|

) <

The University of Osaka
Institutional Knowledge Archive

. A Study of Supporting Personalization in
Title X .
Information Browsing System

Author(s) | X7, =1

c

Citation |KFRKZ, 2002, EHIFHX

Version Type|VoR

URL https://hdl. handle.net/11094/679

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Doctoral Dissertation

Title

A Study of Supporting Personalization

in Information Browsing System

Author

~ Yoshinori Hijikata

January 2002 .

Osaka University,
Graduate School of Engineering Science, |
Department of Systems and Human Science

T 587

Doctoral Dissertation

Title

A Study of Supporting Personalization
in Information Browsing System

Author
~ Yoshinori Hijikata,

January 2002

Osaka University,
Graduate School of Engineering Science,
Department of Systems and Human Science

Abstract

This doctoral dissertation describes some fundamental methods supporting the per-
sonalization on information browsing systems.

The spread of the Internet, the WWW (one of the information browsing systems)
is becoming a de facto standard not only as an application for information gathering
but also as a platform for running applications. The WWW is attracting people’s
attention from the viewpoint of both technology side and business side. Especially
”personalization” is the most expected technology. Personalization is the provision
to the individual of tailored products, services, information or GUI(Graphical User
Interface).

This research focuses on the user information gathering function and the authoring
function for personalization. The user information gathering function is the function to
automatically acquire the information about the user’s interest. The authoring function
is the function to support the information provider to attach an index to information
or to describe how to personalize the information according to each user.

For supporting the user information gathering function, we propose a method to
extract a text part that the user was interested in based on the user’s ordinary mouse
operations while he/she is reading a Web page. For supporting the authoring function,
we considered supporting methods from two features of the WWW: (i) it allows users to
acquire information by moving from a page to another page by a link and (ii) it provides
GUls as a platform for building Web applications. To the former feature, the most
popular personalization method is a rule-based approach, in which the information
provider describes the navigation strategies in rules in advance. We propose a method
supporting the information provider by verifying the rules. To the latter feature, the
method to attach the help function to the content or the application is attracting
people’s attention. This is called an EPSS (Electronic Performance Support System).
We propose a framework for building EPSS independent of the content.

This doctoral dissertation consists of 5 chapters. Chapter 1 explains an information

browsing system and a personalization on it. It also describes the background of this-

1

work. Chapter 2 introduces a system called TextExtractor, which extracts the target ’
text pért of the operation which seems to be related to the user’s interest. It explains
the preliminary survey on the user’s operations, the system structure of TextExtractor
and the evaluation of the extracted keywords. Chapter 3 describes a verifying tool of the
user-navigation strategy on a information brovx}sing system. It evaluates the tool in the
description time and the error ratio of the described strategies. Chapter 4 introduces
a system called WebAttendant, which is a content-independent framework for Web-
based EPSS. It explains the system structure of WebAttendant and the experiment to
evaluate it, which compares the amount of work to develop EPSS using WebAttendant
with that using built-in EPSS. Chapter 5 gives the conclusions considering the results

~ in each chapter.

Contents

1 Introduction 1
1.1 Backgroﬁnd 1
1.2 Information Browsing System 2
1.3 Objective of Qur Research 4
1.4 Organization of the Dissertation 6

2 TextExtractor: Text Part Extraction Using Operation Logs from a
Web Browser
2.1 Introduction 9
22 Related Work 11
2.3 Preliminary Survey 13
2.4 Experimental Method and System Implementation 15

2.4.1 Experimental objective and method 15
2.4.2 Experimental system TextExtractor 16
2.4.3 Operation extraction and text extraction 17
25 Ewvaluation 18
2.5.1 User’s browsing in the experiment 18
2.5.2 Objective of evaluation 19
2.5.3 Validity for type of operation 21
2.5.4 Comparison with othermethods 24
2.5.5 Conclusion of the experiment 28
2.6 Discussion and Future Work 28

2.6.1 Discussion i i e e 28
26.2 Futurework 30

2.7 Conclusions o v i e 31

Supporting Information Providers for Rule-based Adaptive Hyper-

media 38
3.1 Imtroduction 38
3.2 Adaptation Method and User Model 40
3.2.1 Adaptationmethod Lo 40
322 Usermodel e 41
3.3 Navigation Method oL 41
3.3.1 Hypermediamodel 41
332 Class . . v v v v e e e e e e 42
3.3.3 Representation of usermodel, 43
334 Navigationrule 43
3.3.5 Example of navigation, . 44
3.4 Authoring Tool 46
341 ObJECiVE .« o o o e e e L 46
3.4.2 Dead end defection 46
3.4.3 Detection of dead ends caused by path rules 47
3.4.4 Detection of dead ends caused by user rules 48
345 Loopdetection, 49 -
3.5 Implementation and Evaluation 50
3.5.1 Implementation of thesystem 50
3.5.2 Objective of evaluation 51
3.5.3 Evaluationmethod 52
354 Evaluationresult 53
355 Discussiono e e 58
3.6 Conclusions i e 59

ii

4 Content-Independent Framework for Web-based EPSS 66

4.1 Introduction 66
4.2 Concept of EPSS and Related Works 68
421 Concept of EPSS 68
422 Relatedworks 68
4.2.3 EPSS for Websites e 70

4.3 System Design and Implementation 71
43.1 Objectiveand designplan 71
432 Outlineofthesystem 72
4.3.3 Modules of WebAttendant 74

44 Evaluation 81
441 Objectivesof evaluation 81
4.4.2 Evaluation on an amount of work 81
4.4.3 Evaluation on reusability for different Web sites 83
4.4.4 Evaluation on reusability for different skill levels 84
445 Summaryoftheresults. 86
446 Futuredirections 86

45 Conclusions 89
5 Conclusions 91

i

Contents of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
44
4.5
4.6
4.7

System structure of information gathering system. 3
User ratio according to the number of operations. 15
Questionnaire window. 16
System structure for the experiment. 17
Keyword precesion for each type of operation. 23
Number of performed operations perapage. 23
Keyword precision. 26
Keywordrecall. 27
Noiserecall. 27
Hypermedia model. e e e e e 42
Anexampleoftherules. 45
An example of dead end detection. 49
Output example from thesystem. 51
Time for describing and errorratio. 58
WebAttendant. 68
WebAttendant and existing EPSS. 69
System structure of WebAttendant. 73
Guidanceexample. 78
Ruleformat. e 78
An example of rule expression in XML. 79
Authoring tool. 80

v

Contents of Tables

21
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Related works. 13
Browsing data for the experience. 20
Keyword narrowing rate. 26
Difference among the types of operations. 29
Parameters for detecting operations. 37
Description time. T e e 56
Error in the navigationrule. 56
Deadend in the navigation rule. P 57
Looperrors. 57
User parameters for the experiments. 63
Classes for the experiments. 64
Tasks in the experiments. 65
Context event.. 75
DOMaction. 77
Scenario and number of functions(rules) of the created EPSS. 82
The amount of development. . e 87
Reusability. e e e e e 88

Chapter 1

Introduction

1.1 Background

As the Internet has been expanding, the WWW (World-Wide Web)[1] has become
one of the most popular application on the Internet. The WWW is the application
which supports the user to find some information from computers on the Internet. The
WWW has the hyperspace consisting of pages (nodes) and links. Users access the
hyperspace using a Web browser on their client computers. They acquire information
by moving from a page to another page by a link. In the WWW, the information
provider can easily exhibit information just by starting a Web server on the computer
connected with the Internet and putting the files which describe the contents of the
pages on the server. Therefore the number of pages has been increasing and it reached
one billion pages[2] in 2000. In this situation, it is difficult for users to find their target
information on the WWW. Futhermore, the WWW not only provides a method to
access information, but also provides GUIs (graphical user interface) such as inputs
and buttons and a protocol to send a query message. This allows the user to access
databases or other existing legacy applications through Web browser. Therefore the
WWW has become not only a tool for information retrieval but also a platform for
every application|[3].

From such a background, personalization is beginning to attract attention[4]. Per-

sonalization is the provision to the individual of tailored products, services, informa-

tion or information relating to products or service[5]. For example, personalization (1)
emphasizes the link in which the user is likely to be interested from his/her browsing
history, (2) displays the goods on the top page of the Web site recommended to the user
based on his/her purchase information or (3) displays how to input the form by balloon
helps for a beginner user. The point that personalization differs from other technologies
is taking into consideration both (1) the user’s usability to support the user’s informa-
tion browsing or the user’s usage of the application and (2) the information provider’s
business to provide adequate information to his/her customers. Therefore, we have to

consider the technology supporting personalization from various sides.

1.2 Information Browsing System

There are three types of systems which support the user’s information gathering

activity:
1. Information retrieval
2. Information filtering

3. Information browsing

Some researchers call these systems together ”information gathering system.” [6, 7]
Information retrieval supports the user in finding information from remote databases.
This type of system asks the user to input implicitly some keywords related to the user’s
interest. Information filtering supports the user in screening the information coming
into the user. This type of system acquires the information about the user’s interest
in adva,hce, and after that it compares the information coming to the user with the
information about the user’s interest. Information browsing provides the information
space where the user can freely move around and gather information. The related
information is connected by links by an information provider based on his/her point
of view. The fundamental function provided in the WWW is information browsing

although information retrieval and information filtering can be implemented there.

2

Information
sources

information
User model
Comparing User User
a"‘! mformaﬁon modeling
selecting gathering function
function function
selected User information
information :
evaluation /
feedback

Figure 1.1: System structure of information gathering system.

Personalization needs the information about the user because it changes the content
or the way to display the content according to each user. The basic system structure of
information gathering systems using the information about the user is as follows[8, 9, 7]

(see Figure 1.1):
1. User information gathering function
2. User modeling function
3. Comparing and selecting function

Users return some feedback to the system such as inputting keyword queries, ex-
panding them and evaluating/judging information provided by the system. The infor-
mation gathering function acquires those user information and sends them to the user
modeling function. The user modeling function constructs or modifies the user model

based on the user information provided by the user information gathering function.

3

The comparing and selecting function compares the user model with the information
to provide the user. After that, it selects the information matched to the user’s interest.

In addition to the above-mentioned functions, some systems need an authoring
function. The comparing and selecting function compares the information with the
user model and selects information to show the user. However this function often
requires the computational presentation of the information and the strategy how to
select the information. Even the information is presented in text, it is difficult to
understand the meaning of the content by a computer. Therefore the information
provider has to prepare computational presentations such as properties and values[10,
11]. Furthermore, the selecting and displaying strategy of information may differ for
information providers. In this case, he/she has to define their way of selection and

display in the system.

1.3 Objective of Our Research

In this research, we will study on the fundamental technologies required for the per-
sonalization on the information browsing system. Out of the four functions described in
Section 1.2, this research will focus on the user information gathering function and the
authoring function. Especially for the authoring function, we will pay attention to the
two features of the WWW: (i) it allows users to acquire information by moving from a
page to another page by a link and (ii) it provides GUIs as a platform for building Web
applications. We will propose (1) TextExtractor as one the user information gathering
functions, (2) a verifying tool for user-navigation as one of the authoring tools for the
former feature of the WWW and (3) WebAttendant as one of the authoring tools for
the latter feature of the WWW.

(1) TextExtractor

One of the serious requirements in information gathering systems is the high-
accuracy acquisition of the user information without the user’s mental effort. Tex-
tExtractor automatically extracts a text part that the user was interested in from the

whole text of a page using the user’s ordinary mouse operation. The idea of TextEx-

4

tractor is feasible not only for information browsing systems but also for information
retrieval and information filtering systems.
(2) A verifying tool for user-navigation

The original idea of the WWW is hypermedia[12, 13], which is a basic idea of
connecting information with links. Therefore hypermedia is one of the information
browsing systems. In the research field of hypermedia, personalization has been stud-
ied as adaptive hypermedia[l4]. Although some researchers have been studying on
authoring tools for adaptive hypermedia systems, these tools do not focus on exam-
ining the navigation strategies in hyperspace. We will propose a verifying tool which
examines the information provider’s navigation strategies.
(3) WebAttendant

In the field of computer education and business applications, EPSS (Electronic
Performance Support System)[15] is gaining its popularity. EPSS is like a help system
for application software. However it differs from a help system in taking the user’s
business productivity into consideration. We will propose WebAttendant for EPSS.
This is a framework for an EPSS on the Web and allows the EPSS developer to develop
an EPSS independent of the Web content. Therefore WebAttendant can improve the
reusability of the modules used in the EPSS and decrease the development cost.

“In this research, TextExtractor is built as a module feasible in any Web site. For
the verifying tool for user-navigation, we will develop a simple adaptive hypermedia
system. We will develop the verifying tool on this system and see its effectiveness
by an experiment. The reason why we will develop a whole system of the adaptive
hypermedia is that we want to make the comparing and selecting mechanism and the
user interface for the information provider simple. In the experiment this removes the
mental workloads occured by such complexity from the information provider and see
only the effectiveness of the tool. For WebAttendant, we will develop it as a whole
system required for a standard platform of Web-based EPSS. This is because we want

to see its effectiveness in the real EPSS development for business purpose.

1.4 O_rganization of the Dissertation

In this doctoral dissertation, we describe TextExtractor in Chapter 2, the verifying
tool for user-navigation in Chapter 3 and WebAttendant in Chapter 4. In each chapter,
we will describe the detail of their research backgrounds, target problems, methodolo-
gies, implementations and evaluations. In Chapter 5, we will give the conclusions about

the supporting functions for personalization in information browsing systems.

Preferences

[1] Berners-Lee, T., et al.: The World-Wide Web, Comm. of the ACM, Vol. 37, No. 8,
pp. 76-82 (1994).

[2] Broder, A., et al.: Graph Structure in the Web, Proc. of the Ninth International
World Wide Web Conference, In Computer Networks and ISDN Systems, Vol. 33,
pp. 309-320 (2000).

[3] Special Features: Software Service Technologies for Making e-Business Real, IPSJ
Magazine, Vol. 42, No. 9, pp. 855-895 (2001).

[4] Special Features: Personalilzed Views of Personalization, Comm. of the ACM,
Vol. 43, No. 8, pp. 27158 (2000).

[5] Mulvenna, M.D., Anand, S.S., Buchner, A.G.: Personalization on the Net using
Web Mining, Comm. of the ACM, Vol. 43, No. 8, pp. 123-125 (2000).

[6] Takeda, H.: Network Enhanced Intelligent Information Integration, Journal of
Japanese Society for Artificial Intelligence, Vol. 11, No. 5, pp. 680-688 (1996).

[7] Sugimoto, M.: User Modeling and Adaptive Interaction in Information Gathering
Systems, Journal of Japanese Society for Artificial Intelligence, Vol. 14, No. 1, pp.
25-32 (1999).

[8] Belkin, N. J. and Croftk, W. B.: Information Filtering and Information Retrieval:
Two Sides of the Same Coin?, Comm. of the ACM, Vol. 35, No. 12, pp. 29-38
(1992).

[9] Loeb, S.: Architecting Personalized Delivary of Multimedia Information, Comm.
"of the ACM, Vol. 35, No. 12, pp. 39-48 (1992). |

[10] Nagao, K.: Advanced Use of Digital Content Based on Annotation (Part 1), IPSJ
Magazine, Vol. 42, No. 7, pp. 668-675 (2001).

[11) Nagao, K.: Advanced Use of Digital Content Based on Annotation (Part 2), IPSJ
Magazine, Vol. 42, No. 8, pp. 787-792 (2001).

[12] Conklin, J.: Hypertext: An Introduction and Survey, in ”Computer-Supported
Cooperative Work,” Morgan Kaufmann Publishers, pp. 423-475 (1988).

[13] Nielsen, J.: Hyper Text & Hyper Media, (1989), Academic Press.

[14] Brusilovsky, P. L.: Methods and Techniques of Adaptive Hypermedia, User Mod-
eling and User-Adapted Interaction, Vol. 6, No. 2-3, pp. 87-129 (1996).

[15] Stevens, G.H. and Stevens, E.F.: Designing Electronic Performance Support Tools:
Talent Requirements, Performance & Instruction, Vol. 24, No. 2, pp. 9-11 (1995).

Chapter 2

TextExtractor: Text Part
Extraction Using Operation Logs
from a Web Browser

2.1 Introduction

There are many search engine services on the Web that support users in acquiring
their target information. When the user inputs some keywords as a search key, the
search engine recommends pages that include the input keywords. The number of pages
accessible by search engines has passed one billion pages[1]. Technologies for narrowing
the number of search results are regarded as important, and many researchers have been
working on these technologies. Methodology that relieves users from needing special
knowledge about search engines on the Web is important, because there are many kinds
of users on the Web. Relevance feedback|2] is one such method.

Relevance feedback (i) asks the user to indicate pages most relevant to his/her
interests from the search results, and (ii) searches again using keywords specific to
those selected pages. Generally, the selection of keywords is done from the pages
returned as search results by the search engines, and this method selects new keywords
from the complete text of those pages. Therefore this method has a problem in that
not all the selected keywords have to do with the user’s interests[5]. Another problem

is that it takes a lot of effort by the users to indicate suitable pages.

In this paper, as a solution for the first problem, we propose using only the parts
that the user might be interested in, instead of using the entire pages. As a solution
for the second problem, we propose using the user’s browsing operations to determine
his/her interests instead of asking the user to explicitly indicate the pages that the user
had an interest in.

We focus on the situation that the user uses a mouse as an input device while

browsing Web pages and solve the above-mentioned problems by the following method:

1. Extract operations that might occur because of the user’s especial interest from

the user’s ordinary mouse operations while browsing pages.

2. Extract by sentence or line the text parts that are the targets of those extracted

operations.
We expect the following results by using this method:

1. The system can automatically find the keywords relevant to the user’s interests

without requiring any special efforts by the user.

2. The system can eliminate many noise keywords, the keywords unrelated to the

user’s interests, from the texts used for relevance feedback.

This chapter is organized as follows. Section 2.2 introduces related work that gath-
ers the information about users’ interests, what we call the ”user profile”. Section 2.3
investigates the relationship between the users’ interests and their mouse operations.
Section 2.4 explains the experiment to see the effectiveness of the text parts which is
the target of the operation which may relate to the user’s interest. It also explains
the system called ” TextExtractor” which extracts the text parts based on the user’s
operation. Section 2.5 evaluates the effectiveness of the extracted keywords by Tex-
tExtractor. Section 2.6 provides some discussions and outlines future works. Finally

Section 2.7 offers some conclusions.

10

2.2 Related Work

Relevance feedback acquires user profiles by asking the users to indicate which pages
are relevant to their interests [2]. Some researchers have also been working on the
acquisition of user profiles in the area of information filtering[3]. Information filtering
screens the information coming into the user, while information retrieval supports the
user in finding information from remote databases[4].

In the research areas of information retrieval and information filtering, there are

two basic approaches for acquiring user profiles(5, 6].

1. Explicit (Direct) method:
This method acquires user profiles by (i) asking users to answer preliminary ques-
tionnaires about topics or keywords which they are interested in, or (ii) asking
users to grade the pages they have browsed for interest and relevance. Ringo[7]
and SIFT|[8] use the former approach. GroupLens[9], Syskill & Weber|[10], News-
Weeder|[11], ClixSmart[12] and AntWorld[13] use the latter approach. The ad-
vantage of this method is that it is reliable because it acquires the user profiles
directly from the users. However these approaches also have some disadvantages.
Generally, completing a preliminary questionnaire sufficiently detailed to allow a
user to adequately describe his/her interests as keywords is a troublesome task,
and grading pages also takes a lot of efforts from the users. Method (ii) also has a
problem that it selects keywords from the whole text of the page and the selected

keywords include many that the user is not interested in.

2. Implicit (Indirect) method:
This method acquires user profiles by estimating the users’ degree of interest in
the pages the users have browsed based on such factors as (i) the time spent
reading the pages (browsing time)[14] or (ii) the specific mouse button operations
or the scroll operations performed while reading the pages[15], or (iii) the user’s
eye mark while reading pages[16, 17]. The advantage of this method is that it does

not require any mental efforts by the users. One of the problems with method

11

(i) is that the system usually cannot know when the user opens a page and then
starts doing some other work or leaves the PC. Existing research on method (ii)
monitors for such actions as when the user pushes a button for enlarging an
article in a news system or when the user scrolls the window that is displaying the
article. Detecting these operations allows the system to judge whether the user
was interested in the entire page. However the system cannot always locate which
part of the page the user was interested in from these operations. Method (iii)
has a possibility to specify the text part that the user was interested in. However

it leaves the problem of the special equipment to recognize the user’s eye mark.

In the research area of information retrieval and filtering, the system selects key-
words effective for information retrieval or information filtering from the keywords in
the documents that the user has rated as good ones. This keyword selection relies on
tf-idf weights [2]. The tf-idf approach weights keywords based on each keyword’s ap-
pearance frequency in the document and its appearance frequency in other documents.
However tf-idf weights keywords based on the statistics of the entire document even if
the user was only interested in a part of the document. Therefore some of the weights
on keywords do not reflect the user’s interests. Furthermore, the tf-idf algorithm needs
to prepare a target document set and create a vector space for the set in advance,
because it is based on considering relevance between documents.

Our research can be classified with the implicit methods because it estimates the
users’ interests based on the mouse operations. It differs from the existing research
approaches in that (i) it estimates the user’s interest from the ordinary mouse opera-
tions, including even the ones the user performs unconsciously, (ii) it extracts the parts
the user might be interested in not by the page but by the sentence or line, and (iii) it

does not need a special equipment (see Table 2.1).

12

Table 2.1: Related works.

Method Category | Required Unit of Required | Works
for user’s extraction for special
efforts? equipment?
Preliminary Explicit Yes Topic/keyword No Ringo, SIFT
questionnaire
Page rating Explicit Yes i Page No GroupLens, AntWorld

Syskill & Weber
NewsWeeder, ClixSmart

Browsing time Implicit No Page No Morita

Special button & || Implicit No Page No ANATAGONOMY

scroll operation

Eye mark Implicit No Part of page Yes Digital Reminder
IMPACT

TextExtractor Implicit No Part of page No

2.3 Preliminary Survey

Kantor[13] reports that he discovered that users tend to follow the mouse pointer by
the eye while browsing Web pages. As one of the reasons of above-mentioned behavior,
he pointed out that the user has to click links that he/she is interested in by the mouse
on the Web. However he does not show what kind of operations performed by users
while browsing Web pages and whether or not such operations have to do with their
interests.

We surveyed characteristic operations which may occur according to users’ interests.
In this survey, we conducted observations of and interviews about users’ operations
while they are browsing Web pages. In these observations, the users freely browsed Web
pages they liked and the observer watched their mouse operations. In the interviews,
the interviewer asked the users what kind of operations they perform in their daily Web
browsing and the reason why they perform the operations. There were 31 users in the
survey. This survey detected the following characteristic operations. (We eliminated

operations to directly specify the targets of the users’ interests such as inputting some

13

keywords that the user is interested in into the text field of a search engine.)
o Text tracing: Moving the mouse pointer along a sentence while reading.
¢ Link pointing: Positioning the mouse pointer on a link, but not clicking the link.
e Link clicking: Clicking on a link to move to another page.
e Text selection: Selecting text by dragging the mouse pointer.
e Scrolling: Scrolling a window at a certain speed.
o Bookmark registration: Registering a page as a bookmark.
e Saving: Saving an HTML document.
e Printing: Printing a page.
o Window movement: Moving a window of the Web browser.

e Window resizing: Changing the window size of the Web browser.

Some of the operations are necessary for browsing Web pages or using the Web browser’s
functions. The other operations are not necessary for browsing Web pages or using the
Web browser’s functions, but users perform them unconsciously. Out of these oper-
ations, the operations whose targets can be text are text tracing, link pointing, link
clicking and text selection.

To judge whether or not we can use these four kinks of operations for extracting
text parts, it is necessary to see how many users perform them. We observed the 20
users’ operations during 10-minute browsing and counted the number of times that
each operation occurred. Figure 2.1 shows the result. Although there is a variety in
the number of times to perform according to the type of operation, we found that in
every type of operation there are users who perform it. Therefore in this research, we
will investigate whether or not the target text part of these four kinds of operations

are actually the part the user was interested in by the experiment.

14

Lner s 0%y
5 ’

Figure 2.1: User ratio accdrding to the number of operations.

2.4 Experimental Method and System Implemen-
tation |

2.4.1 Experimental objective and method

Generally the unit of process in information retrieval and information filtering is
keyword. The objective of the experiment is that automatically extracting the target
text parts of the four types of operations (described in Section 2.3) and seeing whether
or not keywords in the extracted text is aétuall_y the ones the user is interested in.

The eXperiment'al method we used is as follows:

1. The subject searches for the pages he/she wants to browse in advance of the
experiment.

2. When the experimental observations begin, the subject freely browses the selected
pages.

3. Every time the subject moves from a page to another page, he/she answers a
questionnaire about the previous page. In this questionnaire, the system displays

all keywords extracted from the page, and the subject checks only keywords he/she

was interested in (see Figure 2.2).

4. The experimenter compares the keywords checked by the subject and the key-

15

Figure 2.2: Questionnaire window.

words extracted by the system. The experimenter determines the effectiveness by

calculating some parameters.

2.4.2 Experimental system TextExtractor

We developed a system called ” TextExtractor” which extracts the text parts the
user might be interested in while the user is browsing a Web page. We built TextExtrac-
tor using JavaScript and Java. This is because the user can use the Web browser that
he/she usually uses and it is easy to install TextExtractor to exisiting Web contents
" and applications.

Figure 2.3 shows the system structure of TextExtractor. For embedding the JavaScript
and Java applet programs of TextExtractor into Web pages, we developed an em-
bed proxy server. In this system, the embed proxy server calls a morphological
analyzer[18, 19] and generates windows for questionnaires using keywords output by a

morphological analyzer. TextExtractor sends the extracted text parts to the TextEx-

16

Web Server

(1) HTML lv—rrrp

Embed Proxy Server

(2a)

(2b) HTML
HTML embeded i

with JavaScript
and Java applet Morphological
q Analyzer

') (3b) keywords

3

@ o——

Browser Questionnaire Window
| User's Monitor |

(3a) extracted text *H'ﬁ'p i (4b) keywords +

A

+ operation answer

TextExtractor | — . g @
Server (4a) extracted text
+ operation

Figure 2.3: System structure for the experiment.

tractor server.

2.4.3 Operation extraction and text extraction

JavaScript program of TextExtractor detects the user’s operation event on the Web
browser via DOM(Document Object Model)[20] interface. After that, it informs Java
applet program the event with other parameters such as coordinates of the mouse
pointer in a fixed format. Java applet program extracts the four kinds of operations
by analyzing the operation events and extracts the target text part of the operaﬁon.
We show (1) the type of operation event, (2) the format to inform operation events,

(3) an example described in the format, (4) concrete methods to extract operations,

17

(5) concrete methods to extract text parts and (6) parameters for operation extraction
in the appendix.

We use some parameters for extracting operations. We set the parameters heuris-
tically by recording five users’ operations while they are browsing Web pages and ana-
lyzing them (see Appendix). In actual text tracing operation found in the preliminary
experiment in Section 2.3 and in the operation recording in this section, users do not
strictly trace the line they are reading but just unconsciously move the mouse pointer
to the right and in short distance. Therefore we set parameters to make TextExtractor
recognize the short mouse movement to the right as text tracing.

We use some functions of DynamicHTML[21] for extracting the text. When the
user selects a text part with mouse, the Web browser generates a selection object,
which indicates the selected text. We use this object for extracting the text which
is the target of the text selection operation. We can also identify the location of a
character which is at specific coordinates from the whole text of the page. We use this
function for extracting the text which is the target of text tracing, link clicking, and
link pointing operations. When the system extracts text which is the target of a text
tracing operation, it also extracts the text which exists on the line above the line where
the mouse pointer is. This is because of what we discovered from the observations. We
found two cases in users’ text tracing operations: (i) they move the mouse pointer on
a straight line within the line where they are reading, or (ii) they move the mouse

pointer on a line below the text line where they are reading.

2.5 Evaluation

2.5.1 User’s browsing in the experiment

Five users (three women and two men in their twenties or thirties) participated in
the experiment as subjects. We used data from 120 Web pages for the analysis. Table
2.2 shows the objective of each user’s browsing, the characteristics of the pages that

each user browsed (also showing the average number of keywords in those pages), the

18

average number of keywords the user checked as interesting ones in each page and the

number of pages the user has browsed.

2.5.2 Objective of evaluation

In this section, we will see whether or not the target text part of each type of
operation is actually the part the user was interested in. Namely we will see whether or
not the ratio of keywords that the user was interested in is higher in the target text part
of each type of operation than in the whole text of the page. After that, we will compare
TextExtractor, which extracts keywords based on the four kinds of operations, with
other keyword extraction method. In this comparison, we will see the validity in text
extraction of TextExtractor by comparing TextExtractor with the method to extract
keywords at random, we call this random extraction. We also compare TextExtractor
with tf-idf which is the most popular keyword selection method in information retrieval
and information filtering.

In this evaluation we will calculate the following three parameters:

1. Keyword precision
2. Keyword recall
3. Noise recall

Keyword precision is the ratio of the keywords that the user is interested in in
relation to the the extracted keywords. Keyword recall is the ratio of the extracted
keywords in relation to the keywords that the user is interested in. This parameter is
important because in information retrieval or information filtering, the system cannot
recommend the pages the user is interested in when the number of keywords to use,
which the user is interested in, is small. Noise recall is the ratio of the extracted
keywords in relation to the keywords that the user is not interested in (noise keywords).
This parameter is important because the noise keywords reduce precision of information

retrieval when the system executes relevance feedback using keywords in the whole text

19

Table 2.2: Browsing data for the experience.

Web sites offering travel

information.

consisting of text and some figures.
Some of the figures are large maps.
(124)

User The objective of browsing The characteristics of the pages NC | NP
. (Average number of keywords in
a page)

User A || Clicking a link of the mail magazine Pages consisting of text and some 3.8 |20
published by a news site on the mail | figures. Figures are banner ads and
software and browsing each news | photos for the article. (198)
article. '

User B || Browsing a Web site for cars from its | A top page with many links and pages 36|20
top page. consisting of text and some ﬁgurés.

Clicking a link of the m%il magazine Figures are banner ads. (351)
published by a news site on the mail

software and browsing each news

article.

User C || Browsing personal sites from their ‘Top pages with many links and pages 4.7 129
top pages for essays and restaurant consisting of text and some figures for
information. the articles. (241)

User D || Selecting Web sites for a popular A page with many links in an index 11|25
singer in a commercial index service service site, each site’s top page with
site and browsing concert information | some links and figures, pages offering

and bulletin boards in each site. data as lists or tables, and pages
Clicking a link of the mail magazine of bulletin board. Few ﬁgﬁres except
published by a news site on the mail for each site’s top page. (157)
software and browsing each news
article. '
User E || Browsing some personal or cities’ Top pages with some links and pages 2.7 26

NC: Average number of keywords checked by the user as interesting ones in a page.
NP: Number of pages the user browsed.

20

of the page. When we subtract noise recall from 1, we get the ratio of the reduced
noise keywords in relation to the noise keywords in the page (noise reduction rate).
Considering the usage in information retrieval and information filtering, keyword
precision can evaluate the effectiveness of the extracted keywords. Using keyword
recall and noise recall besides keyword precision, we can evaluate the effectiveness of
the keyword extraction method. The equations to calculate these parameters are as

follows:
1. Keyword precision =| B |/ | A|
2. Keyword recall =| D | / | C |
3. Noise recall =| F' | > | E |
ABC,DE an‘d'F in the above equations have the following meanings:

e A: The set of extracted keywords.

o B: The set of keywords which are included in the set A and checked by the user

as interesting ones.

e (: The set of keywords checked by the user as interesting ones in the whole text

of the page.

e D: The set of keywords which are included in the set C' and extracted by Tex-

tExtractor.

o [E: The set of noise keywords in the whole text of the page.

F': The set of noise keywords which are included in the set £ and are not extracted
by TextExtractor. '
2.5.3 Validity for type of operation

Figure 2.4 shows the keyword precision in every type of operation and the keyword
precision in the whole text of the page. The keyword precision is higher in the extrated

text than in the whole text for every user and for every type of operation.

21

Figure 2.5 shows the number of times the user performed each type operation in
a page. We can see there is individual difference in the frequency to perform the
operation in text tracing and link pointing operation. The frequency to perform link
click of User A is lower than other users. This is because User A read each new article
by clicking the links of a mail magazine published by a news site on his mail software
and hardly clicked links on the Web page.

Although there was individual difference depending on the type of operation, we
saw the extracted text part in every type of operation includes the keywords that the

user was interested in at higher ratio than in the whole text of the page.

22

[Keyword
‘precision (%)

100 — - :
R i AN
70 T g W
: *
€0 —4 T3 P
te o7 A% Texttracing

o /\A S Link poinitinig
2 1 R x\ pe—d | i Linklicking 1
15 / \ \ / . —o—Text selection
: : / \ U <3 Whole text
10 § - ey % K
5 g&%‘
0 5
UserA UserC UserE
UserB UserD Average

Figure 2.4: Keyword precesion for each type of operation.

Number of operations
periormed.in.a page

3.0

25

=@ Texttracing.

20+

=3¢=":Link pointing

i : ; 7l iae dink clicking

AEl o 0sere sl UserE
TUserB.ioonUserD s

Figure 2.5: Number of performed operations per a page.

23

2.5.4 Comparison with other methods

Random extraction and tf-idf can extract keywords at any ratio from the whole text
of the page. However TextExtractor cannot extract keywords at any ratio. Therefore
we will calculate keyword narrowing rate which represents how much TextExtractor
narrows the text part from the whole text of the page. We will extract keywords at
keyword narrowing rate of TextExtractor in random extraction and tf-idf. This means
we will compare these methods when they extract keywords at the same ratio. The
equation to calculate keyword narrowing rate is as follows:

Keyword narrowing rate =| H | / | G |

H and G in the above equation have the following meanings:

e G: The set of keywords in the whole text of the page.

e H: The set of keywords which are included in the set G and extracted by Tex-

tExtractor.

In random extraction, we calculated the expectation of keyword precision, keyword
recall and noise recall when we extract keywords from the whole text of the page. The
expectation of keyword precision is keyword precision in the whole text of the page
browsed by the user. The expectation of keyword recall and noise recall is the keyword
narrowing rate of TextExtractor. tf-idf needs the document set defined in advance. In
this experiment, we created vector spaces using keywords in all pages browsed by each
user. We selected keywords based on the weights of tf-idf at the keyword narrowing
rate. |

Table 2.3 shows the keyword narrowing rate. Figure 2.6, 2.7, 2.8 shows the keyword
precision, the keyword recall and the noise recall. Compared to random extraction, the
keyword precision and the keyword recall of TextExtractor is approximately four times
on the average of all users. The difference of the noise recall between TextExtractor and
random extraction is small although the noise recall of TextExtractor is slightly better
than random extraction. This is because more than 98% of keywords in the whole text

of the page is noise keywords (We can see this from that the average keyword precision

24

of all users in the whole text of the page is less than 2%). Therefore TextExtractor
extracts more keywords the user was interested in than random extraction and reduces
noise keywords at almost the same ratio of random extraction.

Compared to tf-idf, the keyword precision and the keyword recall of TextExtractor
is about 1.4 times on the average of all users. For the users except for User A, the
keyword precision and the keyword recall of TextExtractor is better than those of tf-idf.
There is difference in browsing behaviors between User A and User B-E. User A browsed
only the pages that display one news article about IT (Information Technology). User
B-E browsed various kinds of pages such as top pages of Web sites, pages with link
collections, pages of bulletin boards, pages with a personal diary and pages displaying
some data in a table. tf-idf is a powerful method for documents consisting of many
sentences such as news articles because it weighs keywords based on their frequency in
the document. The pages browsed by User A are all news articles and include many
sentences. Therefore the keyword precision and keyword recall of tf-idf has become
high in those pages. The pages browsed by User B-E did not always include many
sentences. Therefore the keyword precision and keyword recall of tf-idf has become low
in those pages. Meanwhile TextExtractor extracts keywords based on the user’s mouse
operation and does not consider the keywords’ frequency in the documents. Therefore
it extracts the keywords that the user was interested in from the browsed pages, even if
those pages do not include many sentences. This shows that TextExtractor can extract
the keywords that the user was interested in at high accuracy even in various kinds of

pages where tf-idf cannot achieve its best performance.

25

Table 2.3: Keyword narrowing rate.

User Keyword
narrowing rate(%)
User A 9.74
User B 3.50
User C 8.62
User D 7.76
User E 14.32
| Average l 8.78 J

Keyword: =
precision (%)

10

©w

O W N LA O N

A\

N\

N W

=& TextExtractor

S [thidf

—e—"Random

AT

“UsérA " -UserC UserE

-.-Extraction

UserB™ UserD .- Average *

Figure 2.6: Keyword precision.

26

Keyword

recall (%)

50

45 / \

a0 | " A i—ﬁ— TextExtractor

B tf-idf
25 |
| —#— Random
20 ! Extraction
15 ‘
P
10 « > e)
5 \Y
0
User A UserC User E
User B User D Average
Figure 2.7: Keyword recall.

Noise
recall (%)

16
14 A
12
10 / \ —ir— TextExtractor

8 \ \ ~a— iidf

\ —e— Random

6 Extraction

4 v

2

0

User A UserC User E
UserB User D Average

Figure 2.8: Noise recall.

27

2.5.5 Conclusion of the experiment

We confirmed that the target text part of text tracing, link pointing, link clicking
and text selection operation includes keywords the user was interested in at higher
accuracy than the whole text of the page. When we used these all four kinds of
operations for keyword extraction in TextExtractor, it could extract keywords that the
user was interested in at high accuracy even for pages with miscellaneous styles where
tf-idf cannot achieve its best performance. Therefore we can expect a better Web page
search by using keywords extracted by TextExtractor for relevance feedback.

In the experiment, five users browsed their favorite Web pages as they usually do.
The result shows that TextExtractor extracts keywords that the user was interested
in at high accuracy just by using the user’s usual mouse operations. From this, we
conﬁrmed that the system can acquire the information about the user’s interest without
insisting users to answer the questionnaire about their interest or to grade the pages
they have browsed. Therefore we can expect that TextExtractor allows users to use
the functions supporting a Web page search such as relevance feedback more easily

without inputting keywords or rating pages consciously.

2.6 Discussion and Future Work

2.6.1 Discussion

This subsection discusses the type of operation and the expiry of the user profile.

Type of Operation

The experiment in Section 2.5 calculated the keyword precision, the keyword recall
and the noise recall for each user using all kinds of operations. This section will compare
the four kinds of operations. Table 2.4 shows the keyword precision, the keyword recall
and the noise recall in every type of operation considering all users. The keyword
precision of operations performed unconsciously such as text tracing and link pointing

is lower than that of operations performed consciously such as text selection and link

28

Table 2.4: Difference among the types of operations.
Type of operation Keyword Keyword noise
precision(%) | recall(%) | recall(%)

Text tracing 5.83 20.91 5.21
Link pointing ©10.15 8.85 1.21
Link clicking 22.76 15.01 0.79
Text selection 50.00 1.34 0.02

clicking. There is difference in the keyword recall according to the type of operation.
We can see that the keyword recall is not going to be high by using only operations
with high keyword precision such as text selection and link clicking.

When the system searches Web pages using a search query with a few keywords,
operations with high keyword precision such as text selection and link clicking will be
effective. When the system searches Web pages using vector space models with many
keywords, operations with high keyword recall such as text tracing and link pointing
will also be effective. In this case, the system can also change the weights of the
keywords according to the type of operation used for the keyword extraction. It will
be important to select the type of operation for the keyword extraction and to weighs

keywords based on the type of operation according to the target application.

Expiry of user profile

Some researchers work on the expiry of the user profile. Miyahara hypothesizes that
the strength of the user’s interest follows the Gamma distribution and tries to prove its
correctness[22]. NewsT uses the genetic algorithm and leaves the genes with the current
and strong interest[23]. SIFTER considers the history of relevance feedback (interesting
or not on a category) as a Bernoulli trial and judges the change of occurrence probability
by Bayesian analysis[24]. Crabtree categorizes browsed documents into fixed categories
for a period of time and sees the differences between some periods[25]. IndexNavigator
tries to infer the change of the user’s interest by the hypothetical inference[26].

TextExtractor has a feature to infer the user’s interest by a part of the page not by

29

a page. When the system stores the extracted text for a long period, there will be little
difference between TextExtractor and a method to infer the user’s interest by a page.
Therefore we should use the extracted text parts for supporting the user’s ongoing
information acquisition. 111 this meaning, the expiry of the user profile extracted by

TextExtractor is during its session.

2.6.2 | Futlire work

The evaluation in Section 2.5 considers whether or not the user was interested in
keywords. However the important characteristics of TextExtractor is that it extracts
the text part that the user was interested in by a sentence or a line. When the system
not only acquires keywords from the text but also analyzes the context of the text and
the text in front and rear of it, the system may know how the user was interested in
the topic. For example, when we consider the keyword 'Java’, the context is different
between ”The market of Java applications has become big.” and ”The technology of
Java applications has become improved.” although they use the same keyword. The
user who was interested in the former sentence, he/she may be interested in market-
ing. The user who was interested in the latter sentence, he/she may be interested in
technology. It is important as a future work to analyze the context of the extracted
text using methods natural language processing and apply it in the user analysis for
information retrieval and for marketing.

As a text part extraction method using a user’s behavior, there is a method using the
user’s eye mark. Although this method has a problem that it needs a special equipment
to detect the user’s eye mark, we think it is valuable to investigate its performance. of
text extraction. This is because it may acquire the user’s interest which was not shown
in the user’s mouse operation. It is important as a future work to compare the method
using the user’s eye mark with random extraction, tf-idf and TextExtractor.

The representation type of information with which TextExtractor deals is text.
However multimedia data has also become important. When we try to apply Tex-

tExtractor for multimedia data, the application (browser) must include some mouse

30

operations on the content while the user is watching or browsing it. However the prob-
lem is that such an application rarely exists now. Moreover even if it exists, there is
another problem about the unit of extraction, i.e., it is difficult to define the meaningful

part of the content.

2.7 Conclusions

This chapter describes a method to extract a text part which the user might be
interested in using the user’s mouse operation performed during his/her usual Web
browsing. In our research, we conducted a preliminary survey and discovered four kinds
of operations related to the users’ interests: text tracing, link pointing, link clicking
and text selection. We developed a system called ” TextExtractor” which extracts the
target text part of these four kinds of operations by sentence or line. We conducted an
experiment to see if the extracted text by TextExtractor is actually the part the user
was interested in.

Five users participated in the experiment and browsed their favorite pages as usual.
The result shows that the target text parts of every four kinds of operations include
keywords the user was interested in at higher ratio than whole text of the page. Com-
paring TextExtractor with the method to extract keywords at random, we confirmed
that TextExtractor extract keywords that the user was interested in at about 4 times
of accuracy. These results shows that TextExtractor extract the text part that the user
was interested in without insisting users to answer questionnaires.

We also compared TextExtractor with tf-idf which is the most popular keyword
selection method. The result shows that TextExtractor extracted the keyword that
the user was interested in at about 1.4 times of accuracy. The result also showed that
TextExtractor extract keywords at high accuracy even for pages with miscellaneous
styles such as bulletin boards and link collections where tf-idf does not achieve its best
performance. Therefore we can expect a more sophisticated information retrieval using
the extracted text by TextExtractor for relevance feedback.

Our future research will use the keywords extracted by TextExtractor and see its

31

effectiveness. We will also analyze the context of the extracted text and apply it to

the user analysis in information retrieval and marketing.

32

Preferences

[1] Broder, A., et al.: Graph Structure in the Web, Proc. of the Ninth International
World Wide Web Conference, In Computer Networks and ISDN Systems, Vol. 33,
pp- 309-320 (2000).

[2] Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer, Addison Wesley (1989).

[3] Resnick, P., et al.: Recommender Systems, Comm. of the ACM, Vol. 40, No. 3,
pp. 56-89 (1997).

[4] Belkin, N. J. and Croftk, W. B.: Information Filtering and Information Retrieval:
Two Sides of the Same Coin?, Comm. of the ACM, Vol. 35, No. 12, pp. 29-38
(1992).

[5] Sugimoto, M.: User Modeling and Adaptive Interaction in Information Gathering
Systems, Journal of Japanese Society for Artificial Intelligence, Vol. 14, No. 1, pp.
25-32 (1999).

[6] Mulvenna, M.D., Anand, S.S., Buchner, A.G.: Personalization on the Net using
Web Mining, Comm. of the ACM, Vol. 43, No. 8, pp. 123-125 (2000).

[7] Shardanand, U. and Maes, P.: Social Information Filtering: Algorithm for Au-
tomating "Word of Mouth’, Proc. of CHI’95, pp. 210-217 (1995).

[8] Yan, T. W. and Garcia-Molina, H.: SIFT - A Tool for Wide-Area Information
Dissemination, Proc. of 1995 USENIX Technical Conference, pp. 177-186 (1995).

[9] Resnick, P., et al.: GroupLens : An Open Architecture for Collaborative Filtering
of Netnews, Proc. of CSCW’94, pp. 175-186 (1994).

33

[10]

[11]

[12]

[13]

[14]

(1]

[16]

[17]

[18]

[19]

Pazzani, M. and Billsus, D.: Learning and Revising User Profiles: the Identifi-
cation of Interesting Web Sites, Machine Learning, Vol. 27, No. 3, pp. 313-331
(1997).

Lang, K.: NewsWeeder: Learning to Filter NetNews, Proc. of ICML’95, pp. 331-
339 (1994).

Smyth, B. and Cotter, P.: A Personalized Television Listings Service, Comm. of
the ACM, Vol. 43, No. 8, pp. 107-111 (2000).

Kantor, P.B., et. al: Capturing Human Intelligence in the Net, Comm. of the
ACM, Vol. 43, No. 8, pp. 112-115 (2000).

Morita, M. and Shinoda, Y.: Information Filtering Based on User Behavior Anal-
ysis and Best Match Text Retrieval, Proc. of the 17th Annual International ACM-
SIGIR Conference on Research and Development in Information Retrieval, pp.
272-281 (1994).

Sakagami, H. and Kamba, T.: Learning Personal Preferences on Online Newspaper
Articles from User Behaviors, Proc. of the Sizth International World Wide Web
Conference, In Computer Networks and ISDN Systems, Vol. 29, pp. 1447-1456
(1997).

Yoshida, M. and Yoshitaka, A.: Digital Reminder: Building and Accessing a Real-
World-Oriented Database, Proc. of The 8th Workshop on Interactive Systems and
Software (WISS5°2000), pp. 101-110 (2000).

Ohno, T.: IMPACT : Eye Mark Reusing Technique to Support Information
Browsing Task, Proc. of The 8th Workshop on Interactive Systems and Software
(WISS°2000), pp. 137-146 (2000).

Okumura, M.: Introduction of Natural Language Processing Tools, IPSJ Maga-
zine, Vol. 41, No. 11, pp. 1203-1207 (2000).

Matsumoto, Y.: Morphological Analysis System ChaSen, IPSJ Magazine, Vol. 41,
No. 11, pp. 1208-1214 (2000).

34

[20] http://www.w3.org/DOM/

[21]
[22]

[23]

[24]

[25]

[26]

[27]

Goodman, D.: Dynamic HTML The Definitive Reference, O'Reilly (1998).
Miyahara, K. and Okamoto, T.: Quantified Estimation Method of User’s Infor-

mation Interests based on the Web Browsing and its Application to Collaborative
Filtering, Proc. of the Technical Report of IEICE, ET97-115, pp. 17-24 (1998).

Shetch, B. and Maes, P.: Evolving Agents for Personalized Information Filtering,
Proc. of IEEE Conference on Artificial Intelligence for Applications, pp. 345-352
(1993).

Mostafa, J., et al.: A Multilevel Approach to Intelligent Information Filter-

ing: Model, System, and Evaluation, ACM Transactions of Information Systems,
Vol. 15, No. 4, pp. 368-399 (1997).

Crabtree, IB and Soltysiak, S.J.: Identifying and Trackign Changing Interests,
Iternational Journal of Digital Library, Vol. 4, pp. 38-53 (1998).

Osawa, Y., Sugawa, A. and Yachida, M.: An Index Navigator:Underatanding and
Expressing User’s Changing Interest, Journal of Japanese Society for Artificial
Intelligence, Vol. 13, No. 3, pp. 461-469 (1998).

Hijikata, Y., Aoki, Y., Furui, Y. and Nakajima, A.: TextExtractor: Text Part
Extraction Using Operation Logs on Web Browser, Proc. of The 8th Workshop on
Interactive Systems and Software (WISS 2000), pp. 201-206 (2000).

35

Appendix

Operation event

1.

© W0 N> o e W

10.

11.

Focus: A focus event occurs when the user clicks an object and the object becomes ready
to receive input data from the keyboard.

Blur: A blur event occurs when the user clicks an objéct and the current object loses
the focus.

Mousemove: A mousemove event occurs when the user moves the mouse pointer. -
Mousedown: A mousedown event occurs when the user presses the mouse button.
Mouseup: A mouseup event occurs when the user releases the mouse button.

Resize: A resize event occurs when the user resizes the window.

Scroll: A scroll event occurs when the user scrolls a window.

Click: A click event occurs when the user clicks on an object.

Mouseover: A mouseover event occurs when the user moves the mouse pointer over an
object. v

Mouseout: A mouseout event occurs when the user moves the mouse pointer off of an
object.

Select: A select event occurs when the user selects text by dragging the mouse pointer.

Format of operation event

operation time, operation event type, frame ID where the event occurred, object type involved
in the event, and other data such as the coordinates

Examples of operation event

936332393593, blur, frames(0),7,BODY
936332407468,focus,frames(0),7,BODY
936332410218, mouseover,frames(0),7,BODY,215,0

936332410265, mousemove, frames(0),7,BODY,215,0

Operation extraction method

1.

Text tracing

First, the system detects continuous movement of the mouse pointer in a horizontal
direction. For this detection, every time a mousemove event occurs, the system
calculates the angle of the mouse movement relative to the horizontal and the
time between the current mousemove event and the previous mousemove event.

36

(For calculating the angle, the system uses the current mousemove event, and a
mousemove event that occurred n-times before.) If the angle is below a threshold
Ar and the time is below a threshold T'r, the system regards the movement as a
continuous movement in a horizontal direction.

Second, when the system detects such a movement of the mouse pointer, the system
calculates the distance and velocity of the movement. If the distance is longer than
a threshold L and the velocity is slower than a threshold V, the system regards
this operation as a text tracing operation.

. Link pointing

The system regards the operation as a link pointing operation when a mouseover
event occurs on a link object, but there is no click event afterwards, and a mouseout
event occurs after a time T'p.

. Link clicking

The system regards a click event on a link object as a link clicking operation.

. Text selection

The system regards the operation as a text selection when a mouseup event at the
end of a select event occurs.

Table 2.5: Parameters for detecting operations.

Parameter Value
Angle A, (] tané |) 0.25
Time T, 750(msec)
Length L 40(pixels)
Velocity V 0.45(pixels/msec)
History n 2
Time T, 750(msec)

37

Chapter 3

Supporting Information Providers
for Rule-based Adaptive
Hypermedia

3.1 Introduction

The WWW (World-Wide Web) has become popular as a tool for information re-
trieval. Furthermore its applications are diversifying into such areas as electronic com-
merce, marketing and education [1]. In these kinds of application, the information
providers or the Web masters often want to direct their users through hyperspace as
desired according to each user’s preferences and status [2]. For example, to offer teach-
ing materials according to the learner’s knowledge or study history, to regulate obscene
contents to prevent children from viewing them, and to guide marketing campaign so
that banner ads and item recommendations are in accord with each customer’s prefer-
ences.

Some researchers have been studying these kinds of user navigation aids in the
research field of adaptive hypermedia [3]. Adaptive hypermedia is hypermedia [4, 5]
with functions to dynamically adapt to each user. A hypermedia document is the basic
component of the WWW and allows users to freely move and retrieve information
in hyperspace, which consists of nodes containing information and links relating the
nodes. Adaptive hypermedia systems realize their user-adaptations based on various
kinds of user information such as the user’s prior knowledge, objectives and interests.
Many adaptive hypermedia systems implement user-navigation guidance created by the
information providers, using methods that allow the information providers to describe

38

the navigation rules according to user categories and user behaviors defined in advance
[6]-[22]. However this method leads to the following problems:

1. Information providers have great difficulty describing the navigation rules as they
move towards fine-grained navigation control.

2. It becomes difficult to predict the resulting states for various kinds of users, because
the navigation dynamically varies according to each user.

These problems become more critical as the need to direct users accurately increases.

This research aims to construct an adaptive hypermedia system that reduces the
burden on information providers and prevents errors in the described navigation rules.
We propose a system solving the above problems by the following mechanisms:

1. A simplified format for navigation rules.
2. An authoring tool that examines the navigation rules.

Most existing rule-based adaptive hypermedia systems [6]-[17],[19],[22] do not focus
on providing mechanisms and functions that can reduce the burden on information
providers for creating and verifying navigation rules. (Rety[18] uses Prologue and
Stotts[20] uses Lisp as a rule language. In their systems, information providers can use
general tools for these programming languages to create and verify rules. However the
format of these programming languages is complex for information providers, and these
tools just verify the grammatical errors in the rules but do not verify the correctness
of the navigation.) _ ‘

Some researchers have been studying on authoring tools for adaptive hypermedia
systems [21, 23, 24, 25, 26]. However these systems do not offer the function examining
the navigation rules. (Wadge’s system[21] only proposes the markup language for
authoring. InterBook[23] allows information providers to use popular word processing
applications (MS-Word) and converts the created file to the format for InterBook.
However it is not a rule-based adaptive hypermedia system and it does not allow
information providers to direct users. Petrelli’s system[24] focuses on the design of
hypermedia network, and ECSATWeb[25] and NetCoach[26] focuses on defining and
modifying the knowledge concept used for adaptation. However these systems do not
support information providers to describe navigation rules.)

In the proposed system, (1) destination options are determined by hiding links so
that information providers can direct users accurately, (2) long-term and short-term
user information can be used in the navigation rule, because it is generally important
to consider users from both perspectives [27], and (3) the format of user information
is also simple, because the format of navigation rule is simple.

39

This chapter is organized as follows. First, we introduce existing navigation meth-
ods and user models, and explain the reason why we adopted link hiding and the type
of user information used in our system. After that we describe the navigation method
and rule format of our system and explain the authoring tool. Next we describe the
implementation of the system and its evaluation. Finally we offer some conclusions.

3.2 Adaptation Method and User Model

Existing adaptive hypermedia systems construct a user model and use it for adapt-
ing to each user [3]. The user models describe information about the users such as
the users’ knowledge, objectives, and interests. This section describes the adaptation
method and the user model.

3.2.1 Adaptation method

Adaptation methods can be classified into content-level adaptation and link-level
adaptation[3]. Content-level adaptation adapts the displayed content of the node.
Link-level adaptation adapts the links of the node. We adopted link-level adaptation,
because the focus of this research is on how information providers can direct users
through hyperspace. ‘

Link-level adaptation can be classified into the four types (direct guidance, adaptive
ordering, hiding and adaptive annotation) according to how the links are modified
[3]. (Brusilovsky also mentioned map adaptation in addition to the above mentioned
methods. Maps usually graphically represent a hyperspace or local area of hyperspace
as a network of nodes connected by arrows [3]. However this representation is different
from ordinary documents of hypermedia.) Direct guidance attaches an explanation
to the link the user should follow or inserts a [Next Link| button for directing the
user. Adaptive ordering sorts links in the order of the degree of suitability to the
user. Hiding narrows the accessible hyperspace by hiding links. Adaptive annotation
attaches additional decorations such as icons and colors to the links.

Out of these four kinds of link-level adaptation, direct guidance, adaptive order-
ing and adaptive annotation may display links that the information provider does not
recommend. Although this leads to the problem the user may not always follow the
information provider’s intentioned navigation paths, it also gives the user the freedom
to select links the information provider does not recommend. These approaches are es-
pecially suitable for applications like (1) information retrieval systems and (2) learning

40

systems that focus on the learners’ active information retrieval.

The link hiding method does not display any extraneous links. Although this forces
the user to follow the information provider’s navigation paths, it has the corresponding
advantage that the information provider can always direct the users as desired. This
constrained approach is suitable for applications such as (1) learning systems for busi-
ness training where the learner follows the information provider’s directions to acquire
the knowledge quickly, (2) help systems for application software, and (3) information
systems that screen obscene content from children. We adopted link hiding because
our system focuses on the situation where the information provider wants to direct
users precisely.

3.2.2 TUser model

As user models for adaptive hypermedia, there are overlay models and stereotype
models [3]. Models using keywords are also used in some adaptive hypermedia systems
[28, 29, 30]. An overlay model is based on a structural domain model which is rep-
resented as a semantic network of domain concepts. A stereotype model assigns the
user to one of several possible stereotypes for each dimension of classification. A model
using keywords is represented as a vector or a matrix whose elements are the degree
of interest in a keyword or topic. Although it is simple as a model, a browsing history
expressed with the permutation of URL is also used for some Web applications. This
is useful for describing the user’s recent browsing action.

Since it is generally important to consider long-term and short-term user informa-
tion for designing user models [27], we also use both kinds of user information. Since
our system simplifies the format of navigation rule, we also make our user model sim-
ple. We use pairs consisting of a property and a value (we call ”user parameter”) for
modeling the user’s long-term information. This approach is actually similar to all
three kinds of user model described above. We also use a browsing history represented
as the sequence of the node classifications (we call "path history”) for modeling the
user’s short-term information.

3.3 Navigation Method

3.3.1 Hypermedia model

Figure 3.1 shows the hypermedia model used in our system. The circles in the
figure show hypermedia nodes. The content displayed for the users are contained in

41

Figure 3.1: Hypermedia model.

these nodes. The user can move between nodes by following a link represented as a
straight line with an arrowhead. We also define a return link represented as a dotted
line with an arrowhead. Although the user cannot follow this link, this is required for
implementing the authoring tool (explained in the next section). The identity of the
node is represented by a number and node classes (explained later) are represented by
alphabetic characters. Some of the nodes have navigation rules (explained later) as
created by the information provider.

3.3.2 Class

Every node has a ”class” represented by symbols such as alphabetic characters.
The reason why we introduced the notion of class is to allow information providers to
describe the navigation rules by generalizing and specializing the characteristics and
meanings of the navigation rules. Class is used for representing the user model and
the navigation rules. The information provider defines a class in terms of the following
distinctions:

1. Whether or not the system displays the contents for a specific kind of user.

2. Whether or not the node offers users an explanation, asks a question, or does
something else for an educational purpose.

3. Which of several categories of contents the node belongs to (in cases where the
information provider deals with information in more than one category).

42

3.3.3 Representation of user model

The user parameter is represented as a value from some range. The information
provider assigns a meaning to the user parameter according to his/her navigation
control. The user, the information provider, or some other person sets the value of
a parameter. For example, they can be set by asking users to answer a questionnaire
or by using the results of regular paper tests in academic environments.

The path history is represented concisely as the sequence of classes of the nodes the
user has visited, and indicates the order of information the user has browsed. If the
user browsed nodes in an order such that their classes were C — A - B — B — A,
the path history is represented as CABBA.

3.3.4 Navigation rule

This system decides which links to hide based on a navigation rule that may be
associated with the current node. There are four kinds of navigation rules: (1) node
path rules, (2) general path rules, (3) node user rules, (4) general user rules.

A navigation rule that uses a path history is called a path rule and a navigation
rule that uses a user parameter is called a user rule. The navigation rule can also
be classified into two types, node rules and general rules. A node rule is defined and
applied only for a specific node. A general rule is for describing frequently followed
navigation paths in hyperspace and frequently used segmentation of the range of the
user parameter. The information provider can apply it for any node.

In a navigation rule, the information provider should describe the links that should
be displayed by the node ID or by the class of the node that is the target of the link.
The system hides all links that are not referenced in a navigation rule as links to be
displayed. The format of these four kinds of navigation rule is as follows:

1. Node path rule

Cu---Cwm+---+Cni-Cmp=Dy,---,D, (3.1)
2. General path rule

Cii-Cint++Cm--Copn=Cf,---,CI (3.2)
3. Node user rule

61#3#62 : D17D27 T Dn (33)

43

4. General user rule
er#Pe,:CI,Cf, -, Cf (3.4)

The above variables represent the following:
C: Class
D: 1d of the node to be shown
C/: Class of the node to be shown
h: Number of histories that will be referred to
m: Number of path patterns
n: Number of IDs or classes of nodes to be shown
P;: The ith user parameter (property)
e: Boundary number of the user parameter
The symbol ’#’ represents one of the following three operators: <, < or =.

Cpm1 -+ - Cpap, in the path rules (1) and (2) shows the path history pattern, which
represents the order of the user’s search in hyperspace as a permutation. The path
rule means that the system displays links whose node ID or class is described on the
right part of the rule if the user’s path history matches one of the path history patterns
which are described on the left side. In user rules (3) and (4), e1#P;#e, specifies the
user parameter P; and the applicable range of the parameter values. The user rule
means that the system displays links whose node ID or class is described on the right
side if the user parameter specified on the left side is within the specified range.

If a node has several navigation rules, the system displays all links that any naviga-
tion rule accepts. This means that if at least one rule out of several rules approves the
display of a specific link, the system displays the link regardless of the other navigation
rules.

3.3.5 Example of navigation

Figure 3.2 shows an example of navigation using path rules and user rules. For an
educational application, the classes are defined as follows:

e A: Nodes with a question.

e B: Nodes which display an appropriate response when the user answers correctly.
e C: Nodes which display an appropriate response when the user answers incorrectly.
e D: Nodes which display an explanation for students with good school records.

e E: Nodes which display an explanation for students with poor school records.

44

80<=p1<=100:E

General User Rule 1 \ + /
C)<=p1<80 :D)

Node Path Rule

Figure 3.2: An example of the rules.

We assume that the user parameter stands for the knowledge level on a specific
subject and is set based on the result of a standard paper examination at the school.

A node path rule is defined for Node No. 5. This rule is only applicable at this
node. "ACA = 7”7 in this rule means that when the user comes to Node No. 5 and
the user’s path history is ACA, the system shows the link to Node No. 7 and hides
the link to Node No. 8. Because Class B means that the user answered correctly and
Class C means that the user answered incorrectly, the history in this order means that
the user answered the question in Node No. 0 incorrectly and answered the question
in Node No. 4 correctly. ” ABA = 8” means that if the user answered correctly for the
question in Node No. 0 and also answered the question in Node No.4 correctly, then
the system shows only the link to Node No. 8. That is to say the system changes the
teaching materials according to the results of the previous questions.

A general user rule is also defined. This rule can be applied at any node in the
hyperspace and in this case Node No. 6 uses it. In this general user rule, if the User
Parameter 1 is 0, or more than 0 and not exceeding 80, the system shows any links
to nodes whose class is D and ignores other links. If the user parameter is more than
79 and not exceeding 100, the system shows the link to nodes whose class is E and
ignores other links. Because User Parameter 1 refers to the user’s knowledge level of a

45

specific subject, this means the system can offer suitable teaching materials based on
the student’s ability.

3.4 Authoring Tool

3.4.1 Objective

Generally an authoring tool is important for an adaptive hypermedia system so that
the information provider can direct users in hyperspace [8, 9, 14, 18, 21, 23]. Therefore
our system provides an authoring tool that helps the information provider in describ-
ing the navigation rules. This tool examines the execution results of the navigation
rule before they are incorporated into nodes. This aims for correct navigation with
fewer errors and for simplification of the information provider’s efforts to describe the
navigation rules. We focused on detecting the following two kinds of problems because
they can happen in any kind of content and are very likely to be related to navigation
errors:

1. Dead end: There is a possibility that all links are hidden and the user cannot go
anywhere after reaching a node with a navigation rule. This dead end problem
could be caused by a bad navigation rule. Were a dead end to appear, it would
force the user to stop searching in hyperspace. This may create obstacles to the
user’s progress.

2. Loop: In some navigation, the user may reach a node where the user has already
been. We call this search looping. As seen in the WWW, we can use a loop
effectively, for example as a link for returning to a top page, and it has an important
role. However our concerns are that there may be unintended loops or the user
may not be able to follow a loop that the information provider intended the users
to follow. This is because the system hides links dynamically, which could cause
" getting lost” problems [4, 5] for user navigation.

3.4.2 Dead end detection

A dead end can be caused by a path rule or a user rule or by a set of rules. This
section describes an algorithm that checks if a dead end will happen in a node (or if
there is a possibility a dead end can happen in the node) because of the path rules or
user rules. In our system, if a node has several kinds of navigation rules, the system
displays all links that any rule tries to display. It is possible that even if the tool detects

46

a dead end caused by one kind of navigation rule (e.g. a path rule) in a node, the other
kind of rule (e.g. a user rule) may try to display links in the node. Therefore when the
tool detects an apparent dead end at a node, it checks whether another kind of rule is
defined. If no other rule is defined for the node, it has detected a dead end. If another
kind of rule is defined on the node, it has detected the possibility of a dead end.

3.4.3 Detection of dead ends caused by path rules

A dead end caused by path rules happens when (1) the path history pattern the
user has followed is not included in the path rules or (2) none of the links of the current
node are described in the path rules as displayable, based on the path history pattern
the user has followed to reach the current node. Here is an algorithm to check whether
a dead end caused by path rules will happen or whether there is a possibility that it
will happen in a specific node. This algorithm not only detects dead ends (dead ends
possibility) but outputs the path history pattern that causes a dead end.

Detection algorithm for dead ends caused by path rules:

1. Node specification: The information provider specifies the node he/she wants to
check.

2. Examination of displayable links: The system checks whether or not the links to be
displayed according to the path history pattern described in the path rule defined
at the specified node really exist in hyperspace. This is checked by comparing the
nodes described as displayable in the path rules with the nodes that are the targets
of the links of the current node.

3. Registration of live path: The system recognizes the path history pattern, which
has links which should be displayed and really exist, as a live path (If the user
follows the live path to the specified node, there are links to proceed). It registers
the live path in a list according to the length of the path history pattern. We call
this list the live path list.

4. Depth-first search: The system executes a depth-first search from the current node
(It is the specified node at first) using the return links mentioned in the last section
and considering the current node to be the root of the inverted tree.

5. Path examination: The system refers to the live path list based on the length of
the current depth-first search and checks whether or not the current path of the
search is a live path for that node. If it is a live path, the system does not search
deeper on this path, but returns to Step 4 for continuing the depth-first search
from the upper node. If it is not a live path, the system continues to Step 6.

47

6. Detection of dead end possibility: If the length of the current depth-first search
is the maximum length of the paths registered in the live path list, the system
has determined that there is a possibility that a dead end happens when the user
follows this path and the search continues to Step 7. If it is not the maximum
length, the system returns to Step 4.

7. Decision on dead end: The system checks if a rule is defined at any of the nodes
on the path. If no navigation rule is defined for any of these nodes, the system
has determined that a dead end happens when the user has followed this path.
If navigation rules are defined for at least one node, the system has determined
that there is a possibility that a dead end happens when the user has followed this
path. After that the system returns to Step 4.

Figure 3.3 shows an execution example of this algorithm. This example tries to
detect a dead end at the shaded node in the figure. In this case, only the shaded
node has navigation rules and the other nodes do not have any navigation rules. Out
of 6 path history patterns in the navigation rule, only AB, AA, ABA, CCA have
links which can be displayed and really exist. The system registers these path history
patterns as live paths. After that, the system executes the depth-first search and
dead end detection. In this example, the path CCB is not a live path. The system
determines a dead end happens if the user follows this path, because the length of this
path is the maximum length of the live paths in the live path list and there are no
nodes that have a navigation rule in the path. CCA is an example of a path that does
not cause a dead end, because it is a live path.

3.4.4 Detection of dead ends caused by user rules

A dead end caused by user rules happens when (1) the values of the user’s user
parameters are not within the range described in the user rules or (2) all displayable
nodes described in the user rules do not exist as target nodes of links of the node where
the user is. Here is an algorithm to check whether a dead end caused by user rules will
happen in a specific node. This algorithm not only detects dead ends but also outputs
the rule that causes a dead end.

Detection algorithm for dead ends caused by user rules:
1. Node specification: The information provider specifies the node he/she wants to
check.

2. Examination of displayable link: The system checks whether or not the displayable
link for a specific range of the user parameter as described in the user rule of the

48

notlive o @ ™ jive path
path ¢

Path Rule

ABA+CCA=D,E
AB+AA=F
CCB+CCC=A,C

Live Path List

2:AB, AA
3:ABA, CCA

Figure 3.3: An example of dead end detection.

specified node really exists. This is checked by comparing the displayable nodes
in the user rules with the nodes that are the targets of the links of the current
node. If such links exist, it recognizes the range as a live range (a range that has
displayable links). .

3. Examination of the range of the parameter: The system checks whether or not all
ranges of the user parameter are live ranges. If there is a range that is not a live
range, it has determined that a dead end will occur within that range.

3.4.5 Loop detection

Even if a path defines a loop without considering the effects of link hiding, it may
not be a loop after link hiding is taken into account. It is necessary to set a specific
user parameter and follow the path according to the navigation rule to check if the
loop becomes a loop after link hiding. Here is an algorithm to detect loops by doing
depth-first search from a specific node. This algorithm not only detects loops but also
outputs the path of the loop.

49

Loop detection algorithm:

1. Node and maximum length specification: The inforﬁlation., provider specifies the
node he/she wants to start the depth-first search from and the maximum length
of depth-first search.

2. Navigation rule executlon The system executes the navigation rules of the current
node and hides links. After that it registers the displayed links in a displayed link
list, which is necessary to execute depth-first search only using the displayed links.

3. Depth-first search execution: Perform one step in a depth-first search using a link
registered in the displayed link list. '

4. Loop examination: The system searches for the node ID of the node it has reached
now in the path history of the depth-first search. If the same node ID exists in the
path history, the system has determined the path from the previous node which
has the same node ID to the current node is a loop..

5. Length check: If the search length of depth-first search is the length specified in
Step 1, the system goes back to the previous node and returns to Step 3. Otherwise
it returns to Step 2. '

In Step 2 of the above algorithm, if a path rule is defined on the node where the
system has reached and the search length of depth-first search is shorter than the length
of the path history pattern described in the rule, the system cannot execute a path
rule. In this case, the system does not execute the path rule and displays all links for
‘detecting all possibilities for loops.

3.5 Implementation and Evaluation

3.5.1 Implementation of the system

We implemented the system using the C++ language. In the system, the informa-
tion provider can use 16 kinds of classes. The maximum length of the path history is
16. There are no limits on the other parameters, the number of node, the number of
links, the number of rules, and so on. "

Figure 3.4-(a) shows an example of the system when the user searches the hyper-
space. The user browses text information and searches by inputting the number of
the link. Figures 3.4-(b,c) shows examples of the authoring tool. Figure 3.4-(b) is
an example of dead end detection. It shows the sequences of the node IDs and the
classes of the path history patterns leading to the information provider’s specified node

50

(1)

Learning System for Computer -Science

1 System Development

2 Operating System

>1

(28)

Question 1 What is the name of system development
method using the following steps.

Analysis of Requirement -> Requirement Definition ->
System Design -> Program Design -> Programming -> Test
-> Employment -> Maintenance
1 Prototype model

2 User model

3 Water fall model

>

(a) Example of search by the user

Dead end detection mode

input target node for detection>15

Input a rule type for detection

1 Path rule 2 User rule

>1

Dead end will occur in the following path.
3-56->9->10->11

C->A->B->A->C

(b) Example of dead end detection

Loop detection mode
Input start node for detection>83
Maximum length of loop>5
Following path will be a loop.
1-524->48->1

(c) Example of loop detetion

Figure 3.4: Output example from the system.

and causing dead end. Figure 3.4-(c) is an example of loop detection. It shows the
sequences of the node IDs of the detected loop.

3.5.2 Objective of evaluation

We evaluated the system from the following viewpoints: ‘

1. Qualitative evaluation of the entire system: This evaluation looks at how the
features of the system, which are the simple rule format, the authoring tool, and
adaptation by link hiding, appeared to the information providers. We asked some
information providers to use this system and give us their subjective opinion on

51

the effectiveness of the entire system.

2. Quantitative evaluation of the authoring tool: This evaluation examines whether
the authoring tool succeeds in reducing the information providers’ efforts to de-
scribe the navigation rules and insuring correct navigation. We quantitatively eval-
uated whether the authoring tool reduced the time that the information provider
required for describing the navigation rules (the description time) and reduced the
number of errors in the described navigation rules.

3.5.3 Evaluation method
Qualitative evaluation of the entire system

Five information providers created content and described navigation rules for the
content. After that they gave us their subjective opinions on the system’s effectiveness
and problems. They created the following content:

Information Provider A: Educational content for science.
e Information Provider B: Educational content for English.

e Information Provider C: Content included obscene parts that children were not to
see.

Information Provider D: Content for marketing.

Information Provider E: Content for software on-line manual.

Quantitative evaluation of the authoring tool

Ten information providers participated in the experiment as subjects. These sub-
jects were divided into two groups. The subjects of one group (Group A) described
navigation rules without the authoring tool. The subjects of the other group (Group
B) described navigation rules with the authoring tool. We evaluated the authoring tool
based on the description time and the error ratio in the described navigation rules. The
procedure of the experiment was as follows:

1. Experiment preparation: The experimenter prepared the experiment in the follow-
ing way:
(a) Prepare content as hypermedia data.
(b) Assign meanings to the user parameters.
(c) Assign meanings to the classes.

(d) Define the class of every node.

52

(e) Create the task for the experiment (the navigation rules the subjects should
create).

2. Explanation for the subjects: The experimenter explained how to describe the
navigation rule to both groups, and how to use the authoring tool to Group B.
The experimenter asked the subjects to work on a practice task for getting used
to the system. After that the experimenter explained the task for the experiment.
The experimenter sat by the subject and answered the subject’s questions, but did
not provide direct hints or solutions for the experimental task.

3. Experiment: Each test subject worked on the task and described all navigation
rules. The experimenter observed the subjects working on the task during the
experiment and measured the times taken for the descriptions.

4. Analysis: The experimenter measured the results of the experiment in the following
way:

(a) Execute the navigation rule described by the subject and check (1) whether or
not there is an error, (2) whether or not there is a dead end, and (3) whether
or not there is an error in the loop when the navigation includes a loop.

(b) Calculate the following three evaluation parameters: (1) error ratio, which is
the ratio of the tasks with an error in relation to all tasks, (2) dead end ratio,
which is the ratio of the tasks with a dead end in relation to all tasks, and
(3) loop error ratio, which is the ratio of the tasks with a loop and an error in
relation to all tasks with loop. ’

(c) Determine the relative effectiveness of the authoring tool as it affects the above
three evaluation parameters.

The content we created for the experiment are intended for students who study
computer science. The size of the content, the usage of the user parameters and
classes, and the contents of the navigation task are shown in the appendix.

3.5.4 Evaluation result
Qualitative evaluation of the entire system

The information providers offered the following subjective opinions about the sys-
tem:

1. I did not need programming knowledge and could describe the navigation rules
easily because the rule format is simple.

2. Users will not hesitate to select links because I hid all the unnecessary links.

53

3. When I created the navigation with a loop, I had to check if the user can follow
all of the paths in the loop. However the authoring tool showed all the paths of
the loop and I did not have to follow all of the paths by myself.

4. The navigation rule with a dead end that was discovered by the authoring tool
also had other errors.

Opinion 1 shows that even information providers who do not have the programming
knowledge accepted the navigation rule description, because the rule itself is simple.
Opinion 2 shows that link hiding reduced the users’ hesitations in hyperspace and gave
the information provider confidence that he could correctly direct the users. Opinion
3 shows that the information providers could recognize whether the loop paths they
created were or were not accessible at a glance, because the authoring tool displays the
sequences of the node IDs of all of the loop paths. From Opinion 4, we think that the
navigation rule itself is more complex or the information provider created rules more
carelessly in the node that has a dead end than in the other nodes.

The subjects also pointed out the following problems:

1. I have to describe the path history in a path rule even if I just want to create an
easy navigation rule that only checks whether or not the user has passed a specific
node.

2. I cannot change the user parameters while the user is searching in the hyperspace.

3. I think if the system had some general rules for frequent usage prepared in advance,
I could describe the navigation rules faster.

4. I have to check not only dead ends and loops but also the detailed result of the
navigation to see the sets of displayed links and sets of hidden links according to
a specific path. Without this I have to do simulation by setting user parameters
and following the paths.

Solving Problem 1 and Problem 2 has the advantage of strengthening the descriptive
capability of the navigation rules. One of the solutions for Problem 1 is providing
special user parameters for temporary flags and rules for updating the special user
parameters. However this requires the information provider to manage the flags. The
system should support the management of the flags. As regards Problem 2, we believe
the system should not easily update the long-term user information (user parameters),
because of the need to maintain the users’ trust of our user model. However if the
contents of the hypermedia are refined enough to manage changing the user parameters,
there should be little problem when the navigation rules change them. In this case,
the information provider should have the responsibility for the appropriateness of the
content and the rules for updating the user parameters, because the system cannot

54

guarantee the appropriateness of them.

The general rules for frequent usage mentioned in Problem 3 are important because
the information provider can not only use them but also refer to them. We will provide
them as a navigation rule library for our system. Providing other navigation rule
checking functions besides dead end detection and loop detection would be a solution
for Problem 4. However we only provided dead end and loop detection in the current
version of the authoring tool for our system. The reason is that the information provider
can perform simulations by himself or herself, yet it is hard to manually detect dead
ends and loops. We are considering functions besides dead end detection and loop
detection to enhance the authoring tool.

Quantitative evaluation of the authoring tool

As shown in Tables 3.1,3.2,3.3,3.4, Subjects a-e were in Group A and Subjects f-j
were in Group B. Table 3.1 shows the description time. We did an analysis of variance
to determine whether there is a significant difference in the description time between
the two groups. However there was not a significant difference at the 5% level of
significance.

Table 3.2 shows whether or not the subject described the navigation rules without
an error, and the error ratio. Table 3.3 shows whether or not the navigation rule
that the subject described included dead ends, and the dead end ratio. Table 3.4
shows whether or not the navigation rules (only for Tasks 5 and 6) that the subjects
described included loop errors, and the loop error ratio. In each table, a circle shows
that there is no error, there is no dead end, or there is no loop error. An X shows that
there are errors, dead ends, or loop errors. Although the value of the error ratio, dead
end ratio, and loop error ratio assumes discrete values because the number of tasks is
small, we did an analysis of variance on these three parameters to get an idea of the
effectiveness of the system. The result is that there is a significant difference between
the two groups at the 5% level of significance in the above three parameters.

Figure 3.5 is a graph of the relationship between the description time and the error
ratio. As regards the description time and the error ratio, the correlation coefficient of
the group A is -0.67 and the correlation coefficient of the group B is -0.89. Although
we cannot guarantee high and negative correlation, we see an apparent relationship
that as the description time becomes longer the error ratio gets smaller.

The overall results, showing significant differences in the error ratio, dead end ratio,
and loop error ratio, indicate that the authoring tool reduced the numbers of navigation
errors. There is not a significant difference in the description time. We think the reason

55

Table 3.1: Description time.

Subject | Time(min) || Subject | Time(min)
a 59.8 f 58.4
b 432 g 69.2
c 61.3 h 45.7
52.5 i 50.0
e 52.5 j 71.4

Table 3.2: Error in the navigation rule.
Task Error

ratio(%)
17
33
33
33
17

w
>
o
[=>}

Subject

a

o

o

s log =] @

17
17

[

el kol jol Rl kol Hol fol fo) No) No) iR
OIH|OlIO|O|O|™M|™M|Oi{0lw
O|QO|C|0O|O|0|0|0|0|0
o] fo) fol kol o) o] I =] fo) fo] ke’
O|O|W|{O|O»| X M|
o) ol ko] fo} fo) fe] fo) fo) o) K@)

—

is that the Group B subjects tended to rely on the authoring tool to check the described
navigation rule. However if the subject uses the authoring tool, the dead end and
loop detection shows whether or not there is an error, and they repeatedly modified
the navigation rules and checked them. The reason that there is not a significant
difference in the overall description time is that (1) there are individual differences in
the description times, (2) the authoring tool reduced the time to check the described
navigation rule, and (3) the Group B subjects spent time repeatedly modifying and
checking the navigation rules, thereby offsetting the time saved during each check.
However we can recognize the effectiveness of the authoring tool also on the description
time, because of the fact that the description time tends to get longer as the error
ratio becomes smaller and the error ratio becomes smaller when the subjects use the
authoring tool. This again shows that the authoring tool reduced the information
providers’ efforts in describing the navigation rules.

56

Table 3.3: Deadend in the navigation rule.

Task Dead End
Subject | 1 2 3 4 5 6] ratio(%)
a |ojloloJo[x] o 17
b |olo]ololx] x 33
c |ofx|ololx]| o 33
4 |ololofolx] o 17
e |ololo]olx]| o 17
t |olo]o]olo]| o
e |olojo|lo]o] o
h |o|lo|olo]|x]| o 17
i |olololo|o] o
i lolololo]o] o

Table 3.4: Loop errors.

Task | Loop error
Subject | 5 6 | ratio(%)
a X0 50
b XX 100
c X0 50
d X0 50
e X|O 50
f 0|0
g OO0
h X0 50
i 0|0
j 0|0

57

Description Time and Error Ratio
Error ratio (%) i

40
Subjectb Subject d Subjectc ____ :
] L 2 © -4 Without tool.
% @ Withtool |
20 Subjecth Subjecti Subjecta . Subjecte
® e L 24 4
10
Subject f Subject g Subject j
0 T T —&— T G &—
40 45 50 55 60 65 70 75

time(min)

Figure 3.5: Time for describing and error ratio.

3.5.5 Discussion

We implemented an adaptive hypermedia system for information providers to prop-
erly guide users in hyperspace. Our system uses link hiding as the primary adaptation
method and prevents users from selecting links that information providers do not make
available. Our evaluation shows that adding a supporting tool that checks the execu-
tion of link hiding for this function enables information providers to direct users more
reliably.

Because of the problems information providers have in describing the navigation
rules, we focused on the following:

1. The effort required to express the navigation according to the format of the navi-
gation rules. '

2. The effort required to check the execution of the described navigation rules.
For the reduction of these efforts, the following devices and functions are effective:

1. Simple description of the navigation rules, which does not require programming
knowledge for the information providers.

2. Providing an authoring tool, which detects errors in the described navigation rules.

The above devices and functions are effective for the reduction of the information
providers’ effort in describing the navigation rules and reducing the errors in the de- .

58

scribed navigation rules for general hypermedia systems where information providers
want to guide users.

3.6 Conclusions

This chapter proposed an adaptive hypermedia system that reduces information
providers’ efforts to describe the navigation rules and leads to fewer errors in the
described navigation rules while guiding users accurately. This system uses simple
expressions for the navigation rules to reduce the information providers’ efforts. It
also adapts the hyperspace to the user by link hiding in order to achieve the desired
user paths. We also offer an authoring tool for this system, which checks whether
there are errors in the described navigation rules, with the aim of further reducing the
information providers’ efforts to describe the navigation rules and avoid errors in those
rules.

The proposed system was implemented and evaluated qualitatively and quantita-
tively. In the qualitative evaluation, five information providers freely described content
and navigation rules and gave the experimenter their subjective opinions. In the quan-
titative evaluation, ten information providers described navigation rules for the same
navigation tasks and the experimenter measured the time required for describing the
navigation rules and the error ratio, which is the ratio of the navigation tasks with er-
rors in relation to all navigation tasks. The results of the experiments provide evidence
supporting the effectiveness of the system in the reduction of information providers’
efforts and in minimizing navigation errors. The proposed functions are effective for
hypermedia systems in which information providers want to guide users properly.

Our future research will focus on an enhanced authoring tool and an enhanced rule
function.

59

Preferences

[1] Yanagisawa, A. and Matsumoto, H.: Internet Value Chain Marketing, (1998),
SCC ‘

[2] Miller, M. and Wantz, L. J.: Computed Web Links: The COOL Link
Model, Proc. of 2nd Workshop on Adaptive Hypertext and Hypermedia, (1998),
http://wwwis.win.tue.nl/ah98 /Proceedings.html.

[3] Brusilovsky, P. L.: Methods and Techniques of Adaptive Hypermedia, User Mod-
eling and User-Adapted Interaction, Vol. 6, No. 2-3, pp. 87-129 (1996).

[4] Conklin, J.: Hypertext: An Introduction and Survey, in ”Computer-Supported

- Cooperative Work,” Morgan Kaufmann Publishers, pp. 423-475 (1988).

[5] Nielsen, J.: Hyper Text & Hyper Media, (1989), Academic Press.

[6] Brusilovsky, P. L.: Intelligent Tutor, Environment and Manual for Introductory
Programming, Educational and Training Technology International, Vol. 29, No. 1,
pp. 26-34 (1992).

[7] Boyle, C. and Encarnacion, A. O.: MetaDoc: An Adaptive Hypertext Reading
System, User Modeling and User-Adapted Interaction, Vol. 4, No. 1, pp. 1-19
(1994).

[8] De Bra, P. and Calvi, L.: AHA: a Generic Adaptive Hypermedia Sys-
tem, Proc. of 2nd Workshop on Adaptive Hypertext and Hypermedia, (1998),
http://wwwis.win.tue.nl/ah98 /Proceedings.html.

[9] De Bra, P., Houben, G. and Wu, H.: AHAM: A Dexter-based Reference Model
for Adaptive Hypermedia, Proc. of ACM Hypertext’99, pp. 147-156 (1999).

[10] De Carolis, B. and Pizzutilo, S.: From Discourse to User-Adapted Hypermedia,
Proc. of UM’97, International Conference on User Modeling, pp. 37-40 (1997).

[11] Chittaro, L. and Ranon, R.: Adding Adaptive Features to Virtual Reality Inter-
faces for E-Commerce, Proc. of AH2000, International Conference on Adaptive
Hypermedia and Adaptive Web-based Systems, LNCS 1892, pp. 86-97 (2000).

60

[12] Fischer, G. et al.: Minimalist Explanations in Knowledge-based Systems, Proc. of
23-th Annual Hawaii International Conference on System Sciences, pp. 309-317
(1990).

[13] Gonschorek, M. and Herzog, C.: Using Hypertext for an Adaptive Helpsystem
in an Intelligent Tutoring System, Proc. of AI-ED’95, 7th World Conference on
Artificial Intelligence in Education, pp. 274-281 (1995).

[14] HohLH. et al.: Hypadapter: An Adaptive Hypertext System for Exploratory
Learning and Programming, User Modeling and User-Adapted Interaction, Vol. 6,
No. 2-3, pp. 131-156 (1996). ,

[15] Kay, J. and Kummerfeld, R. J.: An Individualised Course for the C Programming
Language, Proc. of Second International WWW Conference, pp. 17-20 (1994).

[16] Not, E. and Zancanaro, M.: The MacroNode Approach: Mediating Between Adap-
tive and Dynamic Hypermedia, Proc. of AH2000, International Conference on
Adaptive Hypermedia and Adaptive Web-based Systems, LNCS 1892, pp. 167-178
(2000).

[17] Perez, T. et al.: HyperTutor: From Hypermedia to Intelligent Adaptive Hyperme-
dia, Proc. of ED-MEDIA’95 - World Conference on Educational Multimedia and
Hypermedia, pp. 529-534 (1995).

(18] Rety, J.: Structure Analysis for Hypertext with Conditional Linkage, Proc. of
ACM Hypertext’99, pp. 135-136 (1999).

[19] De Rosis, F., De Carolis, B. and Pizzutilo, S.: User Tailored Hypermedia Expla-
nations, INTERCHI’93 Adjust Proceedings, pp. 169-170 (1993).

[20] Stotts, P. and Furuta, R.: Dynamic Adaptation of Hypertext Structure, Proc. of
Third ACM Conference on Hypertext, pp. 219-231 (1991).

[21] Wadge, W.W. and Schraefel, M.C.: A Complementary Approach for Adap-
tive and Adaptable Hypermedia: Intensional Hypertext, Proc. of 3rd Work-
shop on Adaptive Hypertext and Hypermedia, (2001), http://wwwis.win.tue.nl/
ah2001/proceedings.html.

[22] Wu, H, De Bra, P., Aerts, A. and Houben, G.: Adaptation Control in Adaptive
Hypermedia Systems, Proc. of AH2000, International Conference on Adaptive
Hypermedia and Adaptive Web-based Systems, LNCS 1892, pp. 250-259 (2000).

[23] Brusilovsky, P. L., Eklund, J. and Schwarz E.: Web-based Education for All:
A Tool for Development Adaptive Courseware, Computer Networks and ISDN
Systems (Proc. of the 7th International World Wide Web Conference), Vol. 30,
pp. 291-300 (1998).

61

[24] Petrelli, D., Baggio, D. and Pezzulo, G.: Adaptive Hypertext Design Environ-
ments: Putting Principles into Practice, Proc. of AH2000, International Confer-
ence on Adaptive Hypermedia and Adaptive Web-based Systems, LNCS 1892, pp.
202-213 (2000).

[25] Sanrach, C. and Grandbastien, M.: ECSAIWeb: A Web-Based Authoring System
to Create Adaptive Learning Systems, Proc. of AH2000, International Conference
on Adaptive Hypermedia and Adaptive Web-based Systems, LNCS 1892, pp. 214—
226 (2000).

[26] Weber, G., Kuhl, H. and Weibelzahl, S.: Developing Adaptive Internet
Based Courses with the Authoring System NetCoach : Intensional Hyper-
text, Proc. of 8rd Workshop on Adaptive Hypertext and Hypermedia, (2001),
http://wwwis.win.tue.nl/ah2001/proceedings.html.

[27] Rich, E.: Users Are Individuals: Individualizing User Models, International Jour-
nal of Man-Machine Studies, Vol. 18, pp. 199-214 (1983).

[28] Armstrong, R., et al..: WebWatcher: A Learning Appretice for the World-Wide
Web, Proc. of 1995 AAAI Spring Symposium on Information Gathering from Het-
erogeneous, Distributed Environments, pp. 6-12 (1995).

[29] Joachims, T., Freitag, D., and Mitchell, T.: WebWatcher: A Tour Guide for The
World Wide Web, Proc. of the 15th International Joint Conference on Artificial
Intelligence, pp. 770-775 (1997).

[30] Lieberman, H.: Letizia: An Agent that Assists Web Browsing. Proc. of Inter-
national Joint Conference on Arttificial Intelligence, (1995), http://lieber.www.
media.mit.edu/people/lieber /Lieberary/Letizia/Letizia- A AAl/Letizia.html

[31] Hijikata, Y., Yoshida, T. and Nishida, S.: Adaptive Hypermedia System for Sup-
porting Information Providers to Direct Users through Hyperspace, Transaction
of IEEJ, Vol. 120-C, No. 11, pp. 1720-1731 (2000).

[32] Hijikata, Y., Yoshida, T. and Nishida, S.: Adaptive Hypermedia System for Sup-
porting Information Providers in Directing Users through Hyperspace, Proc. of
Third Workshop on Adaptive Hypertext and Hypermedia, pp. 147-156 (2001).

62

Appendix

Data for Experiment

We created educational content for learning computer science. As regards the size
of content, there are 103 nodes with 177 links. Table 3.5 shows the meaning of the user
parameters. Table 3.6 shows the meanings of the classes. Table 3.7 shows the contents
of the task, the number of nodes where navigation rules should be defined, and the
types of the rules. The abbreviations "nu”, ”gu”, and "np” in Table 3.7 stand for the
node user rules, the general user rules, and the node path rules.

Table 3.5: User parameters for the experiments.

User | Meaning
para-
meter
1 The degree of interest in the area of networks
2 The degree of interest in the area of system development
3 The degree of interest in the area of hardware
4 The degree of interest in the area of operating systems
5 The degree of knowledge in the area of networks
6 The degree of knowledge in the area of system development
7 The degree of knowledge in the area of hardware
8 The degree of knowledge in the area of operating systems

63

Table 3.6: Classes for the experiments.

Class | Role

A Offering a question

B Offering a response when the user answers the question

correctly

Q

Offering a response when the user answers the question

incorrectly

Offering an explanation

Topic-related class (networks)

Topic-related class (system development)

Topic-related class (hardware)

oOlQl=iE| g

Topic-related class (operating systems)

64

Table 3.7: Tasks in the experiments.

Task

Contents

Number
of

nodes

Rule
type

Hide links to the teaching materials that the
user is not interested in. This is based on the

degree of interest for the four areas.

1

Provide questions first, then provide explana-
tions for the user whose degree of knowledge
is high. Provide explanations first, then pro-
vide questions for the user whose degree of

knowledge is low.

nu

Provide three questions, then change the
contents of the explanation according to the

eight patterns that the users could answer.

np

Provide more advanced contents for the users
who answered correctly all of the three ques-

tions or whose degree of knowledge is high.

np
up

Provide five questions, which are ordered
from basic to difficult. After the user ans-
wers all questions, provide the same ques-
tions again beginning with the first question
that the user answers incorrectly. If the user
answers all questions correctly hé/she is fini-
shed studying. However the user is only

allowed to work on each question twice.

np

The user answers questions in three areas,
which are hard disk, CPU, and memory, in
this order. Each area provides two questions.
If the user answers even one question in an
area incorrectly, he/she has to answer the
same two questions again for -the topic. If
the user answers both of the questions cor-

rectly, he/she goes forwards to the next area.

np

65

Chapter 4

Content-Independent Framework
for Web-based EPSS

4.1 Introduction

Use of Internet for things like online shopping or online reservations has drastically
increased in the recent years and continues to grow everyday. People carrying out
these online activities need to complete some tasks on the Web sites. For example,
they need to login or register on the Web sites, search the Web sites, click on right
links and submit or complete their task by clicking on the appropriate buttons. Web
sites of these types are considered ”task-oriented Web sites”.

We believe that there are two problems with existing ”task-oriented Web sites”:

o If the Web content is not organized well structurally, the Web site users may not
easily understand how to use the Web site,

e If the users are not skilled enough to use Web, they will have significant difficulty
using the task-oriented Web sites.

If users face any of the above problems they may repeatedly scroll up and down in
order to find their way to what they are planning to accomplish on a Web page. Or,
if they think they accessed the wrong page unrelated to their task, they may go back
to the previous page trying to get to the link that may lead them to the target page.
Unnecessary scrolling up and down and moving into and out of task-unrelated pages
may result in a longer time for a given task completion.

One solution to the problems that task-oriented Web sites are facing is attempting to
add an Electronic Performance Support System (EPSS[1]) to the Web site. Web-based

66

EPSS is designed using methods to modify the composition of the Web content. For
example, by. embedding help functions in the content and adding detailed explanations
for the content on the Web page. Almost every existing Web-based EPSS is a ”built-in
EPSS, i.e., they have been developed for specific Web content and the service is part
of the content. There are some problems with built-in EPSS:

e It is difficult to reuse a specific Web site’s built-in EPSS for another Web content
because the composition of any specific Web content is different from another Web
content.

e Various versions of a built-in EPSS are required for a specific Web site to support
users with various skill levels. Development and maintenance of various versions
of a built-in EPSS is costly and time consuming.

To resolve the shortcomings of the built-in EPSS, we propose a framework of a
content-independent EPSS on the Web called WebAttendant. As shown in Figure 4.1,
WebAttendant is built independent of the Web content. WebAttendant automatically
tracks the user’s operation event on the Web page, which is acquired through DOM
(Document Object Model)[2] interface, analyzes user’s operation logs, and provides
users with specific instructions. Instructions are in the form of helpful interventions
by guidance window(s) beside the Web page and balloon help message pointing to the
target object on a Web page. The tactics how to provide users with instructions are
defined as rules by EPSS developers with the authoring tool.

The advantages of WebAttendant are following:

o WebAttendant’s EPSS can be reused for Web sites with different contents and for
different skill-level users just by changing the rules. This will reduce the cost for
development and the maintenance of the whole system.

e EPSS developers can easily provide EPSS on the Web content only by creating
rules using WebAttendant’s authoring function.

o Since each process of WebAttendant is independent of the Web server, EPSS de-
velopers can add EPSS to the existing Web content without changing the Web
content itself.

In order to verify the usefulness and efficacy of WebAttendant, we carried out
several experiments. Results of the experiments show that WebAttendant is a highly
effective platform for Web-based EPSS.

67

An exisiting Web site with
_WebAttendant EPSS servi

Anexisiting Web site

e

Provide individual instauctions based on the user’s
operation without changing original Web contents
- : o

Figure 4.1: WebAttendant.

4.2 Concept of EPSS and Related Works

4.2.1° Concept of EPSS

Here we summarize the purpose of EPSS described by Stevens et al. [1]. An
EPSS is a system that can provide on-demand, task-specific skills training, task- and
situation-specific information access, customized tools for task automation, and em-
bedded coaching, help, and validation tools. The aim of EPSS is to address the various
levels of skill among the users of applications, in other words, to develop an EPSS
that does not require its users to be necessarily highly skilled in the opera’cibn of the
application.

4.2.2 Related works

Figure 4.2 shows WebAttendant and different categories of existing EPSS. Existing
EPSS and WebAttendant are categorized based on their target applications. There are
EPSS which are used for stand-alone applications and for Web sites.

68

EPSS for stand-alone applications

Context sense Automati
method - utomatic context
Explicit query sense
[Microsoft Agent
ace
Knowledge base -ﬂ
EPSS for Web sites
Context sense A .
method | Explicit query utomatic context
. sense
Implementation
Content-independent
EPSS WebAttendant
(For any Web site)
.y -
Built-in E];SSW bsi Query-based Movie Help
(For specific Web site) Online Help
EPSS for the
American FactFinder

Figure 4.2: WebAttendant and existing EPSS.

EPSS for standard-alone applications

EPSS for stand-alone applications are categorized based on the techniques they use
to figure out what their users are trying to do. There are two categories of EPSS for
stand-alone applications:

e EPSS using explicit query approach.

e EPSS using automatic context sensing approach

For the explicit query approach, users have to request support from the EPSS by
sending explicit queries about what they are trying to do or about what help they
want. CoachWare [3] and the TRACK Knowledge Base are examples of systems that
use explicit queries to find out how to support a user’s task. Such systems may use a
database of queries that are intended to force users to clarify their situation even when
users are not knowledgeable about the application they are trying to use. Alternately,

69

users may be asked to describe their problems in their own words. However, this
approach is especially difficult for those users who don’t understand the application.

For the automatic context sensing approach, the system attempts to infer each
user’s intentions by automatically tracking their operation histories. If a user makes
a mistake, the system can detect his/her mistake and support him/her without any
request for assistance being made by the user, even when users do not recognize that
they have made mistakes. For this reason, an EPSS with an automatic context sens-
ing approach is more user-friendly and superior to an EPSS with an explicit query
approach. MMHelper [4], Microsoft Agent[5], and QuickCard[6] are examples of EPSS
with the same approach. They attempt to automatically sense the context. Examples
of useful data that can be used for this detection include the font size and number
words input in a form, the amount of time a user spends in an application without
doing anything. These existing EPSS detect the operations within the standard GUI
components. Since these existing EPSS are designed for a stand-alone application,
they cannot be reused for other applications.

4.2.3 EPSS for Web sites

Categorized from the viewpoint of system design, there are built-in EPSS and
content-independent EPSS on the Web. A built-in EPSS is designed for specific Web
content by building the EPSS as a part of the content. On the other hand, a content-
independent EPSS is designed independently from any Web contents. Almost all exist-
ing Web-based EPSS are built-in EPSS. The same as EPSS for standalone applications,
there are two categories of EPSS for Web sites:

e EPSS using explicit query approach.

e EPSS using automatic context sensing approach

Most existing EPSS on the Web are built-in EPSS with explicit query approach.
The main examples of built-in EPSS with explicit query approach are Query-Based
Online Help Services. In a Query-Based Online Help Service, a user has to ask questions
by entering keywords or forming a query on the Web page and then get guidance from
an EPSS database. A Query-Based Online Help Service does not assist a user unless
he/she recognizes the mistakes.

Examples of existing built-in EPSS using automatic context sensing are a Movie
Help Service on a Web site and the EPSS for the American FactFinder[7, 8]. The
Movie Help Service demonstrates to the user how to use the Web site using balloon help

70

messages when a user loads the Web site. The Movie Help Service only tracks user’s
page loading events. It does not grasp user’s intention. The EPSS for the American
FactFinder provides performance support based on their unique characteristics and the
needs of the key user group to which they belong. However, it mainly tracks user’s page
loading events, and it does not track more detailed information, as does WebAttendant.
Plus, it is not reusable.

Because Web masters can design many kinds of interventions and make programs
freely, built-in EPSS allows a greater flexibility in design. However, there are some
disadvantages with built-in EPSS:

o If Web masters introduce the EPSS function on the existing Web site, they have
to modify the content.

e It is difficult to reuse the modules of one built-in EPSS for other Web contents.

o If a large number of users with different skill levels use the Web sites, Web masters
will need to develop several versions of a built-in EPSS service to support its users.

WebAttendant is content-independent EPSS using automatic context-sensing. The
former characteristics of WebAttendant makes the development and testing processes
much easier, and the development costs lower adding or reusing services without chang-
ing the existing Web content itself. The latter characteristics is achieved by grasping a
user’s status for offering instructions by automatically tracking the user’s more detailed
Web operations, such as, the time and the type of the operation event occurs, the type,
number, and value of any target objects where the operation event occurs, the user
name, and the current URL involved. WebAttendant can infer a user’s intention more
accurately and can provide the user with more individualized instructions than exist-
ing built-in EPSS using automatic context sensing. Considering the above-mentioned
advantages of WebAttendant, it seems reasonable to consider it is superior to other
EPSS.

4.3 System Design and Implementation

4.3.1 Objective and design plan

Our objectives for designing WebAttendant are to meet two requirements:

1. To create a framework for a cost-efficiency development of an EPSS

71

2. To develop an EPSS that does not require its users to be necessarily highly skilled
in the operation of the application.

To achieve our first objective, we designed the WebAttendant to be a separate
EPSS from the existing Web content. Also, WebAttendant separates the rule from
the WebAttendant execution module to reuse the same rules for other Web content.
Furthermore, WebAttendant provides an authoring tool so that EPSS developers (rule
creators) can create rules easily, even if they do not have programming skills. To achieve
our second objective, we designed WebAttendant to provide individual instructions
based on the user’s Web operation events with an automatic context sensing approach.

4.3.2 Outline of the system
Separation of the Web site and WebAttendant

Figure 4.3 shows the structure of WebAttendant. WebAttendant is designed to
operate separately from a Web site. In the client side, the proxy server embeds sev-
eral WebAttendant modules to track user’'s Web operation and provide him/her with
interventions on the Web page. In the WebAttendant server side, other processes of
WebAttendant, such as recording and analysis of user’s operation and execution of the
rules, operate separately from the Web site. As a result, WebAttendant services can be
added, changed, and reused without a Web master changing the existing Web content.
Also, Web sites and WebAttendant can be maintained individually.

The rules are separated from the WebAttendant execution module, allowing other
Web contents to reuse the same rules for an EPSS and decreasing the number of rules
that have to be created. WebAttendant provides an authoring tool to create rules
easily.

Providing each user with individual instructions on a Web page

To provide each user with an individual instruction on a Web site, a method to
recognize the user’s status or intention by inference from the user’s detailed operation
history is required. Therefore, WebAttendant is required to provide a history tracking
function, which automatically detects the following user’s operation as many as possible
on the Web site.

(1) Operations performed on several Web pages

Generally, a Web site consists of many pages. If the tasks in the Web site are com-
plicated, users will need to carry out various operations over many pages. Therefore,
a function, which tracks the users operations for several pages is required.

72

Web Application Script Server

Server .

T __)Event Probe

- Client Applet
Javascript tag embedding - =

e
Ny

Web browser r EPSS Server Ruie Authoring
(IES) Environment
Rule Module
Web Appilication -
Pages Rule
Library
Balloon 7
Help etc. R ‘
——é;;!.a_—n_ce _M Guidance Authoring
Module | page Tool
———— Context ’ Module
Event Probe | Objegts 4
Module ,/4 —— S
R T Y Operation
L Client Applet i | Ly Log Server -
Relay operation events & i — Module 9
dispatch guidance to i HTTP
\pages o
, .—Cliént Side | Server side
User (Leamer) EPSS developer (Instructor)

Figure 4.3: System structure of WebAttendant.

(2) Operations at each object in a page.

If the users’ tasks in the Web site are complicated, they will need to carry out various
operations in a page. WebAttendant detects the user’s operations at each object (for
example, each inputting form) in a page in order to examine if he/she carries out the
operation in a correct way. :

To analyze a user’s operation, WebAttendant records and manages the user’s op-
eration as several contexts with names and attributes in the server side. Then, We-
bAttendant analyzes each user’s contexts by examining some attributes to find out
whether or not it has satisfied certain conditions. For example, it will examine to find
out if the number of scrolling operations is less or more than a specific times. Then, it
will examine the rules that need to be executed.

After WebAttendant determines to execute a rule to provide a user with individual
instructions, it customizes the Web page dynamically by displaying several interven-
tions at suitable places, or it modifies the Web page automatically in order to complete

73

a task efficiently.

4.3.3 Modules of WebAttendant

WebAttendant consists of following modules:
(1) Proxy server module _

Proxy server module embeds the tags for event probe module and guidance module
into each Web page. The tags refer to modules on the Script Server (a standard HTTP
server). The Web page where the tags are embedded is then sent to a client browser
[9].

(2) Event probe module

When a user operates in the Web page, the event probe module automatically tracks
the user’s operation by handling a DOM event in the Web browser [10]. Examples of
a DOM events are CLICK, MOUSEMOVE, MOUSEOVER, SCROLL, KEYDOWN,
KEYUP, LOAD, SELECT, and so on. The event probe module collects a complete set
of information, including

e The time and the type of the DOM event that occurs,

e The type, number, and value of any target objects where the DOM event occurs,
e The IP address of the client or the user name,

o The current URL involved.

The collected information about the user’s operations is sent to a log server.
(3) Log server module

Log server module receives the operation events from the event probe module and
sends them to the context module. Log server module also transmits DOM actions
(actions of interventions) from a rule module to the guidance module.
(4) Context module

Context module has general contexts and represents what a user has done. The
context consists of a set of more than one context items with a name and attribute.
There are three kinds of context items: '

1. User context item: A parameter related to a user such as "current page’s URL”,
"browsing history of URL” and ”user’s skill level.”

2. Page context item: A parameter related to a page such as ”URL”, "browsing time”
and "number of mouse movement.”

74

Table 4.1: Context event.

Context Event Meaning

load Load a page

unload Unload a page

mouseover Put the mouse over the target object
mouseout . Put the mouse out of the target object

click Click the mouse at the target object

submit Submit the target form

no-change Lose focus without inputting

repeated-focus Focus the target object repeatedly
specified-focus-order Focus some‘objects with specified-order
specified-focus-unorder Do not focus some objects with specified-order
long-focus ' Foucus an object for a long time
long-no-keypress Focus an object for a long time without inputting
many-mouse-operations Move a mouse many times
many-scroll-operations Scroll many times

many-mouseover Put a mouse over some objects many times
many-back-button-return Back to previous page many times
click-hesitation Hesitate a click operation
input-include-prohibited-char | Input characters with prohibited char

3. Object context item: A parameter related to an object such as ”value”, ”number
of focuses”. and ”number of change.” '

When the context module accepts the operation event from the log server, it makes
a new context item, which is appropriate to a new user, a new page and a new object,
or updates the value of the existing context item. Also, context module examines a
value of a context item and if the value is satisfactory, according to the set standard
parameter, it makes the context event to notify the rule module that user’s context
updated and sends it to the rule module. Table 4.1 shows the type of context events
currently implemented and used in the evaluation (explained in the section 4.4).
(5) Rule module |

Rule module decides which rule should be selected to provide individual instructions
based on the user’s context events and executes the selected rules. The rule module
receives the context event from the context module. Then, the rule module (1) selects
a rule that is appropriate to the context event, (2) checks the context described in the

75

condition part of the rule, and (3) decides the execution of a guidance to the user as a
DOM action or the update of the value of context item as a context action. The rule
module sends DOM action to the log server, which is a command for guidance module
to execute guidance. Or, the rule module sends the context action to the context
module, which is a command for the context module to update the value of a context
item. '
(6) Guidance module

Guidance module runs as a client-side applet and give an individual instruction
to a user. When the guidance module receives a DOM action from the log server,
it executes the DOM action, such as an action to provide interventions to the target
object or change pages automatically[11]. Table 4.2 shows the type of DOM actions.
Figure 4.4 shows an example of somie DOM actions: ”balloon help on” (Figure 4.4-
a), "auto input” (Figure 4.4-b), ”window on” (Figure 4.4-c) and ”web page on” (Figure
4.4-d).
(7) Rule

Rule defines the functions of EPSS service, i.e., the way to instruct each user de;
pending on the user’s situation. Rules describe what kind of intervention should happen
and how that should happen, depending on the user’s situation. Rules are described
as a XML rule format. A rule format consists of a ”condition part” and an ”execution
part”. In condition part, the user’s situation is described by using context event and
the attribute of a specific context item. In execution part, the way to instruct each user
or the update of his/her contexts are described by using more than one DOM actions
and context actions. Figure 4.5 shows the rule format. Figure 4.6 shows an example
of the rule in XML format.
(8) Authoring tool module

Authoring tool module provides a simple point-and-click user interface to create
rules. Authoring tool module allows users to create rules by minimum operations,
linking them directly to the target object on the Web page. The EPSS developer can
describe which URL and object, when, what kinds of messages, and how he/she want
to show by the interventions on the Web site by selecting an item in the window for
the authoring tool beside the target Web page (see Figure 4.7).

76

Table 4.2: DOM action.

[DOM action

Function

page change

Change URL automatically from the current URL in a same window

window on

Create a new window and display a specific URL

balloon help on

Add a balloon help beside a HTML element with a message

balloon help off | Delete a displayed balloon help

wizard Display a window as a wizard for a user

web page on Display a specific URL Web page besides a HTML object in a Web page
web page off Delete an inserted Web page

auto input Input a message automatically in an input form
alert Display an alert window

disable Disable a specific input form

enable Eable a specific input form

focus Focus a specific input form automatically
invisible Make invisible a specific object

visible Make visible a specific object

7

+ context source - DOM target

+ context event name + DOM object descriptor
+ context condition clause + DOM action descriptor
+ context descriptor - context target

+ context condition + context descriptor

+ context action descriptor

+ : consists of ...

-:isoneof...

Figure 4.5: Rule format.

78

<?xmi version="1.0" ?>.
<IDOCTYPE rule-set SYSTEM "rule.dtd">
<rule-set>
<rule>
<source type="context">
<context-event-name> long-focus </context-event-name>
<context-condition-clause>
<context-descriptor>
<context-name>current-DOM-ID</context-name>
</context-descriptor>
<context-condition type="numeric">
<operator>=</operator>
<value>36</value>
</context-condition>
</context-condition-clause>
</source>
<target type="DOM">
<DOM-object-descriptor>
<object-identifier typer="ID">
<DOM-ID>36</DOM-ID>
</object-identifier>
</DOM-object-descriptor>
<DOM-action-descriptor type="param">
<DOM-action-type>balloon-help-on</DOM-action-type>
<DOM-action-parameter>
<string-value type="constant">Input keywords here.</string-value>
</DOM-action-parameter>
</DOM-action-descriptor>
<ftarget>
</rule>
</rule-set>

Figure 4.6: An example of rule expression in XML.

79

e

Cfsoon SHTTETIOR Gl Csorgna
Jone L T O DR X R
g@z&&%a&mﬁ:&%&fsmu d

AARBIIREE, R,

g RIEER
LKLY By, C R
ERTPRRILCHE
SR GV B

= R
e L
BTG PB4
SRR BRI o
BB, BT T MO
AR T BN

Figure 4.7: Authoring tool.

80

4.4 Evaluation

4.4.1 Objectives of evaluation

In order to verify the superiority of WebAttendant framework over a built-in EPSS
in cost-efficiency of development, we ran several sets of experiments to evaluate two
aspects of EPSS development:

(1) An amount of work involved to develop an EPSS ~

First we calculated the total operational steps involved in developing an EPSS when
we used WebAttendant. Then, we examined the total size of the programs involved to
develop the same EPSS when we used a built-in EPSS framework. Finally, We com-
pared the total operational steps involved in EPSS development with WebAttendant
framework to the total size of program involved in EPSS development with built-in
EPSS framework.

(2) Reusability

To examine a cost-efficiency of development of an EPSS when EPSS modules are
reused, we compared the total number of operational steps involved when we used
WebAttendant framework to the size of programs involved when we used a built-in
EPSS framework to reuse the same EPSS modules. We did this comparison for two
possibilities:

(a) Developing EPSS for Different Web sites:

We developed several different EPSS for different Web sites. We then calculated the
amount of work when modules for EPSS functions to a specific Web site were reused
for other Web sites as well.

(b) Developing EPSS for users with different skill levels in a same Web site:

We developed several different EPSS for different skill levels in a same Web site.
We then calculated the amount of work when modules for EPSS functions to a specific
skill level were reused for other skill levels as well.

4.4.2 Evaluation on an amount of work

To compare an amount of work using WebAttendant framework versus using a built-
in EPSS framework, we developed an EPSS called EPSS-A, which is for an existing
Web training site. The scenario and the number of functions (rules) of EPSS-A is
shown in Table 4.3.

81

Table 4.3: Scenario and number of functions(rules) of the created EPSS.

EPSS Scenario Number of
name ' functions
EPSS-A Assisting users how to register using their ID, check the availability 43

of the courses, and fill out course application.
EPSS-B Assisting users how to make a map using data in the US Census Bureau. 35
EPSS-C Assisting users how to transfer a money to other’s bank account. 30
EPSS-L1 | The target is a user who does not have a Web operation skill, and also 10

a first time user of this site. Assisting a user by explaining the flow
of a task for his/her purpose in detailAnd also explaining the summary
of each page.

EPSS-L2 | The target is a user who have an ordinary Web operation skill and has 20
used this site before. Assisting a user by explaining the summary of
each task simply.

EPSS-L3 | The target is a user who is a Web expert. Or a user who.used this site 30

many timesAssisting a user only he makes a mistake, for example, when

inputting a world in a target object with mistake.

Result in WebAttendant

In WebAttendant, the only works required to develop EPSS-A was to create rules
for defining the functions of EPSS. The authoring tool was used for the rule description.
The EPSS developer created rules by simple operations. He or she only needed to follow
the following 4 operational steps using the authoring tool:

Stepl) select the condition part of the rule from the drop-down lists,
Step2) click a target object in the target Web page,

Step3) select the type of intervention from a drop-down lists, and
Step4) fill in a message that you want to show with an intervention.

We calculated the amount of work that needed to be done to develop EPSS-A.
Table 4.4 shows the total number of operational steps using WebAttendant.

Result in built-in EPSS

To develop EPSS-A in built-in EPSS, the EPSS developer had to create several
modules for required EPSS functions, using JavaScript and Java languages and embed
it in each HTML Web page. Table 4.4 shows the line of the program created in the
experiment.

82

Comparison

To develop EPSS-A using WebAttendant, the developer’s only work was making
rules by using the WebAttendant authoring tool. The total number of operational steps
involved to make 43 rules was 103, and no special programming skill was required. In
contrast, using a built-in EPSS framework, the developer had to create several EPSS
modules using a programming language. We found that the total size of programs
the developer had to modify were 2280 programming lines. Though it is obvious
that the amount of work is lower in WebAttendant than in built-in EPSS because
WebAttendant has already provided the basic modules, we think it is easier to develop
an EPSS using WebAttendant than using built-in EPSS from the viewpoint of the
user’s mental workload for the knowledge of the programming languange.

4.4.3 Evaluation on reusability for different Web sites
Development of EPSS for different Web sites

We developed three different EPSS for three different Web sites once using the
WebAttendant framework and another time using a built-in EPSS framework. The
three different EPSS were the EPSS for Web training site (EPSS-A), which we already
described in Section 4.4.2, the EPSS for US Census Bureau Web site (EPSS-B) as
shown in Figure 4.4 and the EPSS for Web banking site (EPSS-C). We then compared
the amount of work needed to complete for development of these EPSS when we used
the WebAttendant framework compared to when we used a built-in EPSS framework.
Table 4.3 shows the scenarios of EPSS services for each Web site and the number of
functions (rules) created for each Web site. We consider reusability of rules individually
as a condition part and an execution part. Table 4.5 shows the number of times reusing
a module.

Result in WebAttendant

The only work needed to be completed to make the EPSS modules reusable was to
change several parts of each rule that WebAttendant was going to reuse. We calculated
the amount of work involved in modifying the EPSS-A to be reusable as EPSS-B or
EPSS-C. The calculation was based on the total number of operational steps involved
in modifying the rules.

Reusable rules that require no modifications are condition part independent of the
Web site contents. The example of a reusable rule is a rule that defines the function

83

of ”many-mouse operations (handling a user moving a mouse many times)”. There
are some reusable rules that we required some changes, which are dependent of the
Web site contents. For example, the condition part of ”click-hesitation” rule needs a
target object for an instruction in a rule had to be changed. As show in Table 4.5,
the total number of operational steps involved in modifying the reusable rules was 170
operational steps.

Result in built-in EPSS

We developed EPSS-A, EPSS-B and EPSS-C using a built-in EPSS framework. To
reuse these EPSS, the developer had to modify the modules for each function using
JavaScript and Java languages, and had to embed them in each module in each HTML
Web page. We estimated the amount of work involved in EPSS development based on
the total number of programming lines the developer had to modify to reuse these EPSS
modules. As show in Table 4.5, the total programming lines modified for development
of EPSS-B and EPSS-C were 422 lines.

Comparison

The work involved in making the EPSS reusable for other Web sites was 170 opera-
tional steps in WebAttendant and 442 program lines in Built-in EPSS. Moreover there
is a difference in user’s mental workload between the operation on the GUI authoring
tool and the program modification on the editor. From the results of the experiment, we
concluded that the WebAttendant framework is superior to a built-in EPSS framework
in terms of its reusability for different Web sites.

4.4.4 Evaluation on reusability for different skill levels
Development of EPSS for different skill levels

We developed three different EPSS once using the WebAttendant framework and
another time using a built-in EPSS framework. The three different EPSS were intended
for users of three different skill levels. We developed the EPSS to "highly skilled
users” as EPSS-L1, the EPSS to ”intermediate-skilled users” as EPSS-L2 and the
EPSS to ”little-skilled users” as EPSS-L3. We compared the tasks involved in reusing
the modules of these EPSS when we used a WebAttendant framework compared to
when we used a built-in EPSS framework. Table 4.3 shows the scenarios of EPSS
services for users with different skill levels and the number of functions (rules) created

84

for each Web site. We consider reusability of rules individually as a condition part and
an execution part. Table 4.5 shows the number of times reusing a module.

Result in WebAttendant

The only works needed to complete to make EPSS modules to be reusable was to
change several parts of each rule that WebAttendant was going to reuse. We calcu-
lated the amount of work involved in modifying EPSS-L1 to be reused as EPSS-L2
or EPSS-L3. The calculation was based on the total number of operational steps in-
volved in modifying rules. Table 4.5 shows the results of reusability experiment in
WebAttendant. As shown in Table 4.5, the total number of operational steps involved
in modifying rules for reusing the modules was 85 steps. Reusable rules requiring no
modifications are independent on the user’s skill level. An example of such rules is
”input-include-prohibited-char” that warns the user that there are some errors in the
input area of the form. The errors in the form are crucial for any users. There are
some reusable rules that required some changes which are dependent of the user’s skill
level. An example of such rules is changing the type of guidance in the execution part
of the rule based on the user’s skill level.

Result in built-in EPSS

To reuse the EPSS functions, the developer had to modify required modules using
JavaScript and Java languages, and had to embed each module for each target object in
each HTML Web page. We calculated the amount of work based on the total number
of program lines we had to modify to make the EPSS modules reusable. Table 4.5
shows the results of reusability experiment in built-in EPSS. As shown in Table 4.5,
the total number of programming lines that needed to be modified was 207.

Comparison

The work involved in making the EPSS reusable for other user-skill levels was 85
operational steps in WebAttendant and 207 program lines in Built-in EPSS. Moreover
there is a difference in user’s mental workload between the operation on the GUI
authoring tool and the program modification on the editor. From the results of the
experiment, we concluded that the WebAttendant framework is superior to a built-in
EPSS framework in terms of its reusability for different skill levels.

85

4.4.5 Summary of the results

The summary of the results in the above-mentioned three experiments are as follows:

1. The EPSS developer’s amount of work to develop an EPSS for the first time is
lower in WebAttendant than in built-in EPSS.

2. The work involved in making the EPSS reusable for other Web sites is lower in
WebAttendant than in built-in EPSS.

3. The work involved in making the EPSS reusable for other user skill levels is lower
in WebAttendant than in built-in EPSS.

In the near future, EPSS for the Web-based applications used in the corporation
will probably be outsourced like conventional business trainings. In that case, an EPSS -
framework with low development cost and high reusability for different Web sites or
user skill levels would be effective for outsourcing service companies.

4.4.6 Future directions

Results of the experiments suggest the need for research on following areas:
(1) Management of rules

As the number of rules increases, keeping track of each rules and its operation
condition become very complicated. Thus it is desirable to have a management tool to
show the purpose and operating conditions of each rule.
(2) Dealing with dynamically generated pages

If the Web server is linked to a database and generates pages dynamically, man-
agement of access to objects in a Web page becomes complicated since the document
structure may change. Even an Xpointer[12] will fail unless the original server defines
the proper IDs. It is desirable to extend the rule-description technology to deal with
some of the structural changes in such dynamically generated pages.

86

Table 4.4: The amount of development.

Type Module name Built-in EPSS | WebAttendant
Number of Number of
program operational
lines steps

Event load 12 1
unload 32 1
mouseover 34 2
mouseout 45 2

click 109 2
long-focus 188 2
long-no-keypress 217 2
many-mouse-operations 193 - 2
many-scroll-operations 170. 1
many-mouseover 159 2
many-back-button-return 216 1
click-hesitation 228 2
input-include-prohibited-char 160 2
Guidance | pagechange 18 1
window on 26 1

balloon help on 132 1

wizard 26 1

web page on 258 1

alert 4 1

TOTAL 2227

87

T
00

Table 4.5: Reusability.

Type Function (rule) name Experiment for Experiment for
different Web sites different skill levels
Reusing | Built-in {| WebAt. | Reusing | Built-in | WebAt
Event load 11 11 0 6 6 0
unload 0 0 0 1 1 0
mouseover 12 12 12 2 2 2
mouseout 12 12 12 2 2 2
click 4 4 4 0 0 0
repreated-focus 2 12 2 0 0 0
specified-focus-order 2 32 2 0 0 0
specified-focus-unorder 3 48 3 0 0 0
long-focus 0 0 0 1 4 1
long-no-keypress - 1 6 1 1 6 1
many-mouse-operations 10 60 10 1 6 1
many-scroll-operations 4 8 0 5 10 0
many-mouseover 12 48 12 11 44 11
many-back-button-return 6 24 0 7 28 7
click-hesitation 9 36 9 24 6
input-include-prohibited 8 20 0
char

Guidance | page change 5 5 5 1 1 1
window on 8 8 8 15 15 15
balloon help on 49 49 49 13 13 13

wizard 19 19 19 5

web page on 14 14 14 5

alert 6 6 6 5
TOTAL 191 422 170 92 207 85

Reusing: Number of times reusing a functions (rules).

Built-in: Number of modified program lines in Built-in EPSS.

WebAt.: Number of operational steps for modification in WebAttendant.

88

4.5 Conclusions

We proposed a framework for development of a content-independent EPSS called
WebAttendant. In contrast to built-in EPSS, which is a part of Web content, We-
bAttendant’s EPSS can be built independent of the Web content. We proposed the
systen design and the system structure of WebAttendant. We have also evaluated its
effectiveness. We conducted a series of experiments to test the effectiveness of WebAt-
tendant. From the results of these experiments, we concluded that WebAttendant is
highly effective as a platform of Web-based EPSS.

89

Preferences

[1] Stevens, G.H. and Stevens, E.F.: Designing Electronic Performance Support Tools:
Talent Requirements, Performance & Instruction, Vol. 24, No. 2, pp. 9-11, (1995)

[2] http://www.w3.org/DOM/

[3] CoachWare, http://sterlingnet.com/sterling/coachware.htm

[4] Mmbhelper, http://www.esmmi.com/product-more_weel.htm

[5] Microsoft Agent, http://msdn.microsoft.com/workshop/imedia/agent /
[6] QuickCards, http://www.epssinfosite.com/dd-qcard.html

[7] Duke-Moran, C., Swope, G, Morariu, J, and deKam, P.: Performance Support
Case Studies from IBM, International Society for Performance Improvement, Per-
formance Improvement Journal, Vol. 38, No. 7, (1999).

[8] American FactFinder, http://www.census.gov

[9] Furui, Y., Aoki, Y., and Hijikata, Y.: A Web proxy for embedding operation
profiling and automatic navigation programs in Web pages, Proc. of the 60th IPSJ
55-8, pp. 421-422, March 16, (2000).

[10] Aoki, Y., Ando, F., and Nakajima, A.: Web Operation Recorder and Player,
Proc. of The 7th International Conference on Parallel and Distributed Systems
(ICPADS2000), pp. 501-508, (2000)

[11] Aoki, Y., and Nakajima, A.: User-Side Web Page Customization, Proc. of the
8th International Conference on Human Computer Interaction (HCI International
’99), Vol. 1, pp. 580-584, (1999).

[12] XML Pointer Language (Xpointer) Version 1.0 W3C Candidate Recommendation
7 June 2000, http://www.w3.org/ TR /xptr

90

Chapter 5

Conclusions

This doctoral dissertation considered the technologies supporting the personaliza-
tion in information browsing systems. There are four kinds of functions required for
developing personalization in an information gathering system, which is the higher rank
concept of an information browsing system: (1) user information gathering function,
(2) user modeling function, (3) comparing and selecting function and (4) authoring
function. Out of the four functions, this research studied on the user information
gathering function and the authoring function.

For the user information gathering function, we developed a system called TextEx-
tractor, which automatically extracts a text part that the user was interested in from
the whole text of a page using the user’s ordinary mouse operation. First, we surveyed
the user’s mouse operation performed during his/her usual Web browsing. In this
survey, we found four kinds of operations related to the users’ interests: text tracing,
link pointing, link clicking and text selection. TextExtractor works for any Web sites
because it is implemented as JavaScript and Java applet and inserted to HTML by
the proxy server. First, TextExtractor acquires the DOM (Document Object Model)
event and analyzes the sequence of the DOM events to detect the above-mentioned
four kinds of operations. After that, it extracts the text part which is the target of the
detected operations.

We conducted an experiment to see the effectiveness of TextExtractor. In this
experiment, we saw if the extracted text by TextExtractor is actually the part the user
was interested in. Five users participated in the experiment and browsed their favorite
pages as usual. The result shows that the target text parts of every four kinds of
operations include keywords the user was interested in at higher ratio (approximately
4%) than whole text of the page. We also compared TextExtractor with tf-idf which
is the most popular keyword selection method. The result shows that TextExtractor

91

extracted the keyword that the user was interested in at about 1.4 times of accuracy.
The result also showed that TextExtractor extract keywords at high accuracy even
for pages with miscellaneous styles such as bulletin boards and link collections where
t£-idf does not achieve its best performance. From these results, we concluded that the
system can automatically acquire the part of the Web page the user was interested in
from the user’s ordinary mouse operation and its precision is better than that of other
methods such as tf-idf. We expect that TextExtractor leads to the user’s more frequent
usage of relevance feedback and the accurate Web search.

For the authoring function, we considered the two kinds of features of the WWW:
(i) it allows users to acquire information by moving from a page to another page by a
link and (ii) it provides GUIs as a platform for building Web applications. We studied
on the following two kinds of functions for the above features: (1) a verifying tool for
user-navigation and (2) a framework for an EPSS on the Web.

The verifying tool for user-navigation checks the navigation rule which was de-
scribed by the information provider. The most popular personalization method is a
rule-based control. This needs the rule described by the human in advance. If there
are some errors in the rule, this leads to the incorrect navigation. We developed a
simple hypermedia system for testing the verifying tool and adopted the link hiding
for the adaptation method. In this environment, we focused on a dead end and a loop
problem. A dead end is the status, in which all links are hidden and the user cannot
go anywhere after reaching a node with a navigation rule. A loop is the status, in
which there is an unintended loop or the user cannot follow a loop that the informa-
tion provider intended the users to follow. Generally loops are effectively used in the
WWW. However the dynamic adaptation may hide some part of the loop or create
unintended loops. This authoring tool automatically finds dead ends and loops by
following the paths and investigating the rules.

We conducted an experiment to evaluate the authoring tool. This evaluatlon €x-
amined whether the authoring tool succeeds in reducing the information providers’
efforts to describe the navigation rules and insuring correct navigation. We quanti-
tatively evaluated whether the authoring tool reduced the time that the information
provider required for describing the navigation rules and reduced the number of errors
in the described navigation rules. In evaluation of the navigation error, an analysis of
variance showed a significant difference at the 5% level of significance. There was no
significant difference in the description time. However there was a relationship that
as the description time becomes longer the error ratio gets smaller. Because the er-
ror ratio in describing rules with the authoring tool is smaller than that in describing
rules without it, we also confirmed the authoring tool’s effectiveness in description

92

time. Therefore we expect that the verifying tool for the user-navigation guarantees
the correct navigation and helps the information provider in describing the navigation
rules. .

For a framework for an EPSS on the Web, we developed WebAttendant which
allows the EPSS developer to develop an EPSS independent of the Web content. We-
bAttendant consists of a server and a client developed as JavaScript and Java applet
program. Therefore it works for any Web sites. It also offers standard functions re-
quired for EPSS. The only work the EPSS developer has to do is describing guidance
rule using the GUI authoring tool.

In order to verify the superiority of WebAttendant framework over a built-in EPSS
in cost-efficiency of development, we ran two sets of experiments to evaluate two aspects
of EPSS development. One experiment is for evaluating in an amount of work involved
to develop an EPSS. We calculated the total operational steps involved in developing
an EPSS when we used WebAttendant. Then, we examined the total size of the
programs involved to develop the same EPSS when we used a built-in EPSS framework.
Finally, We compared the total operational steps involved in EPSS development with
WebAttendant framework to the total size of program involved in EPSS development
with built-in EPSS framework. The result shows that it is obvious that the amount
of work is lower in WebAttendant than in built-in EPSS. The other experiment is for
'evaluating in reusability. We developed several different EPSS for different Web sites
and for users with different skill levels in a same Web site. We then calculated the
amount of work when modules for EPSS functions to a specific Web site or a specific
skill-level user were reused for other Web sites or other skill-level users as well. The work
involved in making the EPSS reusable for other Web sites (skill-levels) was 170 (85)
operational steps in WebAttendant and 442 (207) program lines in Built-in EPSS. We
concluded that the WebAttendant framework is superior to a built-in EPSS framework
in terms of its reusability. From these results, we concluded that WebAttendant is
highly effective as a platform of Web-based EPSS.

In the future, more miscellaneous users with different backgrounds and skill-levels
will participate in the WWW and more diversified applications will run on the WWW.
We can even expect that not only on-line shopping services or reservation services but
also the desktop application like a spreadsheet or word processor will work on the
WWW. In such a situation, personalization will become still more important from a
view of usability and business. We hope that the technology for acquiring the user
information and the authoring tool proposed in our research will contribute to the
growth of personalization.

93

Acknowledgements

This doctoral dissertation work was carried out at Department of Systems and
Human Science, Graduate School of Engineering Science of Osaka University under the
direction of Professor Shogo Nishida and at IBM Research, Tokyo Research Laboratory.

First I deeply thank my advisor Professor Shogo Nishida who have ingrained me
a researcher’s seed to invent ideas positively. I also thank him for giving me the
opportunity to study in Nishida Laboratory and also for consulting me on personal
related matters. I would like to express my gratitude to Professor Seiji Inokuchi and
Professor Masahiko Yachida for serving as members of my thesis committee and for
their invaluable comments on the thesis.

I express my thanks to Dr. Tetsuya Yoshida who eagerly discussed over my work.
His suggestion made me more critical about my work. Thanks are due also to Dr.
Naoki Saiwaki for giving me personal advises. I have good time with him in managing
the laboratory like a network construction, a laboratory trip, and so on.

Acknowledgements must also be made to Mr. Amane Nakajima a program manager
in IBM Research, Tokyo Research Laboratory. I was instilled the severity to work in
my mind. This became the property which is irreplaceable for my research skill. I also
thank to my coworkers in IBM Research, Mr. Yoshinori Aoki, Mr. Yohnosuke Furui,
Dr. Toshio Sohya and Miss Yuko Ikehata for their great advices and their cooperation
on my work. I would like to express my thanks to the staff in IBM Research who
participated in the experiment of my work. I am happy to meet many wonderful
coworkers of synchronous entrance into IBM. They are very kind to me for everything.
They are so talented and have individuality that I was deeply encouraged from them.
My work was influenced also from them.

I would like to extend my gratitude to Mr. Hachizo Yumoto, my grand father, Ms.
Mariko Yumoto, my grand mother, and Ms. Kuniko Enomoto, my aunt for giving me
the yell. I also want to be thankful to Miss Keiko Ishida. She is always there for me
and makes me a bright feeling. I am also grateful to her for giving me the chance to
get my PhD. ‘

94

Lastly, I want to thank to my father and my mother for supporting me in every
possible way until this time.

95

List of Publications

A. Journal Papers

1.

Hijikata, Y., Yoshida, T. and Nishida, S.: Adaptive Hypermedia System for Sup-
porting Information Providers to Direct Users through Hyperspace, Transaction of
IEEJ, Vol. 120-C, No. 11, pp. 1720~1731 (2000). (in Japanese)

. Komatsu, T., Hijikata, Y., Saiwaki, N. and Nishida, S.: Automatic Generation

of Moving Crowd using Chaos and Electric Charge Model, Transaction of IEEJ,
Vol. 121-C, No. 1, pp. 118-126 (2001). (in Japanese)

Watanabe, M., Yoshida, T. Saiwaki, N., Hijikata, Y. and Nishida, S.: An Image
Based Support System for Web Page Design, Journal of Human Interface Society,
Vol. 3, No. 4, pp. 73-83, (2001). (in Japanese)

Ikehata, Y., Souya, T. and Hijikata, Y.: Content-Independent EPSS with automatic
context sensing on the Web, Transaction of IPSJ, Vol. 43, No. 2 (2002). (to appear)

Hijikata, Y., Aoki, Y., Furui, Y. and Nakajima, A.: Text Part Extraction based
on Mouse Operation and Evaluation of Extracted Keywords, Transaction of IPSJ,
Vol. 43, No. 2 (2002). (in Japanese) (to appear)

Hijikata, Y., Yoshida, T. and Nishida, S.: Supporting Information Providers for
Rule-based Adaptive Hypermedia, Interacting with Computers. (submitted)

Wang, Y., Nozawa, H., Hijikata, Y., Nakatani, M. and Nishida, S.: Spatio-Temporal
Data Management for Moving Objects, Transaction of IEEJ. (in Japanese) (sub-
mitted)

96

B. International Conference Papers

1.

Hijikata, Y., Saiwaki, N., Tsujimoto, H. and Nishida, S.: A Dynamic Linkage Method
for Hypermedia, Proc. of 5th IEEE International Workshop on Robot and Human
Communication (ROMAN’96), pp. 519-524 (1996).

. Hijikata, Y., Saiwaki, N., Yoshida, T. and Nishida, S.: A Dynamic Linkage Method

for Hypermedia and Its Design Support Tool, Proc. of 7th International Conference
on Human-Computer Interaction (HCI International ’97), pp. 727-730 (1997).

. Hijikata, Y., Takeuchi, H., Tsujimoto, H. and Nishida, S.: A Dynamic Linkage

Method for Text Data Based on Self-Organizing Map, Proc. of 6th IEEE Interna-
tional Workshop on Robot and Human Communication (ROMAN’97), pp. 420-425
(1997).

Hijikata, Y., Yoshida, T. and Nishida, S.: A Dynamic Linkage Method for Hyper-
media and Its Design Support Tool, Proc. of 1998 IEEE International Conference
on Systems, Man, and Cybernetics, (IEEE SMC’98), pp. 1260~1265 (1998).

. Hijikata, Y.: Estimating a User’s Degree of Interest in a Page during Web Browsing,

Proc. of 1999 IEEE International Conference on Systems, Man, and Cybernetics
(IEEE SMC’99), No. IV, pp. 105-110 (1999)

Ikemoto, K., Hijikata, Y., Nakatani, M. and Nishida, S.: A Data Management Struc-
ture for Spatio-Temporal Walkthrough, Proc. of Fifth International Conference on

Knowledge- Based Intelligent Information Engineering Systems & Allied Technologies
(KES’2001), pp. 175-180 (2001)

Hijikata, Y., Yoshida, T. and Nishida, S.: Adaptive Hypermedia System for Support-
ing Information Providers in Directing Users through Hyperspace, Proc. of Third
Workshop on Adaptive Hypertext and Hypermedia, pp. 147-156 (2001).

Ikehata, Y., Sohya, T. and Hijikata, Y.: Content-Independent EPSS with automatic
context sensing on the Web, Proc. of The 2002 Symposium on Applications and the
Internet (SAINT-2002). (to appear)

. Wang, Y., Nozawa, H., Hijikata, Y., Nakatani, M. and Nishida, S.: Spatio-Temporal

Data Management for Moving Objects, Proc. of Pan-Yellow-Sea International Work-
shop on Information Technologies for Network Era. (submitted)

97

C. Domestic Conference Papers (in Japanese)

1.

Hijikata, Y., Saiwaki, N., Tsujimoto, H. and Nishida, S.: A Dynamic Linkage Method
for Hypermedia, Proc. of IEEJ Electronics, Information and Systems Conference,
pp. 601-606 (1996).

Hijikata, Y., Yoshida, T. and Nishida, S.: A Dynamic Linkage Method for Hyper-
media Using Meta Data and User Model, Proc. of the 57th Annual Conference of
IPSJ, No. 3, pp. 105-106 (1998).

Shinkai, D., Hijikata, Y., Yoshida, T. and Nishida, S.: A Method for Information
Retrieval via User’s Viewpoint, Proc. of the 42th Annual Conference of Systems,
Control and Information Engineers (ISCIE), pp. 589-590 (1998).

Hijikata, Y.: Estimating a User’s Degree of Interest in a Page during Web Browsing,
Proc. of Annual Conference of JSSST, pp. 349-352 (1999).

Furui, Y., Aoki, Y. and Hijikata, Y.: A Web Proxy for Embedding Operation Profil-
ing and Automatic Navigation Programs in Web Pages, Proc. of The 60th Conference
of IPSJ, pp. 421-422 (2000).

. Furui, Y., Aoki, Y., Hijikata, Y., Souya, T. and Nakajima, A.: How to Apply the

Technologies for Detection and Playback of Web Browser Operation to Marketing,
Proc. of IPSJ SIG-DPS, 2000-DPS-97, pp. 421-422 (2000).

Hijikata, Y., Aoki, Y., Furui, Y. and Nakajima, A.: TextExtractor: Text Part Ex-
traction Using Operation Logs on Web Browser, Proc. of The 8th Workshop on
Interactive Systems and Software (WISS 2000), pp. 201-206 (2000).

Wang, Y., Hijikata, Y., Nakatani, M., Nishida, S.: A Spatio-Temporal Data Manage-
ment Structure for Identifying the Picture of Monitoring Camera, Proc. of the 45th
Annual Conference of the Institute of Systems, Control, and Information Engineers

(ISCIE), pp. 285-286 (2001).

. Wang, Y., Nozawa, H., Hijikata, Y., Nakatani, M. and Nishida, S.: Spatio-Temporal

Data Management for Moving Objects, Proc. of IEEJ Electronics, Information and
Systems Conference, Vol. I1, pp. 605-608 (2001).

98

D. Lecture Notes

1. Hijikata, Y., Aoki, Y., Furui, Y. and Nakajima, A.: TextExtractor: Text Part Ex-
traction Using Operation Logs on Web Browser, Interactive Systems and Software
VIII, pp. 201-206, 2000. (in Japanese)

2. Hijikata, Y., Yoshida, T. and Nishida, S.: Adaptive Hypermedia System for Support-
ing Information Providers in Directing Users through Hyperspace, Springer Lecture
Notes in Computer Science. (acceptted)

E. Patents

1. Hijikata, Y., Aoki, Y. and Nakajima, A.: TextExtractor, (1999).

99

