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PREFACE

This thesis is a study of computational complexity in
various one- and two-dimensional tape automata. Here, we
consider how the computational powers of these automata are
characterized by an amount of memory (tape complexity) or
some other related measures.

This study is motivated by the theory of a tape-~bounded
(one-dimensional) Turing machine proposed by Stearns et al.
In chapter 1, we survey this theory and give a general
introduction to the studies of computational complexity in
automata theory.

One of the main purposes of this study is to introduce
the notion of computational complexity to the field of two-
dimensional information processing. So far, there have been
several (but not many) researches which deal with the two-
dimensional information processing, such as pattern recogni-
tion, from the viewpoint of automata theory. However,
systematic studies of computational complexity of two-dimen-
sional pattern processing have not been made at all. 1In
chapter 2, a tape~bounded two-dimensional Turing machine is
proposed to formalize the notion of tape complexity for the
two-dimensional case, and its acceptabilities of a set of
patterns are investigated. Here, the hierarchy theorem, the
theorem concerning the lower bounds on tape complexity, and
some other basic properties are derived.

In chapter 3, various two-dimensional tape automata are



considered. It is shown that the acceptabilities of all these
automata can be measured by the tape complexity. Thus the
relations of acceptabilities among them can be systematically
derived from the hierarchy theorem of two-dimensional Turing
machine.

In chapter 4, several automata of tape complexity log n,
which accept one-dimensional languages, are investigated.
The class of tape complexity log n is very interesting, because
there are many concrete models in this class, and thus their
computations are intuitive. Furthermore, this class is closely
related to a kind of multi-dimensional tape automaton. We newly
define an n-bounded multi-counter automaton and a multi-
dimensional rebound automaton, and study how their language
acceptabilities form a subhierarchy in the class of tape
complexity log n.

In chapter 5, several classes of transducers are defined,
and their computing abilities of number-theoretic functions
are investigated. A tape-bounded Turing transducer, a multi-
head transducer, a multi-counter transducer, and some other
models are proposed. Here, we also study how their computing

abilities vary with the auxiliary memory.
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CHAPTER 1

INTRODUCTION

1.1 Computational Complexity

Since Turing [57] gave his answer to the problem "What
kind of logical work can we effectively perform?", many
researchers have been making their efforts to investigate
the problem "How complicated is it to perform a given logical
work?". The concept of "computational complexity" is a
formalization of such "difficulty of logical works".

In the study of computational complexity, the "complexity
measure” plays a very important role. Borodin proposed
(in [1]) that the complexity measures can be categorized
into two classes, i.e. the static measures and the dynamic
measures. For example, the size of a program or a machine
is included in the static measures. The amount of resources
(e.g. the running time or the amount of auxiliary memory)
required in the computation is regarded as the dynamic measure.

If some programming language or machine model is given,
we can define a concrete complexity measure for it. The

concepts of time and tape complexities of a Turing machine



defined by Hartmanis et al. [12,47] are such concrete measures
(they are both dynamic measures). However, even if a program-
ming language or a machine model is not explicitly given,

some abstract measures of complexity can also be defined.

Blum [3,4] proposed the size measure and the resource measure
which are independent of machine models by an axiomatic
method, and derived several interesting properties.

In the theory of automata, there also have been many
researches on the computing abilities of various kinds of
automata. That is to say, "What kind of machine can do what
kind of logical work?" For example, it is well known that the
classes of finite-state automata, nondeterministic pushdown
automata, nondeterministic linear-bounded automata, and Turing
machines form the "Chomsky hierarchy”. This can be thought,
in some sense, as the hierarchy of the structural complexity
of automata. But, generally, these structural differences
come from the restrictions on accessibility of the auxiliary
memory. Thus, such structural differences of automata are
closely related to the resource measure (especially to

the amount of memory).

1.2 Tape Complexity of Turing Machine

The concept of "tape complexity" is very convenient to
characterize various types of automata from the standpoint of

memory requirements. This also facilitates the systematical



investigation of the computing abilities of various classes of
automata. Stearns, Hartmanis and Lewis [47] introduced an

L(n) tape-bounded (one-dimensional) Turing machine to formal-
ize the notion of tape complexity, and they investigated its
computing ability. Later, some results were refined or newly
added by Hopcroft and Ullman [17,18]. Here, we give the defini-

tion of the L(n) tape-bounded one-~dimensional Turing machine,

and survey some properties of it.

1.2.1 Tape-Bounded One-Dimensional Turing Machine

Consider a Turing machine (acceptor) T illustrated in

Fig.1l.1.

d: a:la:l - . . . . - la, $;

INPUT TAPE

FINITE-STATE CONTROL

STORAGE TAPE

T consists of an input tape, a two-way read-only input head,
a storage tape, a two-way storage tape head, and a finite-
state control. The input tape is a one-dimensional finite-

length tape, and is divided into squares in which input



symbols are written. Special border symbols ¢ and $ are
attached to the left and the right side ends of the input
tape. The input head can move freely in both directions,
but it cannot go beyond the border symbols. The storage
tape is a one-dimensional semi-infinite tape and divided
into squares. A border symbol ¢ is attached to the left
side end of it. 1Initially, a special blank symbol # is
written in every square of the storage tape. The storage
tape head can read or write the storage tape symbols, moving
freely in two ways. The state of the finite-state control
is called an internal state Or simply a state. Depending
on the present internal state and the symbols read by the
input head and the storage tape head, the finite-state
control determines the storage tape symbol to be written,
the move directions of the input head and the storage tape
head, and the next internal state.

Formally a deterministic one-dimensional Turing machine
(abbreviated to 1TM) is a 9-tuple

T= (K, L, T, 8§ qg, ¢, $, #, F),
where, K is a nonempty finite set of states, I and I are
nonempty finite sets of input symbols and storage tape symbols
respectively, qOEIK ig an initial state, ¢ is a left border
symbol of the input tape and the storage tape (Z[){¢}=¢g, T[]
{¢1=@), $ is a right border symbol of the input tape (I[]1{$}
=@), % is a blank symbol of the storage tape (I'[1{#}=¢),
and FC K is a set of final states. ¢ is a mapping from a

subset of Kx(Z U {¢,sh)x(TU{¢,#}) into Kx(I‘U{¢})x{L,R,H}2,



where {L,R,H} is the set of move directions of the input head
or the storage tape head. T halts for the element of Kx(IlJ
{¢,8)x(rJ{¢,#}) on which § is not defined.

A finite string (sequence) of the elements of I is
called a word on . The set of all the words on I is denoted
by Z*. And the set of all the words except the null word ¢
(i.e. the word of length 0) is denoted by I'. (Thus, & =
2 U Ledy)

Let us give T a word w<52+‘with border symbols ¢ and §.
Assume that T begins its movements from the initial state dq
settlng the input head and the storage tape head at the

left side ends. If T eventually halts in a flnal state, then

we say that T accepts the word w. If T halts in a state other
than the final states, we say that T rejects w. (If T does
not halt, T neither accepts nor rejects.) The set of all the
words accepted by T is called a language accepted by T.

Let L(n) be a function from N into R+, where N and R+

are the sets of natural numbers and nonnegatlve real numbers,

respectlvely. If T scans no more than [L(n)] sguares ([x]
means the greatest integer less than or equal to x) of the
storage tape for every input word of length n, T is said

to be a deterministic L(n) tape-bounded one-dimensional
Turing machine. The function L(n) is called a tape function,
and T is said to have tape complexity L(n). We denote the
class of deterministic L(n) tape-bounded one-dimensional
Turing machine by 1TM(L(n)). And let ZL[1TM(L(n))] denote

the class of (one-dimensional) languages accepted by 1TM(L(n)).



The tape function L{(n) is said to be constructible, if
there exists some T € 1ITM(L(n)) which uses exactly [L(n))]
squares of the storage tape and eventually halts, for some

input word of length n, for every n.

1.2.2 Some Properties of 1TM(L(n))

There are three important theorems concerning 1TM(L(n)).
They are the tape reduction theorem, the hierarchy theorem,
and the theorem of the lower bounds on tape growth.

First, the tape reduction theorem is as follows.

Theorem 1.1 {Stearns, Hartmanis and Lewis [47])

Let L{n) be a tape function of 1TM. Then, for any
constant c¢>0,

LI1ITM(L(n))] = ZL[1TM(c-L(n))].

This theorem means that a constant factor of a tape
function does not affect the language acceptability of 1TM(L(n)).
This property comes from the fact that there is no restriction
to the number of storage tape symbols.

The hierarchy theorem asserts the existence of infinite
hierarchy of language acceptabilities among 1TM(L(n))}. This
theorem is partitioned into two cases. The first case is
that the tape function L(n) grows at least proportional to
log n. In this case, the diagonalization argument is

applied to prove this.



Theorem 1.2 (Stearns, Hartmanis and Lewis [471])

Let Ll(n) and Lz(n) be constructible tape functions of
1T™™. Suppose that

Ll(n.)

. 1
lim ———— =0
100 L2 (ni)

Lz(ni)

e > K
log n;

for some increasing sequence of natural numbers {ni}, and

for some constant k>0. Then, there exists a language L

such that L € £L[1TM(L,(n))] but L ¢ L[1TM(L, (n))].

The second case is that the fape function grows more
slowly than log n. Hopcroft anf Ullman [17] proved this
using the notion of the "trénsition matrix". The following
theorem also holds for the nondeterministic Turing machine,
because this argument can easily be expanded to the non-

deterministic case.

Theorem 1.3 (Hopcroft and Ullman [171)

Let Ll(n) and Lz(n) be constructible tape functions of
1TM. Suppose that

L, {n.)
lim -+ 1 _ - ¢

Lz(?__
log n,

<

il
>

for some increasing sequence of natural numbers {ni}. Then,

there exists a language L such that L € x[lTM(LZ(n))] but



L ¢ LI1TM(L, (n))].

Combining Theorem 1.2 and 1.3, we can see that if two
constructible tape functions Ll(n) and Lz(n) satisfies

L. {n)

it ooy = O

then there exists a language L which is accepted by some
lTM(LZ(n)) but not accepted by any lTM(Ll(n)). Since there
are various constructible tape functions, there exists an

infinite hierarchy of language acceptabilities among 1TM.

However, the next theorem states that there exists no
constructible tape function which grows more slowly than
the order of log log n. Thus no hierarchy of language

acceptability exists below the tape complexity log log n.

Theorem 1.4 (Hopcroft and Ullman [17])

Let L(n) be a constructible tape function of 1TM. If

limsup L{n) = «, then
n-ro

limsu L(;)
n->o P log log n

It is known that there is a constructible tape function
which increases in proportion to log log n [10,28]. Thus,
indeed, the order of log log n is the lower bound of tape

growth.



1.3 Standpoint of This Research

In this thesis, we study the computing abilities of
various kinds of automata from the standpoint of computational
complexity. We mainly pay attention to the notion of tape
complexity and some other complexity measures related to it.
And we investigate how the computing abilities of automata are
characterized by these measures.

The problem of computational complexity also arises in
the two-dimensional information processing. Blum and Hewitt
[5] first proposed two-dimensional tape automata, and inves-
tigated their pattern recognition abilities. Since then,
there have been several reserches in this field, but each

of these researcheswas the one which deals with merely

particular two-dimensional automata.

The concept of tape complexity is also applicable to
the case of two-dimensional pattern processing, and it plays
an important role to unify the automata-theoretic approaches
in this field. Here, we propose a tape-bounded two-dimensional
Turing machine. It will be seen (in chapter 3) that various
two-dimensional tape automata are characterized by the notion
of tape complexity. Thus, many properties of these automata
can be uniformly and systematically derived from the general
theory of tape-bounded two-dimensional Turing machine.

The tape-bounded two-dimensional Turing machine is
considered to be a natural expansion of the one-dimensional

case. So, some results can be derived in a similar manner as



in the one-dimensional case. However, there also exist
many propérties peculiar to the two-dimensional case. For
example, we shall see that the property concerning the
lower bounds on tape growth is quite different from the
one-dimensional case.

As seen in the previous section, the systematic study
of language acceptabilities of one-dimensional tape automata
from the standpoint of tape complexity have already been
outlined by several researchers. Recently, very precise
investigations of language acceptabilities of automata of
tape complexity log n are being made. The tape complexity
log n is very interesting, because it is, in some sense,
the "critical" tape complexity. It is based on the fact
that the tape complexity log n is a necessary and sufficient
amount of memory to keep the coordinates on the input tape.
There are various concrete models of automata of this complexity,
and some of them are newly defined here. Furthermore,
it will be seen that these automata are closely related to
some class of multi-dimensional finite-state automata. In
chapter 4, we consider the detailed relations among these
éutomata, and investigate several subhierarchies of accepta-
bilities in the class of tape complexity log n.

So far most of the researches concerning the tape complexity
were the ones which had investigated the acceptabilities
of automata. In the last chapter of this thesis, we introduce
a tape-bounded Turing transducer and some other models, each

of which computes a recursive function. Here, we consider

10



how the computing ability of recursive functions is characterized

by an amount of auxiliary memory.
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CHAPTER 2

TWO-DIMENSIONAL TURING MACHINE

Recently, there have been several attempts to study two-
dimensional information processing, such as pattern recogni-
tion, from the standpoint of automata theory. A two-dimen-
sional Turing machine is considered as one of the most
convenient mathematical model for this purpose. In this
chapter, a deterministic L{m,n) tape-bounded two-dimensional
Turing machine and its variants are introduced to formalize
memory limited computations in two-dimensional information
processing. It is a Turing machine which uses no more than
L{(m,n) sgquares of the storage tape for every two-dimensional
input of size mxn. Thus the function L{(m,n) is regarded
as one of the measures of computational complexity connected
with memory requirements. Henceforth a two-dimensional
Turing machine is treated as an acceptor of a set of two-
dimensional patterns, which is called a "two~dimensional
language" by an analogy of the one-dimensional formal lan-
guage theory. In what follows, general properties of their

language acceptabilities are investigated.

12



2.1 Definitions

We consider a deterministic two-dimensional Turing

machine (acceptor) T illustrated in Fig.2.1.

BIBIB| |- BB
Blaund,l | * | © 8| B

B laa|dzn| - | © | * 13| B | 2-DIMENSIONAL
T-T-In |- | INPUT TAPE

FINITE-STATE CONTROL

\ STORAGE TAPE

The definitions concerning the two-dimensional Turing
machine are analogous to those of the one-dimensional Turing
machine, except that the dimension of the input tape is
different.

T consists of a rectangle-~shaped input tape, a read-
only input head, a storage tape, a storage tape head, and

a finite-state control. The input tape is divided into

13



mXn sqguares and surrounded by special border symbols. (m
and n are arbitrary natural numbers.) An input symbol is
written in each square of the tape. The input head can
move freely in four directions {(north, south, east, and
west) on the input tape, but never falls off. The storage
tape is a semi-infinite one-dimensional tape and divided
into squares in which storage tape symbols are written.
The storage tape head can read or write the storage tape
symbols, moving on the tape in two ways. A special blank
symbol is written in every square of the storage tape,
when T starts to move.

Formally a deterministic two-dimensional Turing machine
(abbreviated to 2TM) is a 9-tuple

T= (K, z, T, &, d9g9r Bs ¢, ¥, F),
where K is a nonempty finite set of states, £ and T are
nonempty finite sets of input symbols and storage tape
symbols, qoe:K is an initial state, B is a border symbol
of the input tape (f [1{B}=@), ¢ and # are a border symbol
and a blank symbol of the storage tape (T {1{¢,#}=@), and
FCK is a set of final states. § is a mapping from a subset
of Kx(zU{BNx(rY{¢,#}) into Kx(ryy{e¢})x{nN,s,E,wW,H}x{L,R,H},
where {N,S,E,W,H} and {L,R,H} are the sets of move directions
of the input head and the storage tape head. T halts for the
element of Kx(Z U{B})x(Ir'U{<¢,#}) on which § is not defined.

A rectangular array of the elements of I is said to be
a two-dimensional word on I (or simply a word on I, if no

confusion occurs). A set of all the two-dimensional words

14



on I is denoted by 22+. (22+ does not contain a word of
size 0x0.)

Assume that a word w5522+ with surrounding border
symbols is given to T as an input tape. And suppose that
T starts in the initial state dgr setting the input head at
the north-west corner of the input tape and the storage tape
head at the left side end of the storage tape. We say that
T accepts the two-dimensional word w, if T eventually halts
in a final state. And we say that T rejects w, if T halts
in a state other than the final states. The set of all the
words accepted by T is called a two-dimensional language
(or symply a language, when no confusion occurs) accepted
‘by T.

Let L{m,n) be a function from N2 into R+. If T scans
no more than [L(m,n)] sguares of the storage tape for every
input of size mxn, T is said to be an L(m,n) tape-bounded
two-dimensional Turing machine. L{m,n) is called a tape
function and we say that T has tape complexity of L(m,n).
The class of L{m,n) tape-bounded two-dimensional Turing
machines and the class of two-dimensional languages accepted
by them are denoted by 2TM(L{(m,n)) and ZL[2TM(L(m,n))],
respectively.

We say that the tape function L(m,n) is constructible,
if there exists some TGEZTM(L(m,n)) which uses exactly
[L{m,n)] squares of the storage tape and eventually halts

for some input of mxn, for every m and n.

A computational configuration of T is a combination

15



of the internal state, the position of the input head,

the contents of the storage tape, and the position of the
storage tape head. If T is a 2TM(L{(m,n)), the total number
of computational configurations for an input of size mxn
is at most s-m-n'[L(m,n)]vt[L(m’n)], where s and t are the
numbers of internal states and storage tape symbols. A
storage state of T is a combination of the internal state,
the contents of the storage tape and the position of the
storage tape head. Similarly, the total number of storage
states for an input of size mxn is at most s+ [L(m,n)]l-
t[L(m,n)].

Next, we define a two-dimensional Turing machine whose
inputs are restricted to the ones of special shapes. Let Xl
and Qz be functions from 22+ into N, which pick up vertical
and horizontal sidelengths from a two-dimensional word on &

(i.e. Ql(w) and £2(w) are vertical and horizontal sidelengths

of the word w respectively). Let f be an injection from N

into N2, which is called a shape function. We consider a

set of words Z§+ defined by the shape function f.

22t = wlwez®, 33 £(H=m,n), 2 (w=m, 2,(w=nl}.

We call 3 an index of w€ I2', such that f£(j)=(m,n), 2, (w)=m,

f
and QZ(W)=n. The class of 2TM whose inputs are restricted to

Z§+ is denoted by 2TMf. Let L(j) be a function from N into
R and let T be any 2TMf. If T uses no more than [L(j)]

+l
squares of its storage tape for every input with the index

j, we say T is an L(j) tape-bounded 2TMf. (So, £ must be

an injection.) The class of L(j) tape-bounded ZTMf is
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denoted by ZTMf(L(j)). Generally, a tape function L(j) for

£ is a function of the index j. But as a special case

f

2TM
of 2TM (L(j)), if f is an injection such that £(3)=(3, £'(3))
(or £(3)=(£"(3), j) ) for some injection £' : N > N, then L(j)
becomes a function of a vertical (or horizontal) sidéiéﬂéég o
of an input. 8o, in such a case, we express the tape function
by L(m) (or L(n)) when no confusion occurs. Especially, if

s : N~ N2 be a shape function such that s(j)=(j,3j), then

Z§+={w]w € 22+,

ﬁl(w)=22(w)} is the set of all the square-shaped
words on . The class of 2TM whose inputs are restricted to
square-shaped words is denoted by 2TM° . The class of L(m)
tape~béunded 2TMS, which uses at most [L(m)] squares of
the storage tape for every input of size an,'isvdenoted,by
21M° (L (m) ) .

Finally, we define a class of 2TM with one input symbol.
Let Zl={a}. The class of 2TM whose inputs are restricted

1 1

to (2;)%" is denoted by 2tMl'. ana 2mMl(L(m,n)) denotes

the class of 2TMwhich uses at most [L(m,n)] squares of the

storage tape for an input of size mxn, for every m and n.

1f 1s f 2+ S

Similarly, 2TM and 2TM denote 2TM~ on (Zl)f and 2TM
on (Zl)§+, respectively.

2,2 Closure Properties Under Boolean Operations

In this section, we investigate some closure properties

of the class of languages accepted by 2TM under Boolean

17



operations.

First, we consider complementation.

Theorem 2.1 Let L{(m,n) be a tape function of 2TM.

If ¢*L(m,n) > log mn+ for some constant c>1, then the class
of languageé L[2TM(L{m,n))] is closed under complementation.

Proof. Let Tl be any 2TM(L(m,n)). We construct
T2€§2TM(L(m,n}) which accepts the complement of the language
accepted by Ty, in the following way.

Let s and t be the numbers of internal states and storage
tape symbols of Tl respectively. First, T2 marks (log mn)/
lcl squares of the storage tape by counting the total number
of squares of the input tape with a number of base Z]C[ {1xI!
means the least integer greater than or equal to x). Then T,
begins to simulate T, step by step. In this simulation,
if Tl halts in an accepting (final} state, then T2 halts
in a rejecting state. Conversely, if Tl halts in a rejecting
state, then T2 halts in an accepting state. At the same

time, in order to check whether Tl loops or not, T2 counts

the number of steps of Tl with a number of base r (r=2]c[+l-§t)

by using the other track of the storage tape. To do this, T2

uses (log mn)/lc[ squares of the storage tape during the period

is using the storage tape less than (log mn)/lc[ squares.

l JEE—

+ In what follows, we assume that the base of logarithm

is always 2.
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But if Tl has used more than (log mn)/lcl sguares, T2 counts
it by using the squares which Tl has used so far. If the
numbers of squares which Tl has used for an given input of

size mxn is & (<L(m,n)), then the total number of computational
configurations of Tl is smnﬁti. Thus, if T, does not halt

in less than smn2t£+l steps, we can conclude Tl is looping.

21e st smnat®<r® holds if 2> (log mn)/lel. Similarly

Since r= 7
smn£t£<r(lOg mn) /lcl holds if %<(log mn)/lcl[. Thus in either
case, T2 can check whether Tl loops or not, and T2 accepts
the input if Tl loops.

Obviously, T2 accepts the complement of the language

accepted by T, . This completes the proof. (Q.E.D.)

When the tape function L{m,n) grows more slowly than
the order of log mn, it remains open whether ZLI[2TM{(L(m,n))]
is closed under complementation.

Now, we consider the operation of intersection between

two languages in the same class of tape complexity.

Theorem 2.2 Let L{m,n) be a tape function of 2TM.

If L;, L, € £L[2TM(L(m,n))], then (L;NL,) € L[2TM(L(m,n))].

Proof. Let T, and T, be 2TM(L(m,n)) which accept Ly

1 2
and L, respectively. We construct T'g 2TM(L{(m,n}} which
accepts (Llf]Lz) as follows. Assume an input w is given

to T'. T' first simulates Tl with w. If Tl halts and accepts
w, then T' begins to simulate T2 with w. T' accepts w if
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and only if both T, and T, accepts it. (Q.E.D.)

From Theorem 2.1, 2.2 and de Morgan's law, the next

theorem can be obtained.

Theorem 2.3 Let L{m,n) be a tape function of 2TM such

that c¢*L(m,n) > log mn holds for some constant c>1. Then

L [2TM(L(m,n))] forms a Boolean algebra.

Concerning ZTMf, these properties can also be shown
in the same way as in Theorem 2.1 and 2.2. 8o we can obtain
the next corollary.

" Corollary 2.4 Let £ : N ~» NZ be a shape function,

and let L(j) be a tape function of 2TMf. Suppose that

there exists some constant c>1 such that c-'L(j) > log mn

holds for every input w£52§+, where j is the index of w and
f(j)=(m,n). Then ,iJZTMf(L(j))] forms a Boolean algebra.

l(L(m,

Next, we consider the closure properties of ZL[2TM
n))] under these operations, i.e. the case that the number
of the input symbols is restricted to one. First, it is
shown that Z[2T™M(L{m,n))] is closed under complementation,
even if the condition is somewhat weaker than the case of
Theorem 2.1. But it still remains open whether ef,[2TMl(L(m,

n))] is closed under complementation when L(m,n) grows more

slowly than both the orders of log m and log n.
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1

Theorem 2.5 Let L(m,n) be a tape function of 2TM
such that c¢+L(m,n) > logm (or, c+L(m,n) > log n) holds for
every m and n, for some constant c>1. Then ¢£[2TM1(L(m,n))]

is closed under complementation.
To prove this theorem, we show the next lemma.

Lemma 2.6 Let L(m,n) be a tape function of 2TMl such
that c*L(m,n) > log m (or, c*L(m,n) > log n) holds for every
m and n, for some constant c>1. Then, for every Tle-ZTMl(L(m,
n)), there exists,TzeZTMl(L(m,n)) which accepts the same

language as T, and never loops for any input.

1
Proof. We consider only the case of c+*L(m,n) > log m.
First, we construct following ‘I‘:‘L € ZTMl(L(m,n)) from Tl‘ Assume
an input w of size mxn is given to Ti. Ti first writes the
number m, using (log m)/lc[ squares of the storage tape. This
can be done by counting the vertical sidelength of w with
a number of base 2]c[. Hereafter, the input head of Ti moves
only on the first row of w. Ti then begins to simulate Tl
step by step 1in the following manner. The horizontal move-
ments of the input head of Tl is simulated by that of Ti.
But, its vertical movements is simulated by keeping its
vertical coordinate in the storage tape of Ti. Ti does this
using a number of base Z]C[. And Ti uses the other track

of the storage tape to simulate the storage tape of Tl‘ Ti

accepts the input w, if and only if Tl halts in an accepting
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state. Apparently Ti accepts the same language as Tl‘
Now, we construct T2 which simulates Ti and halts even
if Ti loops. This can be shown in a similar manner as in |
the one-dimensional case (Hartmanis and Berman [15]). 1If
an input w of size mxn is given to Ty T, begins to simulate
Ti, and éccepts w if and only if Ti accepts it. Simultaneously,
2 checks whether Ti

s and t be the numbers of internal states and the storage

T loops or not, in the following way. Let

tape symbols of T;. And let % (<L(m,n)) be the number of

squares of the storage tape which Ti actually uses for the
input w. Then the total number of storage states of Ti

is sltz. Ti can loop only if the input head is moving on

the first row of the input. There are two situations when
Ti loops, i.e., (1) Ti reads the left or the right border

symbol of the input tape infinitely many times, or (2)

T

whether the case (1) is occurring, T, counts the number of

does not read the border symbol in the loop. To check

times that Ti

track of the storage tape with a number of base r, where

have read the border symbol, using the other

r=2st. If this number exceeds the maximum number which
T2 can count by using the storage tape of the length Ti

has used so far, then T2 can conclude that Ti is looping.
Because,>Ti cannot read the left or the right border symbol
more than sSltSl (<rz) times without looping. Next, to check
the case (2}, T2 counts the number of steps since the time
g
of the storage tape with a number of base r. If this number

has read a border symbol lastly, using the other track
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exceeds the maximum number that T2 can count by using the
squares Ti has used so far, the same storage state must have
appeared in this period. And if the positions of the input
head are also the same, we can conclude Ti is looping. To
check this, T2 records the storage state of Ti at that moment,
and continues the simulation of Ti.

to count the relative position of the input head of T3, with

Furthermore, T2 begins

a number of base r. If the head position becomes the same
when Ti next enters the same storage state as T2 is keeping,
and if Ti have not read a border symbol in this period, then

' T2 halts and rejects w. Otherwise Ti will read a border

symbol at some time, s0 T2 continues to simulate it.

Thus T2 accepts the same language as Tl and always halts
for every input. (Q.E.D.)
Proof of Theorem 2.5. Let T, be an arbitrary 2TMl(L(m,

1

n)). In a similar way as in Lemma 2.5, we can construct

¥
T

rejects it or loops. (Q.E.D.)

€2TM1(L(m,n)) which accepts an input w if and only if Tl

The following theorem can be proved in the same way

as in Theorem 2.2.

Theorem 2.7 Let L(m,n) be a tape function of 2TM1.

If L;, L, € £(2TM (L(m,n)) 1, then (L;NLy € L2t (L(m,n)) 1.

lf
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From Theorem 2.6 and 2.7, it is seen that dﬂ{ZTMl(L(m,n))]
forms a Boolean algebra under a little weaker condition
than in Theorem 2.3.

Theorem 2.8 Let L{m,n) be a tape function of 2TMl

such that c¢+L{(m,n) > logm (or c*L{(m,n) > log n) holds for

1

every m and n, for some constant c>1. Then LI2TM (L (m,n))]

forms a Boolean algebra.

As for 2Tle(L(j)), the next corollary can be derived

likewise.

Corollary 2.9 et £ : N ~ N2 be a shape function

and let L(j) be a tape function of 2Tle~ Suppose that there
exists some constant c>1 such that c+*L(j) > log m (or c-L(j)
> log n) holds for every input‘vze{a}§+, where j is the index
of w and £(j)=(m,n). Then ‘£J2Tle(L(j))] forms a Boolean

algebra.

2.3 Tape Reduction Theorem

In section 2.3-2.5, we will consider how the language
acceptabilities of 2TM are characterized by the tape function
L{m,n). In other words, the question is "What makes 2TM(L (m,
n)) accept new languages if L(m,n) is varied?" To answer
this, we will show the tape reduction theorem and the hierarchy

theorem of 2TM.
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In this section, some conditions which do not change
the language acceptability of 2TM are investigated.
The next theorem shows that the language acceptability

is not affected by adding a constant to the tape function.

Theorem 2.10 Let L{m,n) be a tape function of 2TM.

Then for any constant c>0, £L[2TM(L{(m,n))] = L[2TM(L{(m,n)+c)].

Proof. Let T, be any 2TM(L(m,n)+c). We will construct

Té € 2TM{L(m,n)) which accepts the same language as Tl’ ‘I‘2

can easily do this by simulating the leftmost lc[ squares

1 in the finite-state control of T2.

Thus L I[2TM(L(m,n))] 2D ZLI[2TM(L(m,n)+c)]. And ZLI[2TM(L{(m,n))]

of the storage tape of T

C LI2TM(L(m,n)+c)] is obvious, so &£L[2TM(L{(m,n))] = L[2TM

(L{m,n)+c)] is concluded. (Q.E.D.)

Apparently this theorem also holds for ZTMl(L(m,n)),

ormE(L(3)) ang 2t (9)).

Corollary 2.11 Let £ : N ~ N2 be a shape function

and let L{(m,n) and L{j) be tape functions of 2TMl and 2TMf

1f

(or 2TM™ 7). Then for any constant c>0,
L2t (L(m,n))1 = £l2tMy (L(m,n)+c) 1,
Ziztnf (L (91 = Lzt (L) +e)1,

izt SN = gremtt @)y +er 1.

The next theorem is the tape reduction theorem for 2TM.
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It can be proved in a similar way as in the one-dimensional

case (Theorem 1.1).

Theorem 2.12 (Tape Reduction Theorem) Let L(m,n) be

a tape function of 2T™. Then, for any constant c¢>0,

LI2TM(L(m,n))] = £L[2TM(cL(m,n))].

Proof. For an arbitrary T, € 2TM(L{m,n)), we will

1
construct T2€52TM(c-L(m,n)+l) which accepts the same language

as Tl in the following way. If the number of the storage

is t11/el,

tape symbols of T, is t, then that of T2 T2 uses

1
each square of the storage tape to record the contents of
each block, which is made up by punctuating the storage tape
of Tl every lcl squares. By this, T2 can easily simulate

T2 using at most (L(m,n)/]ll/cl)+1l squares of the storage
tape for every input of size mxn. Furthermore, from Theorem
2.10, LI[2T™M(L(m,n))] © ZL[2TM(c+L(m,n))] is concluded.
ZL[2TM(L(m,n))] 2 L[2TM(c+*L(m,n))] can be shown likewise,
and this completes the proof. {(Q.E.D.)

Corollary 2.13 Let £ : N » N2 be a shape function,

and let L(m,n) and L(j) be tape functions of 2'I'Ml and 2TMf

{or ZTle

). Then for any constant c¢>0,
Ll2mt (L(m,n))] = Ll2tMY (c-L(m,n))]1,
ezt (w31 = elemfc-nini,

cizm f w31 = Liemt L.
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2.4 Hierarchy Theorem of 2TM

Next, we derive the condition that produces a difference
of language acceptabilitysbetWeenrtWO“tape*complexity,classes.
This theorem is called the hierarchy theorem, because it can be
seen that there exists an infinite hierarchy among 2TM from
it. First we will show the hierarchy theorem of 2TM(L(m,n))
with two or more input symbols. Its proof is partitioned

into three lemmas (Lemma 2.14, 2.16 and 2.18).

Definition. An infinite sequence of pairs of natural

numbers {{mi,ni)} is called a regular sequence if (mi,ni)

# (mj,nj) for all i#j.

2+ 2+

Definition. We say that a mapping h : I = (')

is a homomorphism, if h(usv)=h(u)-h(v) and h($)=ﬁ{$§ hold

for all u,v€522+, where u+*v (or 3 } means the horizontal
(vertical) concatenation of two words u and v. Note that the
horizontal (vertical) concatenation is defined only if the
vertical (horizontal) sidelengths of the two words are the

same.
In Lemma 2.14, we first consider the case such that
the tape function L(m,n) grows at least proportional to

logm + log n for some infinite set of (m,n).

Lemma 2.14 Let Ll(m,n) and Lz(m,n) be ceonstructible
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tape function of 2TM. Suppose that

L., {m.,n.)
J.:i.m ii-(;[-‘[}_-ﬁ_l-)— = 0 (2.1)
1o HP AT 004
L. {(m.,n.)
2 i’ 4 > k (2.2)

log m, + log n.

for some regular sequence {(mi,ni)} and for some constant
k>0. Then, there exists a language L such that L € £I[2TM

(L, (m,n))] but L ¢ £LI2TM(L (m,n))].

Proof. This lemma can be proved using the diagonal-
ization technic. We will construct T€52TM(L2(m,n)) which
accepts the language L not accepted by any 2TM(L1(m,n)).
Let T' be a 2TM which constructs the tape function Lz(m,n).
If the set of input symbols of T' is Z', then that of T is
2+

1=r'x{0,1}. Let hl: (Z'X{O,l})2+ + (")

-> {O,l}2+ be homomorphisms such that hl((a,i))=a and h2((a,i))

and h,: (Z'X{O,l})2+

=i for all a€z' and i€{0,1}. Let a: {0,1}2+ -~ N be an easily

computable total recursive mapping which satisfies the follow-
ing condition. For every j€ N, there exist two integers aj and
bj’ and for every {(m,n) that satisfies m>aj or n>bj, there
exists a word t1€{0,1}2+ of size mxn such that a(u)=3. For
example, the binary number which is obtained by replacing

the word u in a row satisfies this condition. Now, suppose

an input word w€322+ is given to T. T first simulates T'

with the input hl(w), until T' halts. (If 7' does not halt,

T also does not.) Henceforth, if T is ready to use more
squares of the storage tape than T' has used, then T halts

and rejects the input. Next, T computes a(hz(w)) and begins
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to simulate a(hg(w))—th 2TM (which is denoted by Ta(hz(w)))

with the input w. Assume that w is a word of size m, Xn,

for sufficiently large i, and hl(w) makes T' use exactly

[L(mi,ni)] squares of the storage tape. If Ta(hz(w)) is

a 2TM(L1(m,n)), T can simulate it within [LZ(mi'ni)] sguares

of the storage tape. Because, T needs c-Ll(mi,ni) squares

to simulate Tu(h2(w))' where ¢>0 is a constant depending

on the number of the storage tape symbols of Ta(hz(w))'

and from Eg.(2.1), c~Ll(mi,ni) < Lz(mi,ni) holds for suffi-

ciently large i. Furthermore, T can decide whether T
a(hz(w))

halts or not. The total number of computational configura-

tions of Ta(hz(w)) is at most

(L, (m,,n;)]
— 1Vl
x; = smini[Ll(mi,ni)]t '

where s and t are the numbers of states and storage tape

symbols of T T counts the number of steps of

a(hz(w))'
Tu(hz(w)) using the other track of the storage tape with
a number of base 2]l/k[. From Eg.(2.1) and (2.2},
*i
lim = 0.

= Yo [L,(m.,n,)]
1 (2]l/k[) 271

Thus for sufficiently large i, if T does not halt

[L,(m, ,n;)] o (hy(w))

less than (2]l/k[) steps, T can conclude that
Ta(hz(w)) is looping. T accepts w if and only if Tu(hz(w))
rejects w or loops.

Let L be the language accepted by T. Now suppose that
the j-th 2TM,'Tje 2TM(Ll(m,n)) accepts L. If we give Tj

a word w622+\3f size m,xn, which satisfies u(hz(w))=j (for
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i large enogh), then a contradiction occurs. Thus L ¢ £[2TM

(Ll(m,n))]. (Q.E.D.)

Next, we consider the case that the tape function L(m,n)
grows more slowly than both the orders of log m and log n
for some infinite set of (m,n).

As a preliminary, we define (T,%)=-equivalent chunks.

The notion of a chunk was introduced by Blum and Hewitt [5]
to investigate the language acceptabilities of two-dimen-
sional finite-state automata. Here, we expand this notion

for the two-dimensional Turing machines.

Definition. A chunk 1s a square-shaped word without

border symbols. Let C§ denote a set of all the chunks on I
of sidelength x. Let cl,czescg be two chunks, and let T be
a 2TM that has s states and t storage tape symbols. Now,

we assume that T uses at most 2 sguares of the storage tape.
Then the total number of the storage states of T is at most
sﬁtg. Therefore, T has 4xs£tz ways to enter a chunk of
sidelength x. For each case of 4xs£t£ entering ways, T can
choose its behaviour at most in (4xs2t2+s+l) ways, which

are 4xs£t2 ways of going out of the chunk, s ways of halting
in the chunk and 1 way of looping. Two chunks <4 and c, of
the same size are said to be (T7,4%)-equivalent, if T chooses
the same behaviours to cq and c, for all the ways of entering.
So, T cannot distinguish (T,%)-equivalent chunks if T uses

at most % squares of the storage tape. The total number of
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£
. '3 4xsit
(T, %)-equivalence classes of C? is at most (4xs2t7+s+1) .

Now, the following lemma can be obtained.

Lemma 2.15 Let T be an arbitrary 2TM. Let {(xi,zi)}

be a sequence of pairs of nonnegative integers that satisfies

L.

1
lim =——— = 0 (2.3)
irw 1Og X,

lim X, =@ (2.4)
1>

X,
and let {Di} (Diggczl) be a sequence of sets of chunks that

satisfies
2
*i
Dl > r (2.5)
for some constant r>1. (|D,| means the number of elements
of Di.) Then, for every sufficiently large i, there exist

two different chunks ci,ci(;Di which are (T,zi)—equivalent.

Proof. Let s and t be the numbers of internal states

and storage tape symbols of T, respectively. The total
g .
number of (T,Ri)—equivalence classes is at most (gi+s+l) l,
L.
where 9;= 4xiszit l. Now, we denote

(gi+s+l}

X,
1
r

By Eg.(2.3) and (2.4), we can derive lim f. = 0. So, from
1-rc0
Eg.(2.5), the following inequality holds for sufficiently
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X,
i g

> r > (g;ts+l) *

D, |

Thus, there are two different chunks ci,ciel)i which are

(T,Qi)—equivalent. (Q.E.D.)

From Lemma 2.15, the next lemma can be obtained.

Lemma 2.16 Let Ll(m,n) and Lz(m,n) be constructible

tape functions of 2TM. Suppose that

L, {m,,n.)
Ire Lplmy,ny

%ig LZ(mi'ni) = w (2.7)

L, (m.,n.) L,(m,,n.)

N A S W D S S (2.8)
log m, iog n;

for some regular seguence {(mi,ni)} and some constant k>0.
Then there exists a language L such that L e.ﬁ[ZTM(LZ(m,n))]

but L ¢ £[2TM(L, (m,n))].

Proof. We construct T&'€2TM(L2(m,n)) which accepts
the language L not accepted by any 2TM(Ll(m,n)). Let T'

be a two~dimensional Turing machine which constructs the

tape function L2(m,n). If the set of input symbols of T'
is £', then that of T, is z=2'x{0,1}. Let hl and h2 be
the same mappings as in Lemma 2.14. Suppose an input word

+ . . . . .
v:ezz of size mxn is given to Tl’ First Tl simulates the

32



movements of T' with the input hliw) until it halts. Let

2 be the number of squares of the storage tape which T' has
used. In general Qé{Lz(m,n)], but £=[L2(m,n)] holds for

an suitable input of size mxn. Now we consider two chunks

2(£/k]—l

W, and Wp of sidelength x= at the north-west corner

of w (Fig.2.2).

Fig. 2.2 Two chunks W, and Wg on an input w.

If w is too small to take these chunks, then Tl rejects

w and halts. But, from Eq.({2.8), if {(m,n)=(m,

l,ni) for

some i, these two chunks can be always taken on w. Next,
Tl examines whether hz(wa)zhz(ws) or not. Tl can easily
do this, using £ squares of the storage tape to keep the coor-
dinate of each point of these chunks. If hz(wq)=h2(w8), Tl
accepts w.

Let L be the language accepted by Tl’ Now we suppose
that there exists NI€2TM(Ll(m,n}} which accepts L. Let
{(xi,ﬁi)} be a sequence of pairs of nonnegative integers

such that
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X, = 2
i 14

L.
i

[Ll(mi,ni)].

Let vy be a word on Z' of size m, xn, which makes T' use
exactly [Lz(mi,ni)] squares of the storage tape. Let Via

and vy be two chunks of size X5 taken on vy at the same

B
position as in Fig.2.2. Let {Di} be a sequence of sets of
chunks such that
X,
i
D; = {chzei%:, hl(c)—via}‘
Since {(xi,li)} and {Di} satisfy Eg.(2.3)~(2.5), there are
two different (M,Qi}~equivalent chunks ci,cie Di for i
large enough. Now, we consider two words wi,wie;zz+ that
Xi
-4 3 3 3 ¥ ]
satisfy following conditions. Let Wia’wiB’wia’wiBG(:Z
be chunks on Wi and wi taken at the same position as vy

W and wi are the same words except the portions Wi and

w!

{a° They satisfy hl(wi)=hl(wi)=vi' hz(wig)=h2(wi8)=h2(ci},

=, !o=e! , ! .
Wi SCqr Wi, =C4 Therefore w; € L and w; ¢ L. But on the
other hand, Vi and Wia are (M,Ei)—equivalent, sO M cannot

distinguish W, and wi. This is a contradiction. Thus

L ¢‘£[2TM(Ll(m,n))] is concluded. (Q.E.D.)

Finally, we will prove a similar lemma for the case
that the tape function L{m,n) grows more rapidly than the
order of log m and more slowly than the order of log n (or
vice versa) for some infinite set of (m,n). This can be
proved by using the notion of (T,ﬁ)v—equivalence (or (T,Q)h-

equivalence) which is somewhat similar to (T,%)-equivalence.
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Definition. Let W?’y be a set of all the words of

size xxXy on I (without border symbols). Let T (or uh) denote

the word uewz;’y with border symbols at the top and the
bottom (or, at the right and the left) edges. u’ (uh) is
called a vertical (horizontal) block. Let T be a 2TM with
s states and t storage tape symbols, and let ultu2€5W§'y

be two words on . T can enter or go out of the vertical
‘block uz or ug through their right or left edges. So T has
2xs£t£ ways to enter or go out of them, if T uses at most

L squares of the storage tape. uy and u, are said to be
(T,ﬁ)v-equivalent, if T's behaviours to uY and ug are the
same for all the ways of entering. {(Since the notion of

(T,R)h—equivalence is similar to this, we only mention about

(T,Q)V—equivalence in the following.)

Lemma 2.17 Let T be an arbitrary 2TM. Let {(xi,yi,ﬁi)}

be a sequence of triplets of nonnegative integers that

satisfies
2.
lim ——— = 0 (2.9)
i»e log Y )
limy, = (2.10)
i—>oo 1
log v,
m > k (2.11)
i
XjrYi
for some constant k>0. Let {Ui} (Ui§;WZ ) be a sequence

of sets of words that satisfies

AR (2.12)
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for some constant r>l. Then, for every sufficiently large i,

there are two different words ui,uigsUi which are (T,ﬁi)v- o

equivalent.
Proof. The total number of (T,Ri)v-equivalence classes
£ w 'Yl g at t (g.+ +1)gi h = 2x.sl tli F
o 5 is at mos g;+s , where g.,= 2x.sf. . rom
Egq.{2.9)-(2.11), we can derive
g.
(gi+s+l) 1
lim Xy = 0.
lOO = *
p i
*i¥i 9i
From Eq.(2.12), ]Uil > r > (g;+s+1) ~ holds for i large

enough. So that there are two different (T,Ri)v-equivalent

words u.,uleW
S Uy, le

LS KR4

5 for such 1i. (Q.E.D.)

Lemma 2.18 Let Ll(m,n) and Lz(m,n) be constructible

tape functions of 2TM. Suppose that
L,{m, ,n,)
lim ElTﬁi’HiT = 0 (2.13)
1o H2r g
%iz L2(mi,ni) = o (2.14)
L,{m.,n.) L,{(m.,n.)
—%o—l_ﬁl—l— > kl and —%&}l—l— < k2 (2.15)
g i , g i
Ly(m,,n.) L,(m;,n.)
log m. 2 iog n, 1

for some regular sequence {(mi,ni)} and some constants

0<2k2<k <l. Then there exists a language L such that

1
L € LI2TM(L,(m,n))] but L ¢ LI2TM(Ly (m,n))].
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Proof. We construct'T2€ ZTM(LZ(m,n)) which resembles
T, in Lemma 2.16. Suppose a word w e(Z’X{O,l})2+ of size

mxn is given to T T2 first simulates the movements of T'

2'
(in Lemma 2.16) with the input hl(w) until it halts. Let &

be the number of squares of the storage tape that T' has used.

L/k51~1
2[ /kol

Let y= . If n>2y, then we consider two subwords v,

and Wg of size mxy at the left side of w (Fig.2.3).

y— y-

Fig. 2.3 Two subwords v, and wp on an input w.
T2 examines whether hz(w&)=h2(w8), and accepts w if hz(wa}=
hZ(WB)' Let L be the language accepted by T2. Now we suppose
that there exists NIGZTM(Ll(m,n)) which accepts L. Let

{(xi,yi,ﬁi)} be a sequence such that
[[Lz(mi,ni)]/k2]~l

yi=2 ’

Ri = Ll(mi,ni).
Let vy e(Z')2+ be a word of size mi><1'1:.L that makes T' use

exactly [Lz(mi,ni)] squares of the storage tape, and let vy

o

and ViB be two subwords of size X;Xy; on v.. Since Ui= {u]
Xir¥Yi _ .

uEW, , hl(u)—via}' and {(xi,yi,ﬁi)} satisfy (2.9)-(2.12),
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there are two different (M,Qi)v-equivalent subwords ui,ui
€ Ui for i large enough. From these facts, we can make
two words wieiL and wi¢5L which cannot be distinguished by M,
in a similar way as in Lemma 2.16. And this concludes L ¢

aﬁ[2TM(Ll(m,n))]. (Q.E.D.)
From Lemma 2.14, 2.16, and 2.18, we can obtain the next
hierarchy theorem, where there is no restriction on a growth

of the tape function.

Theorem 2.19 (Hierarchy Theorem of 2TM) Let Ll(m,n)

and L2(m,n) be constructible tape functions of 2TM. Suppose
that
Ll(mi,ni)

lim ——————u = 0
ie L, (m:-L yny)

i
8

lim L, (m.,n.
i oo 2( i 1)

for some regular sequence {(mi,ni)}. Then there exists a
language L such that L e,ﬁ[ZTM(Lz(m,n))] but L ¢ £[2TM

(Ll(m,n))].

Proof. Let ai=L2(mi,ni)/(log my + log ni), bi=L2(mi,
ni)/log m., ci=L2(mi,ni)/log n.. If there exists sqme
k>0 such that ai>k helds for infinitely many i, we can apply
Lemma 2.14 by taking a suitable subsequence of {(mi,ni)}.
If there exists no such k, then (l/ai)=(l/bi)+(l/ci) > K
holds for infinitely many i, for any K>»0. Therefore, at

least one of the following inequalities holds for appropreate
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K0>0, Kl>l, K2>2K1, for infinitely many i.
(l/bi) > KO and (l/ci) > KO
(l/bi) < Kl and (l/ci) > K2
(l/bi) > K2 and (l/ci) < Kl
For each case, Lemma 2.16 or 2.18 can be applied by taking
a suitable subsequence of {(mi,ni)}. This completes the

proof. (Q.E.D.)

£

The hierarchy theorem for 2TM (L(j)) can also be proved

likewise.

Corollary 2.20 Let £ : N » N2 be a shape function,

and let Ll(j) and Lz(j) be constructible tape functions

of 2TMf. Suppose that

By 5)
lim I
1> 2(31)

for some increasing sequence of natural numbers {ji}, and

L2(ji) is unbounded. Then there is a language L such that

L e £12m (L, (3))] but L ¢ Ll2mut (L (3))].

If two constructible tape functions Ll(m,n) and Lz(m,n)
are given, the relation between ¢f[2TM(Ll(m,n))] and gLI[2T™M
(szm,n))] must be one of the followings.

(1) LI[2TM (L) (m,n))] = LI[2TM(L, (m,n))]
(2)  £L[2TM(L; (m,n))] & LI2TM(L, (m,n))]
(3)  &L[2TM(Ly(m,n)) ] 2 LI2TM(L, (m,n)) ]

(4)  L[2TM(Ly (m,n))] % L[2TM (L, (m,n)) ]
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(A(I

x)B means that the sets A and B are incomparable, i.e.

AQB and ADB.) Now, we consider the necessary and sufficient

conditions for themn.

Lemma 2.21 Let Ll(m,n) and Lz(m,n) be constructible
tape functions of 2TM. Then, only one of the following

" statements must be true.

(A} There exist some constants cl>0, cl>0, 02>0 and cl>0

1 2
that satisfy the following conditions.
- ]
Ll(m,n) < c, L2(m,n) + c5 (2.16)
Lz(m,n) < cl-Ll(m,n) + ci (2.17)

(B) There exist some constants c2>0 and cé>0, and some

regular sequence {(mi,ni)} that satisfy the following
conditions.
Ll(m,n) < 02°L2(m,n) + cé (2.18)
Ll(mi,ni)+l

lim = { {2.19)
1> L2 (ml'ni)

(C) There exist some constants cl>0 and ci>0, and some

regular sequence {(mi,ni)} that satisfy the following

conditions, o
Lz(m,n) < c1°Ll(m,n) + ci (2.20)
L.{m.,n.)+1
. 27174
lim =0 (2.21)
ivew Ly(my,ny)
(D) There exist some regular seguences {(mi,ni)} and

{(mi,ni)} that satisfy the following conditions.

L, (m.,n.)+1
. 117
lim = 0 {(2.22}
L2(mi’ni)

i-»co
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Lz(mi,ni)+l
lim T = 0 (2.23)
1o 17171

Proof. Obviously, these statements are mutually
exclusive. We consider the case that the statement (A) is
untrue. If no such ¢ and ci exist, then Lz(m,n) > c-Ll(m,n)
+c' holds for any c¢>0 and c¢'>0, for infinitely many (m,n).

S0, there exists some regular seguence {(mi,ni)} such that
%ig ;%%;ié;i; = 0 and %ig Lz(mi,ni) = @,

Thus the statement (B} becomes true. Similarly, if no such

c,y and cé exist, then the statement (C) becomes true.
Furthermore, if no such Cqv ci, c, and cé exist, the statement

(D) holds. Accordingly, we can conclude that only one of

these statements must be true. {(Q.E.D.)

Theorem 2.22 - Let Ll(m,n) and Lz(m,n) be constructible

tape functions of 2TM, and (A), (B), (C) and (D) be the

statements in Lemma 2.21.

(1)  LI2T™M(L; (m,n))] = gﬁ[éTM(Lz(m,n))], if and only if (A)
holds.

(2)  L[2TM(L, (m,n))] < LI2TM(L, (m,n))], if and only if (B)
holds.

(3)  &LI2TM(L; (m,n))] P2 £LI2TM(L,(m,n))], if and only if (C)
holds.

(4)  LI2TM(Ly (m,n))] %,t[zTM(Lz(m,n)n, if and only if (D)
holds.
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Proof. First, we show that (A}, (B), (C) and (D) are

necessary conditions for these cases.

(1) If (A) holds, then, from Theorem 2.10, 2.12 and

Eq.(2.16), LI2TM(L;(m,n))] & L[2TM(c, L,

(L,(m,n))]. Similarly, from Eq.(2.17), ZL[2TM(L,(m,n))]1C &

m,n)+cé)] = £[2T™

[2TM(L, (m,n))]. Thus, LI2TM(L,(m,n))] = a{’,[sz(Lz(m,n))].

(2) From Eqg.(2.18), gf[2TM(Ll(m,n))] C aﬁ[ZTM(Lz(m,n))].
And, fron Theorem 2.19 and Eqg.(2.19), there exists a language
L such that L € L[2TM(L,(m,n))] but L ¢ L[2TM(L; (m,n))].
Thus, ,,ﬁ[ZTM(Ll(m,n))] (_.:_ oﬁ[2TM(L2(m,n))].

(3) It can be shown in a similar manner as in (2).

(4) From Theorem 2.19 and Eg.(2.22), there exists
a language L such that l.e‘{[2TM(L2(m,n})] but L ¢<£I2TM
(Ll(m,n))]. But, from Eg.(2.23), there also exists a
language L' such that L' g £[2TM(L,(m,n))] but L' ¢ LI2T™M
(Ly(mm)) 1. Thus, LI2TM(L) (mn)] § LI2TM(T,(m,n))].

Now, it can be easily seen that (A), (B), {(C) and (D)
are also sufficient conditions for these cases. For instance,
from Lemma 2.21, if (A) is false, then (B), (C) or (D) must
be true. So, ‘t[ZTM(Ll(m,n))] = ct[ZTM(LZ(m,n))] does not
hold. Thus (A) becomes a sufficient condition in (1).
Similarly, (B), (C) and (D) also become sufficient conditions.
This completes the proof. (Q.E.D.)

Corollary 2.23 Let £ : N » N2 be a shape function,

and let Ll(j) and Lz(j) be constructible tape functions of

2TMf.
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(1) gl (L (31 = iz’ (1,(3))1, if and only if

there exist some constants cl>0, ci>0, cz>0 and cé>0

that satisfy the following conditions.
Ly(J) £ ¢yt L,y(3) + ¢
Lz(j) < Cl'Ll(j) + ci
(2) aﬁ[2TMf(Ll(j})] g;tfizTMf(Lz(j))], if and only if
there exist some constants 02>0, cé>0, and some increasing
sequence of natural numbers {ji} that satisfy the following
conditions.
Ll(j) < cytLy(3) + cé
. D30+
lim . =
(3)  Ll2mM" (L (3)] P L2 (L,(3))], if and only if

there exist some constants c.>0, c¢!>0, and some increasing

1 1
sequence of natural numbers {ji} that satisfy the following
conditions.
L,{(j.)+1
lim 2 = =
1> Li(ji)
£ v & £ . . .
(4) L [2TM (Ll(j))] ) L [2TM (L,(3))1, if and only if

there exist some increasing sequences of natural numbers

{3;} and {ji} that satisfy the following conditions.

L, (3.)+1
lim 4=+~ = 0
L2(j!)+l
. 1
llm T—(-.—l—)— = 0
1> l Ji
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2.5 Hierarchy Theorem of 2‘I’Ml

The hierarchy theorem obtained in the previous section
holds only for the case of 2TM with two or more input symbols.
In this section, we consider the case of one input symbol.

The hierarchy theorem of ZTMl can be proved by using the fact
that ¢C[2TM1(L(m,n})] is closed under complementation when
L{m,n) grows at least proportional tc log m or log n. Thus,
it also remains open when L(m,n) grows more slowly than both
the orders of log m and log n. The proof of this theorem is

based on the method of Hartmanis and Berman [15].

Theorem 2.24 (Hierarchy Theorem of 2TM1) Let Ll(m,n)
and L2(m,n) be constructible tape functions of ZTMl, and
Ll(m,n) satisfies c*L;(m,n) > log m (or c*L,(m,n) > log n)
for every m and n, and for some constant c>1. Suppose that
szmi,ni) is unbounded and
Ll(mi,ni)

lim

Hn o mym,) 0 (2.24)

for some recursively enumerable regular seguence {(mi,ni)}.

Then there exists a language L such that I.Gcﬁ[ZTMl(Lz(m,n))]
but L ¢ of,[ZTMl(Ll(m,n) )1
Proof. Let @(i}=max{xj}xj=[L2(mj,nj)], 1<j<i}. Since

{(mi,ni)} is a recursively enumerable seqguence and L2(mi’ni)
is a constructible tape function of 2TM1, o : N » N becomes
a monotone nondecreasing total recursive function. Let ¢ :

N - N be a function defined as follows. Let ¥Y(j) be the
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number of tape squares used to compute Y (j) by some Turing
machine. (So, ¥(j) depends on the Turing machine which

computes Y (j).)

(1) = ¢(1)
{W(j+l) = min{¢ (i) | Y(I+¥(F) < ¢(i), i=1,2,+++ }
Thus $¥(j) becomes a monotone increasing total recursive
function, and w(j)=¢(ij) for some increasing sequence of
natural numbers {ij}. Next, we define g : N > N from .
g(x) = max{k|vp(k)+¥(k) < x}
Consider the partial mapping gp ¢ A - N, where
= (x| 34, x=1L,(m;,n )1},

( g, is the same mapping as g, except that the domain is

A HaLt
restricted to A.) It is easily seen that Ia is a surjection.
Because, for all ¢ (j+1l)e A {(i=1,2,+++ )},

gp (W (3+1)) = max{k[y(k)+¥(k) < ¥(3+1)} = 3.
We can see that there exists a one-dimensional one-tape
Turing machine M which computes g(x) in the following manner.
If x is given as a unary number, then M writes g(x) in a
binary number wusing at most x squares of the tape. M can
do this by computing Y (1), ¢(2),+++ consecutively. Each time
M computes (k) (k=1,2,-++ ), M compares whether Y (k)+V¥ (k)
> X. (If M is ready to use more than x squares of the tape
in the computation of y(k), M can conclude Y (k)+¥(k) > x

at this moment.,) If M finds that k, is the first k that

0

satisfies ¢ (k)+¥(k) > x, M answers g(x)=k, -1 and writes it

0
in binary. Now, let h : N - N be a surjection which satisfies

the following condition. For every v €N, there exist
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infinitely many x such that h(x)=y. And h(x) can be computed
by some one-dimensional one-tape Turing machine within
[log n] squares of the tape, if x is given in binary. For
example, it is easily seen that

h(x) = x - max{2%|2%<x, 1=0,1,+-- }

satisfies the above conditions.

Now, we construct T€;2TM1(L2(m,n)) which diagonalizes
all 2TM1(Ll(m,n)). Assume T'eg 2TM1(L2(m,n)) constructs the
tape function L2(m,n). (T' always halts for any input.) wNow,

let us give T a word w e{a}2+'of size mxn. First T simulates
T' and marks x squares of the storage tape, where x={L2(m,n)].
Then T simulates the one-dimensional one-tape Turing machine
M to compute g(x) within x squares of the storage tape.

Next, T computes h(g(x)), and then begins to simulate the

h(g(x))-th ZTMl, say T )y ! with the input w within x

h(g(x
squares of of the storage tape. T accepts w if Th(g(x))
rejects it, and T rejects w if Th(g(x)) accepts it (T loops

if T loops). If T is ready to use more than x squares

h(g(x))
during the simulation of Th(g(x))’ then T rejects w. But,
from Bg.{(2.24), if Th(g(x)) is a 2TM1(Ll(m,n)) and (m,n)=
(mi,ni) for some sufficiently large i, T can simulate Th(g(x))
within x squares.
Let L be the language accepted by T. Assume that Tje

2TM1(Ll(m,n)), the j-th ZTMl, accepts L. From Lemma 2.6,

we may also assume, without loss of generality, Tj halts

for any input. Since Ia is a surjection, there exist infi-

nitely many Xx€ A such that h(g(x)) = j. Thué, there also
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exist infinitely many i such that an input wes{a}2+ of size
m, Xn, makes T simulate Tj with w. For sufficiently large
such i, T can make an opposite answer to Tj' and this causes

an contradiction. Thus L chJZTMl(Ll(m,n))]. (Q.E.D.)

Corollary 2.25 Let £ : N » N2 be a shape function.

Let Ll(j) and Lz(j) be constructible tape functions of 2Tle,

and Ll(j) satisfies c-Ll(j) > log m (or c-Ll(j) > log n)
for every input vre{a&2+, and for some constant c>1, where
j is the index of w and f£(j)=(m,n). Suppose that Lz(ji) is

unbounded and

L.(3.)
Lim £~y = O
1-+® zji

for some recursively enumerable increasing sequence of natural
numbers {ji}. Then there exists a language L such that L€

L2 F (1, (3))1 but L ¢ iz T@w ()1,

2.6 Lower Bounds on Tape Growth

In this section, we consider lower bounds on tape growth
of 2T™M. As we have seen in Theorem 1.4, there exists a non-
trivial lower bound log log n, in the one~dimensional case.

But, we will show that there is no such lower bound, in the

total recursive function cannot be a lower bound of constructi-

ble tape functions.
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We first consider the case of 2Tle. For this purpose

we show the next lemma.

Lemma 2.26 Let ®V: N - N be an arbitrary monotone

nondecreasing function that satisfies %ig d(n) = «, And

let Yy and n be the following functions.

Y (x) = min{n|¢(n+l)>x}

n(n) = min{x|y(x)>n}
Then, ¢(n) = n(n).

Proof. Since ¢{(n) is a monotone nondecreasing function
such that %%g $(n) = «», for every noesN there exist ny,n, €

N which satisfy nlénoinz and ¢(nl—l)<¢(nl)=¢(n0)=¢(n2)<
¢(n2+l). (For the sake of convenience, we assume ¢(0)=0.)
Thus, for every n' such that nl;n';nz,
Y(6(n')) = min{n|[é (n+1)>¢(n")} = n,
(¢ (ny-1)) = min{n$¢(n+l)>¢(nl-l)} = n;-1.
And since y(x) becomes monotone nondecreasing,

min{xlw(x);no} = ¢(n0).

Accordingly, n(no) = ¢(n0). (Q.E.D.)

The following theorem states that for an arbitrary slow
monotone nondecreasing total recursive function ¢(j), there
exists a tape function L(3j) which is constructed by some

1f

2T™ and grows more slowly than ¢(j).

Theorem 2.27 Let £ : N » N2 be a recursive shape
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function (i.e. an effectively computable shape function)
such that 1imsup(min(fl(j),f2(j))) = «, where fl and f2 are
Jree
functions from N into N which satisfy £(3)=(£f;(3),£,(3)).
Let ¢ : N » N be any monotone nondecreasing total recursive
function such that lim ¢(j) = «. Then there exists a monotone
jreo

nondecreasing tape function L(j) which is constructed by some

r e2tmif(1,(§)) and satisfies L(3)<¢(j) and lim L(3) = =.
jOO

Proof. First, let ¥y : N - N be

Y(x) = min{j|¢ (§+1)>x}.

As ¢(j) is a computable total function and 1&2 $(3) 0,
Y(x) is also a computable monotone nondecreising total function
and %}g Y(x) = «, Next let f' and E be functions from N into
N defined as follows.

£'(3) = min(£f,(3),£,(3))

£(3) = max{f'(i)]1l<i<i}
Since Y and f, are computable and min(fl(j),f2(j)) is
unbounded, these functions are also computable and unbounded.
By the way, it is known that a two-counter automaton+ is
universal, and actuallyf a two-counter automaton can simulate
a k-counter automaton by coding k counters with a number
]%;p?i, where X is the content of the i-th counter and Py
i=

is the i~th prime (Minsky [29]). Thus we can construct a

two-counter automaton M which computes the function f£{y(x))

+ A two-counter automaton consists of a finite-state control

and two counters each of which can count a nonnegative integer.
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in the following manner. Let cq and c, be two counters of
M, and let [cl[ and |c,| denote the numbers they count.
M begins the computation of f(y(x)) from [cl]=2x, ]c2{=0,

and halts with lcl‘=2xx3f(¢(X))

] }czl=0. Now, we construct
a somewhat different two-counter automaton M' from M. M'

is an automaton that computes %(w(l)), %(w(2)),-'- and never
halts. Let ci and cé be two counters of M'. M' starts its
computation from |cj|=0, |cj| =0. First, setting |ci|=21, M
begins to simulate M and computes %(w(l)). Agd M' finishes

15f (@ (1)

the simulation of M, resulting with |cj|=2 » leyl=0.

Next, M' makes (ci|=22, and then starts to simulate M again
to compute %(w(Z)). M' repeats this procedure infinitely

many times., The x-th series of M' is a sequence of movements
of M', begun with ]ci)=2x, |cé}=0, and finished with ]ci]=2x+l,
|c4[=0, and %(w(x)) is computed in this period. Let a(x) be

the maximum number counted by c! and c) in the x-th series

1 2

of M'. We design M' so that both counters counts a(x) in
this period. Obviously, a(x)>%(w(x)) for all x.

Now, we consider the following 2Tle, T. Suppose an input
w e{a}§+ of size f;(j)xf,(j) is given to T. T simulates the
movements of M' series by series, as far as min(fl(j),fz(j))
>a{x). T can do this by simulating the two counters of M'
by the position of the input head of T. Every time M' finishes
one series of movements, T marks a new sguare of the storage
tape. Let L{j) be the tape function constructed by T. Then

from Lemma 2.26,

L(j) = min{x|a(x)>f'(§)} - 1
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min{xja(x)i%(j)} -1

A

min{x|£(y(x))>£(3)} -1

A

A

min{x|y(x)>3} - 1

= ¢(j) - 1.
Thus L(j)<¢(j) is concluded. Furthermore L(j) is monotone
nondecreasing and lig L(j) = «, because f'(j) is an unbounded

J
monotone nondecreasing total recursive function. (Q.E.D.)

Apparently the shape function s(j)=(j,j) is a recursive

mapping, so that the next corollary can be obtained.

Corollary 2.28 Let ¢ : N - N be any monotone nondecreas-—

ing total recursive function such that %ig ¢{m)} = . Then,
there exists a monotone nondecreasing tape function L{m)
which is constructed by some T‘eZTMlS(L(m)) and satisfies

L(m)<¢ {m) and %%g L(m) = o,

For ¢ which is not a monotone nondecreasing function,

we can derive the next corollary.

Corollary 2.29 Let £ : N ~» N2 be a recursive shape

function such that ligsup(min(fl(j),fz(j)))= ©, where £, and
JOO

f2 are functions from N into N that satisfy f(j)=(fl(j),f2(j)).
Let ¢ : N » N be any total recursive function such that
limsup ¢ (j) = «. Then there exists a monotone nondecreasing

00
J 1f

tape function L(j) which is constructed by some T g 2TM™ (L (3j))

and satisfies liminf(L(j)/¢(j)) = 0 and lim L(J) = .

j—)OO :]-)‘-OO
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Proof. Let g(j) = max{¢ (k) |1<k<j}. @(j) becomes a
monotone nondecreasing function and satisfies g(ji)=¢(ji)
for some increasing sequence of natural numbers {ji}. Now,
we apply Theorem 2.27 to ;(j). But, here, by counting the

number of serieses of M' on the storage tape in a binary

number, T can construct the tape function L(j) such that

L(j)<log($(j)) and lim L(j) = «=. But L(ji)ilog(¢(ji)) holds
Jjr=
for the sequence {ji}, so that liminf (L(j)/¢(j)) = 0 is
J
concluded. (Q.E.D.)

Next, we consider the case of 2TMl where the shape of

the input is not restricted.

Definition. A function ¢ : N2+ N of two variables is

said to be monotone nondecreasing, if ¢(m,n)<¢(m',n') holds

for every (m,n) and (m',n') such that m<m' and n<n’'.

Theorem 2.30 Let ¢ : N’ >N be a monotone nondecreasing

total recursive function such that lim ¢(n,n) = «. Then,
n-rw
there exists a monotone nondecreasing tape function L(m,n)

which is constructed by some T€E2TM1(L(m,n)) and satisfies

L(m,n)<¢(m,n) and lim L(mi,ni) = «» for any sequence of
1
pairs of natural numbers {(m,,n.)} such that lim m, = «» and
Mooy ==
Proof. Let ¢'(m)=¢ (m,m). Then, from Corollary 2.28,

there exists a monotone nondecreasing tape function L' (m)
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which is constructed by some T'E€ ZTMlS(L'(m)) and satisfies
L'{m)<¢'{(m) and éiﬁ L'{m) = ». Now, we consider T" ¢ 2TMl
which is precisely the same as T' except that the inputs are
not restricted to sgquare-shaped ones. From Theorem 2.27,

it is easily seen that if an input w e{a}2+ of size mxn is
given to T", T" acts as if an input\ﬂ‘e{a}§+ of size min{(m,n)
xmin(m,n) is given, thus T" uses L'{(min(m,n)) squares of the

storage tape. 8o the tape function L(m,n) constructed by T"

is as follows.

L' (m) (if m<n)
L(m,n) = {
L'({(n) {(if m>n)
Thus if m<n, L{(m,n) = L'(m) < ¢'(m) = ¢(m,m) < ¢(m,n). In

the case of m>n, L{m,n) < ¢{m,n) holds as well. Furthermore,

it is seen that lim L{m.,n,) = «» for any sequence {{m,,n.)!}
i_).oo 1 1 1 1
such that lim m, = » and lim n. = «, because lim L'{m) = o,
{0 1 1=00 X M->c0
{Q.E.D.)

From above theorems, it is known that an arbitrarily
slow tape function can be constructed in the range of total
recursive functions by 2TM (even if the number of input symbols
is only one). These results and the hierarchy theorem assures
that there exists a dense hierarchy of language acceptabili-
ties even below an arbitrarily small tape complexity. It
contrasts strikingly with the fact that, in the one-dimensional
case, there exists no class of tape complexity between the
class of finite-state automata and the class of tape complexity

log log n.
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But, of course, there are many non-computable functions
which grow more slowly than any constructible tape function.
For example, B_l(n) = min{m|B(m)>n} is such a function, where
B(m) is the busy beaver function defined by Rado [41].

Because B(m) grows more rapidly than any recursive function.

2.7 Some Slowly Growing Tape Functions

As we have seen in the previous section, Theorem 2.27
and 2.30 guarantee that there exists an arbitrarily slow
constructible tape function in the case of 2TM. But these
theorems do not give concrete examples of slowly growing
constructible tape functions. In this section, some examples
of very slow constructible tape functions are shown. In

what follows, we especially consider the case of 2TMS.

2+

Let WlC:{O,l}s

be a set of square-shaped words on {0,1}

defined as follows. Let w(i,j) denotes the input symbol at

the (i,j)-square (i.e. the square at the i-th row of the

j~th column } of w(;Wl. If w is a word of size mxm, then
w(i,j) =1 ¢ (ieIl;AjeI,) VEEI,ATEI),

2

where Il={l,2,'--,m}, Iz={21,2 ,ev0, 280, r=max{kl2kém}.

We can see that 2TM° needs no square of the storage tape to

accept Wl‘

Lemma 2.31 W, € LI2TM%(0)].
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Proof. We construct Mle ZTMS(O) which accepts Wl in

the following manner. Assume an input.vre{@,l}§+ is given

to Ml

P1 ¥, V> Y3 Y4
X, iR AR RN AN

/ ] j ]
X, ¢l A gilalin

EA\N N A 1A 1

A1 ] va 1
V;%/1 | /1 1 11/731 1 /] 1 11

X
> 7] /
/11

/ ] N 1

1/ 11 1

1 41 1

] 1 NEE

V%4 ] ]
X LT

1

Fig. 2.4 Recognition of weawl by Ml‘
(1) Ml first scans w, row by row and column by column

to check whether the squares in which the tape symbols 1l's
are written form cross stripes.

(2) Next, Ml checks whether the numbers of vertical
lines (i.e. vertical stretches of symbol "1") and horizontal
lines are equal, and they are in the symmetrical positions
(i.e. a vertical line lies in the i-th column <= a horizon-
tal line lies in the i-th row). M; can do this by moving
the input head from the north-west corner to the south-west

corner (from Py to P, in Fig.2.4) to make sure that every
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vertical line intersects some horizontal line on the diagonal

line of the tape.
{(3) Finally, Ml checks whether a horizontal line lies

only at every Zk—th row (k=1,2,+** ). Assume that Ml has

already ascertained that this property holds for the l-st -
2 -th row. M, now checks whether a horizontal line lies at

the 2l+l—th row but does not lie between the 2'-th and the
2l+1—th row, in the following way. Let X5 and Yi be the

(21,1)-square and the (l,2l}—square respectively. Ml first

brings the input head from X; to vy, and then moves it from

i-1

Yy to Xi41 along a line of a slope 2. It is at the (21,2 )~

sguare that Ml first finds a vertical line on the way from

y; to x Mq then examines that a horizontal line lies

i-1

i+l-

at but does not lie between the (21,2 )-square and

Xi+1’
Xi41e Starting from the point Xqs Ml repeats this procedure
until Ml reads a border symbol of the bottom edge.

M, can accept Wl by accepting the word w if and only if
it satisfies the conditions examined in (1)-(3). (Q.E.D.)

(k)

* *
Let log m, exp m and log m be the functions from

(NU{0}) into (NU{0}) which are defined as follows.
0 {(m=0)
(1) log(l)m = {
[log m] (m>1)
1og(k+l)m = log(l}(log(k)m)

*
(2) exp 0 = 1
*
5€Xp m

*
exp (m+1)

* *
(3) log m = min{x|exp x > m}
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(k)

*
The tape functions log m, log m, and log(l)log*m can

be constructed by some 2TM° with two input symbols.

Theorem 2.32 Let £={0,1}. There exist T, € 2rM°S

(k) (1)

* *
(log nO,T'GZTMS(log m), and T'e€ ZTMS(log log m) which

. (k) * (1) *
construct the tape functions log m, log m, and log logm
respectively. (k=1,2," - )

Proof. First, we construct M2€52TMS(O) which behaves

as follows. Assume that w<5wl is given to M,. If M2 begins

its movements setting the input head at the (x,1)-square
V ' (1) B -

of w, then it halts at the (log X,1l)~square. M2 can be

(1)

easily made up, if we notice that there are log X horizontal
lines above the x-th row of w. Moving upwords square by square
from the (x,1l)-square, M2 shifts the input head by one square
to the right whenever M, meets a horizontal line. Thus M,

can reach the (l,log(l)x)-square. Then M2 moves the input

head to the south-west direction along a line of a slope 1,

and halts at the (log(l)

(k)

X,l)=-square.

TkEEZTMS(log m) which constructs the tape function

log(k)m acts as follows. If an input W‘€{0,l}§+ of size mxn

is given, Tk first simulates Ml in Lemma 2.31 to examine

whether weWw If w¢wl, T, immediately halts. If otherwise,

1 k

T, brings the input head to the (m,l)-square, and simulates

k
M2, k times over again. By this, the input head of Tk comes

(k)

to the (log m,l)-square. Then T, moves the input head

k
to the (1,1)-square along the first column. By moving the
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storage tape head synchronously with the input head, ‘I‘k can

(k)

use log m squares of the storage tape.

*
We can also make up T‘€2TMS(log m) and T'eAgggs{log(l)

* i * *
log m) which construct the tape functions log m and log(l)log m,

in a similar way as in T T first simulates M, to check

K"
1° If we Wy, then T begins to simulate M2 from

the (m,l)-square. T simulates M2 again and again until T

whether wegW

*
comes to the (1,1l)-square. T can mark log m squares of the
storage tape by counting the number of times of the simulations
of M, in an unary number. Similarly, T' can construct the tape

(1)

*
function log log m in the same way as T, except that T

counts this number in binary. (Q.E.D.)

From Corollary 2.23, the hierarchy of language accepta-

bilities among these tape complexity classes can be derived.

Theorem 2.33  £[2TM°(0)] © &£[2™° (log ! 10g™m) 1

*
C Li2m®(log m) 1 C g12mM® (Log ¥ m) 1 © r2mu® (1og®my 1.
(k=1,2,++ ) '
Proof. We only consider the relation between aﬁ[ZTMS
(logk+l)m)] and af[ZTMS(log(k)m)]. The other relations can

be proved likewise. Let {mi} be an increasing sequence of

*
natural numbers such that m, = i + exp k. Then,

log(k+l)m.

lim ) = =0,
1r®  Jog m;
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(k+1) (k

)m holds, thus from Corollary 2.23,
(k)

And log m < log

(k+l)m

&L 12tM° (log )1 & £12° (log *'m)] is concluded.

(Q.E.D.)

2.8 Concluding Remarks

In this chapter, a tape-bounded two-dimensional Turing
machine was introduced, and its basic properties were investi-
gated. Especially, two important theorems were proved here.
They are the hierarchy theorem (Theorem 2.19) and the theorem
concerning the lower bounds on tape growth (Theorem 2.27).
These theorems assert that there exists a dense hierarchy
of acceptabilities among 2TM.

Here, we defined the tape function L{(m,n) as a function
of the horizontal and vertical sidelengths of the input,
rather than a function of the area of it. Because, not
only the former definition implies the latter one, but
also we can characterize even a class of two-dimensional
tape automata with non-isotropic computational powers such
as parallel-sequential array automaton ({(Rosenfeld and Milgram
[44]) by this definition (this is discussed in chapter 3).
Furthermore, by considering the shape function £ : N - N2,
we can easily and uniformely investigate the acceptabilities
of 2TM on the restricted input tapes.

The model of 2TM defined here has only one one-dimen-

sional storage tape. However, when we consider the tape
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complexity, the number or the dimension of the storage tape
does not affect the acceptability of 2TM. Actually, the
other models such as ones with multi storage tapes or a
multi-dimensional storage tape can be simulated by the
original model, because the number of storage tape symbols
is arbitrary. So, this model seems to be reasonable. But,
if we consider the time complexity of 2TM, the number or
the dimension of the storage tape will become important.

In section 2.7, some examples of very slowly growing
constructible tape functions were shown. The function
log(l)log*m was the slowest tape function in these examples.
Of course, from Corollary 2.28, we can construct a tape

*
(l)log m. But, its

function which grows more slowly than log
concrete example (an example of a familiar function) is not

known.
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CHAPTER 3

SEVERAL TWO-DIMENSIONAL TAPE AUTOMATA

In the previous chapter, we introduced a two-dimensional
Turing machine as a mathematical model of two-dimensiocnal
information processing. But, there are still many other
models of two-dimensional tape automata. The notion of
tape complexity is, in some sense, a special measure of
computational complexity, so that we cannot always character-
ize any automaton by it. However, in the two-dimensional
case, there exist many automata which are characterized by

means of tape complexity. In this chapter, language accepta-

bilities of several such automata are investigated system-

atically from the standpoint of tape complexity.

3.1 Definitions

In this section we define several two-dimensional tape
automata. They are a two-dimensional finite—-state automaton,
a two-dimensional multi-head automaton, a two-dimensional

multi-marker automaton, a two-dimensional linear-bounded
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automaton, a parallel-sequential array automaton, and some
variants of a parallel-sequential array automaton. These

automata also have rectangle-shaped inputs, and we regard

them as acceptors of two-dimensional languages.

3.1.1 Two~-Dimensional Finite-State Automaton (2FSA)

A two-dimensional finite-state automaton [5] consists
of a rectangle-shaped input tape (which is the same as in 2TM),
a four-way read-only input head, and a finite-state control.

Formally a deterministic two-dimensional finite-~state
automaton is defined as a 6-tuple

M= (K, Z, §, dgr B F),
where K is a nonempty finite set of states, I is a nonempty
finite set of input symbols, 4y € K is an initial state,

B is a border symbol of the input tape, and FCK is a set
of final states. & is a mapping from a subset of Kx(:U{B})
into Kx{N,S,E,W,H}, where {N,S,E,W,H} is a set of move
directions of the input head. M halts for the element of
kx(z U{B}) on which & is not defined.

The class of deterministic th—dimensional finite-state
automata is denoted by 2FSA. The notion of the acceptance
(of a word or a language) is similar to the case of 2TM,

80 its definition is omitted here.

3.1.2 Two-Dimensional Multi-Head Automaton (2MHA)
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A two-dimensional multi-head automaton [23] consists
of a rectangular input tape, a finite number of four-way
read-only input heads, and a finite-state control.

Formally a deterministic two-dimensional multi-~head
automaton is a 7-tuple

M = (K’ Z; 6; k( q Bl F)l’

OI
where K, I, qo,fa,and F are the same as in 2FSA, k is the number

of input heads, and § is a mapping from a subset of KX(ZlJ{B})k

into KX{N,S,E,W,H}k. M halts for the element of Kx(ZLJ{B})k
on which 8§ is not defined. Note that each input head cannot
sense the other heads even if they are on the same square.

The class of deterministic k-head automata is denoted by
2MHA (k) , and JiHZMHA(k) is denoted by 2MHA.

3.1.3 Two-Dimensional Multi-Marker Automaton (2MMA)

A two-dimensional multi-marker automaton [5,23] is a
2FSA with a finite number of markers which can be placed
on the input tape.

Formally a deterministic two-dimensional multi-marker
automaton is a 7-tuple

M = (K, Z,‘é, k, qO,B, F),
where K, I, dgr B, and F are the same as in 2FSA, and k is
the number of markers. But, K must be a direct product of
some finite set K' and {0,1,+++,k} (i.e. K=K'x{0,1,+++,k}),
and q0=(qé, k) for some qéé;K'. The integer i € {0,1,+++,k}

maens the number of markers possessed by the finite-state

63



control of M. § is a mapping from a subset of Kx(z|J{B})x{0,1}
into Kx{N,S,E,W,H}x{0,1}. 0 and 1 mean the absence and the

existence of a marker on the tape square that M is scanning.

Furthermore, § must satisfy the following conditions. Supposé
s ({qy,i),a,x) = ((q),3),4,y),
for some qr,q! €K', i,jef{0,1,+-+,k}, a€s, x,vye{0,1}, d€
{N,S:E,W,H},
(1) If (x=0 and y=0) or (x=1 and y=1), then i=j.
(2) If x=0 and y=1, then i-1=j.
(3) If x=1 and y=0, then i+l=j.
The class of deterministic two-dimensional k-marker
automata is denoted by 2MMA(k), and [j 2MMA (k) is denoted

k=1
by 2MMA.

3.1.4 Two-Dimensional Linear-Bounded Automaton (2LBA)

A £wo—dimensional linear-bounded automaton [2,61] consists
of a rectangular input tape, a finite-state control, and a
four-way read/write head which can freely read or write a
tape symbol on the input tape (Fig.3.1).

Formally a deterministic two-dimensional linear-bounded

automaton {2LBA) is defined as a 7-tuple

M= (K, Z, I', 6, 94 B, F),
where K, I, q,, B, and F are the same as in 2FSA, r=2:z is
a finite set of tape symbols, and § is a mapping from a

subset of KX(F[J{B})MEnto KX(PlJ{B}){iﬁiglﬁler}-
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Fig. 3.1 A two~dimensional linear-bounded

automaton.

3.1.5 Parallel-Seguential Array Automaton (PSA)

A parallel-sequential array automaton [44] consists
of a rectangular input tape and a scanner which can move
vertically on the tape in two ways (Fig.3.2). The input
tape is divided into mxn squares, and border symbols are
attached to the north and the south edges of it. The scanner
is a horizontal array of n identical finite-state automata
{each of which is called a cell) Cl, C2,*°°, ch. (Hence
the number of cells depends on the size of an input. The
i~th cell Ci is positiconed at the i-th column of the tape,

thus CT can read the tape squares of the i-th column. C*
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transits its state depending on the present states of Cl_l,

Cl, Cl+l and the input symbol that ct is reading. And Cl
determines the shift direction of the scanner depending on

its state.

B|B B
dyy|dy| ] | Qs
dyy |3y ) e
CYC? - |- |- |CHISCANNER
aml amZ ) ’ ) amn
BIBl-{-| B

~ INPUT TAPE

Fig. 3.2 A parallel-sequential array automaton.

Formally a deterministic parallel-sequential array

automaton (PSA) is an 8-tuple

where Q is a nonempty finité éet of states of each cell,
£ is a nonempty finite set of input symbols, qoe Q is an
initial state of each cell, B is a border symbol of the
input tape, e is an edge-~state symbol for the edge cells
cl anda c® (QN{el=@), and FCQ is a set of final states.

§ is a mapping from (QU{e})x(Q-F)x(QU{el)x(z U{B}H iptggQ-
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1 {or Cn) transits its state as if there is

The edge cell C
a cell of state e to the left (or right) of it. A is a
mapping from (Q-F) into {N,S,H}, where {N,S,H} is a set of
shift directions of the scanner. One step ofngpvgpents

of M is advanced in the following manner : (1) apply § to all

the cells simultaneously, and then (2) apply A to the cell Cl.
Suppose an inputxﬁezz+of size mxn is given to M, and

M starts its movements setting the scanner at the first row

with all the cells in d5- We say that M accepts w, if the cell

Cl halts in a final state.

3.1.6 Multi-Scanner Parallel-Sequential Array Automaton

(MPSA)

We now propose a multi-scanner parallel-sequential array
automaton as a variant of PSA. It consists of a rectangular
input tape, a finite-state control, and a finite number of

scanners (Sl, Sz,"',sk) each of which can move vertically on

the tape in two ways (Fig.3.3). If the size of the input is
mxn, then each scanner Si consists of n identical cells (Ci,
Ci, ., C?). Each cell in Si acts in the same way as in PSA.

The finite-state control determines its next state and the
shift directions of the scanners depending on its present
state and the present states of the leftmost cells of the

scanners.
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Fig. 3.3 A multi-scanner parallel-sequential
array automaton.

Formally a deterministic multi-scanner parallel-sequential

array automaton is a l2-tuple

M= (P, Q, £, §,8" A, k, Pgr 9g- B, e, F),
where P is a nonempty finite set of states of the finite-
state control, Q is a nonempty finite set of states of each
cell, I is a nonempty finite set of input symbols, k is the
number of scanners, poejP is an initial state of the finite-
state control, qoetg is an initial state of each cell, B is
a border symbol of the input tape, e is an edge-state symbol
for the rightmost cell in each scanner (Q(j{e}=¢), FCP is

a set of final states (of the finite-state control). § is
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a mapping from Q2X(QlJ{e})X(ZLJ{B}) into Q, which determines
the next state of each cell except the leftmost cells. &'
is a mapping from PxQx(QJ{e})x(ZU{B}) into Q, which is
applied to the leftmost cells. ) is a mapping from a subset
of PXQk into PX{N,S,H}k. One step of movements of M is
advanced by applying § and §' to all the cells simultaneously
and then X to the finite-state control.

The class of deterministic k~scanner parallel-sequential
array automata is denoted by MPSA(k), and lj MPSA (k) is denoted

k=1
by MPSA.

Suppose an input w €>32+

of size mxn is given to M, and
M starts its movements from the initial state Py setting
all the scanners at the first row and all the cells in dq-

If the finite-~state control eventually halts in a final state,

w is said to be accepted by M.

3.1.7 Orthogonal Multi-Scanner Parallel-Sequential Array

Automaton (OMPSA)

Finally we define an orthogonal multi-scanner parallel-
segquential array automaton as ancther variant of PSA. It
consists of a rectangular input tape, a finite-state control,
and a finite number of vertical scanners (SVl’...' SVk) and
horizontal scanners (SHl,"', SHR) (Fig.3.4). The vertical

(or horizontal) scanner can move vertically {(or horizontally)

on the input tape in two ways.
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Fig. 3.4 An orthogonal multi-scanner

parallel-sequential array automaton.

Formally a deterministic orthogonal multi-scanner parallel-
sequential array automaton is a 13-tuple

M= (P, Q, Z, 8§, 8', X, k, L, Pgr dg- B, e, F),
where, P, Q, L. Por g B, e, and F are the same as in MPSA,
and k and & are the numbers of the vertical and horizontal
scanners respectively. ¢ is a mapping from QBX(QLJ{e})X
(z U{B}) into Q, which determines the next state of each cell
except the leftmost cells (in the vertical scanners) and the
topmost cells (in the horizontal scanners). 6' is a mapping
from PxOx (QU{eh)x(xU{Bl}) into Q, which determines the next

states of the leftmost and the topmost cells. A is a mapping
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from a subset of PXQkXQQ into PX{N,S,H}kX{E,W,H}R, where

{N,S,H} and {E,W,H} are the sets of move directions of vertical
and horizontal scanners respectively.

The class of deterministic orthogonal multi-scanner
parallel-sequential array automata with k vertical and %
horizontal scanners is denoted by OMPSA(k,2%), and

[ee]

[ne]
U | omMPsa(k,?) is denoted by OMPSA.
k=1 =1
Especially, OMPSA(1l,l) is called a deterministic orthogonal

two-scanner parallel-sequential array automaton, and denoted

by 02PSA (Fig.3.5).

aln
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CONTROL
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1"EDm

Fig. 3.5 An orthogonal two-scanner

parallel-sequential array automaton.
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3.2 Language Acceptabilities and Tape Complexities

Now we investigate the language acceptabilities of the
automata defined in the previous section from the viewpoint

of the tape complexity.

As for 2FSA, it is easily seen that the next theorem

holds.

Theorem 3.1 LI2FsA] = ZL[2TM(c)]. (c : constant)

Next, we consider the language acceptabilities of 2MHA

and 2MMA. The following theorem shows the relation between

2MHA (k) and 2ZMMA (k).

Theorem 3.2" ZI2MHA (k)] C© Zl2MMa(k)] © Ll2MHA(k+1) ].

(k:l'z’loo )

Proof. ZI2MHA (k)] © L[2MMA (k)] can be easily derived.
Because, every H € 2MHA(k) can be simulated by some M€ ZMMA (k)
by placing k markers at the positions of k heads of H.

Conversely, for every M'e€ 2MMA(k), there exists some
H' ¢ 2MHA (k+1) which simulates M'. Let (ui,vi) and (uk+l,vk+l)

represent the coordinates of the i-th marker and the input

+ Ibarra and Melson [23] proved a similar theorem, where
every head of 2MHA can sense each other. But in this case,

it cannot sense each other.
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head of M' respectively (i=1,2,**°,k). Similarly, let (xi,yi)
represent the coordinate of the i~th head of H' (i=1l,2,°°*,
k+1l). The head of M' is simulated by the (k+1l)-th head of

H' (i.e. H' shifts the (k+1l)-th head so as to become (Xk+l’
yk+l)=(uk+l’vk+l))‘ The absolute value of the relative position
of the i-th marker to the head of M' is kept by the i-th head

of H' (i=1,2,--*,k) (i.e. H' shifts its heads so as to become
(xi,yi)=(!uk+l—ui!+l,|vk+l—vi|+l)), and its direction (i.e.

sign(uk+l~ui) and sign(v —vi)) is kept in the finite-state

k+1
control. 8o, if the i-th head of H' is at the (1l,1)-square,
H' knows that the head of M' is reading the i~th marker or
M' is holding it in the finite-state contrel (H' alsoc remem-
bers the markers that M' is holding, in the finite-state

control). Thus, H' can simulate M' step by step, and accepts

the input if and only if M' accepts it. (Q.E.D.)

Now, the relation among 2MHA, 2MMA, and 2TM{log mn)

is shown.
Theorem 3.3 JI[2MHA] = LI2MMA] = ZLI[2TM(log mn)]
Proof. ZLI2MHA] = JL[2MMA] is easily seen from Theorem

3.2. So we prove JLJ[2MHA] = JLI[2TM(log mn)].

For any M € 2MHA, we will construct T € 2TM(log mn) which
accepts the same language as M. If an input w of size mxn is
given to T, T first marks [log mn] sguares of the storage tape

by counting the total number of squares of w in binary. The
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finite-state control of M is simulated by that of T. If M
has k heads, T divides the storage tape into k tracks and
keeps the coordinate of each head of M in each track with a
binary number. By this, T can simulate M step by step, and
it can accept the same language as M. Thus, gl[2MHA] C©
LI2TM(log mn)].
Next, for any T'€ 2TM(log mn), M'e€ 2MHA which simulates

T' is constructed in the following way. Suppose the storage
tape of T' consists of k binary tracks (i.e. T' has at most

2k storage tape symbols). Thus we can think that the i-th
track (i=1,2,-°*,k) contains a binary number xi(Oixi;mn—l),
where the leftmost bit is regarded as the least significant
bit. M' remembers the number X by the position of the

i~-th head on the input. The (k+1)-th head and the (k+2)-th
_;ead of M' are used to keep the positions of the input head
and the storage tape head of T'. If the (k+2)~th head shows
that the storage tape head of T' is at the j-th square (j=1,
2,°++,[log mn]), M' divides each X by 2, ?mthfff_EEf8¥§?E,
to know the tape symbol that the storagé tape head is reading.
This procedure can be done by some additional heads of M'.
And M' can alter the j-th bit of Xs by adding (or subtracting)
-1

24 to (from) X,. By this, M' can simulate T' and g [2MHA]

D XLI2TM(log mn) ] is concluded. (Q.E.D.)
As for 2LBA, the following theorem can be obtained.

Theorem 3.4 LI2LBA]l = ZLI[2T™M(mn)].
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Proof. For any M€ 2LBA, we can construct T € 2TM{mn)
which simulates M. Suppose an input w of size mxn is given to
T. Scanning w row by row, T converts it into an one-dimensional
string of input symbols with punctuations (this punctuation

means the end of a row), and writes it in the storage tape.

Then T starts to simulate M on the storage tape. If M rewrites
the tape symbol and shifts the input head one square to the
east (or west), T also rewrites the storage tape symbol and
shifts the storage taée head one square to the right (or left).
If M shifts the input head to the south (or north), T must
shift the storage tape head m squares to the right (or left).
To do this, T counts the number m by moving the input head
along the first column of the input. By this, T can simulate
M step by step, and accepts w if and only if M accepts it.
Conversely, for any T'€ 2TM(log mn), there is some M'eg
2LBA that simulates T'. In each square of the input tape
of M', a combined symbol of the input symbol and the storage
tape symbol of T' is written. Furthermore, the positions
of the input head and the storage tape head are also marked
on it. Thus, M' can easily simulate T' on the mXn squares

of the input tape. (Q.E.D.)

Next, we investigate the language acceptabilities of

pPsa, MPSA, OMPSA, and O2PSA.

Theorem 3.5 LIPSA] = LI2TM(n)].
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Proof. First, for any MEPSA, T € 2TM(n) which simulates
M is constructed in the following way. T records the internal
states of n cells of M using n squares of the storage tape.
And T remembers the position of the scanner by placing the
input head in the row where the scanner is positioned. 1In
order to simulate one step of M, T reads the input symbols
of the row that M is scanning one by one, and rewrites the
internal states of the cells of M written in the storage tape
according to the transition rule of M. T can accept the same
language as M by accepting the input if and only if the left-
most cell of M becomes a final state.

Next, for any T'€ 2TM(n), M'€ PSA which accepts the
same language as T' is constructed . The contents of n squares
of the storage tape of T' are remembered by internal states
of n cells of M'. The position of the storage tape head is
also remembered by the cell at the corresponding position.
The position of the input head of T' is simulated as follows.
If the input head is at the (i,]j)-square, then M' places
the scanner in the i-th row and makes the j-th cell Cj be
in a special state. The finite-~state control of T' is simu-
lated by the leftmost cell Cl. In order to advance one step
of movements of T', the two cells, which are in the corre-
sponding positions to the input head and the storage tape
head, read the input symbol and the storage tape symbol,
and send these informations to the cell Cl. By these infor-
mations, Cl determines the next movement of T', and sends

back the informations of the move directions of the heads
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and the storage tape symbol to be rewritten to these two cells.
Thus M' can simulate T' step by step, and can accept the same

language as T'. : {(Q.E.D.)

Theorem 3.6 ZLIMPSA] = £[2TM(n + log m)].

Proof. First, we prove ZLIMPSA] € Z[2TM(n + log m)].
For any MEMPSA, T € 2TM(n + log m) which simulates M is con-
structed in the following way. Suppose that M has k scanners.
Using n + [log m] squares of the storage tape, T simulates

the k scanner of M. The storage tape of T is divided into k ,

tracks. T records the internal states of n cells of the
i-th scanner =N using the first n squares of the i-th track
of the stoarge tape. It also records the position of Si
Wyit§wéub?nary number using the remaining [log m] squares.
The finite-state control of M is simulated by that of T.
For each Si’ T brings the input head to the row where Si is
scanning, and then, reading the input symbol of this row
one by one, T rewrites the state of each cell of Si on the

storage tape. Then T simulates the finite-state control of

M and rewrites the binary numbers which represent the posi-

tions of the scanners. By above, T can simulate M step by
step, and it accepts the input if and only if M accepts it.
Next, LIMPSA] D £L[2TM(n + log m)] is shown. For any
T'€ 2TM(n + log m), M'g MPSA which simulates T' is constructed
as follows. Suppose that the storage tape of T' consists of

k binary tracks. M' uses (k+3) scanners (Sl,'~', Sk+3) to
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simulate the input head, storage tape head and the storage
tape of T', and also uses some additional scanners for working.

The scanner S. is used to simulate the first n squares of

1

the storage tape and the storage tape head. Each cell of Sl

memorizes the tape symbol of each square, and the cell that
corresponds to the position of the storage tape head becomes

a special state. The scanners sz,--.,s simulate the

k+1

remaining [log m] squares of the storage tape, and the scanner

S is used to keep the position of the storage tape head

k+2

when it is reading one of these [log m] squares. It can be

done in a similar way as in Theorem 3.3 using some additional

working scanners, HNamely, each of 52’."'sk+l remembers
the binary number contained in each binary track of the

[log m] squares, by its vertical position. The scanner Sk+3
is used to simulate the input head of T'. If the input head
is at the (i,]j)-sqguare, then Sk+3 is placed at the i-th row,

and the j~th cell of S becomes a special state. By

k+3
above, M' can simulate T' step by step, and accepts the same

language as T'. (Q.E.D.)

The following theorem shows that both OMPSA and OZ2PSA
have tape complexity m+n. Thus the language acceptability
of OMPSA(k,%) is not enlarged even if the numbers k and £

are increased.

Theorem 3.7 L IOMPSA] = ZL£[02pPsA] = Z[2TM{(m+n)].
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Proof. First we will show Z£[2TM(m+n)] C plo2psal.
Let T be an arbitrary 2TM(m+n). We construct M € O2PSA which
simulates T. Let SV and SH be vertical and horizontal scanners
of M. M must memorize the symbols written in the m+n squares
of the storage tape and the position of the storage tape head

of T. They can be archieved using the m+n cells of S_, and Sy-

v
And the position of the input head of T is simulated by SV.

(Thus, M need not move S, at all.) By above, M can simulate

2
T step by step, and can accept the same langgage as T.

Next, we will show ZLI[OMPSA] C £[2TM(m+n)]. 1In a
similar manner as in Theorem 3.6, we can derive £L[OMPSA] C
LI2TM(n + logm + m + log n)]. Note that (n + logm + m +
log n) < 2(m+n) holds for every m>1 and n>l. Thus, from
the tape reduction theorem (Theorem 2.12), gloMpsa] © £
[2TM(m+n)] is obtained.

Now, J£[02PSA] © £[OMPSA] is obvious, so that £[02PSA]

= JLIOMPSA] = LI[2TM(m+n)] is concluded. (Q.E.D.)

We have seen that several classes of two-dimensional tape
automata are characterized by the notion of tape complexity.
Thus, applying the hierarchy theorem of 2TM to them, we can
systematically deriye the relations of language acceptabilities

among these classes of automata.

Theorem 3.8

LI2FSA] T £[PsA] E L. [MPSA] g LlomMpsa] = g£lo2psa]l & £LI2LBA],

L [2FSA] S'_: L I[2MHA] = FL[2MMA] E L. IMPSAT,

79



LIPsSal % LI[2MHA] = L£I2MMA].

£[2LBA]
Ut
L [OMPSA] = £[02PSA]
Ut
L [MPSA]
Gp o UF ,
LIPSA] S5 L2MHAT = Z[2MA]

S RY
LL2FSA]

Fig. 3.6 The relations of language
acceptabilities of several automata

with rectangular input tapes.

Proof. We prove only the cases of (1) £L[MPSA] E
&L [02PSA] and (2) ZLI[PSA] gg L I[2MHA]. The other relations
can be proved likewise.

(1) From Theorem 3.6 and 3.7, Z£I[MPSA] = L[2TM(n +
log m)] and £[02PSA] = L[2TM(m+n)]. It is easily seen
that the tape functions (n + log m) and (m+n) are both
constructible. Let {(mi,ni)} be a regular segquence such
that mi=i, ni=l. Then

(ni + log mi)+l _

lim T n = 0.
17> i i

Furthermore, (n + log m) < (m+n) holds for every m>1l, n>1.

Thus, from Theorem 2.22, £L[2T™™(n + log m)] SE LL2T™M (m+n) 1
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holds, and this leads oﬁ[ﬁPSA] E L[02PSAl.
(2) From Theorem 3.3 and 3.5, ZLI[PSA] = Z[2TM(n)]
and g£I[2MHA] = &£[2TM(log mn)]. Apparently, the tape functions
n and log mn are both constructible. Now, let {(mi,ni)} be
a regular sequence such that mi=i, ni=l. Then,

ni+l
lim oo =
: lo .n. ’
1 00 g mlnl

On the other hand, let {(mi,ni)} be another regular sequence
such that mi=l, ni=i, then

log mini +1
lim - = 0.
. n.
1> i

Thus, from Theorem 2.22, £ [PSA] % LI2MHA] is concluded.

(Q.E.D.)

3.3 Language Acceptabilities on Restricted Inputs

In the previous section, we investigated the language
acceptabilities of several two-dimensional tape automata
with rectangular inputs whose shapes are not restricted to
special ones. In this section, we consider the case that
the shapes of inputs are restricted. It will be seen that
the automata with non-isotropic computational powers {(such
as PSA or MPSA) vary their language acceptabilities depend-
ing on the shapes of inputs. These properties can also be
derived systematically by considering the tape complexities

of such automata and the shape function.
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First, we show the following lemma.

Lemma 3.9 Let L(m,n}) be any tape function of 2TM, and

let £ : N »> N2 and g : N = N2 be any shape functions such

2+C222+,
f—="g

Ziztvi (LN 1= £irzmd @i N,
where £ [2m9(L(g(3)))] = {s]|s=(s'n "), s' e Llam?
(L(g(3)))1}.

that % Then

Proof. For any given Te€ 2TMf(L(f(j))), which accepts

a language S, we consider Tg(EZTMg(L(g(j))). Tg is precisely

the same as Tf except that its inputs are extended to Z§+.

Thus, if S' is the language accepted by Tg, then apparently
S=(S'F}Z%+) holds. So Jﬁ[ZTMf(L(f(j)))] c aﬁf{2TMg(L(g(j)))]
is concluded.

Conversely, for any given TgGEZTMg(L(g(j))), which accepts
FlLe(3)). 1, is also

precisely the same as Tg except that its inputs are restricted

to Z§+. Suppose that Tf

s=(s'N22%). thus Ll2md’ (L(£(5)))] D £ 12 (L(g(3)))].

a language S§', we consider Tf€52TM
accepts the languge S, then apparently
(Q.E.D.)

Now, let A be some class of two-dimensional tape automata,

and let £ : N - Nz be a shape function. The class of

automata { whose inputs are restricted to E§+ is denoted
by ;d? (e.qg. 2FSAf, PSAf, etc.). Then the similar lemma for o

can be derived in the same way as in Lemma 3.9.
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Lemma 3.10 Let ﬂi be any class of two-dimensional

tape automata, and let f : N ~» N2 and g : N - N2 be any shape
functions such that Z§+§;Z§+- Then,

LIt = £ 1497,
where £T1491 = {s|s=(s'N 12", s'e LIATI}.

The next theorem means that 1if some class of automata
oA is equivalent {in languge acceptability) to 2TM({(L(m,n))
on 22+, then )i is also equivalent to 2TM(L(m,n)) on the

restricted inputs.

Theorem 3.11  Let }4 be a class of two-dimensional

tape automata. If there exists some tape function L{m,n)
of 2T such that

LI = LML m,n)],
then for any shape function £ : N - Nz,

LI = gremmfwEGn.

Proof. From Lemma 3.9 and 3.10, Ji[;df] = 5ﬁf[yi]
= i@ m,n))1 = Li2i(L(£(3)))]. (Here, the shape
function g is regarded as some bijection.) (Q.E.D.)

Now, as a special case, we consider the shape function

s{(j)=(j,Jj), i.e. the case of square-shaped inputs.

Theorem 3.12

LI12FsA®] = £121M° (c) ]

83



L [2Mua®] = g21M® (log m) ]

it

L2MMa®] = L£[2TM° (log m) ]
L[21BAS] = £[27M° (m?)]
Z21esa®1 = £i2m®(m) ]

£ (MPSA®] = £[2TM° (m) ]

L Iompsa®] = L[2T™° (m) ]
L£102psa®] = L1215 (m) ]
Proof. We only prove the relation gi[MPSAS] =

tﬁ[2TM (m)]. The other'relations can also be derived in a
similar way.

From Theorem 3.6 and 3.11, £[MPsa®] = L[2TM° (m + log m)]
§2‘£I2TMS(2m)]. And from the tape reduction theorem (Corollary

2.13), £MPsa®] = L1275 (m)] is concluded. (Q.E.D.)

From Corollary 2.23 and Theorem 3.12, the relations of

language acceptabllltles among these automata on 22+ are

easily derived.

Theorem 3.13 £ [2Fsa®] & £l2mEa®] = gLlamma®] &

L Psa®] = £impsa®] = LloMpsa®] = L£lo2rsa®] & LI12LBA%].

Next, we consider the shape function t(j)=(j,[log j1).
The following theorem shows the relations of language accepta-

- “ * + +
bilities among these automata on 22

Theorem 3.13

84



L2t () ]
L12tMt (1log m) ]

L 12Fsat

i

&L 2MHA® ]

Li2mat] = L2t (log m) ]

£ 1218A% = L2 (m log m)]
2psatl = Zl2mt (log m) ]

2 mpsat] = zr2mt (1og m) ]
L2t (m) ]

L 127ME (m) ]

L [ompsat]

]

,,t[ozpszxt]

il

Theorem 3.15 & [2Fsat] © £l2mmat) = £2mmat) =

L1Psa’l = Liupsa®] C £lompsa®) = L102psA®] C £120BA%].

2L [2LBA®%]
Ut | '
L [PSA®] = L[MPSAS] = L[OMPSA®] = L[02PSA®]
Ut |
ZL[2MHA®] = L[2MMA%]

Ut
LL2FSA]

Z[2LBAY]

Ut
L [OMPSA®] = £[02PSA™]

Ut |
L2MHA®] = L[2MMA®] = Z£[PSA®] = £L[MPSA®]
Ut | ‘
ZL[2FSA%)

Fig. 3.7 The relations of language accept~

abilities of several automata on Z§+ and Zi+.
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For the other shape functions, the relation among these
automata can also be derived in the same way as above.
Finally, we consider the relation of language accepta-

bilities for given two shape functions.

Theorem 3.16 Let ;dl and )42 be some classes of two-

dimensional tape automata (}41 and ;42 may be 2TM(L{(m,n))),
2+
g °
Suppose that there exists a language S such that S e<1j;{§]

and let f and g be shape functions that satisfy z§+g;z

but S ¢cﬁIg¢§]. Then there exists some language S' such
that S'¢ ‘;ﬁ[xf?_] but ' ¢ LI431.

Proof. From Lemma 3.9 and 3.10, 58[;4§] = (if[gig]
and oﬁ[s{i] = cf,f[sig], so Seoﬁf[gd_(i] and S ¢oﬁf[5d_g].
Thus there exists some S'e;gﬂ[gi?] that satisfies S=(S'r]z§+}.
Such S' cannot be the element of g@[g{g] . because S ¢ oﬁf[y{g].

(Q.E.D.)

Theorem 3.17 Let x{l and .ﬁ% be some classes of two-
dimensional tape automata, and let f and g be shape functions
that satisfy Z§+§;Z§+. Suppose that

LiAS1S L3,

then
.
L1 ELIA ;1.
Proof. From Lemma 3.9 and 3.10, oﬁ'[}((i] = &f[/ﬂ?] C
£ = L1 (Q.E.D.)
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3.4 Concluding Remarks

In this chapter, several two-dimensional tape automata
were introduced and their language acceptabilities were
investigated. It was shown that the acceptabilities all these
automata can be measured by means of the tape complexity.

Thus their relations were derived from the hierarchy theorem
of 2TM(L(m,n)).

Since the tape function L{m,n) is a function of the hori-
zontal and the vertical sidelengths of the input, the notion
of the tape complexity is also applicable to the automata with
nonisotropic computational powers (such as PSA or MPSA). And
thus, it is easily seen how the acceptabilities of such automata
vary depending on the shape of the input. For example, on
the set Qf the (unrestricted) rectangular input tapes, 02PSA
is strictly more powerful than'MPSA, and MPSA is strictly
more powerful than PSA (Theorem 3.8). But it was shown that
02PSA, MPSA and PSA are all equivalent on the set of square-
shaped input tapes (Theorem 3.12). It is interesting that
these results were obtained from the consideration of the tape

complexity.
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CHAPTER 4

AUTOMATA OF TAPE COMPLEXITY log n

So far we have investigated several classes of automata
which accept two-dimensional languages. Here, we consider
some other classes of automata which accept one-dimensional
languages and have tape complexity log n.

The class of automata of tape complexity log n has
various interesting aspects. First, we can give several
concrete {(or easily imaginable) models of automata of tape
complexity log n (e.g. a multi-head automaton, a multi-
marker automaton, an n-bounded counter automaton, a multi-
dimensional rebound automaton, etc.). They can be considered
as finite-state automata with some simple auxiliary memories.
Thus their computations are intuitive and easy to be under-
stood. Conversely, it seems very hard for us to imagine a
language that cannot be accepted by these automata, without
using mathematical technics such as coding or diagonalization.

Automata of tape complexity log n are also closely related
to multi-dimensional tape automata. For, the tape complexity

log n is a necessary and sufficient amount of memory to keep

coordinates on the multi-dimensional hyper-cubic tape of
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sidelength n. A multi-dimensional rebound automaton is
proposed in order to investigate this relation. It is a
finite-state automaton with a hyper-cubic input tape, and

an input string is written along one of the edges of this
tape. Though the rebound automaton is a sort of multi-dimen-
sional tape automaton, it accepts a one-dimensional language.

Language acceptabilities of multi-head automata and
multi-marker automata have been studied by many researchérs
{5,14,19,22,25,30,42,43,48,492], and various results have
been obtained. One of the important results is that there
exists an infinite subhierarchy of language acceptabilities
among them, where the number of heads or markers is considered
as a complexity measure.

In this chapter, an n-bounded counter automaton and a
multi-dimensional rebound automaton is newly defined, and
their language acceptabilities are investigated in the com-—
parison with other automata of tape complexity log n. All
these automata are assumed to be deterministic and their
input heads moves in two ways. (The input head of the multi-

dimensional rebound automaton moves in many ways.)

4.1 Definitions

In this section, we give definitions of a multi-track

log n tape-bounded Turing machine, a multi-head automaton,

a multi-marker automaton, a multi-counter automaton, an
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n-bounded multi-counter automaton {these automata have one-

dimensional input tapes), and a multi-dimensional rebound

automaton.

4.1.1 Multi-Track log n Tape-Bounded One-Dimensional Turing

Machine (1TM(log n, k))

The log n tape-bounded one-dimensional Turing machine
is the same one discussed in section 1.2. But, in order to
investigate the detailed relations to the other automata of
tape complexity log n, we adopt the number of binary tracks

of the storage tape as a measure of computational complexity.

; ¢ al aZ' . . . . . an $
T INPUT TAPE

FINITE-STATE CONTROL

, STORAGE TAPE
Ol1 |- |- |#|#]-] &
T111-1-10(H|H|- > |
¢' i ] i&kTracks'

. . . . E>
(0O - |- |1 [#{#]- E/

Fig. 4.1 A k-track log n tape-bounded

one-dimensional Turing machine.
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A deterministic k-track log n tape-bounded one-dimen-
sional Turing machine (abbreviated to 1TM{log n, k))} consists
of a finite-state control, a read-only input head, a storage
tape head, a one-~dimensional input tape, and a semi~infinite
storage tape which is divided into k binary tracks (Fig.4.1l).
(Thus, it has 2k storage tape symbols except the border symbol
and the blank symbol.) It does not use more than [log n]
squares of the storage tape for any input of length n. Note
that 1T™™M(log n) = [j 1TM{log n, k). The notion of the accept-

k=1
ance (of a word or a language) is the same as in 1TM(L(n)).

4.1.2 One-Dimensional Multi-~-Head Automaton (1MHA)

A deterministic one-dimensional k-head automaton (abbre-
viated to IMHA(K)) consists of a one-dimensional input tape,
k two-way read-only input heads, and a finite-state control.
It is essentially the same as 2MHA(k) except that its input
is one-dimensional. (Note that the input heads cannot sense

el

each other.) |J IMHA(k) is denoted by 1MHA.
k=1

4.1.3 One~-Dimensional Multi-Marker Automaton {(1MMA)

A deterministic one-dimensional k-marker automaton
{abbreviated to 1MMA(k)})) is also analogoué to 2MMA (k), and
it consists of a one-dimensional input tape, a two-way read-
only input head, k markers, and a finite-state control.

&
[J 1MMA (k) is denoted by 1MMA.
k=1
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4.1.4 One-Dimensional Multi-Counter Automaton (1MCA)

A one-dimensional k-counter automaton consists of a
one~dimensional input tape, a two-way read-only input head,

k counters, and a finite-state control (Fig.4.2).

¢ al a.‘2 . . . . . an $

INPUT TAPE
FINITE-STATE
CONTROL
X
X X
X X
X X X
Zo| |Zo Zo|
~ k COUNTERS

Fig. 4.2 A k~counter automaton.

Each of these counters can count any nonnegative integer
The finite-state control can sense whether the content of
each counter is zero or not. Thus the counter can be regarded

as a pushdown memory with one pushdown symbol.

Formally a deterministic one-dimensional k-counter

M= (K, Z, T, k, S, qor {¢r$}: Zor F),
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where K is a nonempty finite set of internal states, I is
a nonempty finite set of input symbols, T is a set of counter
symbols (F={x,zo}), k is the number of counters, dqy€ K is an
initial state, ¢ and $ are border symbols of the input tape
({¢,$}MNz=@), z, is a bottom symbol of the counter, and FE&K
is a set of final states. & is & mapping from a subset of
Kx (2 U {¢,$1)xI™ into Kx{L,R,H}x{+1,0,-1}¥, where L, R, and H
are’shift directions of the input heads, and +1, 0, and -1
mean the alterations of the content of each counter. The
class of deterministic k-counter automata is denoted by
1IMCA (k) , and [j 1IMCA (k) is denoted by 1MCA.

Suppose t:it an input string'vzez+’with border symbols
(i.e., ¢w$ ) is given to M. M first sets the input head at
the left side end, and makes all the counters empty. Then

M begins its computation from the initial state g We say

that the word w is accepted by M, if M eventually halts in a

final state.

4.1.5 One-Dimensional n-Bounded Multi-Counter Automaton

(1BCA)

Next, an n-bounded multi-counter automaton is proposed.
It resembles to 1MCA except that each counter can count a
number up to n, where n is the length of the input. These
counters are called n-bounded counters (abbreviated to nbc).
The finite-state control can sense whether the content of

each counter is 0 or n or not (Fig.4.3).
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— "~ o
ClaJa.]- [-T-T- 1 Ta $
INPUT TAPE
FINITE-STATE
CONTROL )
X ) n
X X (
X X
n-BOUNDED | X X |/
COUNTERS [Zo] [Zo Zo

Fig. 4.3 An n-bounded k-counter automaton.

Formally a deterministic one~dimensional n-bounded

k-counter automaton is a 9-tuple

M= (K, I, T, k, & qg, (¢,$}, 24, F),

where X, %, T, k, qo,‘TEIE}, z,, and F are the same as in
IMCA (k). & is a mapping from a subset of Kx(z U{¢,shHx(r U
{f})k into KX{L,R,H}X{+1,0,~l}k, where f means that the
counter is full (i.e. counting the number n). The class

of deterministic n-bounded k-counter automata is denoted by

1BCA(k), and 1BCA = |J 1BCA (k).
k=1
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1BCA can be regarded as a restricted class of 1MHA.
For, it is easily seen that 1BCA(k) is equivalent to 1MHA (k+1)
such that its input heads, except only one head, cannot
read the input symbols (i.e. they can sense only the border

symbols) .

4.1.6 Multi-Dimensional Rebound Automaton (RA)

Finally we give the definition of multi-dimensional
rebound automaton. This is a kind of multi-dimensional
tape automaton but accepts a one-~dimensional language.

A k-dimensional rebound automaton (abbreviated to RA(k))
consists of a k-dimensional hypercubic input tape, a read-
only input head, and a finite-state control.

If a word w = a ***a_ on I (ai€ I, 1l<i<n, n=1,2,--- )

1%2 n

is given, a k-dimensional input tape for RA(k) is defined
as follows. Let us consider a k-dimensional hypercubic
tape of sidelength n+2. It is divided into (n+2)k unit
hypercubes. In each unit hypercube, an input symbol (I),
a blank symbol (#), or a border symbol (B) is written.

The coordinate of each unit hypercube is repesented by

(jl,jz,-~~,jk), where 32-0 1, ,n+l (2=1,2,-++,k). Then

the input tape is deflned as a mapplng t : {O,l,“-,n+l}k
> (zU{#,B}) which satisfy
t(lfll°"llrj) = aj (l_f_“jf:n)
t(jlljZl.‘.l]k) = # (l<jk<n, 2<3R<n for some 2 (1<2<k- l))

(jﬁ—O or n+l for some % (l<£<k))

Il
W

C S FUEERE
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Fig.4.4 shows an input tape for RA(2) and its coordinates,
and Fig.4.5 shows an input tape for RA(3) (border symbols
are omitted in Fig.4.5).

The input head can move freely in this hypercubic
tape, but never falls off. Note that RA(1l) is identical to

a (usual) two-way finite-state automaton with a one-dimensional

input tape.

Formally a deterministic k-dimensional rebound automaton
is defined as a 7-tuple

M= (K, £, k, &, g5, {#,B}, F),
where K is a nonempty finite set of internal states, I is a-
nonempty finite set of input symbols, k is the dimension of
the input tape, qOG:K is an initial state, # and B are a
blank symbol and a border symbol, and FCK is a set of final
states. § is a mapping from a subset of Kx(r U{#,B}) into
Kx{+1,0,—1}k, where +1,0,-1 are shift directions of the input
head along each axis of the input tape.

Now, let us give M a k-dimensional hypercubic input
tape, in which a word.M?eiﬁ'is written. Suppose M begins
its computation from the initial state dq at the (1,1,---,1)-
square. If M halts in a final state, w is said to be accepted
by M.

=

lJ RA(k) is denoted by RA. RA can be also regarded
as so;;lrestricted class of 1BCA. Because, we can easily

see that RA(k) is equivalent to 1BCA(k-1) with t§§_£e§;5§ction

that it can read the input symbol only when all the counters

are empty.
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B|# 4 - |#|8B

Bl | 4] -1 #|8B aolonln2)] - |,
ALIL BB [T Wl

Fig. 4.4 An input tape for RA(2)

and its coordinates.

2w ) 2
Sz gz 72

e i I -3
Zr S . Zrr

dn

U
~ox
NSNS

ot
=

DN

B

A=

\m\%ﬁ\ﬁ_\
NN

b
f
f
f

E=E=g b= i
E=AE=3E-=:

[E=SE=3E=;
E=E=3F=:

Fig. 4.5 An input tape for RA(3).
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4.1.7 Some Notations

Several classes of automata of tape complexity log n
have been defined above. Let ¢fiﬂ1] denote a class of one-
dimensional languages accepted by #{, where { is some class
of these automata (e.g. LI[1BCA]l, &LI[RA(k)], etc.). (Note
that all these classes of languages are one~-dimensional ones,
though RA has multi-dimensional input tapes.)

Let ﬂ{l denote a restricted class of ﬂi whoseAinput
symbol is only one (i.e. it has contentless inputs). And
the class of languages accepted by ;ilis denoted by &ﬁ[}i}].

Let aﬁo, Jil, Jiz, and diB be the classes of the type 0
(recursively enumerable), the type 1 (context-sensitive),
the type 2 (context-free), and the type 3 (regular) languages,
respectively. And let gﬁl,<1:i, Jil, and Ji% denote these
classes of languages on one input symbol. (Note that Ji% ==

,6%. (Parikh [391))

4.2 Relations of Language Acceptabilities

In this section, we investigate the relations of language
acceptabilities among these automata.
First, the relations among 1IMHA(k), IMMA(k), and 1BCA (k)

are considered.

Theorem 4.1
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LIIMHA (k)] C LI1MMA (k)] © LI1BCA(k)] & LIIMHA(k)].

(k=1,2,:++ )

Proof. IMMA (k) can easily simulate 1MHA(k) by placing
k markers at the positions of k heads. Thus ZL[1MHA (k)] C
LI1IMMA (k)] .

LIIMMA (k)] C© G£I1BCA(k)] can be derived in a similar
way as in Theorem 3.2. Because, 1BCA(k) can simulate 1MMA (k)
by remembering the relative position of each marker to the
input head with each nbc.

LI1BCA(k)] © LI[1IMHA(k+1)] is also obvious, because

k nbc's of 1BCA(k) can be éaéily éiﬁﬁiatéa_g§ikvhead§ 6f

IMHA (k+1) . (Q.E.D.)

From this, we can see that 1MHA(k), 1IMMA(k), and 1BCA (k)
form a total order with respect to their language acceptabili-
ties. Namely,

LIIMHA(L)] C L[1MMA(1)] C© LI1BCA(L)] © LIIMHA(2)] C
LI1MMA(2)] C© LI1BCA(2)] C LIIMHA(3)] & - -+«

In the case of one input symbol, the next theorem holds.

Theorem 4.2

LlEat (k)1 © il (x)1 © gliseat (x)1 = Limmat(x) 1.

(k=1,2,-+- )

Proof. LImEAY (k)] © Ll (k)] © giiscal x)1 €

‘f[lMHAl(k+l)} can be derived in the same way as in Theorem
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4.1. And ,t{lBCAl(k)] 2 dﬂ[lMHAl(k+l)] is also proved from
the fact that each head of lMHAl(k+1) on the contentless
input can be substituted by each nbc or the head of lBCAl(k).

(0.E.D.)
Next, we consider the relation between 1BCA{(k) and RA(k).

Theorem 4.3 LIRA(k+1)] C LliBCca(k)].

Proof. It is obvious from the fact that RA(k+1l) is
equivalent to some restricted class of 1BCA(k). (Q.E.D.)
1 1
Theorem 4.4 LIRAT (k+1)] = LI1BCA™ (k)].

Proof. aﬁ[RAl(k+l)] - af[lBCAl(k)] is easily seen as
in Theorem 4.3. Conversely, the input head and k nbc's of
1BCAl(k) are simulated by the position of the input head on
the (k+1)-dimensional contentless hypercubic tape of RAl(k),
because the input is contentless. Thus aﬁLRAl(k+l)] =

L11Bcat (k)] also holds. (Q.E.D.)

Next, the relation between 1BCA(k) and 1TM(log n, k)
is investigated. In the two-dimensional case, the eguivalence
of 2MHA, 2MMA, and 2TM{log m) has already been shown in Theorem
3.3. In the two-dimensional case, too, the equivalence of
IMHA, 1MMA, 1BCA, and 1TM(log n) will be shown. But we now

derive the very precise relation between 1BCA and 1TM(log n),
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in the following two theorems.

Theorem 4.5 LIIBCA(k)] © LI1T™™(log n, k+2)].

(kzl'z'A.. )

Proof. For any given M € 1BCA(k), we can construct T€
1TM(log n, k+2) which simulates M as follows.

If an input w€§Z+ of length n is given, T first writes
the number n in the (k+1)-th track of the storage tape in
binary, where the leftmost square contains the 1l.s.b. (least
significant bit) of n. At the same time, T marks the [log n]-
th sguare of the (k+2)~th track. These can be done by counting
the length of w in binary, and simultaneously marking in the
(k+2)-th track of the square where the most significant 1
in the (k+1)-th track is written.

Then T begins to simulate M step by step. The finite-
state control and the input head of M are simulated by those
of T. Each nbc of M is simulated by each track of the storage
tape of T. WNamely, the content of the i-th nbec (i=1,2,---+,k)
is recorded in the i-th track of the storage tape in binary so
that the leftmost square contains the l.s.b. In order to
check whether the content of the i-th counter is 0 or not,

T examines whether all the [log n] squares of the i-th track
contain 0's. Similarly, to check whether the content of the
i-th counter is n, T examines whether the contents of the
i-th track and the (k+1)-th track is the same. T examines

only [log n] squares, in this case, too. 8Since T can know
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the [log n]-th square by the contents of the (k+2)-th track,
these procedures always terminate. If M increases (or
decreases) the content of the i-th counter, T also increases
(or decreases) the binary number contained in the i-th track.
By above, T can simulate the movements of M step by step,

and can accept the same language as M. (Q.E.D.)

Theorem 4.6 L [1TM(log n, k)] © ZI1BCA(k+3)].

(k=1,2,-+- )

Proof. For any given T € 1TM(log n, k), we can construct
M € 1BCA(k+3) which simulates T, in the following way.

Let c; be the i-th nbc of M, and let icil denote the
number kept by ci (i=1,2,"**,k+3}). k nbc's cl, 02, e, ck

are used to memorize the contents of k tracks of the storage

tape of T, Cr+1 remembers the position of the storage tape
head of T (i.e. the distance from the symbol ¢), and Crt2
and Cp43 are used for working.

Now, let a be the contents of the [log n]

i,1%i,27 "% ,m
squares of the i-th track of T (i=1,2,---,k, m=[log n], aj j=
7

0 or 1 (j=1,2,+-+-,m)), and suppose that the storage tape head

of T is reading the h-th square. Then cy memorizes the content

of the i-th track as the following integer.
h-2 . m-2

23+ )
j=h-1

= . 3
ici! .zoai,h—l—j 20+ 2

5E #i,m+h-1-3 °

Namely, <y keeps the m-digit binary number

1l a.

i,h+1 2i,h+2 a

L AN a

. a, a. .
i,m “i,1 “i,2 i,h-1 "'
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where the rightmost bit (i.e. ai,h—l) is the 1l.s.b., and

‘the leftmost 1 (i.e. 2™ ') is added so that lc;| always
becomes an m-digit number. The h-th digit 3 h is remembered
in the finite~state control of M.

By the way, M can easily do the following operations
with a help of Crpn®
(i) Divide |c;| by 2 and get the remainder (l.s.b.).
(ii) Multiply |ci} by 2 and add a constant aj (=0 or 1).

Furthermore, M can do the following operation using c

k+2
and Crt3°
(iii) Transpose the binary number lci] except the m.s.b.
m-2 .
(most significant bit). (Namely, if }ci|= ) bj-ZJ
- j=0
+ 2™ for some by/bysr-, b, , then this operation
m=2 .
-2- -
makes |c,| = § b,.2" 7] 4+ o0 1)

To perform the operation (iii), M first sets Ick+2l=0 and
[ck+3}=l, and then repeats the following procedure until

|c;| becomes 1.

»

(1) Apply the operation (i) to cy and get the l.s.b, of Ici

(2) Apply the operation (ii) to c and add the 1l.s.b.

k+3*
gotten just now.

.

Consequently, ¢, 5 contains the transposition of initial Ici
Thus the operation (iii) is completed by transferring }ck+3]
into cy -

Now, M simulates T in the following way. M first sets

m—1

le. |=2 and c And

i (i=1,2,++*,k) with a help of ¢

k+2 k+3°
then M begins to simulate T step by step. The finite-state

control and the input head of T is simulated by those of M.
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As for the storage tape of T, M simulate it track by track.
If T rewrites ai,h into ai'h and moves the storage tape head
to the left, then M executes the following procedure.

(1) Get ai,h-l by applying (i) to Csv and remember it in

the finite-state control.
(2) Transpose |c;| by the operation (iii).

(3) Apply (ii) to = and add ai to it.

'h
(3) Transpose |c;| by the operation (iii).
If,T rewrites ai,h into ai'h and moves the storage tape head
to the right, then M executes the following procedure.
(1) Transpose tci} by the operation (iii).
(2) Get ai,h+1 by applying (i) to Cyv and remember it in
the finite-state control.
(3) Transpose ]ci! by the operation (iii).
(4) Apply (ii) to <y and add ai’h to it.
M performs the above procedure for each track. Then M incre-
ments or decrements ick+ll according to the shift direction
of the storage tape head of T. If Ick+l!=0, then M knows
that the storage tape head of T is reading the border symbol ¢.

By above, M can accept the same language as T, and

this completes the proof. (Q.E.D.)

Clearly, Theorem 4.5 and 4.6 hold even if the number of

input symbols is restricted to one.

Corollary 4.7

oﬁ[lBCAl(k}] C of[lTMl(log n, k+2)1,
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LI1mM (log n, k)1 € LI1BCAT (k+3)].

The next corollary is easily obtained from Theorem 4.1-

4.6 and Corollary 4.7.

Corollary 4.8

LIrRal © XL[1MHA] = L[1MMA] = Z£I[1BCA] = &L[1TM(log n)l,

2irall = grmall = grumall = griscall = LMt (1og n) 1.

I

Next, we investigate the acceptability of 1MCA(k).

Theorem 4.9  If k>2, then L[IMCA(k)] = &£, and
Limeal )1 = &1

Proof. Minsky [29] showed that a two-counter automaton+,
without an input tape, can simulate a one-dimensional one-
tape Turing machine. Thus it is easily seen that 1MCA(2)
can simulate any Turing machine with one input tape and one
storage tape, where the storage tape is not bounded by any

tape function. So 1IMCA(k) (k>2) is universal. (Q.E.D.)

Theorem 4.10 LlMCcAa(L)] © LI[1BCA(L)].

Proof. Let A be an arbitrary 1IMCA(l) with s internal

states, and let n be the length of an input. We denote the

+ See the footnote on page 49.
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computational configuration of A by a triple (g, i, 3j),

where g is an internal state, i is the position of the input

head (Qiiin+l), and j is the number kept by the counter (j;d};
If A counts a number greater than s(n+2), then, for some

g, i, jl' and j2 (0<i<n+l, 0<jl<j2), two computational

configurations (g, i, jl) and (g, i, jz) must appear at

some times tland t (tl<t2) respectively, and the counter

2
does nqt become empty between tl and t2. So, at time t2
+ k(tz—tl) (k=1,2,*°" ), the computational configuration of
A becomes (g, i, j2+k(j2-jl)). Thus the number counted by A
increases indefinitely. Accordingly, if A accepts the input,
A never counts the number greater than s{(n+2).

Using this fact, we can construct B € 1BCA(l) which accepts
the same language as A. The nbc of B simulates the counter
of A as follows. B has a finite counter which can count up to
s in the finite-state control. If A increases (or decreases)
the counter, then B increases (or decreases) this finite
counter. B actually alters the nbc, only if the finite
counter overflows or underflows. In other words, B memorizes
the quotient of x/s in the nbc, and the remainder of it in
the finite-state control, where x is the number counted by A.
Thus B can count from 0 to s(n+l)+s (additional s is also
counted by the finite-state control). By this B can simulate
A step by step, and can accept the same language as A.

(Q.E.D.)

It is an interesting fact that G£[1MCA(l)] becomes some
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restricted subclass of £[1TM(log n)] despite of the univer-

sality of 1MCA(2).

4,3 Acceptability of RA(2)

Now, we especially investigate the acceptability of RA(2),
which is one of the weakest subclass of automata of tape
complexity log n (except the class of finite automata).
Although RA(2) has no auxiliary memory, it can accept several
non~-regular languages. It depends on the fact that RA(2)
can move freely on the input tape and can rebound at the

edge of the input.

Theorem 4.11 There exists a language Ll<5d€[RA(2)]

such that L, € ofz but Ll¢ 063.

Proof. Let us consider the language Ll={w-wR!w€E{O,l}+}
(wR denotes the transposed sequence of w). It is known that
Ly is context-free but not regular [18]. We can construct
Mle RA(2) which accepts L,. Suppose a word w = aja, *-- a,.
€{0,1}" is given to M;. In order to check if a;=a, ., .
for all i (1<i<2n), M, moves the input head as shown in Fig.4.6.
From the square in which ai is written, Ml moves to the south-
west direction at an angle of 45°., If Ml reaches to the border,

then it turns and moves to the east until it reads the border

symbol. And then, moving to the north-west direction, Ml can
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reach the square where a . is written. M. does this
2n+l1-i 1
for i=1,2,*+*,2n, and accepts w if ai=32n+l—i for all i.

(Q.E.D.)

VY
o
[y
Q
e
.
5
&
]
o

Y

B B
BIB|:--- .. BB

Fig. 4.6 Comparing the input symbols

a; and @pn41-4-

Theorem 4.12 There exists a language L2 etﬁiRAl(Z)]

1 1
such that L, € °£l but L, ¢562

Proof. We construct MZGERAl(Z) which accepts the
i
language L2={a2 |i=1,2,°-" yCiart. L, is context-sensitive
but not context-free [18]. Suppose an input tape of sidelength

n is given to M2 (it is a contentless input tape). M2 can
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find the (21,1)—square (i=1,2,+++ ) in a similar way as in

Lemma 2.31. Suppose M, is at the (Zk,l)—square. Moving

2
the input head to the north-east direction at an angle of 45°,
M2 can reach the (l,2k)~square. M2 then go to the south-
west direction along the line of a slope 2. Thus M2 can

reach the (2k+l,l)~square (Fig.4.7)

(1,25

(2%1)

(2%,1)

Fig. 4.7 The recognition process of W€§L2 by M2.
Starting from the (1,1)-square, M, repeats this procedure
over again. By this,h%zcan check whether m=27 for some 3.

If it is so, then M2 accepts the input. {(Q.E.D.)

We can also show the other examples of languages accepted

by RA(2), which are context-sensitive but not context-free.
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Ly = {wewlwe {0,137}

L, = {0"1%0% n=1,2,--- }

Fig.4.8 shows the method of comparing the input symbols

a; and ap4s to accept the language L3. And L4 can also be

accepted by finding the (1, [n/3])-square and the (1,[2n/3]1)-

square.

al e ai v e . &H-l.'.arw'... 8.2n

Fig. 4.8 Comparing the input symbols aj and aii

(From the symbol a. . the automaton moves along the

line of a slope -2.)

However, it seems that the following context-free language
Lg cannot be accepted by any RA(2). But its proof is remaininhg
open.

L5 = {w]mr€{0,1}+ , and the number of the symbol 0's
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contained in w is equal to the number of the symbol 1's.}

(But, it is easily seen that IMCA(l) can accept L5.)

Theorem 4.13

LR 2L,
2Rl (2)12£1.

Proof. It is easy to see that L I[RA(2)] 2 LIRA(1)]
and¢£[RA1(2)]£?dﬂ[RAl(l)]. Thus, from Theorem 4.12 and the
facts LIRA(1)] = &, and LIRAT (W] = £, Lira@12 L,
and £IRA(2)1 2 £1 are concluded. (Q.E.D.)

\ N .
Now, we consider a class of automata RA{2) as a variant

of RA(2). The shape of the input tape of RA(2) is different
B|BIB BB
Ba1a2 anB
B |4 4F #18B
B |4F |4F B
B |4F|4F 1| B

P A\
Fig. 4.9 The input tape for RA{(2).
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from that of RA(2). The width of the input is finite, but it
extends downward unlimitedly, and the border symbols are
attached at the north, west, and east edges of it (Fig.4,8).
A one-dimensional input word is written in its first row.
N
In order to show F[RA(2)] = LI[RA(2)], we derive the

following lemma.

Lemma 4.14 For any M€RA(2), there exists M'e€ RA(2)

which accepts the same language as M and never reads the

border symbol of the south edge of the input.

Proof. M' simulates M as follows.

Let s be the number of states of M. Scanning the first
row of the‘input tape, M' first examines whether n<s+l or not
(n is the length of the input). If n<s+l, then M' memorizes
n by the internal state, and simulates M moving the input
head on the first row only. Namely, M' records the number
of the row on which the input head of M is moving in the
finite-state control of M'. Clearly, in this case, M' does
not read the border symbol B at the south edge of the tape.
Thus, in what follows, we only consider the case of n>s+l.

When M' simulates M, the internal state of M is simulated
by that of M'. However, as for the position of the input
head of M, M' remembers the position transformed by some
coordinate transformation 1. Because M may read the border
symbol at the south edge. Thus if the coordinate of the

input head of M is (j,k), then M' places its head at t(j,k).
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But, T is not a fixed transformation. Namely, T is one of the

following T {i=0,1,2,3).

To(jlk) = (j'k)
Tl(jrk) = (kcj)
T2 (3,k) = (n-k+1,n-j+1)

T3 (3, k) = (n=-j+1,n-k+1)
Ty is an identity transformation, 17; and 1, are symmetries
{symmetrical transformations) with respect to the diagonals
of an input tape, and 13 is a symmetry with respect to the
center of an input tape (Fig.4.9). {Ti} forms a group under
the operation of composition (Table 4.1). M' chooses the
transformation 1 from {fi} depending on the conditions

(stated later) at each time of the simulation, thus Tt is

To T1 To T3

To | To T Tz | T3

T2 ) T3 Tg T1

T3 T3 T2 T3 To

Table 4.1 Composition

of T..
i

Fig. 4.10 Coordinate transformations

by T; (i=0,1,2,3)
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time variant. And M' remembers which transformation is
being used now, in the finite-state control.

One series of M is a sequence of movements of M, since
M has once read an element of I J{B}, until M next reads
one of £U{B} again. (M does not read £ U{B} during this
period.) M' begins to simulate M from the (1,1)-square,
setting T=T,. One series of M is simulated by one series
of M', which is somewhat different from that of M. One
series of M' is a seguence of movements since M' has once
read the border symbol of the north edge or the element of
L, until M' reads one of these in some time. More precisely,
the movements in one series of M' are as follows. (Note
that during one series of M', it may read the border symbol
or the element of I several times.)
(1) First, M' éimulates M up to (s+l1l) steps. 1In this
process, M' records all the movements of M (state transitions,
and shift directions of the input head) in the finite-state
control. Since s+l<n, M' never reads the sguare of the
n-th row, nor the border symbol of the south edge. When M'
is simulating M step by step, the input head of M' moves
so as to agree with the transformation 1. At every step
of the simulation of M, M' checks the following conditions
{(a)-(d). If one of these conditions is satisfied, M' inter-
rupts the simulation of M at that moment (even when M' has
not finished the (s+l) steps vet), and performs the designated

movements to each case.
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(a)

(b)

(c)

(d)

The case that M' is reading an element of £ with T=T1,.

In this case, M 1is also reading this symbol. Thus
the one series of M' is finished at this point.

The case that M' is reading the (j,1l)-square (1l<j<n)
with t=1; (this can be examined by checking whether
the left neighbouring square contains B, at each step).

In this case, M is reading the (1,j)-square. Thus,
moving to the north-east direction at an angle of 45°,
M' places the input head at the t1;(j,1) = (1,3)-square.
M' then simulates the movement of M, and finishes the
one series of M' with t=14.

The case that M' is reading the (j,n)-square with 1=1,.

In this case, M is reading the (1,n-j+l)-square.
Thus, in a similar manner as in (b), M' brings the
input head to the t,(j,n) = (1,n-j+1)-square. Then,
simulating the movements of M, M' finishes the one
series of M' with T=T14.

The case that M' is reading the border symbol B (without
satisfying the conditions in (a)-(c), so far}.

If M' is reading the border symbol at the north
edge, the one series of M' is finished at this point,
and the transformation t is unchanged.

If M' is reading it at the (j,0)-square, then
M' brings the head to the (0,]j)-square (in the same
way as in (b)), and finishes the one series of M' with
T= T+7;(righthanded T is old 7).

If M' is reading it at the (j,n+l)-square, then
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M' brings the head to the (0,n-3+l1l)-square, and finishes
the one series of M' with 1=1t+71,, likewise.
(2) If M' has finished the simulation of M up to (s+l)
steps without satisfying the conditions in (a)-(d), M
knows that M must have been reading only the blank symbol
# during s steps of the simulation (except the first step).
So M will repeat some subsequence of these s steps of move-
ments until M next reads an element of I |J{B}. Now, consider
the sequence of (s+l) steps of movements memorized by M'. It
is (pl'al)"°"(pi’di)’...'{ps+l'as+l)' where Py is the inter-
nal state of M at the i-th step and aie {+1,0,-1} is the hori-
zontal shift direction(i.e. +1,0,-1 are right-shift, non-shift,
and left-shift, respectively) of the input head of M' at the
i-th step. Clearly, there exist 2<f<m<s+l such that Py=Pp,-
Let o = Tglui . Suppose M' continues to simulate M after
the (s+l§—ih step. If a<0, M' never reads the border symbol
at the east edge, nor the square in the n-th column with
T=To » Conversely,ﬁIfaip, M' never reads the border symbol
at the west edge, nor the square in the first column with
T=T;.
Thus M' traces (s+l) steps of the simulation of M in
the backward direction until M' reaches the first computational
configuration of the one series of M. This can easily be
done, since M' has the record of all the movements of this
period in the finite-state control. Then M' retries to
simulate the one series of M from the position of the (0,3)-

or (l,j)-square (l<j<n), in the following way.
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If 0<0, moving the input head from the (0,j)~-square
“(or (1,3)=-square) to the (j,0)-square (or (ij,l)~square),

M' begins to simulate M with t=1+7T;. Similarly, if a>0,
moving the input head from the (0,3j)-square (or (1,3j)-square)
to the (n-j+1,n+l)-square (or (n-j+l1,n)-square), M' begins
to simulate M with 1=T°*T>.

If M does not loop in this series, M' will eventually
satisfy one of the conditions in (a)-(d) during the simulation
of M. But, apparently, M' never reads the border symbol of
the south edge, nor the sgquare of the n-th row with t=T13.

M' performs the operation corresponding to each case of
(a)-(d), and finishes the one series of M'. If M loops,
then M' also loops, but M' never reads the border symbol

of the south edge in this case, too.

By above procedures (1) and (2), M' simulates M
series by series, and accepts the input if and only if M
accepts it. This M' never reads the border symbol of the

south edge. (0.E.D.)

From Lemma 4.14, the following theorem can be obtained.

Theorem 4.15 LIRA(2)] = LIRA(2)].

Proof. LIRA(2)] & d5[§3(2)] is obvious from Lemma 4.14.
Thus we show LIRA(2)] =2 LIRA(2)].

Let M be an arbitrary ﬁﬁ(E), and let s and n be the
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number of internal states of ﬁ and the length of a given
input word. If & eventually halts for the input, & never
reads the square below the s(n+2)-th row. Thus, in a similar
method as in Theorem 4.10, we can construct M€ RA(2) which
simulates‘ﬁ. The finite-state control of ﬁ is simulated

by that of M. If the position of the input head of ﬁ is
(i,3) (0<i<n+l, 0<j<s(n+2)), then M places its input head

at the (i, [j/s])-square and the remainder of j/s is remembered

in the finite-state control. (Q.E.D.)
The relation between ﬁi(Z) and 1MCA(l) is as follows.

Theorem 4.16  £IRA(2)] C LIIMCA(1)].

Proof. It is easily derived from the fact that ﬁﬁ(Z)
is equivalent to 1MCA(l) with the restriction that it can
know what the input symbol is,only when the counter is empty.

(Q.E.D.)

In the case of one input symbol, the following theorem

can be derived.

Theorem 4.17 LIRal(2)] = LAt (2)]1 = Liwmeal(1)1.
Proof. Theorem 4.15 is independent of the number of
input symbols, so of[RAl(Z}] = di[ﬁhl(Z)]. The relation

LIEAL(2)] = £I1Mcat (1)1 can be derived in a similar manner
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as in Theorem 4.4 where aﬁ[RAl(l)] = gﬂ[lBCAl(l)] was shown.

(Q.E.D.)

From Theorem 4.2, 4.4, and 4.17, we can see that RAl(Z),
ﬁil(z), lMCAl(l), lBCAl(l), and lMHAl(z) are all equivalent
(i.e. £lraT(2)1 = £ (2)] = gimeal (1)1 = Ll1Bca® (1))
= o‘(f[lMHAl(Z)]).

The relation among RA(1l), 1IMHA(l), 1MMA(l), and RA(2)

is as follows.

Theorem 4.18

Ly = LIRA(L)] = LIIMHA(L)]

]

LIivMMa (1)1 & LIRA(2)].

& IIMHA(1)] is obvious.

It

Proof. 423 = LIRA(L)]
L3 = LIIMMA(1)] is shown by Blum and Hewitt [5]. JC3§_

L IRA(2)] is shown in Theorem 4.13. (Q.E.D.)

Corollary 4.19
L1 = Lt (11 = Limmat(1] = Lt 1)1 € Lirat(2)].

Fig. 4.12 and 4.13 summerizes the results obtained in

section 4.2 and 4.3.
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4.4 Hierarchy

In this section, we consider the subhierarchy of
language acceptabilities in the class of tape complexity
log n.

Blum and Hewitt [5] first showed the existence of
infinite hierarchy of 2ZMMA with respect to the number of
markers. Using the diagonalization technic, they derived
- that 2MMA (2k+4) is strictly more powerful than 2MMA(k).
Later, this result was improved by Ibarra [22] and Monien

[30] (they showed the hierarchy of 1MHA).

Theorem 4.20 (Monien) The following relation holds

for any k (k=1,2,*** ), provided that the number of input

symbols is more than one.

L [IMHA (k) ] g £[1MHA(1<+1)]

From Theorem 4.1, 4.5 and 4.6, the hierarchies for 1MMA,

1BCA, and 1TM(log n) can also be obtained.

Theorem 4.21 The following relations hold for any k

(k=1,2,+°° ), provided that the number of input symbols is
more than one.

LIIMMA (k)] & LI1MMA (k+2)]

LI1BCA(k)] & L [1BCA (k+2)]

LI1TM(log n, k)] g LI1T™M(log n, k+7)1
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Proof. From Theorem 4.1 and 4.19, L[IMMA(k)] &
LI1BCA (k)] & LIIMHA(k+1)] & LIIMHA (k+2)] © LI1MMA (k+2)]
C £I[1BCA(k+2)]. And, from Theorem 4.5 and 4.6, LI[1lTM(log n,
k)1 & LI1BCA(k+3)] & LI1BCA(k+5)] C #£I[1T™(log n, k+7)1.

(0.E.D.)

However, it is not known wheteher there exists a proof

of a more refined result.
Theorem 4.19 and 4.20 hold only for the case of two or

more input symbols. We now consider the case of one input

symbol. First we derive the infinite hierarchy of lBCAl.

1

Theorem 4.22  LI1BCAT (k)] & gI1BCAT (2k+8) 1.

Proof. Let A be an arbitrary lBCAl(k). We first
consider a method to encode A into a natural number. Let

Ky = {ggsay,-**/94_1) be the set of internal states of a

(A has s states). We assume, without loss of generality,
that g, is the initial state and {ql} is the set of final
states. And let the set of input symbols of A be I={al.

The transition function § of A is a mapping from a subset

of 8, = KAX{a,¢,$}X{zO,x,f}k into s, = KAX{L,R,H}X{+1,O,-l}k.

1
Let us consider mappings h, and h2 defined as follows.

1
h. . . k+1
1 is a mapping from S, into {1,2,+¢+, s+3 },

hy (@, %,y 00 yy) = P Lt

and satisfies

for any q, € K,, xef{a,¢,sl, yie{zo,x,f}. t is the value

of a ternary number of (k+1) figures x Yy Yo "0 Yy s where
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the elements of {a,¢,$} and {zo,x,f} are regarded as the

number 0, 1, 2, respectively. The mapping h2 : 32 -~ {1,2,
k+1
s+3

o o o
14

} is also defined likewise. Apparently hl and

h2 are bijections, so that there are inverse mapping for

them. Now, we define a mapping §' : {1,2,--, s-3k+l} >

{0,1,¢¢, s-3k+l} as follows.

. _ -1
S'(v) = h2(6(hl (v)))

k+l}

(Ve{llzl"'l s*3 )

Note that, for hIl(v)e S. on which § is not defined, we

1

assume §'(v)=0. Here we encode A into a natural number

(Godel number). The GOdel number of A is
n, = P. ’
A l=l 1

where P; is the i-th prime (i.e. pl=2, p2=3, p3=5,--- ) .
Next, we construct]BelBCAl(2k+8) which diagonalize
all lBCAl(k). Suppose an input of length n is given to B.
Then B simulates the movements of Ane lBCAl(k) with the
input of length n, where the Godel number of An is n. If
An accepts the input, B does not accept it. And if An rejects
or loops, then B accepts.
In order to construct such B, we first explain that
B can execute the following primitive operations. Let Uy,

Uy, *** Uy o be the 2k+8 nbc's of B, and let |uj| denote the

number counted by uj. (c is a constant.)
(1) |uj‘ > |ujv|°
2 L+ .
(2) Iuj| c > |u:J
3 |- .
(3)  Juyl - e fuyl
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4 .ox .
(4) ]uj[ c - [u]
(5) [uj] + c - |uj| -+ guotient.

(6) |uj 3

(If only the remainder is needed, uj" is not used.)

«++ remainder.

| = |uj,| ~ |u -+« quotient, [uj

.

(7)  Deciding whether ]uj[=|uj.

Note that Usitg is used as a working nbc to perform these

operations (thus 1<j,j',j"<2k+7). For example, the operation

(5), the division by a constant c, is executed as follows.

B first sets |u =0. Then B repeats to add 1 to |u

2k+8l 2k+8]'
évery time B subtracts c from [uj] until }uj[ becomes 0.
By this, B can gain the quotient in Usyigr SO B transfers
it into uj. The remainder can be obtained in the finite-
state control of B. The other operations (l1)-(7) can also
be executed by using only Usypg @S @ working nbc. The
contents of nbc's other than Usksg and the nbc in which the
answer is to be held are unchanged.

Using these operations, B simulates An in the following
manner. The input head of Al is simulated by that of B.
The k nbe's of An are simulated by L A and the internal
state of An is kept in Uyq- The k+2 nbec's Uy or® s Ugpis
are used to check whether An is looping or not, and the
remaining 5 nbc's, Unpqpqr ™" u2k+8 are used for working
to transit the computational configuration of An. B begins
to simulate An' setting all the 2k+8 nbc's empty.

Now, we show how to cbtain §(x) = hgl(é'(hl(x))) from

X €K, X{a,¢,$}X{zo,x,f}n, a present situation of A (KA is
n n

a set of internal states of An), in order to simulate each
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step of An. As x is known from u and the symbol

l'.. ’ uk+l
being read by the head of B, B calculates hl(x) from these

informations and stores it in u This can be done as

2k+4° ,
. k+1
follows. First B makes |u, ., [x3 + 1~ [uy .0, and then
depending on the counter symbol (z0 or x or f£) of uj (J=1,2,

.ee, k), B adds the constant 0x3573 or 1x3X73 or 2x3%K~3,

respectively. Finary B adds the constant OXBk or l><3k or

2x3k depending on the tape symbol. If skt d overflows in
these calculations, B concludes that ¢ (x) is not defined.
Next, B calculates phl(x) from Ju2k+4|= hl(x). B can

easily decide whether |u is a prime number, with a help

2k+5[

of u Thus, B first sets =2 as an initial

2k+6 """ rU2Kk+8" |9kt

value, and then, repeats to check whether |u is a prime

2k+5l

number every time |u is increased by 1. If |u

ok+s5| 1S
. Repeating this

2k+5‘

a prime number, B subtracts 1 from |u

2k+4

procedure until [u becomes 0, B can get phl(x) in u

2k+4| 2k+5°

8 (hl(x)), i.e. the number of times that phl(x) divides
n without remainder, can also be obtained in Usyig with a
help of uy 5s*"r Upp,g-

, -1

Finally, B computes &(x)= h,” (§'(h;(x))) from [u, . ,|=
5'(hl(x)), and transits the computational configuration of
An. The next internal state of An is the qguotient of (|u2k+4{
-l)%3k+l, so B stores it in LR The alteration of each
nbc and the shift direction of the input head of An can

k+1 into

be known by replacing the remainder of (lu2k+4|—l)%3
a ternary number. Thus B increases or decreases LE R AR

and shifts the input head according to them. (If ]u2k+4‘=0,
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then § (x) is undefined.)
By the method described above, B simulates An step by step.

Every time B advances one step of the simulation, B examines

if A has become a final state (i.e. luk+l]=l). If so, B halts

in a rejecting state. Otherwise B proceeds the simulation

of An. In order to check if An loops, B counts the number

k+2

k+27" "1 Upkyze The
k+1

total number of computational configurations of An is s*n .
k+1 _k+2
<n

of steps of An up to n steps using u

Furthermore s+*n holds, because n»s. Thus B can know
whether An loops or not. B halts in an accepting state, if
Al halts in a rejecting state or loops.

Suppose some A' € 1BCA(k) accepts the same language as
B. Then a contradiction occurs, if we give A' an input tape
whose length is the Gédel number of A'. Thus c5[1BCAl(k)]

1
C

(2k+8)1 is concluded. (Q.E.D.)

By this theorem, it is seen that there exists an infinite
hierarchy among lBCAl, too. And from Theorem 4.2, 4.4, and
4.7 we can also derive the hierarchies of lMHAl, lMMAl, RAl,

and lTMl(log nj.

Theorem 4.23

Llumat (k)] C Lrimal (2k+9) 1,
Limmat ()1 © Ll1mEAT (2k47) 1,
Lirat(x)] & Zrat(2x+n) 1,

L1 (log n, k)1 & LIl (log n, 2k+16)].
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These are derived from the following relations.

Proo.
Ll )1 C £rscat ()1 & Liiseal (2x+8)1 € Liimal (2x+9) 7.
il ()] = giral (01 = Liscal(-1)1 & Liiscal(2k+6)]
= gimmat(2x+7)1 = Lirat(2k+7)1. £t (log n, k)] C

Lok+14)1 C© £11m! (log n, 2k+16)1.

LI1Bcat (k+3) 1 < Ll1sCca
(Q.E.D.)

We can also show the hierarchy of RA (where the number

of input symbols is not restricted) from this.

Theorem 4.24 L IRA (k)] E%‘Ji[RA(2k+7)].

Let I;={a}, and let £ [RA(N] = {L]z=L' N )", Le

Proof.
- Llirax)1,

L[RA(k)]}.As it is easily seen that dﬁ[RAl(k)]
= £ IRa(2k+7)] holds.

LURA()] = LIRAT(K)] © LIRAT (2k+7) ]

Thus £ [RA(2k+7) 11 ZIRAKIT D LI[RA(2k+7) 1N LI [RA(K)] # &,
and this completes the proof. (Q.E.D.)

4.5 Concluding Remarks

In this chapter, various automata of tape complexity

log n have been studied. 1BCA and RA were newly defined

here, and their relations to 1MHA and 1MMA were precisely

considered.
In section 4.3, the acceptability of RA(2) was particularly

investigated. RA(2) is a very interesting automaton, because
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it is the weakest class of automata we can imagine, in the
class of tape complexity log n. However, RA(2) can accept
some subclass of context-sensitive languages which is properly
including the class of regular languages. Furthermore, some
results concerning RA(2) were derived from the two-dimensional
properties of the input tape. It is interesting that the
relation gﬁ[lMCAl(l)] = Ji[lBCAl(l)] was derived from such
two-dimensionél properties.

The hierarchy of 1IMHA (k) has already been shown by
Monien [30] and some others. But it was the case of two or
more input symbols. In section 4.4, we studied the case of
one input symbol, and derived aﬁ[lBCAl(k)] g;aﬁ[lBCAl(2k+8)}
using the diagonalization technic. The chief point of this
proof is to encode each lBCAl(k) into an integer (G6del number).
But it is not known whether this result can be refined.

In this chapter, many problems are remaining open. The
notation ACB in Fig.4.12 or 4.13 means that it is not yet
known whether A is a proper subset of B or A=B. The relation
between the class of context-free languages (dﬁz} and &£ [1TM

(log n)] is also an important unsolved problem.
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CHAPTER 5

TURING TRANSDUCERS

All the automata introduced in chapter 2-4 were acceptors
of one- or two-dimensional languages. However, if output tapes
are attached to these automata, they can be regarded as trans-
ducers which translate input words into output words. We
may think that they are computers of recursive mappings.

In this chapter, an L(n) tape-bounded Turing transducer
is proposed. Here, we only consider the case that both the
numbers of input symbols and output symbols are restricted
to one, in order to investigate its computing ability of
recursive functions. Some results concerning the L{(n) tape-
bounded Turing machine (acceptor) also hold for the Turing
transducer, because an acceptor can be thought to compute
a 0-1 valued recursive function. But there also exist many
properties which are characteristic of the transducer, such
as the increasing degree of a function computed by it.

Furthermore, we propose a finite-state transducer, a
multi-head transducer and a multi-counter transducer, and
investigate the precise relations among their computing

abilities of functions.
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5.1 Definitions

Let us consider

a Turing transducer T illustrated in

Fig.5.1.
¢la|a a.|$
1‘ INPUT TAPE
FINITE-
STATE ] STORAGE TAPE
CONTROL ¢ |b:|b:|bs| | & $
| OUTPUT TAPE
c|c.|cs|ca|#l#] - |- S
Fig. 5.1 A Turing transducer.

T consists of an inpu
a storage tape,
a one~way write-only

The input tape, the 1
storage tape head are
is a one-dimensional

squares. The output
output tape, and can
the present internal
head and the storage

determines the storag

symbol to be written

a two-way storage tape head,

t tape, a two-way read-only input head,
an output tape,
output head, and a finite-state control.
nput head, the storage tape, and the
the same as in 1TM. The output tape
semi-infinite tape, and divided into
head can move only in one way on the
write the output symbols. Depending on
state, and the symbols read by the input
tape head, the finite-state control

e tape symbol to be written, the output

(or T may not write any output symbol),
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the move directions of the input head and the storage tape
head, and the next internal state.

Generally, the numbers of the input symbols and the output
symbols are arbitrary. But here, in order to consider the
computing ability of number-theoretic functions, we restrict
both these numbers to one.

Formally, a deterministic Turing transducer (abbreviated
to TT) is a 1l0-tuple

T = (K, {a}, T, {c}, §, gy, ¢, $, 4, F),
where K is a nonempty finite set of internal states, {al and
{c} are the sets of input symbols and output symbols (each
of them consists of single element), I' is a nonempty finite
set of storage tape symbols, qoe‘K is an initial state, ¢
and $§ are border symbols of the input tape and the storage
tape, # is a blank symbol of the storage tape and the output
tape, FCK is a set of final states. § is a mapping from a
subset of Kx{a,¢,$Ix(rU{¢,4#}) into KX(TLJ{¢})X{C,€}X{L,R,H}%:
where ¢ means that T does not write the output symbol, and
{L,R,H} is the set of move directions of the input head or
the storage tape head. T halts for the element of Kx{a,¢,$}
x(rU{¢,#}) on which § is not defined. If T writes the
output symbol ¢, the output head automatically shifts to
the right by one square.

Now, let us give an input word W’G{a}* of length n (i.e.
the word a" (n=0,1,**+ )) to T. Assume that T begins its
movements from the initial state 99 setting all the heads

at the left side ends. If T halts in a final state with
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an output word of length m {i.e. cm), then we say that the

nonnegative integer n is mapped to m by T. If T halts in
a state other than the final states or loops for the input
an, then n is not mapped to any integer. Thus T defines

a function f which maps a subset of NU{0} into NU{0}.

We say that the function f is computed by T.

Let L(n) be a mapping from N into R, . If T does not
scan more than [L(n)] squares of the storage tape for the
input an, T is said to be a deterministic L(n) tape-bounded
Turing transducer {abbreviated to TT(L(n))). The class of
recursive functions computed by TT(L(n)) is denoted by
FITT(L(n)) 1.

L(n) is called a tape function, and the notion of a
constructible tape function is the same as in 1TM{L({(n)).

Furthermore, the notions of the computational configu-
ration and the storage state can be defined in a similar

way as in 2TM(L{m,n)).

5.2 Computing Ability of TT(L(n))

In this section, we investigate the properties of

TT{L{(n)) and the functions computed by it.

5.2.1 Relation to 1TM(L(n))

As we have seen in section 1.2, many theorems concerning
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ITM(L(n)) have already been shown. Some technics used in
the proofs of these theorems are also applicable to the case
of TT(L(n)). So, we now show some properties of TT(L(n))
which can be derived in the same way as in 1TM(L(n)) (or
1Ml (L (n))) .

First, the tape reduction theorem of TT(L(n)) is as

follows.

Theorem 5.1 Let L{(n) be a tape function of TT. Then

for any constant c¢>0,

FITT(L(n))] = FITT(c-L(n))].

The hierarchy theorems of 1TM(L(n)) (i.e. Theorem 1.2
and 1.3) hold only for the case of two or more input symbols.
In the case of one input symbol, however, the following

result has been shown.

Proposition 5.2 (Hartmanis and Berman [15]) Let Ll(n)

and Lz(n) be constructible tape functions of lTMl. Suppose
that
Ly (ny)

1
1% T, (m,)

lim L,(n,) = «
iiw 2( l)

for some recursively enumerable sequence of natural numbers
*
{ni}. Then there exists a language LC{a} such that L€

L[lTMl(L (n))] but L .,C{:LTMl(L (n})1.
2 1
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The next theorem can be directly derived from this.

Theorem 5.3 Let L., (n) and Lz(n) be constructible

1
tape functions of TT. Suppose that
Ly (ny)

lim wm—m——— = 0§

li
8

lim L2(n
100

5)
for some recursively enumerable sequence of natural numbers
{ni}. Then there exists a 0-1 valued function f such that

f € FITT(L,y(n))] but £ ¢ FITT(L (n))].

The property concerning the lower bounds on tape complexity

of 1T™M(L(n)) (Theorem 1.4) also holds for TT(L{(n)).

Theorem 5.4 Let L(n) be a constructible tape function

of TT. If 1limsup L(n) = = , then

1-+00

limsup L(n) > 0.

N> log log n

Now, as for lTMl, the following theorem is known.

Proposition 5.5 (Hartmanis and Berman [15]) Let

*
L(n) be a tape function of lTMl, and let LC{al be some
language. If L € oﬁ[lTMl(L(n) )], then L € ,ﬁ,[l’I‘Ml(L(n) )1,

— *
where L = {a} ~L.

In order to prove this proposition, Hartmanis and Berman
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showed that for any M€ 1TM1(L(n}) there exists some M'eg :LTM:L

(L(n))
which éccepts the same language as M and halts for any input.
The following theorem can be derived using the same argument

as this (a similar argument was used to prove Lemma 2.6).

Theorem 5.6 Let L(n) be a tape function of TT. For
any MeTT(L(n)), there exists M'€ TT(L(n)) which computes

the same function as M and halts for any input.

5.2.2 Increasing Degree of Functions

Now, we consider how the increasing degree of functions
computed by TT(L(n)) is affected by the tape function L(n).

The hierarchy theorem stated in Theorem 5.3 is independ-
ent of the increasing degree of functions. But the following
theorem shows that the rapidity of increase also forms an
infinite hierarchy. Indeed, the rapidity of increase is

bounded by the tape function.

Theorem 5.7 Let Ll(n) and Lz(n) be constructible tape

functions of TT. Suppose that

L, (n.)
lim 1 3

e =
i-reo L2 (ni)

1t
8

lim Lz(ni)

i-)-oo
for some increasing sequence of natural numbers {ni}. Then

there exists some function £ €‘¥TTT(L2(n))] which satisfies

. 9(ny)
nrmy -0
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for any g ¢ gﬂTT(Ll(n))] such that g(n;) is defined for
all n,.
[L,(n)]

Proof. Let f(n) = n-2 . We can construct
b&eTT(Lz(n)) which computes f, in the following way. Let
M' be one of TT(LZ(n)) which constructs the tape function
L2(n). M first simulates M', and marks [Lz(n)] squares of
the storage tape. Then M begins to count a number from 0

[Lz(n)]

to 2 -1 consecutively. Every time M counts up the

number, M generates the output of length n by scanning the
[L,(n)]
input tape. By this, M can generate the number n-*2 2 .

Now, let g be any function which is defined on the
seguence {ni} and is computed by some TEETT(Ll(n)). Let
s and t be the numbers of internal states and storage tape
symbols of T. Then, the total number of computational

configurations of T for the input of length n is at most
[L,(n)]
s-n-[Ll(n)]'t 1 , and g(n) must be less than or equal to
[L, (n)]
this number. Thus, g(n) < s*n'[Ll(n)]-t 1 , and from

L.{n.)
Lin oty = 0,

we can conclude

g(ni)
lim o) = 0.
i LG (Q.E.D.)

Next, we consider the relation between the slowness of
increase and the tape complexity. The following theorem

shows that the slowness of increase does not form a hierarchy,
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i.e., for any unbounded tape function L(n), F[TT(L(n))]
contains an "arbitrarily slow" function. The proof of this

theorem is essentially the same as in Theorem 2.27.

Theorem 5.8 Let L{n) be a constructible tape function

of TT that satisfies limsup L(n) = © . Let £ : N - N be any

N
monotone nondecreasing total recursive function such that
lim f(n) = «» . Then there exists a function g € FITT(L(n))]
n-coo

which satisfies g(n)<f(n) and limsup g(n) = = .
n->oo

Proof. We construct T E€TT{(L(n)) which computes the
desired function g, as follows.

Let ¢ : N - N be a function such that ¢ (x) = min{n]
f(n+l)>x}. And let M' be a two-counter automaton which
computes [L{(yp(1))], [L(¢y{(2))],-+-, and never halts (as M'
in Theorem 2.27).

T first marks [L(n)] squares of the storage tape, and
uses it so as to simulate two counters, each of which can
count up to [L(n)]. Then, using these counters, T begins
to simulate M' until they overflow. Every time T finishes
the calculation of [L(y(i))] (i=1,2,--- ), T writes one output
symbol. By a similar argument as in Theorem 2.27, the function
g computed by T satisfies g(n)<f(n) and 1%§£up g(n) = =, and

this completes the proof. (Q.E.D.)

The following theorem shows that, when the tape function
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L(n) grows more slowly than the order of log n, the function
computed by TT(L(n)) must grow linearly on some infinite set
of n. 1Its proof is based on the method of Hartmanis and

Berman [15].

Theorem 5.9 Let L(n) be a tape function of TT which

satisfies

lim Lin) _
new 10g N

Then for any £ € FITT(L(n))] and for every sufficiently large n

such that f(n) is defined, there exist an integer i20, integers

kj>0 (1<j<i), and integers mjio (1<j<i). And the following

equality holds for every integer t;b.
my m, m,
£(nttenl) = £(n) + £+ ( =+ = + o004
1 2 i

)*nt

Proof. Let M be TT(L(n)) which computes f, and let
s and t be the numbers of internal states and storage
tape symbols of M. From Theorem 5.5, we may assume, without
loss of generality, that M always halts for any input. The
total number of storage states of M for the input of length
n is s-[L(n)]'t[L(n)]. Let i1 be the number of times that
M scans the input tape from one side end to another. Since
M never loops, Oziiwis-[L(n)]-t{L(n)].
Now we consider the j-th scan of M (1<j<i). For suffi-

[L(n)]

ciently large n, the inequality s-[L(n)]l-t < n holds,

because 1lim(L(n)/log n) = 0. Thus M must repeat some sequence
T+
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(cycle) of the storage states during the j-th scan (except

the first transient sequence of storage states whose length

[L(n)]

is less than s+ [L(n)]-t ). Let kj be the shifting

distance of the input head and mj be the number of symbols
written in the output tape, in one cycle. If we give M

the input tape of length n+ten! rather than n, then M will
' m.
writes the output of length (yj + kj-t-n!) in the j-th
J
scan, where yj is the length of the output for the input n

in the j-th scan. Furthermore, when M reaches another side

end of the input, M becomes the same storage state as in

the case of the input n. Thus for the input n+te.n!, M also

scans i times and halts in the same storage state. 1In the

case that M once leaves one side end of the input and returns

to the same side end, or M is staying at the border symbol,

M writes the same number of output symbols. So, let Yo be

the total number of output symbols in these cases.
Accordingly, for the input n+ten!, M writes the output

m.

i
Vo o+ ) (y. + =3eten!).
A
i
Since f(n) = ) y. ,
j=0J
my m,
f(n+ten!) = £(n) + t*( == + *** + —= )*n!
k k.
1 i
is concluded. (Q.E.D.)

From this theorem, the following corollaries can be

derived.
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Corollary 5.10 Let L(n) be a tape function of TT such

that lim(L(n)/log n) = 0. If f e F[TT(L(n))] is a total
n->o
function, then at least one of the following inequalities holds.

(1) limsup(f(n)/n) > 0O
n--o

(2) liminf f(n) < <«
n->o
Proof. If there exists some mj¢0 (1<j<i) for some

sufficiently large n, then limsup(f(n)/n) >0. For some n,
n->c0

if mj=0 for all 1<j<i, then 1liminf f(n) <. {(Q.E.D.)

-

Corollary 5.11 Let L{(n) be a tape function of TT such

that lim(L(n)/log n) = 0, and let f € F[TT(L(n))] be a total
n->-o
function that satisfies limsup f(n) = . If one of the
I} -*co

following conditions holds, then f is not a monotone non-

decreasing function.

(L) limsup(f(n)/n) = «
>
(2) limsup(f(n)/n) = 0
n->w
Proof. From Theorem 5.9, f(n0+t-n0!) = f(no) + t+K
m m,
holds for sufficiently large n,., where K = ( _1 + see + == )yn_t,
0 kl ki 0

Suppose f is monotone nondecreasing. Then the following

inequality holds for all n>n,.

f(no) + [(n—no)/n0H°K=§ f(n) < f(no) + [(n—no)/nol +1] K

Thus, limsup(f(n)/n)z&kh!. But since limsup f(n) = «, K must
n-ro n->w

be positive (K>0). So, this contradicts (1) and (2).

(Q.E.D.)
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5.3 Multi~Head, Multi-Counter and Finite-State Transducers

In this section, we investigate the computabilities of

multi-head, multi-counter and finite-state transducers.

can be considered as special cases of tape-bounded Turing

transducers.

5.3.1 Multi-~Head Transducer

A multi-head transducer consists of an input tape, a

finite number of read-only input heads, an output tape, a

They

one-way write-only output head, and a finite-state control

(Fig.5.2).

INPUT TAPE

- - .

dn

$

\/

k INPUT HEADS

FINITE-STATE CONTROL

OUTPUT TAPE

Ci| C,

Cs

#

‘it - - w:

Fig. 5.2

A nmulti-~head transducer.

Here, we also restrict both the numbers of input symbols

and output symbols to one.
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Formally a deterministic two-way multi-head transducer
(abbreviated to 2WMHT) is a 1l0-tuple

M = (K, {a}, {c}, &, k, q4, ¢, $, #, F),
where X, {a}, {c}, qy ¢, $, # and F are the same as in TT,
k is the number of input heads, and § is a mapping from a
subset of Kx{a,¢,$}k into KX{c,e}X{L,R,H}k.

The class of deterministic two-way k-head transducers
is denoted by 2WMHT (k). Thus, 2WMHT = [j 2WMHT (k) .

The function computed by NlGZWMHT(E?lis defined in a
similar way as in TT(L(n)). The class of functions computed
by 2WMHT(k) (or 2WMHT) is denoted by FI[2WMHT(k)] (or
# [2WMHT]) .

A deterministic one-way multi-head transducer {1WMHT)
is the same one as 2WMHT except that each head can move only
in one way. Thus the transition function § of 1WMHT is a
mapping from a subset of KX{a,$}k into KX{c,e}X{R,H}k.

The class of deterministic one-way k-head transducers is
denoted by 1WMHT (k).

Especially, 2WMHT(1l) (or 1WMHT(l)) is called a deter-

ministic two-way (Or one-way) finite-state transducer and

denoted by 2WFST (or 1WFST).

5.3.2 Multi-Counter Transducer

A multi-counter transducer consists of an input tape,
a read-only input head, an output tape, a one-way write-only

output head, a finite number of counters, and a finite-state
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control (Fig.5.3). This model can be regarded as 1MCA with

an output tape.

Clala] [ T Tal$
INPUT TAPE

v,V v

k COUNTERS

kg B B

&
<

[
<

L
(=]

alclclclalgl- [ T Vg

Formally a deterministic two-way multi-counter trans-
ducer (2WMCT) is an ll-tuple

M= (K, {a}, T, {c}, &8, k, Ay ¢, $, %, F),
where K, {a}, {c}, dq ¢, $, # and F are the same as in TT,
I' is a set of counter symbols (T={x,zo}, Zg is a bottom symbol),
k is the number of counters, and § is a mapping from a subset
of KX{a,¢,$}XFk into Kx{c,e}X{L,R,H}x{-l,o,+l}k.

The class of deterministic two-way k-counter transducers
is denoted by 2WMCT (k).

Similarly, a deterministic one-way multi-counter trans-
ducer can be also defined. The class of one-way k-~counter

transducers is denoted by 1WMCT (k).
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5.3.3 Hierarchy

Here, we study the relations of computing abilities
among 2WMHT (k) , 1WMHT(k), 2WMCT(k), 1lWMCT(k), etc.

First, it is shown that 2WMHT and 2WFST have tape com-
pléxity lo§ n and c, respectively. This can be proved in a

similar way as in the case of 2MHA or 1MHA (in chapter 3 or 4).

Theorem 5.12

F [2WMHT] FITT(log n)]

F[2WFST] FITT(c) 1] (c : constant)

Now, we investigate the relations of computing abilities
among these transducers in more detail. The following theorem
shows that computing ability of 2WMHT forms an infinite

hierarchy.

Theorem 5.13

F[2WMHT (k) ] g FI[2WMHT (k+1) ] (k=1,2,°** )
. . k+1 .
Proof. Consider the function f{(n) = n . It is

easily seen that f € A[2WMHT(k+1)]. Because we can construct
A € 2WMHT (k+1) which computes f by using the k+1 heads to
count up the number nk+l.

Suppose some B € 2WMHT (k) computes f. And let s be the

number of internal states of B. The total number of compu-

tational configurations of B for the input of length n is
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s-nk. But, if B eventually halts, then the number of the
output symbols is not greater than this number. Thus s'nk >
f(n) = nk+l must hold for every n, but this is a contradiction.
So, £ ¢ Fl2wMHT(k)].

It is obvious that F[2WMHT (k)] © F[2WMHT (k+1)].

Thus F[2WMHT (k)] & F[2WMHT (k+1)] is concluded. (Q.E.D.)

Next, the relation between 1WFST and 2WFST is investi-
gated. It is well known that éne—way and two=-way finite-
state automata are equivalent in their accepting abilities
(Rabin and Scott [40]). 1In the case of transducers, however,

it is shown that 2WFST is strictly more powerful than 1WFST.

Theorem 5.14 F[IWFST] E F2WFST]

Proof. Consider the following function £ : NU{0} »

NU{o0}.

.0 (n
f(n) = {

n {n

even)

odd )
It is easily seen that f € F[2WFST]. So, we will show f ¢
FIIWFST] .

Suppose there exists some M€ IWFST whichvcomputes f.
Now, we consider the case that the input 2m-1 is given to M.
Until M reads the right border symbol, the movements of M
must be the same as the ones when the input 2m is given.
Thus, until this moment, M does not write the output symbol.

At the next step, however, M reads the right border symbol,
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and knows that the length of the input is odd. So, M must
write the output of length 2m~-1, staying at this position.
But 2m~-1 may be greater than the number of internal states
of M, so M cannot do this. Thus, f ¢ F[IWFST].

Since ZFIIWFST] & F[2WFST] is clear, FIIWFST]

FI2WFST] is concluded. (Q.E.D.)

Now, we define a deterministic two-scan finite-state

transducer as a variant of 2WFST.

Definition. A deterministic two-scan finite-state

transducer (2SFST) is a finite-state transducer which scans
the input tape only twice. 1In the first scan, the input
head moves from the left border symbol to the right border
symbol in one way. And in the second scan, it also moves

from right to left in one way.

The following theorem states that 2WFST can be simulated

by 28FST, i1.e. 2WFST need not scan the input more than twice.

It

Theorem 5.15 F[2WFST] F[2SFST]

Proof. Since ZF[2WFST] D FI[2SFST] is obvious, we only
prove F[2wrsT] & F[2SFST].

Let M be an arbitrary 2WFST. As a preliminary, we first
construct M'eE€ 2ZWFST which computes the same function as M and

acts as follows. If the input head of M' once leaves one side
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end of the input, then it moves only in one way until it
reaches another side end.

Let s be the number of internal states of M. From Theorem
5.6, we may assume that M always halts for any input. First
M' scans the input and examines if n<s, where n is the length
of the input. If n<s, then M' remembers the number n, and
simulates all the movements of M in the finite-state control
of M', énd writes the same number of output symbols as M.
In this case, M' scans the input tape only once. So, in
what follows, we assume n>s,

Now, M' begins to simulate M step by step. If the
input head of M leaves one side end of the input, M' first
simulates M until the input head of M goes s+l squares away
from the border symbol or it returns to the same side end
or M halts. M' does this without moving the input head.
(Of course, M' writes the same number of output symbols as
M does.) This can be done by counting the position of the
input head in the finite-state control. If the input head of
M goes more than s squares away, it will reach another side
end without returning the same side end. Thus M' now makes
the input head actually go ahead by s+l squares, and then
proceeds the further simulation of M. In this process, the
input head of M may temporarily go backward, but it is at
most s squares. So, remembering the relative position in
the finite-state control, M' can simulate it without moving
the input head until the input head of M returns to this

position.
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By above, M' can simulate the movements of M since
M leaves one side end until M next reaches the same or
another side end. M' repeats this procedure until M halts,
and M' can compute the same function as M. Note that M'
always halts at the border symbol.

Next, we construct M"€2SFST which simulates M'. Let
{qo,ql,~~°,qr} be the set of internal states of M', where
q, is the initial state. Let a, be the mapping from {qo,-*',
q,.}x{L,R} into {q,,+-+,q }x{L,RIU{-}, which is defined by
M' and n (n is the length of the input). an(qi,L) = (qj,L)
(0<i,j<r) means that if M' starts from the left border
symbol in the state g, M' immediately becomes the state
qj without moving the input head. an(qi,L) = (qj,R) means
that if M' starts from the same situation, then M' reaches
the right border symbol in the state qj. Note that, in this
case, M' must move to the right in its first step. And
an(qi,L) = - means that M' immediately halts. an(qi,R) is
similar to these except that M' starts from the right border
symbol.

If the input of length n is given, M" can determine

the mapping o by scanning the input only once. Since M'

n
does not go backward in the middle of the input, M" can
simulate all the states of M' simultaneously during the
first scan (M" does not write the output symbol in the first
scan). And M" remembers the mapping o, in the finite-~state
control (an can be described as a finite table). From the

mapping ao_, M" can uniquely determine the sequence

n
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(Plrxl): (Pzrxz)t R (Pm;Xm}

which satisfies the following conditions.

(pllxl) = (qOIL)
un(pm,xm) = -

This sequence is the whole history of M' at the side ends
of the input. And thus, the whole movements of M' can be
partitioned into m-1 segments. Since M' never loops, m <
2(r+l) holds. So, M" can remember this history in the
finite-state control.

In the second scan, M" simulates all the movements of M'.
M" can do this by simulating m-1 segments of M' simultaneously,
each of which is the sequence of movements from the situation
(pk,Xk) to the situation (§k+l’xk+l} (1<k<m-1). And at each
step, M" writes the total number of output symbols. By this,

M" can compute the same function as M'. {Q.E.D.)

Next, we investigate the computing ability of 1WMHT.
It was shown, in Theorem 5.13, that the computing ability of
2WMHT forms an infinite hierarchy. However, it will be seen
that 1IWMHT (k) (k>2) is equivalent to 2SFST. To prove this,
we now introduce a quasi-deterministic one-way multi-head

transducer.

Definition. A nondeterministic one-way multi-head

transducer M is called a quasi-deterministic one-way multi-
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head transducer (Ql1WMHT), if M satisfies the following

conditions.

(1) M nondeterministically chooses its behaviour only
at the first step (i.e. at the initial state).

(2) There exists at most one choice which leads M to a

final state, for any input.

Owing to the condition (2), QlWMHT also defines a function
which maps a subset of NU{0} into NU{0}.

The class of quasi-deterministic one-way k-head trans-
ducers is denoted by QIWMHT (k).

The following theorem shows that QlWMHT (k+1) is simulated

by QIWMHT (k). Thus, there exists no hierarchy among QIlWMHT,.

Theorem 5.16 FIQIWMHT (k)] = F[QIWMHT (k+1)]

Proof. F[QIWMHT (k)] © FIQIWMHT (k+1)] is obvious, so
we only show F[QLWMHT (k)] D FIQIWMHT (k+1)].

Let M be an arbitrary QlWMHT(k+l) with s internal states,
and let hl,---, hk+l be the k+1 input heads of M. Suppose
an input of length n is given to M. We may assume, without
loss of generality, that M always halts after shifting all the
input heads to the right border symbol, for any n. Now, we
consider the period between the moment M starts to move and
the moment some input head of M first reaches the right

border symbol. This period is called the first stage of M.

If n>s, the first stage is further partitioned into three
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phases, i.e. the transient phase, the cyclic phase, and the
closing phase. This is because the input is contentless,
and thus M moves autonomously. M first goes through the
transient phase, then, (in the cyclic phase) M repeats some
sequence of movements (called the basic cycle), and finally,
(in the closing phase) some initial segment of the basic cycle
closes the first stage of M. However, since M may behave
nondeterministically at the first step, the movements of M
in the first stage cannot be determined uniquely. But, now
we suppose that we have been able to know the choice M had
made. Let m be the total number of possible choices M can
make at the first step. And we assume that M had made the
%-th choice (1<f<m). Then we can determine the movements
of M in the first stage from the transition diagram of M.

The transient phase is a sequence

v = (M), 0f (L), ek, (D),
e, M) et ey a0l (o) Y,

where pi(i) is an internal state of M at the i-th step,
a%(i) (= 0 or 1) is the shift direction of the j-th head
at the i-th step (a%(i)=l means the right-shift and a%(i)=0
means the non-shift), and p* (i) # p*(i') holds if iFi'.
The cyclic phase is a repetition of the following basic cycle,
BY = ((q" (1), B(1),~-,87, (1)),
e, (@t ek, e, 8t )l
where q*(i) is an internal state of M, B%(i) is the shift
direction, q (i) # g (i') if i#i', and q' (i) differs every

pg(i“) in Tg. Assume M repeats the basic cycle BQ, r times.
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The closing phase is an initial segment of Bg (it may be an
empty sequence),
¢t = (g (),8T (), e e, (1),

e (@Bl @,
where 0O<u'<u. Note that TQ and BQ are uniquely determined
from the transition diagram of M if 2 is given. But CQ
(namely u') cannot be determined until M completes the first
stage for the given input n.

2 ) L 2

Now, let Xj’ yj, zj, and vj be the numbers defined as

follows (l<j<k+1).

t
x¥ = ) a%(i)
] j=1 J
u
y% = 8%(i)
J j=1
ul
2% = 7 8(4)
J i=1 7
vio= x a eyt 4 b
J J J J

When M becomes the final configuration of the first stage,
the j-th input head is at the (v§+l)—th square (Note that
(v§+l)=n+l means that hj is reading the right border symbol).
If the jo-th head reaches the right border symbol first
of all, then v§0=n and v%;n for every j#jo.

Next, we construct M'e QlWMHT (k) which computes the
same function as M. Let hi,- ., hi be the k heads of M'.
Since the number of heads of M is k+1l, M' begins to simulate

M from the final configuration of the first stage of M, To

do this, M' nondeterministically guesses the answer of the
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following questions, at its first step.

(1) Is n greater than n0==s><max x% {(l1<%<m, 1l<j<k+1) ?
2,3 e e
(Here, if M' has conjectured n;no, M' then guesses (2).

If M' has conijectured n>ng, M' then guesses (3) and (4).)

(2) How long is the input tape? (Thus, M' guesses the
length n from {O,"°,n0}.)
{3) Which behaviour does M choose nondeterministically,

at the first step? (Thus M' guesses the integer % from
{1,¢+,m}.)

(4) What is the closing phase of the first stage of M?
(Thus M' guesses the integer u' from {0,-++,u-1}. Note that
u is uniquely determined from the integer £ that M' has

conjectured.)

It is easily seen that M' has only finite choices for
each of these questions.

First, we consider the case that M' has conjectured n;no.
Let £ be the function computed by M. M' remembers the finite
table of f(n) for O;n;no in the finite-state control beforehand.
M' first scans the input tape with the head h;, and checks
whether the conjectured number n is correct or not. If it
is correct and f is defined for n, then M' writes the output
f(n) by this table and halts in a final state. If otherwise,
M' halts in a state other than the final states.

Next, in the case that M' has conjectured n>n M!

0!

simulates M in the following manner. M' begins to simulate
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M step by step from the moment when the first stage of M
has finished. Let J£={j]y;iy§, for all i}. If the con-
jectures in (1), (3) and (4) are true, H2={hj|jeaJ2, and
x§+z§ixf+z§ for all i€ J'} is the set of heads which first

reach the right border symbol, because n>n0. Let hj be
0

the element of H% which has the smallest suffix. (hj can
0

be immediately determined by M' from these conjectures.)

The j-th head hj (1<j<k+1) of M (except hj ) is simulated
0

by h! (if J<iy) or hﬁ—l (if j>j0). At the final computational

J
configuration of the first stage of M, hj is at the position

v§+l. Thus, in the whole simulation, hé (or hﬁ—l) goes the
distance n while hj goes the distance d§=n-v§. Since hj

0
is the head which first reaches the right border symbol,

2 2 g
X, + rey., + z. = n.
Jo Jo Jo
From this equation and
L L b3 L
d‘ ped —_— . + . . + Zo F
g = kg reyy sty
we can obtain
n=a,.-d>+b.,
J 3 ]
where 1y
Y=
Jo
a. =
J L 2
Yy - Y
Jo J
L
v} v
bj = 0 7 o xg + z§ ) - 7 o ( X2+ z0 )
- v . - 0 0
Y50 V3 Y30 73
Note that xg, y?, zg, x? ’ y? , and zg can be uniquely and
] J ] Jo Jo Jo

immediately determined from the conjectures in (3) and (4).

Thus, when M shifts hj one square to the right, then M!
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simulates it by shifting hﬁ (or h%—l) aj sguares to the
right. (The constant bj is previously adjusted by moving
the head bj squares to the right (if bj;0), or counting it
in the finite-state control (if bj<0).) Although aj and
b. may not be integers, M' can remember the fractional parts
in the finite-state control, because aj and bj are rational
numbers. By above, M' simulates the movements of M step
by step, and writes the same number of output symbols as M.
(If Mhalts in a state other than the final states, M' also
does s0.) At the same time, M' simulates the first stage
of M. Since M moves autonomously in the first stage, this
can be done by simulating the movements of hj0 by hi. And
M' also writes the same number of output symbols as M.
Now, M' must examine whether the conjectures in (1)
and (4) are true. (The conjecture in (3) need not be examined,
because M is originally quasi-deterministic.) The conjecture
(1) can be examined by counting the length of the input with
hi

simulating the movements of hj (of the first stage) by hi.
0
These examinations are also done simultaneously with the

(up to no). The conjecture in (4) can also be examined by

simulation of M. M' halts in a final state, if M halts in
a final state and these conjectures are both true.
It is easily seen that there exists only one choice
of movement which makes M' simulate M correctly. And if
M' has made a wrong choice, M' does not halt in a final state.

Thus M' computes the same function as M. (0.E.D.)
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The following lemmas show the relations among 2SFST,

QIWMHT (1), and 1WMHT(2).

Lemma 5.17 FlOIwMHT (1) ] & F[2SFST]

Proof. Let M be an arbitrary QIWMHT(l). In what
follows, we construct M'E 2SFST which computes the same
function as M. Let m be the total number of possible choices
M can make at the first step. In the first scan, M' simulates
all these m cases of movements of M, simultaneously. But,
here, M' does not write the output symbols. At the end of
the first scan, M' can know which choice is correct (i.e.
which choice leads M to a final state). Thus, in the second
scan, M' simulates only the correct choice, and writes the
same number of output symbols as M. Clearly this M' computes

the same function as M. (O.E.D.)

Lemma 5.18  Z#[2SFST] & F[1WMHT(2)]

Proof. It is easily proved from the facts that the
first scan of 28FST is simulated by the first head of 1WMHT(2)},
and the second scan is simulated by the second head.

(Q.E.D.)

From Theorem 5.16, Lemma 5.17 and 5.18, we can derive

the following theorem.

157



Theorem 5.19

Fl28FsT] = FIQIWMHT (k)] (k=1,2,"** )

Fl2sFsT] = F[IWMHT (k') ] (k'=2,3,--+ )

Proof.  FA[IWMHT(k)] & F[IWMHT (k+1)] and F[IWMHT (k)]
C FI[QlwMHT (k)] (k=1,2,°** ) are obvious. So, from Theorem

5.16, Lemma 5.17 and 5.18, F[2sFsT] © ZFI[1wMHT(2)] &

FIWMHT (3) ] C -+« C FIIWMHT (k)] © FIQIWMHT(k)] = F[QIWMHT (k~1)]
= «++ = FIQIWMHT(1l)] & SH[2SFST]. Thus, FI[2SFST] = F

[QIWMHT (k)] (k=1,2,--+ ) and FI[2SFST] = F[1IWMHT(k')] (k'=

2,3, ) are concluded. (Q.E.D.)

Finally, the computing abilities of 2WMCT (k) and 1WMCT (k)
are investigated.
As in the case of 1MCA (Theorem 4.9), it is easily seen

that ZWMCT(2) and 1WMCT(2) are both universal.

Theorem 5.20 F[2WMCT (k) ] (k>2) is the set of all the

partial recursive functionsT, and so is SF[1WMCT(k)].

The next theorem states that 1WMCT(1l) and 2SFST are

equivalent.

Theorem 5.21 FLIWMCT (1) ] = _FI[28FSTI]

+ Of course, all the total recursive functions are included

in this set.
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Proof. First, F[1WMCT(1)] & ZF[2SFST] is shown.

Let Al be an arbitrary 1WMCT(l) with s states, and let

f be the function computed by A We may assume, without

1

loss of generality, that A, makes the counter empty when

1

it halts. 1If Al halts or loops in the middle of the input

tape of some length Dos then so does it for any input of

length n>n Thus, f(n)=f(n0) holds for all n>n, (or, if

0°
f(no) is undefined, f(n) is also undefined). Such a function
can easily be computed by 2SFST, because it can be described
by a finite table. So, we may assume that Aq always reaches
to the right border symbol for any n.
Now, let us give Al an input of length n. The compu-

tational configuration of Al is described by a triple (p,x,y)
e Rx(NUJ{o0})x{1,2,+++,n,n+1}, where K is the set of internal

states of A X is the content of the counter, and y is the

l!
position of the input head. Let (pt,xt,yt} be the compu-
tational configuration of Al at time t (t=0,1,2,-°* ). If
n>52, then there exist integers i and j (0;i<j;sz) which
satisfy one of the following conditions.

(1) pizpj' O<xi<xj, xt>0 (i<t<j), and l;yi<yj<n+l.

(2) pi=pj, xi=xj, and L;yi<yj<n+l.

‘Because, 1f there exists some integer £ (0;2;32) such that

%, >s, then there exist 1 and j that satisfy (l1). Conversely,

L

if x,<s for all £ (Oé&éﬁz}, then there exist i and j that

satisfy (2).

If the transition diagram of A, is given, we can deter-

1

mine beforehand whether (1) or (2) occurs, by simulating
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the movements of Al up to 52 steps.

Now, we construct Ble 28FST which simulates A Let

1°
m be the integer such that Yp-1=0 and ym=n+l. In the first
scan, Bl simulates the movements of Al from the configuration
(pl,xl,yl)=(q0,0,l) to (pm,xm,ym), and writes the output
symbols as Ay does. Note that, in both cases of (1) and (2),
the sequence (pl,xl,yl),'~°,(pj,xj,yj) can be previously
determined from the transition diagram of Al. Bl remembers
this finite sequence and the numbers i and j, in the finite-
state control as a table, and simulates Al according to this
table. In the case of (2), the sequence of storage states
(qi,xi),---,(qj,xj) repeatedly appears for sufficiently

large n. Thus, at the end of the first scan, Bl can uniquely
determine the configuration (pm,xm,ym). In the case of (1},
the content of the counter grows linearly to n, until Al
reaches to the right border symbol. 1In this case, the
sequence of states pi,"',pj repeatedly appears, so Bl can

determine the state pm.

B, next simulates the movements of Al from the con-

1
figuration (pm,xm,ym) to the final configuration. (The input
head of A, stays at the right border symbol during this period.)

1

In the case of (2), if A, eventually halts, then the content

1
of the counter does not grow more than 2s, because X <8.

So, Bl can simulate the whole movements of Al in the finite-

state contrel, and writes the same number of output symbols
as Aj. (Thus, in this case, Bl scans the input head only

once.) In the case of (1}, Bl simulates the movements of
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Al of this period by scanning the input head once more.
Let r and u be the quotient and the remainder of (m-i)/(j-~1i).
Then the following eguations hold.

X, = r~(xj-xi) + X

re (yj_yi) +y

n .
itu

From these equations, we can obtain

Vi—Y. Yi=Y.
= J "1, - )1,
n X.~X, xm + yi+u ¥, X, xi+u
J 1 J 1

Note that u can be determined in the first scan of Bl' so

the constants X; are known by B

xj; Xi+ll’ Yi: Yj' Yi+u l‘

If Al eventually halts, then the content of the counter

gradually decreases. Thus, the counter can be simulated

by the second scan of the input head of B (Since the

1

input head of A, does not move, B, need not simulate it.)

1 1
This can be done in a similar way as in Theorem 5.16.

Namely, if A, decreases the content of the counter by 1,

1
then B1 shifs the input head by (yj—yi)/(xj—xi) sguares.
(Its fractional part is remembered in the finite-state
control, and the constant Yita™ Xi+u'(yj-yi)/(xj_xi) is
adjusted first.) In the decreasing process, the content

of the counter may temporarily increase. But it is at most
s, so that it can be simulated in the finite-state control
of Bl' Bl
and halts in a final state if and only if Ay halts in a

writes the same number of output symbols as Al’

final state.

Clearly, this B, computes the function f£. So,

1
FlwMcT (1) ] € FI2SFST] is concluded.
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Next, we show F[IWMCT(1)] =2 F[2SFST]. For any B,¢€
2SFST, we now construct A2€51WMCT(1) which simulates B2.
If the input of length n is given, A, begins to simulate
the first scan of B,. A, does this by scanning the input

2 2

head of A and writes the output symbols as B, does.

27
Simultaneously, A2 counts the number of squares of the

input tape using the counter. Thus when A2 reaches to

the right border symbol, the counter keeps the number n.

Next, AZ simulates the second scan of B2 using the counter.
Namely, if B, shifts the input head by one square, then,A2
decreases the content of the counter by 1. And A2 also writes
the output symbols as B2 does.

Clearly, A, computes the same function as Bz. And

2
FIIWMCT(1)] D FI2SFST] is concluded. (Q.E.D.)

The following theorem shows that 2WMCT(1l) and 2WMHT (2)
are equivalent. In section 4.3, we proved ci[RAl(Z)] =
Lifat(2)1 = Limeat ()1 = zieeatn 1 = grmmat2)1.
Since 2WMCT (1) and 2WMHT(2) are the same as 1MCA'(1) and
1MHA1(2) except that they have output tapes, we can prove
the relation F[2WMCT(1l)] = SF[2WMHT(2)] in a very similar

way as in the case of lMCAl(l) and lMHAl(l).

Theorem 5.22 FI2WMCT(1)] = FI[2WMHT(2)]

Proof. F2wMCT (1)] © F[2WMHT(2)] can be proved in

a similar manner as in Theorem 4.9. Let Al be an arbitrary
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2ZWMCT (1) with s states. Then, B, € 2WMHT(2) which simulates

1

A, is constructed as follows. If Al halts for a given

1
input of length n, then the counter of Al does not counts

the number greater than s- (n+2). Thus the counter can be
simulated by one of the heads of B, - And at each step of

the simulation, Bl writes the same number of output symbols

as Al does. By this, Bl can compute the same function as Al'

Fl2wMCcT(1)] 2 FI2WMHT(2)] is based on Lemma 4.14.

Let B, be an arbitrary 2WMHT(2). In the same way as in

2
this lemma, we can construct BéG&ZWMHT(Z) such that one of
the input heads of Bé never reads the right border symbol

for any input, and computes the same function as B,.

Since we can easily construct A2€52WMCT(1) which simulates

B!

5r FI2WMCT(1)] 2 FI2WMHT(2)] is concluded. (Q.E.D.)

Fig.5.4 summerizes the hierarchy of computing abilities

of multi-head, multi-counter, and finite-state transducers.
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U+
FI2WMHT (k) ]
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*
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Ut
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Fig. 5.4 The relations of computing
abilities of multi-head, multi-
counter, and finite-state transducers.

(k=1,2,--- , k'=2,3,""" )
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5.4 Concluding Remarks

In this chapter, a Turing transducer and some other
transducers were defined, and their computing abilities were
investigated. Since the numbers of input symbols and output
symbols are restricted to one, these models may seem to be
particular ones. Indeed, many results in this chapter were
derived from the fact that the input is contentless. But,
they are very convenient models to investigate the computing
abilities of number-theoretic functions.

As for TT(L(n)), the relation between the increasing
degree of functions and the tape complexity was considered.
Theorem 5.8 states that there exists no lower bound on
slowness of increase in any class of tape complexity. It
is easily seen that a similar result can be proved for
2WMHT (2) , too.

In section 5.3, several relations among various kinds
of transducers were derived. Since an acceptor (with a
contentless input) is a special case of a transducer, the
equivalent relations shown in Fig.5.4 also hold for the
acceptors. But the relation " SE" does not always hold for
the acceptors. For example, the relation FJ[1WFST] g
L I[2WFST] forms a contrast with the fact that one-way and

two-way finite-state acceptors are equivalent.
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