linear 
programming problems with interval objective function 
coefficients (see Inuiguchi and Sakawa [2] and Mausser 
and Laguna [4]) and extended to the case where the 
possible range of the objective function coefficient 
vector is given as a polytope (see Inuiguchi and Sakawa 
[3]). All methods adopt the same relaxation procedure 
including the maximum regret problem as a sub-problem. 
The difference among the previous computation methods 
of the minimax regret solution is in the solution method 
for the sub-problem. The sub-problem is a bilinear 
programming problem and at the same time a convex 
maximization problem. Thus, many approaches may be 
conceivable. 

The aim of this paper is twofold: (i) to apply an outer 
approximation method and a cutting hyperplane method 
to the sub-problem and (ii) to compare the computation 
methods for minimax regret solutions by a numerical 
experiment. We restrict ourselves to the discussion 
among the solution methods which are effective even 
when the possible range of the objective function 
coefficient vector is given as a polytope. Thus a method 
proposed by Mausser and Laguna [4] is not discussed in 
this paper since it is applicable only when the polytope is 
a box-set. An outer approximation algorithm and a 
cutting hyperplane algorithm are specifically designed to 
solve the sub-problem. Moreover, a combination of the 
outer approximation and cutting hyperplane methods is 
proposed. We intended to compare the five methods by 
the computation time (CPU time). However, in the 
preliminary experiment, the cutting hyperplane method 
was not comparative at all because it took a lot of 
computation time for the convergence to an optimal 
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solution to the subproblem which was solved multiple 
times. Then a simple modification of the relaxation 
procedure is proposed. In this modification, we do not 
calculate an optimal solution to the subproblem but test 
the optimality of the temporal solution for the minimax 
regret problem. By this modification, it is sure to reduce 
the computation time for solving the subproblem but is 
possible to increase the number of iterations in the main 
routine of the whole solution algorithm. Therefore there 
is no guarantee in the reduction of the computation time 
of minimax regret solution. Moreover this modification 
will be effective only for the methods which take a lot of 
computation time for solving the subproblem. In this 
sense, the computation time of two-phase approach will 
not be improved by this modification since the 
subproblem can be solved easily in the approach.  

As the result, four methods other than the cutting 
hyperplane method without modification and four 
methods other than the two-phase approach with 
modification are compared. It is shown that the outer 
approximation approach with modification and the 
combination of the outer approximation and cutting 
hyperplane methods with modification are most 
computationally efficient.  
 

2.Minimax Regret Solution 
 

2.1 Problem statement 
Let us consider the following linear programming 

problem with uncertain objective function coefficients: 
maximize  xγ T  
subject to  ,,A|X }0{ ≥≤=∈ xbxxx    (1) 

where A is an m × n matrix, x = 
( ) ,x,...,x,x n

T
21 ( )T21 n,...,, γγγ=γ and b = 

( ) .b,...,b,b m
T

21   The feasible region X is assumed to be 
bounded.x is the decision variable vector. γ is a 
possibilistic variable vector and its range Γ is given as 
 

,D|c,...,cc n, })({ T
21 gcc ≤==Γ          (2) 

 
where D is a p×n matrix and ( ) .g,...,g,g p

T
21  =g Γ is 

assumed to be bounded. Thus, Γis a polytype. Let 
( ) ,|XS Xx }max{ TT xcycyc ∈=∈= i.e., the optimal 

solution set of a linear programming problem with an 
objective function coefficient vector c . Using S( c ), we 
can define the following two kinds of optimal solution 
sets (see Inuiguchi and Sakawa [1]): 
 

( )I
Γ∈

=
c

cSNS                        (3)  

( )I
Γ∈

=Π
c

cSS                        (4) 

An element of NS is a solution of Problem (1) optimal 
for all Γ∈c  and called a necessarily optimal solution. 
On the other hand, an element of ΠS is a solution of 
Problem (1) optimal for at least one Γ∈c  and called a 
possibly optimal solution. In many problems, there 
exists no necessarily optimal solution and there exist a 
lot of possibly optimal solutions. Thus, both of the 
optimal solution sets are not always practically useful. A 
minimax regret solution which is a possibly optimal 
solution minimizes a deviation from the necessary 
optimality has been proposed (see Inuiguchi and Sakawa 
[2]). A minimax regret solution is necessarily optimal if 
a necessarily optimal solution exists. 
 
2.2 Minimax regret solution 

Suppose that the true objective function coefficient 
vector is known as c after a solution x is selected. Under 
this supposition, the decision maker may feel a regret 
defined by 

( ) ( ).r xcyccx,
Xy

TTmax −=
∈

                (5) 

r(x,c) is the difference between the objective function 
value xcT  and the optimal value under the objective 
function coefficient vector c. At the decision stage, the 
objective function coefficient vector is still unknown and 
then the worst (maximum) regret of a solution x is 
obtained as 

( ) ( ) ( ).,rR
X

xcyccxx
y
cc

TTmaxmax −==
∈
Γ∈Γ∈

       (6) 

The smaller R(x) is, the better x is. Therefore, in view of 
the regret, Problem (1) is formulated as a minimax regret 
problem, 

( ).
X

X
xcyc

y
cx

TTmax  minimize −
∈
Γ∈∈

          (7) 

When R(x) = 0, x is a necessarily optimal solution. 
Moreover, a solution of Problem (7) is a possibly 
optimal solution (see Inuiguchi and Kume [5]). 
 

3. Previous Solution Methods 
 
3.1 Relaxation Procedure 

Since the minimax regret problem (7) is a minimax 
problem with separable constraints, we can apply a 
relaxation procedure [6]. Applying the relaxation 
procedure with an admissible error ε we obtain the 
following solution algorithm: 



 
[Relaxation Procedure Algorithm] 

Step 1 Select Γ∈0c  arbitrarily. Obtain 
( )00 cz S∈ . 

Step 2 Set 1  ,00 == kr  and .00 zx =  
Step 3 Obtain an optimal solution ( )kk ,zc  and the 

optimal value kr  of a maximum regret 
problem, 

( ).
X

0TT maximize xcyc
y
c

−
∈
Γ∈

           (8) 

Step 4 if ε+≤ 0rrk , then terminate the algorithm. 
The obtained minimax regret solution is 0x . 

Step 5 Update ( )00 r,x  by an optimal solution 
( )** r,x  of  

   minimize  r  
subject to 

 ( ) ( )
.A

k,...,,,jrTjjTj

0 ,
,210 ,

≥≤
=≤−

xbx
xczc  (9) 

Update k = k + 1 and return to Step 3. 
 

The problems at Steps 1 and 5 are linear programming 
problems. Thus, they can be solved easily. However, the 
problem at Step 3 is a non-convex programming 
problem. The previous solution methods for Problem (7) 
are different in the solution methods for the sub-problem 
(8). In what follows, we briefly review two solution 
methods for Problem (8). 
 
3.2 Two-Phase Approach 

Let ΠB be the set of all possibly optimal extreme 
points of Problem (1) and let 

( ) ( ).f
c

0TTmax xcycy −=
Γ∈

             (10) 

Then maximum regret problem (8) can be represented as 
.f

B
)(maximize y

y Π∈
                (11) 

Since X is bounded, ΠB is a finite set. All the 
elements of ΠB can be enumerated by the method 
proposed in Inuiguchi, Higashitani and Tanino [7]. On 
the other hand, f(y) is easily obtained by solving a linear 
programming problem. Hence, after enumerating all 
elements of ΠB, Problem (8) can be solved easily by 
obtaining ( )jf y  for all Bj Π∈y  (see Inuiguchi and 
Sakawa [2, 3]). 
 
3.3 Bilevel Programming Approach 

Since Problem (8) is equivalent to 
( )0maximize xcycyc

TT
S, −Π∈Γ∈ , it can be seen as a 

bilevel programming problem, 
( ),T 0Tmaximize xcyc

yc,
−  

subject to ,0,, ≥≤≤ ybygc AD  
,max zcyc

z

TT =                 (12)         

subject to .A 0 , ≥≤ zbz  
Replacing the lower level programming problem with 

its optimality condition and introducing slack variables 
0≥−= ybw A , surplus variables 0T ≥−= cus A  

and a redundant constraint, ( ) ycb TRT ≤u , the problem 
can be reduced to  

( ) ( ) uwsx
su,y,

T0T0maximize + , 

subject to ,ADDA bwygsu =+≤−  ,T  
,0,0,0,0 ≥≥≥≥ sywu        (13)  

( ) ,0  , TTTRT =+≤ yswuycub  
where we define 00 xbw A−= and 

( )TRR
2

R
1

R
nc,...,c,c=c  with .cc ii  maxR

Γ∈= c  

Let ( ) ( )TTTT
21 ,,,, uss == +mns...ss and

( ) ( ) .,y,...yy mn
TTTT

21 ,, wyy == +  The last constraint 

of (12) can be written as 0
T

=ys . Because of the 
non-negativity, this constraint becomes complementary 
constraints, ,0=jj ys  j=1,2,…,n+m. Moreover, 

dropping the last constraint, ,0TT =+ yswu  Problem 
(12) becomes a linear programming problem. Thus, an 
application of a branch and bound method is conceivable 
by solving the relaxed linear programming problem and 
introducing a constraint 0=js  or 0=jy  until all 
possible combinations are exhausted (see Inuiguchi and 
Sakawa [3]). 
 

4. Proposed Approaches 
 
4.1 Outer Approximation 

Using the function f  defined by (10), Problem (8) 
can be written as  

( ).f
X

y
y∈

maximize    (14) 

We can prove that f  is a convex function. 

Theorem 1  f is a convex function. 
Proof  Let .X∈21, yy  For any [ ],1,0∈λ  we have 



( )( )
( )( )

( ) ( ) ( )
( ) ( ) ( ).ff

f

21

0T
2

T0T
1

T

0T
2

T
1

T
21

1  

max1max  

1max  

1

yy

xcycxcyc

xcycyc

yy

cc

c

λλ

λλ

λλ

λλ

−+=

−−+−≤

−−+=

−+

Γ∈Γ∈

Γ∈  

Thus, f is a convex function.                  
Q.E.D. 

From Theorem 1, we know that Problem (14) is a 
convex maximization problem and thus, an optimal 
solution exists in the set of extreme points of X (see, for 
example, Horst and Tuy [8]). From this point of view, 
we can apply any solution algorithm for convex 
maximization problems. In this paper, we apply an outer 
approximation method because the fact that X is a 
polytope guarantees the termination in a finite number of 
iterations. 

Taking advantage of the fact that the optimal solution 
is in Π B, the outer approximation algorithm for 
Problem (14) is obtained as follows. 

 
[Outer Approximation Algorithm] 

Step 1 Initialize p=0 and obtain a polytope 0Y  such 
that 0YX ⊆ . 

Step 2 Enumerate all the elements of ( ).YB pΠ  

Step 3 Calculate f(y) for all ( ).YB pΠ∈y  Let py  
be a solution which maximizes f(y) subject to 

( ).YB pΠ∈y  Moreover, let pd  be a Γ∈c  

such that ( ) ( )0xycy −= pTpf . 
Step 4 If ( ) 0rf p ≤y , terminate the algorithm with 

setting .rr k 0=  
Step 5 If Xp ∈y , terminate the algorithm with 

setting pkpk yzdc ==  ,  and ( ).fr pk y=  
Step 6 Solve a linear programming problem, 
         yd

y

Tmaximize p

X∈
,                   (15) 

      and let pw  be an optimal solution. Let Z be a 
set defined by constraints whose corresponding 
slack variables are nonbasic at the optimal 
solution pw . 

Step 7 Update ZYY pp ∩=+1  and 1+= pp . 
Return to Step 2. 

 
In the algorithm above, ( )pYBΠ  is the set of all 
possibly optimal extreme points of Problem (1) when X 
is replaced with pY . 

Let us discuss the initialization of pY  in Step 1. 
Since the above outer approximation algorithm is 
proposed for solving the sub-problem (8), it is called 
many times. Once the algorithm is called, pY  always 

satisfies XYp ⊇ . Thus, the latest pY  of the previous 
call of the outer approximation algorithm can be utilized 
as the initialization of 0Y  at the current call. Now, we 
discuss how we initialize 0Y  at the first call of the outer 
approximation algorithm. 

Before the first call of the outer approximation 
algorithm, we calculate an optimal solution 0z  of a 
linear programming problem at Step 1 of the relaxation 
procedure algorithm (see Subsection 3.1). Utilizing this 
solution, we define 0Y  by all constraints whose slack 

variables are nonbasic at 0z . However, there is no 
guarantee that 0Y  is bounded. To ensure the 
boundedness, we add the following constraint, 
 

, max TT yexe
Xy∈

≤                         (16) 

where ( )T111 ,...,,=e . The right-hand side problem can 
be solved easily by a post-optimality technique of the 
simplex method from the basis associated with 0z . 

Now let us discuss the enumeration of all elements of 
( )pYBΠ  at Step 2. ( )0YBΠ  at the first call can be 

obtained by the algorithm proposed by Inuiguchi, 
Higashitani and Tanino [7]. ( )0YBΠ  after the second 
call has been already obtained at the last call. Hence, we 
discuss the method for updating ( )pYBΠ  at Step 2 for 

2≥p . Utilizing the basic solution 1−pw  obtained at 
Step 6, this can be done by the following algorithm. 
 

[Algorithm for Updating ( )pYBΠ ] 
Step 1 Erase all elements which do not satisfy the 

additional constraints from ( )1−Π pYB . 

Step 2 From the basic solution 1−pw  at Step 6, 
obtain a basic expression of 1−pw  with 
respect to pY . Enumerate all possibly optimal 

extreme points of pY  as far as at least one 
slack variable corresponding to one of 
additional constraints is nonbasic. Let Δ be 
the set of enumerated extreme points. Let 

( ) ( ) Δ∪Π=Π −1pp YBYB . 



 
4.2 Cutting Hyperplanes 

The sub-problem (8) is a bilinear programming 
problem, thus we apply the cutting hyperplane method 
developed by Sherali and Shetty [9] which guarantees 
the convergence in a finite number of iterations. In this 
method, two kinds of cutting hyperplanes are considered 
and a cutting hyperplane is introduced at each iteration. 

We denote the i-th cut by ii t0
T

≤xt . Let Q be a 
feasible region of q cuts composed of all previously 

obtained cuts, i.e., { }q...it|Q ii ,,2,1 ,0
T

=≤= xtx . 
First, an extreme face of X with respect to Q is 
calculated by repetitive use of the simplex method. If the 
obtained extreme face is not an extreme point of X, we 
introduce a disjunctive face cut. Otherwise, we introduce 
a negative-edge extension polar cut. 

If the obtained extreme face is not an extreme point of 

X, a basic solution ( )T00
2

0
1

0
ny,...,y,yy =  on the 

extreme face is obtained at the same time through the 
extreme face determination algorithm. Let 

{ }00 >= rN y|rB  and J be a set of indices of nonbasic 

variables with respect to 0y . Choosing NBr ∈  
arbitrarily, we solve { }QXy|yry ∩∈minimize  by a 
simplex method with a restriction that slack variables 

q...its ii
i ,,2,1 ,0T

0 =≥−= yt  are eligible to enter the 
basis. Then, we obtain the following canonical form of a 
variable ry ; 

∑∑
∈∈

=++
rSi

riri
Jj

jrjr syy γβα ,       (17) 

where rS  be the set of indices of all nonbasic slack 
variables, i.e., is ’s. Note that J includes all indices of 
nonbasic variables jy ’s at the optimal solution and 

some rjα ’s are zeros.  
Repeating the above procedure, we obtain canonical 

forms (17) for every NBr∈ . Let *
NB  be a subset of 

NB  obtained by deleting all NBr∈  such that 

0<rjα  for all Jj∈ . We define rBr
*
N SS *

N∈
= U  and 

,maxmin,maxminmin
*** 0:0: ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

∈>∈∈>∈ r

ri

Brri

r

Sir

rj

Brrj

r
Jjr

NriNNrj γ
β

β
γ

γ
α

α
γδ

βα
 

(18) 
where we define r

*
Nri S\Si∈=  ,0β . Then a disjunctive 

face cut is obtained as 

∑ ≥∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∈ ∈ ∈∈Jj

i
Si r

ri
r

Br
j

r

rj
r

Br
sy

N NN

.1maxmax
* ** γ

βδ
γ
α

δ     (19)    

If the obtained extreme face is an extreme point of X, 
we calculate a weak pseudo-global minimum ( )yc ˆ,ˆ  
such that ŷ  is a basic solution with respect to X, 

( ) ( )0T0T max xycxyc c −=− Γ∈ ˆˆˆ and 

( ) ( )0T0Tmax xycxyc −≤−Γ∈ ˆˆˆc  for all basic solutions 
y  adjacent to ŷ . Then the following two parameters 

jλ̂  and j
~λ  are computed by a modified Newton 

method. 
( ){ },  max  sup 0T kj

cj rˆ|ˆ ≤−−=
Γ∈

xeyc λλλ           (20) 

( ){ },  max  sup 0T kj

cj rˆ|~
≤−+=

Γ∈
xeyc λλλ           (21) 

where kr  is the current maximum regret and je  is the 
extended column of the nonbasic variable jx . The i-th 

component of je  shows the negative rate of change of 
i-th component of y with respect to a unit increment of 
nonbasic variable jx . Let 

   
⎪⎩

⎪
⎨
⎧

+∞=
+∞≠

=
jj

jj
j ˆ~

ˆˆ

λλ
λλ

λ
if
if

          (22) 

Then the negative-edge extension polar cut is obtained 
as 

∑ ≥
∈Jj j

jy
,1

λ
              (23) 

 
where J is an index set of nonbasic variables with 
respect to ŷ . 

The cutting hyperplane algorithm becomes as follows. 
 

[Cutting Hyperplane Algorithm] 
Step 1 Set nQ R=  and 0rrk = . 
Step 2 Obtain an extreme face of X with respect to Q. 

If it does not exist, the current solution is 
optimal and terminate the algorithm. If the 
extreme face is an extreme point of X, go to 
Step 4. 

Step 3 Calculate *
NB . If φ=*

NB , the current 
solution is optimal and terminate the 
algorithm. Otherwise, obtain a disjunctive 
face cut (19) and update Q by introducing 
this cutting hyperplane. Return to Step 2. 

Step 4 Obtain a weak pseudo-global minimum 
( )yc ˆˆ , . If ( ) krˆˆ >− 0T xyc  then reset 
( ) ( )ycyc ˆˆkk ,, = and ( )0T xyc −= ˆˆr k . Let J 



be the index set of nonbasic variables at ŷ  
with respect to X. For every Jj∈ , obtain 

jλ̂  and if it is +∞, obtain jλ
~ . If there exists 

Jjˆ
j ∈=  ,0λ , Return to Step 3. If +∞=jλ̂ , 

for all Jj∈  the current solution is optimal 
and terminate the algorithm. Otherwise, 
establish a negative-edge extension polar cut 
(23) and update Q by introducing this cutting 
hyperplane. Return to Step 2. 

 
4.3 Combination of Outer Approximation and 

Cutting Hyperplanes 
In the cutting hyperplane method, computational 

efficiency is enhanced by erasing the region in which no 
optimal solution exists. However, there is no upper 
bound information about the optimal value, so that a lot 
of computation may be required before the termination 
criterion is satisfied. On the other hand, in the outer 
approximation method, upper bound information is 
utilized but there is no cut down of feasible region. 
Hence unnecessary extreme points may be enumerated. 
Because of the complementary properties of the cutting 
hyperplane method and the outer approximation method, 
an approach as a combination of those methods is 
conceivable. Then we obtain the following algorithm. 
 

[Algorithm by the Combination of Outer 
Approximation and Cutting Hyperplanes] 

Step 1 Initialize p=0 and obtain a polytope 0Y  such 
that 0YX ⊆ . Set nZ R=  and 0rrk = . 

Step 2 Enumerate all elements of ( )pYBΠ . 

Step 3 Calculate f(y) for all ( )pYBΠ∈y . Let 
py be an element y of pY  which maximizes 

f(y). Moreover, let pd  be a Γ∈c  such 
that ( ) ( )0T xycy −= ppf . 

Step 4 If ( ) kp rf ≤y , terminate the algorithm. 
Step 5 If Xp ∈y , terminate the algorithm with 

setting pkpk yzdc ==  , and ( )pk fr y= . 
Step 6 Solve a linear programming problem, 

           yd Tp

XYy p∩∈
maximize ,                (24) 

and let pw  be an optimal solution. If pw  
is not an extreme point of X, go to Step 10. 

Step 7 Starting from pw , obtain a weak 
pseudo-global minimum ( )yc ˆˆ , . 

Step 8 Let J be the index set of nonbasic variables at 
ŷ  with respect to X. For every Jj∈ , 

obtain jλ̂  and if it is +∞, obtain jλ
~ . If 

there exists Jjˆ
j ∈=  ,0λ , go to Step10. If 

+∞=jλ̂ , for all Jj∈  the current solution 
is optimal and terminate the algorithm. 
Otherwise, establish a negative-edge 
extension polar cut (23) and update Z by 
introducing this cutting hyperplane.  

Step 9 If Zˆ ∉y , go to Step 11. 
Step 10 Let Z ′  be a set of solutions satisfying 

constraints whose corresponding slack 
variables are nonbasic at the optimal solution 

pw . Reset ZZZ ′∩= . 
Step 11 Set ZYY pp ∩=+1 . Return to Step 2. 
 

The details of the steps are mostly the same as those 
in outer approximation algorithm and cutting hyperplane 
algorithm. A big difference is in Step 2 returned from 
Step 11. The difference is as follows: in the outer 
approximation algorithm, the starting point of the 
enumeration has already obtained as 1−pw  of the 
previous iteration and ( )pYBΠ  can be updated from 

( )1−Π pYB  by the algorithm described in Subsection 4.1. 
On the other hand, in the algorithm of the combination, 
because there is no guarantee of p

p Y∈−1w , 1−pw  
cannot be used as a starting point and ( )pYBΠ  is 
obtained by enumerating all elements of it independently 
of ( )1−Π pYB . If p

p Y∉−1w , then a starting point can be 
obtained by solving 

yd
y

Tmaximize p

Yp∈
                    (25) 

This linear programming problem can be solved by a 
post-optimality technique. 
 
4.4 An Example of Minimax Solution Procedure 

Before the numerical experiment for the comparison 
among solution methods described above, we exemplify 
how the relaxation procedure algorithm (main routine) 
behaves. Note that the relaxation procedure is the same 
in all solution methods described above since the 
difference is only in the procedure for solving a 
subproblem. 

Let us consider the following linear programming 
problem with uncertain objective coefficients: 

9,0 ,0
,243
,4243tosubject

maximize

21

21

21

2211

≤≤≥
≤+
≤+

+

xx
xx
xx

xx γγ

              (26) 



 

 
Figure 1: Feasible region X and Γ  of Problem (26) 

 
where the possible range of 21 γγ , , Γ is assumed to 
be given by 

( )

}228021                         
,311                       

 ,6243                         
 ,55253  {

21

21

21

2121

.c.,c
.cc

cc.
.cc.|c,cc

≤≤≤≤
≤−≤−
≤+≤
≤+≤==Γ

    (27) 

The feasible region X and Γ are illustrated in Figure 1. 
Applying the relaxation procedure algorithm with setting 
ε=0.00001, we obtain a minimax regret solution as 
( ) ( )TT

21 789476 ,947374 ..x,x = . The maximum regret 

is ( )( ) 473681789476947374 T ..,.R = . The 
process of the relaxation procedure is shown in Table 1. 
 

5. A Numerical Experiment and the Result 
 
5.1 The Numerical Experiment 

In order to compare the computational efficiency of 
solution algorithms for the minimax regret solution 
described above, we did a numerical experiment by 
using a personal computer (Pentium III 700MHz, 
128MB). Each solution algorithm is encoded by C 
language (GNU project C and C++ Compiler ver.2.95.2) 
on Free BSD ver.4.2. By the numerical experiment, we 
compare the solution algorithms by the computation 
time (CPU time, sec.). We consider many combinations 
of the number of decision variables, the number of 
constraints of X and the number of constraints of Γ, i.e., 
(n,m,p). To each combination, we generate 10 problems 
using random numbers.  

Each problem is generated as follows. Using tangent 
hyperplanes of a randomly generated ellipsoid, we 
generate nX +⊆ R  (see Figure 2). We generate a 
polytope nR⊆Θ  in terms of tangent hyperplanes of a 
randomly generated ellipsoid (see Figure 3(a)). Γ is 
defined as a polytope obtained by a parallel  

Table 1: An Illustration of Relaxation Procedure Algorithm. 

 
 

 
Figure 2: Generation of Constraints 

 
displacement of Θ so as to be inscribed in a cone 
defined by  
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where δ>n−1 is a predetermined value (see Figure 
3(b)). The variety of directions c/|c| in Γ increases as 
δineases. Namely, the generated problem with large δ 
will be more difficult than the one with small since the 
number of possibly optimal solutions increases as the 
variety of directions of objective coefficient vectors 
increases. In our experiment, e select three values for δ, 
i.e., δ=4(n−1), δ=2(n−1) and δ=4(n−1)/3.  
 
5.2 Modification of the Relaxation Procedure 
To some small-sized problems we applied the solution 
algorithms described in previous sections as a 
preliminary experiment. We observed that a lot of 
computation time (more than 1200 sec.) were necessary 
in the cutting hyperplane approach and that the 
computation time in cutting hyperplane approach was 
too large to compare with the others. From this fact, we 
may conclude that the cutting hyperplane approach is out 
of question and should be dismissed. However, this big 
computation time is caused by the fact that the cutting 
hyperplane method requires plenty of time for the 
convergence to an exact optimal solution though it 
converges relatively rapidly to a sub-optimal solution. To 
compute a minimax regret solution by the relaxation 
procedure, we should solve maximum regret problems 
(sub-problems) multiple times and thus, obtaining exact 
optimal solutions to the subproblems by the cutting 
hyperplane method costs a lot of computation time. 



 
Figure 3. Generation of Γ  

 
Taking into account the rapid convergence to a 

sub-optimal solution in the cutting hyperplane method, 
we modified the relaxation procedure so that we can 
compare the computation time of the cutting hyperplane 
approach with the others. The main aim of Steps 3 and 4 
of the relaxation procedure algorithm in Subsection 3.1 
is just to check the existence of ( )kk zc ,  such that 

( ) ε+>−= 00T rr kkk xzc . From this point of view, 
we may replace Steps 3 and 4 of the relaxation 
procedure algorithm with the following single step: 
 
Step 3&4  Find ( )kk zc ,  such that 

( ) ( ) Γ∈+>−= kkkkk rr cxczc  ,00TT
ε  

and Xk ∈z . If there exists no such 
solution, then terminate the algorithm. In 
this case, the obtained minimax regret 
solution is 0x . Otherwise, proceed to Step 
5. 
 

Whereas the original Steps 3 and 4 are trying to find 
the deepest cut of the relaxed constraints of Problem (9), 
the above single step is trying to find just a cut. By this 
modification, we reduce the computation time for Steps 
3 and 4, but may increase the number of iterations of the 
relaxation procedure. Thus the improvement by this 
modification depends on how the solution method for 
sub-problem (8) can find a good sub-optimal solution in 
early iterations. Moreover, this modification can be 
effective only for the cases when a lot of computation 
time is consumed for solving sub-problem (8). Once all 
elements of ΠB are enumerated, solving sub-problem(8) 
does not take a lot of computation time. Hence, this 
modification is not effective for two-phase approach. 
We equipped the modification in all approaches except 
two-phase approach. As the result, we compare eight 
approaches listed in Table 2. 

 
5.3 Experimental Results 
We solved all generated problems by the eight 
approaches and measured each computation time. The  

Table 2. Eight Approaches Compared in The Experiment 

 
 
obtained average computation time (CPU time, sec.) for 
each approach is listed in Tables 3 and 4. In the 
experiment, the computation time for solving a problem 
is limited to 1200 (sec.). The computation time of 
problems over 1200 (sec.) is treat as 1200 (sec.) in the 
calculation of the averages. Instead, we put a sign `+' 
and the number of such problems in parentheses after the 
averages.  

In Tables 3 and 4, we can also observe that the 
computation time decreases as δ decreases because 
the largerδis, the more difficult the problem is. 

From Table 3, in the case when we do not introduce 
the modification, we can observe the following. When 
the problem size is not large, the two phase approach is 
as efficient as the outer approximation method, but when 
the problem size is large, the outer approximation 
approach seems to be the most efficient. However, the 
efficiency of the outer approximation approach relative 
to two phase approach is not very drastic. The 
combination of the outer approximation and cutting 
hyperplane methods is worse than the outer 
approximation method. This is because we cannot utilize 
the last vertex set obtained by solving the previous 
maximum regret problem as the initial vertex set for the 
current maximum regret problem in the mixed methods 
while we can utilize it in the outer approximation 
method. The bilevel programming approach is not very 
efficient. 

Comparing Tables 3 and 4, we observe that the 
computation time is improved by the modification in the 
outer approximation approach and in the combination of 
the outer approximation and cutting hyperplane 
approaches. There is no improvement in the bilevel 
programming approach. From these results, we could 
say that a good sub-optimal solution to the subproblem 
can be obtained in early iterations of algorithms based 
on the outer approximation method and the combination 
of the outer approximation and cutting hyperplane 
methods. In the bilevel programming approach, a good 
sub-optimal solution does not seem to be obtained in 
early iterations. By the modification, the cutting 
hyperplane approach is improved very much, so that the  



Table 3. The Average Computation Time of Each Approach 
Without Modification 

 
computation time can be measured to be compared with 
the other approaches. Nevertheless, it is by far inferior to 
the outer approximation approach and the combination 
of the outer approximation and cutting hyperplane 
approaches. 

From Tables 3 and 4, we can conclude that the outer 
approximation approach with modification and the 
combination of the outer approximation and cutting 
hyperplane approaches with modification are most 
efficient in the sense of the average computation time. 

 
6. Concluding Remarks 

 
In this paper, we discuss solution algorithms for 

minimax regret solutions to linear programming 
problems whose objective function coefficients are 
unknown but known in given polytopes. An outer 
approximation method and a cutting hyperplane method 
are designed to solve minimax regret problems. 
Moreover, a combination of the outer approximation and 
cutting hyperplane approaches is considered. Since the 
cutting hyperplane approach takes a lot of computation 
time, we introduced a simple modification of the 
relaxation procedure. 

Four approaches without modification, i.e., a 
two-phase approach, a bilevel programming approach, 
an outer approximation approach and a combination of 
the outer approximation and cutting hyperplane 
approaches, and four approaches with modification, i.e., 
a bilevel programming approach, an outer approximation 
approach, a cutting hyperplane approach and a 
combination of the outer approximation and cutting 
hyperplane approaches, were compared in computational  

Table 4. The Average Computation Time of Each Approach 
With Modification 

 
 

efficiency by a numerical experiment. The results 
showed that the outer approximation approach with 
modification and the combination of the outer 
approximation and cutting hyperplane approaches with 
modification were the most computationally efficient. 

Introduction of other methods such as inner 
approximation and reformulation techniques developed 
for bilinear programming problems will be studied to 
develop new solution algorithms for minimax regret 
problems in the future. 
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