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1. Introduction

Orey and Taylor [5] and Kόno [3] studied the set of times where the local
growth rate of a standard Brownian motion is higher than a given function.
In this paper we shall discuss such a problem for an iV-parameter Wiener pro-
cess.

Let (Ω, .S, P) be a complete probability space and i?+ be the set of points of
RN with all components nonnegative. We shall write t=ζtu •••, tNy or simply
t=(tμy foi a point t of i?+. An iV-parameter Wiener process {w(i): t^R^} is
to be a separable real valued Gaussian process with mean 0 and covariance

E[w(s)w{ή] = ΐlpj sμΛtμ, s==<sμyy t =

We consider {wd(i): t^R^} the process with values in Rd determined by making
each component an JV-parameter Wiener process, the components being in-
dependent. For ί=<(ίμ>, t=(tμy of i?+ with sμ<tμ, increments are denned as
follows: for α*(f)=(wi(f)> ..., zvd(ή)

, t)) = Wi(t)—Σi£μ£Λr «0. ( < * i , "'tSμy •••, t N »

i> • " > % ! > # * * > ^ 2 > " # > ^ / > ) '

and

*f 0 ) ) ,

where Δ(ί, ί) denotes the product of N one-dimensional intervals (sμ, tμ). We
call such a set an "interval". For a given constant α > l , we consider a class 0
of intervals Δ(s, ί) in (0, 1)* with

0 < max (tμ.—sμ)<a min (tμ—sμ).

Let φ be a positive, non-increasing, continuous function defined on (0, 1]. Our
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subject is the random time set

E(φ, ω ) = { ίe(0, 1)": 3 Δ W G Ξ 0 , ί G Δ . , I Δ J J O as n f °°

| |^(Δ M , α>)||>ΓΔJ1 / 2φ(|ΔJ)}

where || | | denotes the ^-dimensional Euclidean norm and | | denotes the N-

dimensional Lebesgue measure. The aim of this paper is to obtain information

about the size of E(φ, ω) by examining its Hausdorff measure. For this sake,

we consider a nonnegative, non-decreasing, continuous function h defined on

[0, 1] with A(0)=0. The Hausdorff A-measure of a subset A of RN is defined by

(1.1) h-m(A) = lim inf Σ ί / e U δ h(d(U))
d 10 Uδ

where the infimum extends over all countable covers Uδ of A by open balls U of

diameter d(U)<8. Our result is the following.

Theorem. Let φ be a positive, non-increasing, continuous function defined

on (0, 1] satisfying

(1.2) ( χ-2φ4N+d~2(x) exp {-φ\x)/2}dx = oo ,

(1.3) ( x~ψN+d-2(x) exp {-φ2(x)/2}dx < oo
J+o

and h be a nonnegative, non-decreasing, continuous function defined on [0, 1] satisfy-
ing A(0)=0 and

(1.4) h{x)lxN \oo as * i θ .

Then

h-m(E(φ, ω)) — 0 or oo a.s.

according as the integral

(1.5) ( χ-ψN+d-2(x)txp{-φ2(x)/2}h(x1/N)dx
J+o

converges or diverges.

Kόno [3] obtained this result in the one-parameter case under an additional

condition on φ ([3] p. 259, (1.8)), which is, in this paper, removed by Lemma

4.1 and Lemma 4.2.

The paper is arranged as follows. In Section 2 we collect general lemmas

that we need. Section 3 deals with the proof for the case thai the integial (1.5)

converges. Our arguements go similarly as in [3]. Sections 4, 5 and 6 deal
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with the proof for the divergent case. In Section 4 we prepare some lemmas
relating to φ and h. In Section 5 we make an arguement similar to that in [3]
to make a preparation for a method of Jarnik [2]. In Section 6 we estimate
the Hausdorff measure of E(φ> ω) by the method of Jarnik and complete the
proof.

Finally the author wishes to express his gratitude to Prof. T. Sirao for
suggesting that the result might be obtained without the condition of [3] and
to Prof. N. Kόno for his advice on the whole of the paper.

2. Preliminary lemmas

In this section we shall state some results that we need to prove the theorem.

Lemma 2.1. Let U be a normal random variable in Rd with mean 0 and
identity covarίance matrix. Then

?(\\U\\>a)~cda
d-2 exp (-a2β).

This estimate is well known and we do not prove it (see Orey-Pruitt [4]
p. 141).

Lemma 2.2. Let (U, V) be a normal random variable in R2d with mean 0.
Assume that

where p is a constant and δ i y is the Kronecker symbol.

(i) There exists a positive constant cly independent of p, such that if \ρ\ <{ab)~ι,

then

(ii) There eixsts a positive constant c2, independent of p, such that

|>tf, \\V\\>ά)<c2^V {-{\-9>)aψ}Y{\\U\\>a)

foralla>0.
(iii) There exists a positive constant c3, independent of p, such that if
and (1—2γ)ό> | p \a for some 0 < γ < l / 4 , then

P(||C/||>tf, \\V\\>b)<c, exp (-γ^/4)P( | | t/ | |>tf) .

Proof. The estimates (i), (ii) are due to Orey-Pruitt [4], so we prove only
(iii). In case p=0, U and V are independent of each other, so the estimate (iii)
is easily derived from Lemma 2.1. In case |p| = l, the condition (1—2y)b>\ρ\a
does not hold for any β^ &^ T"1. Thus it suffices to show (iii) for 0 < | p \ < 1 .
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Now

As for the first term of the right-hand side, if α< | | x | |<( l—7)δ/ |p | and

then \\y—px\\>yb. Therefore

\ , cxp (-\\x\\η2)dx
Ja£\\x\\£(l-y)b/\p\

UyU&tb

Since jb>l, by Lemma 2.1, there esists a positive constant Ku independent of

p, such that

()2(l-Pr
d/2 exp {-(l-p

||.y| 1^76

2 exp {-(l-P

2)-Vi 2/2}

exp (-7ΨI4)(yb)d-2 exp (-γ2έ2/4).

Again by γδi>l, it is easily seen that Kx exp (—72ό2/4)(70)rf"2 is bounded by a

constant K2, independent of p, «, b and 7. Therefore

<K2 exp (-72^/4)(2^)-rf/2 ( exp (-\\x\\η2)dx

= K2 exp (-7^/4)P(| |C/| |^«).

On the other hand, since 0<7<l/4, Ύb>ί, (ί—Ύ)b/\p\>l,

<K3{(ί-Ύ)blIPIY-2 exp {- I pI "2(l-γ)2ό2/2}

{(l-Ύ)l(l-2y)y-2{(ί-27)bl\P\Y~2 exp {-1p|2(l-2γ)2i2/2}

x exp (-ΎΨ/4)

exp (-γ 2 i74)P(| |C/| |>(l-27)ά/|p|)

: 4 exp (-72δ2/4)P(||£/!!>«),

where K3 and K4 are constants independent of p, a, b, J. Putting these

estimates together, we have the estimate of P(||£/||;>α, ||F||;>Z>), and the proof
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is completed.

The following lemma is due to Kδno [3] and we state it here in a form
convenient for our use. Now we begin with some preparations for the lemma.
Let(iS, λ) be a compact metric space and {X(t): t^S} be a real valued con-
tinuous Gaussian process. Assume that

(2.1) E[X(t)] = 0, E[X(tf\ = l,

and that there exists a positive constant η such that

(2.2) E[(X(s)-X(t)fl£n*λ{s,-t), s,

We denote {Xd(t): t^S} as the stochastic process in Rd whose components
are independent copies of {X(t)ι t^S}. Now assume that there exist a positive
constant c4 and a positive integer v such that

(2.3) N(€; B, X)<c4{d{B)/εγ , 0<€<d(B),

holds for all closed balls B of S, where d(B) denotes the diameter of B and
JV(£; B, λ) denotes the minimal number of sets of diameter at most 2£ which
cover B. Under these assumptions we have the following estimate.

Lemma 2.3. There exist two positive constants c5, c6 such that

(2.4) P(sup \\X\t)\\>a)<c,c,N{{2v2a2y1', S, X)ad~2 exp{-a2β)
tes

holds for all a>l+c6y where constants c5y c6 depend only on v.

Next we state two lemmas relating to HausdorίF measures. We give

another definition of λ-measure. For a subset A of RN> let us consider countable

covers S3 of A by cubes V. Let d\V) denote the length of side of cube V.

For a function h satisfying (1.4) we define

(2.5) h-m\A) = lim inf ΣFe« δ h(d'(V))
δ 10 SSδ

where the infimum extends over all countable covers 23δ of A by open cubes V

with</'(F)<δ.

Lemma 2.4. Let h be a nonnegative, non-decreasing, continuous function

defined on [0, 1], satisfying A(0)=0 and (1.4). For a subset A of RN

N-N/2h-m(A)<h-m'(A)<h-m(A).

Proof. This follows easily from the facts that if h satisfies (1.4), then for
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any 0<#<l

N~N/2h(N1/2x) <h(x) <h(N1/2x)

and that for any cube V of d'(V)=δ there exist two balls U and U' with
d(U)=δy d(U')=N1/2δ, Ud V(Z £/'.

Finally we give a well-known condition for a set A to have zero A-measure.
Lemma 2.5 ([6], Theorem 32, p. 59).

h-m\A) = 0

if and only if there exists a sequence E/,-, i = 1,2, , of cubes with Σ ί Ά(d\ ί7,)) < °o,
such that any point of A belongs to infinitely many of Ui.

It follows from Lemma 2.4 that in order to prove the theorem it is sufficient

to show

h-m'(E(φ, ω)) = 0 (or h-m\E(φ, ω)) = oo) a.s.

if the integral (1.5) converges (or diverges). Thus, in the following, we take the
definition (2.5) as the definition of λ-measure and we write simply h-m(A), d(V)
for h-m\A) and d\V).

3. Proof (I)

In this section we shall assume that the integral (1.5) converges. In this
case our arguements closely follow Kόno [3].

Let /=(ί"i, •••, iN) Define the time sets

Kj(n; i) = {(s,

2 - w - 1 < ί μ - ^ < α 2 - %

-*-\ μ=l, -.., JV) ,

the covering cubes

/ ( « ; 0 = {t^RΊ: {iμ-2a)2-»-1<tμ<{iμ+\)2-»-\ μ=l, - ,

and the events

Ej(n 0 = {ω: sup |\wd(A(s, t), ω)|11 Δ(ί, t) \ ~^>φia^1!-

Cs,t)(=KjCn i )

The parameters will be restricted to the following ranges:

(3.1) 0 < / μ < 2 * + 1 - l , μ = l , . . . , J V , > = 1, —,iV, n>3.

Furthermore let
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i(ω) = Π - Ί I)«. U vΆ Ut /(»; 0*(»; *.;>«)

where X(n; iyjy ω) denotes the indicator function of Ej(n; ϊ) and for a set /

the empty set, if ξ = 0 ,

We shall show that

(3.2) h-m(I(ω)) = 0 with probability 1.

This suffices to prove the theorem for the case that the integral (1.5) converges,

since for all ω,

E(φy ω)C/(ω).

This fact is proved in the same way as in [3], so we do not repeat it. From

Lemma 2.5, in order to verify (3.2), it is sufficient to show that the sum

(3.3) Σ E[h{d(I(n; i))X{n; i, j, ω,)] (= Σ P(^(»; i))h{d(I(n; i))))

over all iy j and n satisfying (3.1) converges. Now we estimate P(2?, (n; /)), using

Lemma 2.3. By definition it holds for all intervals Δ, Δ' of /?+ that

(3.4) E[w(A)w(A')] = IΔ Π Δ Ί .

It is easily seen from this that

E[{w(A(s, t)) I A(s, t) I -v*-w(A(s', f')) I Δ(ί', t') I ""*}*]

holds for all (ί, ί), (ί', t') of ίΓ ; (w; ί), where \\ \\2N denotes the 2ΛΓ-dimensional

Euclidean norm. Thus applying Lemma 2.3 to {w(A(s, t)) \ A(s> t) \ " 1 / 2 : (s, t)^

Kj(n; i)} with c 4 = l , v=2Ny rf
i=aIf-12N+n+3/2N1/2

9 we have

aN-l2-nN) exp {-

since

iV((2^2)-1; ίΓ;.(«; 0 , || |i

Here Kλ and K2 are positive constants independent of iy j and n. Therefore

we get the bound

where ίΓ3 is a positive constant. This sum is seen to converge by comparison
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with the integral (1.5). Thus E(φ, ω) has zero A-measure a.s. by Lemma 2.5.

4. Proof (II)

Now we start the proof of the theorem for the case that the integral (1.5)

diverges. The main part of the proof is how to construct a subset of E(<p, ω)

which has infinite λ-measure. This part will be stated in Sections 5 and 6.

In this section we prepare some lemmas, first the next trapping lemma.

Lemma 4.1. It is sufficient to prove the theorem for φ satisfying

(4.1) (2 log # ( * ) ) *

<φ(x)<(2 log H(x)+(4N+d+l) log log H(x)Y<2,

where

H(x) = Γ h(y1/N)y~2dy .
Jx

Proof. Set Φix)={2 log H{x))ι/\ φ2(x) = (2 log H(x)+(4N+d+ί) log log

H(x))1/2, and φ*(x)=(φ(x)\/φi(x))Λφ2(x) Then φ* is a positive, non-increas-

ing, continuous function satisfying (4.1). Since H(x)^:3 log \jx for small x,

φx satisfies (1.3), which implies that φ* also satisfies (1.3). It is easily derived

from (4.2) below that φ* satisfies (1.2). Now we show that

(4.2) ( χ-2φ*iN+d-\x) exp (-φ*2(x)l2)h(x1/N)dx = oo ,
J+o

and furthermore that if h-m(E(φ*, ω))=oo a.s., then h~m(E(φ, ω))=oo a.s.

As for (4.2), since we assume that (1.5) diverges, if φ * < φ near 0, then (4.2)

holds. On the other hand, if there exists a sequence xn j 0 such that φ(xn)<

φ*(*n), then φ*(xn)=φ1(xn) and

Γ y-2Φ-2Φ*4N+d-\ y)

xn) exp {-φ\{xn)β)H{xn).

The right-hand side tends to oo as xn | 0, and it follows again that (4.2) holds.

Next we verify that h-m(E(φ> ω))=oo is derived from k-m(E(Φ*9 ω))=oo

with probability 1. Let φ'(x)=φ(x) Vφi(#). Then φ<φ\ and

(4.3) E(φ'9 ω)(ZE(φ, ω) for all ω .
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While E(φ2y ω)(ZE(φ*, ω) for all ω, it is derived that

(4.4) E(φ*, ω)-E(φ2, ω)(ZE(φ', ω) for all ω.

In fact, for any t of E{φ*, ω)—E(φ2, ω), there exists a sequence ΔΛ of Q such

that ίGΔ n , |Δ Λ | I 0 as n f oo, and

Since t does not belong to Z?(φ2, ω), \An\ must belong to {x: φ'(x)<φ2(x)} for

sufficiently large n. Then φ * ( | Δ J ) = φ ' ( | Δ j ) , and this means that t belongs

to E{φ*> ω). Thus (4.4) has been verified. Now φ2 is easily seen to satisfy

x) exp (-φ2

2{x)l2)h{x1/N)dx< oo ,

so that the first part of the theorem shows that

h-m(E(φ2, ω)) = 0 , with probability 1.

By (4.3) and (4.4), h-m(E(φy ω))=oo is derived from h-m(E(φ*, ω))=oo for
almost all ω. This completes the proof of the lemma.

REMARK. From (4.1), particularly, we have

(4.5) (2 log log 1/ΛO 1 / 2 <Φ(*)<(3 log 1/*)1/2.

Lemma 4.2. A function φ which satisfies (4.1) is slowly varying at 0,

that is, for any /3>0,

lim φ(βx)lφ(x) = 1 .

Proof. For a fixed

H(βx) = β~

It is derived from this that logH(x) is slowly varying. From (4.1), this fact

implies that φ is slowly varying at 0, and the proof is completed.

The following lemma is a simple variant of Lemma 5 in Kόno [3].

Lemma 4.3. For the proof of the theorem, it is sufficient to consider h

satisfying the following:

(4.6) χ-ψN+d-\x) exp (-φ\x)l2)h(x1/N) is bounded/or 0<x< 1.
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5. Proof (ΠI)

In this section we shall construct, for almost all ω, a family {/} of cubes

and families 3>(i) of subcubes of / satisfying the following three conditions:

(i) for every / e 3 ( 7 ) , / c I and

where is / the closure of J.

(ii) Any two cubes Jly J2 of 3>(/) are disjoint; furthermore

max inf {|ίμ—sμ\: <tμy^Jlf <ί μ >e/ 2 }

(iii) Σ/^S(/) h(d(J))>2™+*h(d(I)).

In the following we shall use the next notations:

£, = 2- , K = aιen+2φ-\en+2

N)y dn=[en+2h-ι]y

where [x] denotes the integral part of x and ax is a positive constant such that

(5.1) 4 % Σ ^ i r2" exp (-Λ lr/72)< 1/2 .

Let i=(fΊ, —, ijv), j=(ji> "ΊJN) and * = ( * ! , —, kN). Define the events

-4(Λ k9 i, j) (=A(n; kμ, /μ, jμ))

= {ω: | |^(Δ(., t), ω) | |> |Δ(,, t) \ 1/2φ(Sn+2

N)} ,

where s=ζfiμ£n+iμ.8ny9 t=^kμSn-\-Sn+1+jιιSny. The parameters will be restrict-

ed to the following ranges:

(5.2)

(5.3)

Let X(n;k) (=X(n;kμ)) denote the indicator function of [)ij A(n;k,i,j),

where i and j run over the above range (5.2). Since the iV-parameter Wiener

process has stationary increments, ΐ(X(n; k)—1) does not depend on k, so we

denote it by pn. The next lemma gives information about the magnitude of pn.

Lemma 5.1.

(5.4) 2"1 Σ , v V(A("1 K i, j))<pn< Σ u ?(A(n; K h j)),

where Σi.y ^ ^ ^ ίfe summation over all t, j satisfying (5.2). In particular, there
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exist two positive constants c, c' such that for sufficiently large n

εn+2») exp i -

Proof. It is clea that pn< Σ ; ,• (A(n; ft, i,j)) and

(5.5) Pn>^,j(A(n;k,i,j))

- Σ,y,,',/ nA(n; ft, ί, j) Π A(n; ft, i', j')),

where i'=(iί, •••, t'iv), j '=0'ί> '">jή) a n ί ^ Σ .^.'.i' means the summation over i',f,
satisfying (5.2) with i'μ.Φiμ, or /J1Φ./V, for some μ. To estimate the second term
of the right-hand side of (5.5), we put

where ί=<Aμε ι,+iμδ11>,ί=<Aμε,+e,+I+>δ11>, s'=<kμίBu+iί.8J> and t'=ζkμ.εn+

£»+i+;Λ> Then by (3.4)

l - £ [ j y ] > r%φ-2(εx+2

N) Έμj (i »„-*/; i +1 V-y; ι).

Using Lemma 2.2, (ii), we obtain

P(i4(n ft, ί,;>4n(n;*,*",; '))

<c2 exp {-(l-£[iy] z )φ 2 (£, + /)/8}P(^(n; ft, ί,/))

<c2 exp {-flι Σ μ = f (I t μ - i ί I + I V-i ί I )/72}P(^(H; ft, ί,»).

Now let r=Σι»=1^ (I *»»—*'£ I + I jμ —jί I )> then there are no more than (2r)2ΛΓ ways
of choosing i' and /' to accomplish this. Thus we have

; K ϊ, >'))
r2N exp (-βlr/72)}P^(«; ft, ί ,») .

Therefore by (5.1)

(n; ft, '*,;')

This and (5.5) yield (5.4).
The latter part of the lemma is easily derived from (5.4) by Lemma 2.1 and

the proof is completed.

In the following we consider sufficiently large n and choose n1} «2 for each
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n, such that n2>ttι>n and

(5.6) h(εni+2)<n-2h(εn+2)εn+2»

(5.7)

(5.8)

In fact, since h(x) I 0 and h(x)/xN f oo as x j 0, we can choose /*! so that (5.6)

and (5.7) hold. On the other hand, Lemma 5.1 and Lemma 4.3 show that

K^m+2)^m+2~Npm a r e bounded and that Σ»»=Γi h(£m+2)Sm+2~
Npm is seen to diverge

by comparison with the integral (1.5). This ensures us the existence of n2

satisfying (5.8). Set

where [x] denotes the integral part of x. For k' (=(kί, •••, k'N)) satisfying (5.3),

we define the random variables

Y(fh m; k') = Πv=^ Π(9) (1

Z(Λ, m; k') = Urz u\(l-X(p

where Π(9) denotes the product over q{={q^ •••, ?iv)) satisfying

(5.9) ? μ are integers with | g μ | < i M f V and

Now for an open cube /«,*(= Πμ=f (&A, (^μ+l)^»)), we define the families
of random subcubes of Ink

9f.(7..») = {X(m; k')Y(n, m; k')Z(n, m; k')I(m; ft')

and

where I(m\ k')=UμJ {Kem+Sm+2i K£m+Sm+1) and for a cube /

the empty set, if ξ = 0 ,

* ' τ if f =

The aim of this section is to show that for almost all ω there exists an integer
n(ω) such that for all n>n(ω) and k satisfying (5.3), {/n>*} and ^{In,kj satisfy the
conditions (i), (ii), and (iii). By the definition of 3fm(Λι,*)> (i) is clear. As for
( i O ^ f Λ ^ e ^ / ^ a n d ^ e ^ / , , , ) , ^ ^ ^ / ^ ) , ^ ^ ^ ^ then the definitions
of Y and Z imply that
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max inf {\tμ—sμ\: t = <Jμy^Jly s

It remains to verify (iii) and to show the existence of n(ω). For this sake, we
consider the radom variables

If n is so large that

(5.10) Φ(ε»+/

(5.11) 20c3aΓ™φiN+χεn+2») exp {-φ2(εM+/)/(4 104)}<l/4,

(5.12) Φ(£.)/Φ(e.+i)^(\/3/2)V Ϊ(l-2.10- ί)-1, for m>nN,

(5.13) 4 C 1 Σ ^ » 1 / > » < 1 / 4 ,

then the following estimates hold.

Lemma 5.2.

(5.14) E[H{n;k)]<2*N+«h(εΛ+2),

(5.15) E[H(n;k)]^]2™+»k(εn+2).

Lemma 5.3 There exists a positive constant M, independent of n, k such
that

(5.16) E[(H(n; k)-E[H(n; Λ)])2]<Mn-2Sn+Jt\Sn+2) .

Assuming these lemmas for a moment, we shall complete the proof of (iii).
By (5.14), (5.15) and (5.16),

Ϋ(\H(n; k)-E[H{n; k)\\>2-ιE[H(n; k)] for some k)<M'rΓ2,

for some positive constant M'. Then by the Borel-Cantelli lemma, for almost
all ω there exists n(ω) such that for any n>n(ω) and k satisfying (5.3),

\H(n; k)-E[H(n; k)] | <2-ιE[H{n; k)].

Thus by (5.15) and (1.7)

H(n; k)>2-ιE[H{n; k)]>2iN+lih(εn+2)

= 26N+sh(d(In_k)).



238 K. TAKASHIMA

This verifies (iii). We shall denote, by Ωo, the set of ω for which there exists
n(ω) such that Ink and 3ί(/Λ)*) satisfy the conditions (i), (ii) and (iii) for all
n>n(ω), k satisfying (5.3).

Now we return back to the proofs of Lemma 5.2 and Lemma 5.3.

Proof of Lemma 5.2. First we prove (5.14). It is easily seen that for

S.c/..,)W))>
E[H(n, m; k)]< Σ*'E[X(m; k')]h(6m+2)

where Σ * ' denotes the summation over k' satisfying

(5.17) ftμe,^*^.<(*μ+l)ε,, μ = l,-,N.

Thus by (5.8)

E[H(n; k)]< ^m.Hn\εn+2

Nεm^Nh{εm+2)pm

<2™+"h{εn+2).

Next we verify (5.15). A simple calculation shows that

(5.18) E[H(n, m; k)]> Σ * ' h(εm+2)E[X(m *')]{1 - Ί^-»\ X{*5

μ)}]

; k')X{v

where Σ * ' denotes the summation over k' satisfying (5.17) and Σ(«) denotes the
summation over q satisfying (5.9). As for

by (5.8), this sum is less than

(5.19) 2"Λ.Σv-»MΛΛ

Now we estimate

Σ?-.1, £[*(«; k')X{v- [kir-*]

using Lemma 2.2, (iii) and Lemma 4.2. Put

X=w1(A(s,t))\A(s,t)\-v2,

where i=<*ie.+iV8e>, ί = < ^ θ M + £ w + 1 + i Λ

1+;ίδv>. nλ<v<m-\. Then
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(5.20) 0<E[XY]<{VΪI2)N, if v=m-\,

0<E[XY]<(V3 2V-»vy , if v<tn-2.

We consider the next two cases:

(A) nx<v<m

(B) m<v<m-\

where m=m—10 log φ(εm+2

N). In the case (A), since

E[XY]φ(εm+2»)φ(£v+2»)<l

by (4.5) and (5.20), an application of Lemma 2.2, (i) shows

V(A(m; k', i,j)ΠA(V; k*, ϊ, j'))<c?{A{m; k', i,j)W(A(v; k*, i',j'))

where k*={[k[2"-% -, [k'N2v-m]). Thus by Lemma 5.1,

E[X{m; k')X{v k*)}< HijΊli'j

<C! Σ , .y ?(A(m; k', i, j)) B ' y ?{A{v; k*, i', j'))

where Σ.v a n ^ Σ«',«' denote the summations over i, j and i', j ' satisfying (5.2)

respectively. Therefore by (5.13), we have

(5.21) Σv=l; E[X(m; k')X{v k*)]

In the case (B), since it is derived from (5.12) and (5.20) that

( i - 2 ιo-2)φ(εv+2η>E[XY]φ(εm+2»),

an application of Lemma 2.2, (iii) to X and Y with -y=10~2, a=Φ(εm+2

N), b

φ(ε^+2

N) shows

ΐ(A(m;k',i,j))f]A(v;k*,i',j'))

<c3 exp {-φ\εw

N)j(4 W)}V(A(m; k', i,j)).

Thus

E[X(m;k')X{V;k*)]

< ΈijΣ,'y nA(m; k', i, j)ΠA(v; k*, ϊ, j'))

<2c3aΓ2NφiN(ε,+2

N) exp {-φ2(£v+

Since we may assume that m is so large that
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log φ(€m+2
N)<φ2(€Έ+2

N) ,

we have

(5.22) Σs<v<»-iE[X(m; k')X{v; k*)]

(by (5.11)).

Putting (5.18), (5.19), (5.21) and (5.22) together, we obtain

E[H(n, m; k)]>^εn+2

ίlεm+2-
ι'h{εm+2)pm.

Hence

E[H(n; k)]>Wn+2

N Σ ^ U , £m+2
Nh(€m+2)pm>:2™+>h(6u+2), (by (5.8)).

This completes the proof.

Proof of Lemma 5.3. The outline of the proof is similar to that of Kόno's

lemma (Lemma 8 in [3]).

Now put

X*(n, m; k') = X{m; k')Y{n, m; k')Z(n, m; k')

-E[X(m; k')Y(n, m; k')Z(n, m; k')].

Then it is clear that

(5.23) E[(H(n; k)-E[H(n; k)])2\ = Σ»-»?Σkh2(εm+2)E[X*(n, m; k')2]

+Ίln,.nn\Ίlk',k"h\εm+2)E\X*{n, m; k')X*(n, m; k")]

(n, m; k')X*(n, m'; k")]

where Σ * ' and Σ t " denote the summations over k' and k" satisfying (5.17) re-

spectively and Σ*',*" denotes the summation over k', k" satisfying (5.17) and

k'μ,Φk'/ for some μ. Using (5.6) and (5.8), we have

(5.24) Σ»-;? Σ*- h\Sm+2)E[X*(n, m k'f]

; k')]

As for the second term in the right-hand side of (5.23), note that X*(ny m; k')

and X*(n, m; k") are independent if | k^—k" \ >^bnniSnε^1 foi some μ. There-

fore
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Έk'yh%εm+2)E[X*(n, m; k')X*(n, m; k")}

< Σ'h\εm+2)E[X(m; k')X(m; k")}

where 2T denotes the summation over k' and h" satisfying (5.17) such that

|Λμ—h\H I <ibn n Sniβm~\ μ=ly •••, N and k'v Φk" for some v. Thus there exists

a positive constant K, independent of n, such that

(5.25) ΣlmΛl Σ*',*" A2(^+2)β[X*(w, m; k')X*(n, m; k")}

<Kn-2h2(Sn+2)£n+2

N.

It remains to estimate the third term in the right-hand side of (5.23). We do

this, by considering the following three cases:

(i) for some μ>

or

k'f!Bm-(K'+l)6m,>4UwΛιbεaι.

(ii) The condition of (i) does not hold but for some μ.

or

Kεm-(K'+l)εm,>o.

(iii) Neither condition of (i) nor of (ii) hodls, that is,

εm, μ=ι, -,N.

In the case (i), X*(n, m; k') and X*(n, m' k") are independent, so we have

E[X*(n, m; k')X*(n, m'; Λ//)]=0. In the case (ii), X(m; k') and X(m'; k") are

independent, so we have

E[X*(n, m; k')X*(n, m'; k")]<E[X(m, k')X(m'; k")]=pmpm,.

In the case (iii), we further subdivide the case as follows:

(A) m'-m>lθ log φ(W),

(B) m'-101ogφ(£ m / + /)^ ί«<m'- l .

The same arguements employed in the proof of Lemma 5.2 show that



242 K. TAKASHIMA

E[X*(n, m; k')X*(n, m'; k")]<E([X(m; k')X{m'; k")]<4Clpmpm,

in the case (A) and

E[X*(n, m; k')X*(n, m'; k")]

<E[X(m, k')X(m'; k")]

™φ™{εm+2») exp {-φ 2 (£ M +

in the case (B). Putting these estimates together, in the case (A), we have

Σ * ' Σ * " K£m+z)h(£m'+2)E[X*(n, m; k')X*(n, m'; k")]

χεn

Nεa,»h(εm+2)h(εm+2)Pm,.

and by (5.6), (5.8),

(5.26) 2 Σ c A ) Έ* Σ * " h(εm+2)h(εm,+2)E[X*(n, m; k')X*{n, «'; ft")]

<K'n-ψ(εn+2)εn+2",

where K' is a positive constant independent of n, k and ΣCA) denotes the summa-

tion over m and m' satisfying the condition (A). In the case (B),

Hk'Ίlk"Kεm+2)h{εmf+2)E[X*{n, m; k')X*(n, « ' ; ft")]

{-ΦXεm+f)i(4'l0*))ε/εm,»h(εm+2)h(εm+2)pm

Since log φ(εm'+2

N)<φ\εm+2), we have by (5.6), (5.8) and (5.11)

(5.27) 2 ΣCB> Σ*- Σ * " h(εm+2)h(εm,+2)E[X*(n, m k')]X*(n, m'; k")]

+2-%+2

Nh(εΛi+2) Σ.,.:j εm+fNh(εm+2)pm

where ΣCB) denotes the summation over m and m1 satisfying the condition (B)

and K" is a positive constant independent of n, k.

Putting (5.23), (5.24), (5.25), (5.26) and (5.27) together, we have the bound

for the variance of H(n; k) and the proof has been completed.
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6 Proof (IV): The method of Jarnik

We shall complete the proof of the theorem by showing that for almost all

ω and any fixed M > 0 , there exists a subset of E(φ, ω) having more than M

A-measure; our arguements follow Jarnik [2] (see also Kδno [3]).

In the following we shall consider ωGΩ0 fixed. Let n0 be an integer

sufficiently large such that no>n(ω) and

(6.1) h(£no)€no-

Define the systems of random cubes

where the union extends over all k satisfying (5.3), and inductively

« = 2,3,

Set F— f] m>l (J /εSm /. Then F is easily seen to be included in E(φ> ω) and by

the condition (i) in Section 5, F is compact. The aim of this section is to

show that F has more than M A-measure. Since M is taken arbitrarily, this

suffices to prove the theorem. For this sake, we consider a covering Uδ of F by

cubes U of d(U)<δ. We may assume that Uδ is finite, since F is compact.

Moreover if δ is less than the minimum of distances between cubes of 3>i> it is

sufficient to consider only the coverings, every cube of which intersects F. Since

max d(I) -> 0 , as m \ °o ,

for any W of Uδ, there exists an integer v > 1 such that W intersects a cube J of

3ίv and Ily I2 of %>(J). Let v be the minimum of such integers. Then there

exists a cube W such that d(W')<d{W) and WΓiJdWa J. By replacing W

with W\ we obtain a covering 11' of F. Now we prepare some terminologies

after Jarnik [2] and Kόno [3].

DEFINITION 6.1. An open cube Wis called to be of degree v(y>X), if and

only if there exists a cube / of S v such that / includes W and W intersects at

least two cubes of

DEFINITION 6.2. An open cube W is called normal if and only if the degree

of WΊs determined.

REMARK. The degree of a cube is uniquely determined if it can be de-

termined.
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DEFINITION 6.3. A point p is said to attach to a normal cube W of degree

v if and only if there exists a cube / of 3fv+i such that p belongs to / and /

intersects W.

DEFINITION 6.4. A system II of normal cubes is called a normal estimating

system if and only if any point of F attaches to some cube of U.

DEFINITION 6.5. The degree of a normal estimating system is the maximum

degree of its cubes.

DEFINITION 6.6. A normal estimating system U is called irreducible if

and only if U does not contain any proper normal estimating subsystem.

Now, for a normal estimating system 11 of degree z>, set

Έωh(d(W))+2-™-*Σωh(d(W)), if v > 1,

if * = 1 ,
Λ*(U) = ,

where Σ(i) denotes the summation over all W of U of degree less than vy and

2(2) denotes the summation over all W of U of degree v. Since any covering of

F by normal cubes is a normal estimating system, it is derived from the defini-

tion of h-m(F) that

(6.2) h-m(F)> lim inf Λ*(ll) ,
δ[0 U

where the infimum extends over all irreducible estimating systems 11 of F by

cubes W oΐ d(W)<8. We prepare the next two key lemmas in the method of

Jarnik.

Lemma 6.1. For a normal cube W of degree v which is included in a cube

d(W)>2-12-15/Nd(J)h-1/N(d(J)){£'

where Σ ' denotes the summation over all cubes I of^(J) which intersect W.

Proof. For any / and /' neighboring with each other, by the condition

(ii) in Section 5, we can construct two cubes between / and /', contained in W,

with sides longer than

and
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respectively. This means that the volume of W is more than

Since W is a cube, its side is longer than

and this completes the proof.

Lemma 6.2. For an irreducible normal estimating system U of degree v
(v>\), there exists an irreducible normal estimating system U' of degree less than v,
such that

(6.3) Λ*(U')<Λ*(U).

Proof. The proof of this lemma goes exactly as in Jarnik [2], but we state
its outline for completeness.

It is sufficient to show the existence of a normal estimating system of degree
less than v which satisfies (6.3).

Each cube of degree v of U is included in a cube of $ίv, so included in one
cube (uniquely determined) of Sv-i Let/i> •• ,%/r be the totality of such cubes
of 3ίv-i> and set

U' = [U-{PF<EΞU: of degree (v-1) or v, WczJ{ for some /,}]

Then U' is a normal estimating system of degree (z>—1). It remains to show
that U' satisfies (6.3). Before doing this, note that a cube W of U to which a
point p of F Π Ji attaches is of degree (*>—1) or v. In fact, if W is of degree m
{<v—1), then there exists / ' of ^m+1 which includes /,-. Thus any point of
F Π /,(C F Π /') attaches to W. This implies that

U - { r c U ; of degree v, W'aJt}

is a normal estimating system. This contradicts the irreducibility of IX. There-
fore ϊFmust be of degree (v—l) or v.

Now we shall estimate the contribution of cubes of degree (i>—1) or vy in-
cluded in Jiy to Λ*(U). Let Wu •••, Wm be the totality of cubes of U, of degree
(z>—1), included in/, . Suppose that $(Ji)={Uu •••, Uk, Uk+U •••, Ua} and Uj
intersects some Wn if 1 <j<k> does no Wn if k+1 <j<a. By the condition (iii)
of Section 5,

Now we consider the next two cases:
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(1) Σy-

(2) Σy-*

In the case (1), by Lemma 6.1

where Σ(«> denotes the summation over all Uj which intersect Wn. On the

other hand, it is easily derived from (1.5) that

Σ . Kxn^
N)>h((Σln Xn)1/N) for xn>0 .

Using this, we have

(6.4) 2UΪ h(d(Wn))>h({ Σ.J !

In the case (2), any point of FΠ t/y (k+l <j<a) attaches to a cube V of degree

v, included in Uj. Let Vly •••, F"j be the totality of cubes of U, of degree z>,

included in Uj. Again by Lemma 6.1

d( Vq) > 2-*-

where Σ(«) denotes the summation over all / of 3f(f/y) which intersect F 9 . Thus

Σ.-J Kd{Vq))>h{{ Σ,.{ rf(FX}^>

Summing these estimates over j , Λ+l<y<^z, we have

(6.5)

where the summation in the left-hand side extends over all cubes of U, of degree

vy included in /,-. Putting (6.4) and (6.5) together, we obtain (6.3) and the

proof of the lemma has been completed.

Now we are on the last stage in the proof of the theorem. Lemma 6.2 and

(6.2) tell us that

(6.6) Λ*(tt)>M, for any irreducible normal estimating system of degree 1

implies h-tn(F)>M. For an irreducible normal estimating system of degree

1, by Lemma 6.1 and the condition (iii) in Section 5, we have

h(d(W))
15/M/)A~V W ) H Σ ' Kd(i))y<N)

^ ) Kd{I))Y/N)
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where Σ ' denotes the summation over all I of $(/) which intersect W. Since

we have chosen n0 so large that (6.1) holds, from the above we can derive (6.6).

Thus we have verified the theorem.

REMARK. With respect to the conditions (1.2) and (1.3), note the following.

If φ satisfies (1.2), then φ is a lowei function for the uniform modulus of con-

tinuity in the sense of Orey-Taylor [5] ([7]). This implies that E(φy ω) is not

empty a.s. On the other hand, if φ satisfies (1.3), then φ is an upper function for

the local two-sided growth in the sense of Jain-Taylor [1] ([7]). An application

of the Fubini theorem shows that E(φ, ω) has zero Lebesgue measure a.s. Thus

the size of E(φ, ω) comes into question.
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