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DIMENSIONAL JACOBIAN PROBLEM
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1. Let f(X, Y) and g(X, Y) be any two polynomials with complex coeffi-
cients, i.e., f, g&€C[X, Y]. The pair (f, g) is called an automorphic pair if there
exist #, v eC[X, Y], such that,

X =uf(X,Y), gX,Y))
and
Y= v(f(X, Y)) g(X: Y))

The pair (f, g) is called a Jacobian pair if the determinant of the Jacobian
matrix

of of
90X Y
9 g
90X oY

of (f, g) with respect to the variables X and Y, is a nonzero element of C. It is
easily seen that every automorphic pair is a Jacobian pair. The Jacobian problem
is to determine whether every Jacobian pair is an automorphic pair or not.

2. Various equivalent formluations of this problem are known. We shall
recall some of these results, relevant to our discussion, from [1].

A polynomial feC[X, Y] is said to have » points at infinity, if its homoge-
neous component of maximal degree (i.e., the degree form) is a product of
coprime factors. If F(X, Y, Z) is the homogenization of f(X, Y), and &:=
{F(X, Y, Z)=0} is the curve in P? then, & intersects the line at infinity,
L:={Z=0} in precisely r distinct points. The total number of local branches
of & at all of these » points taken together is called the number of places of f at
infinity. Note that the number of points at infinity is not an automorphic
invariant, whereas, the number of places at infinity of a nonconstant polynomial
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is an automorphic invariant. We recall a portion of the result proved in
Theorem 19.4 of [1], in the following proposition.

Proposition: Let (f, g) be a Jacobian pair. Then the following three state-
ments are equivalent:
1) (f, g) is an automorphic pair.
it) f has only one point at infinity.
112) f has only one place at infinity.

REMARK: As stated and proved, 19.4 of [1] contains only the equivalence
of 7) and 7). But the implications ¢)=>iz)=> %) are obvious.

3. The following notion is introduced purely for technical convenience.

A polynomial f(X, Y) is said to be in ready form with respect to X, if the
following conditions hold:

@) f(0,0)=0
b) the degree form of f is equal to X" for some #>2 and
¢) f has no multiple factors.

Apart from the results from [1], quoted above, the only nontrivial deep
result that we use is the theory of equisingularity of plane algebroid curves,
from [2]. Given a polynomial f in the ready form with respect to X, we let
LH=f+N, AEC; F,(X, Y, Z) be the homogenization of f, and let ¢, (X, Z)=
F(X,1,Z). Let C.:={f, =0}, D:={p,=0} and C,:= {F,=0}. Then,
9D, cC,, and C,=C,U{P}, where P:=[0, 1,0] in P2 The discriminant,
Ax(f,) with respect to X, of f, is a polynomial in Y and A. From condition a)
and b) above, it follows that, ¢,(0, 0)=0 and ¢, is regular in X, (i.e, by defini-
tion, @,(X, 0)=2X", for some nonzero constant ¢; see, for instance, p. 145 of
[3]). Condition c) implies that the X-discriminant of f is not identically zero.
Hence, the X-discriminant of ¢, is not identically zero. This means that the X-
discriminant of @, is not identically zero, considered as a polynomial in Z and A.
Thus we are in a situation as described in §6 of [2]. We now state our main
result:

Theorem: Let (f, g) be a Jacobian pair with f in the ready form with respect
to X. Then each statement in the Proposition is equivalent to each of the follow-
ing two statements :

w) Dy:={p,=0} is an equisingular family of plane algebroid curves at P:=
{X=0=2}
v)  The Y-degree of Ax(f,) is independent of .

The following two sections contain the proof of this theorem. In §4, we
shall use a geometric argument to show the equivalence of iii) and iv). In
§ 5, we shall use the results from [2] to show the equivalence of iv) and v). We
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shall use the notations introduced in this section, in the rest of the paper.

4. Proof of 71i) &iv)
wi)=>1v):
Let (f, g) be a Jacobian pair with f in the ready form with respect to X. By
iii), f, has only one place at infinity, i.e., the curve &), has only one branch at
P. Let my>my>--+>my, (m=>2), be the multiplicity sequence of the generic
member of this family of curves and let m{>mj>--->m}, (m;>2), be the
multiplicity sequence of some specialization. By the semicontinuity property,
it follows that, m{>m; for each 7, and hence in particular, />k. By the equi-
valence of 1) and iii), it follows that, each C, is isomorphic to C.

Note that, each C, represents the same element in the divisor class group of
P?. Hence, they all have the same arithmetic genus: p,(C,)=a, say. Since,
the only possible singular point of C,, is the point at infinity P, it follows that,

29, = 3} mi(m—1) = 3} mi(mi—1).

Since, the summands in each sum are positive, it follows that, m;=m{ for each
zand k=I. 'This implies that the family 9), is equisingular.

10)=>111);

Assuming iv), given a Jacobian pair (f, g), we want to show that, f has only one
place at infinity. So, we are at liberty to change this pair by pre-composing
with an automorphic pair. Note that if f is of degree one, then there is nothing
to prove. Hence, we assume that, deg f >2. By replacing Y with Y4-2X?, for
a suitable ¢=C, if necessary, we can assume that, f satisfies b) of §3. By sub-
stracting f(0, 0) from f, we can also assume that, f(0, 0)=0. Finally, condition
c) of §3 is satisfied by any f such that (f, ) is a Jacobian pair. Thus f is now in
the ready form with respect to X. Statement iv) is now applicable, i.e., the family
of curves {9),} is equisingular.

We shall first show that, each fibre C, of the map f: C*—C is irreducible. Note
that, C,=C, U {P}. The Jacobian condition implies that, C, is smooth. Hence,
by successively blowing-up at P and its pre-images, all the C,’s get resolved,
simultaneously, because of the equisingularity. Indeed, there exists a morphism
7: S— P?, on a smooth surface .S, such that,

1) = is a composite of contraction of (—1)-curves,

2) if &, is the proper trasnform of C, in S, then each &, is smooth and

3) there exists a finite set RC.S (possibly empty), such that, each &, passes
through each point of R.

By equsingularity, it follows that, each &, represents the same element of
the divisor class group of S. Now, by further blowing-up at points of R, and
their pre-images, we obtain a smooth surface 7" and a map, +: T'— P, which
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extends, the map f: C*—C. The fibres &, of 4+ are connected, and generically
smooth. Let C{ denote the proper transform of C, on 7. Then, C{S&, and
generically the equality holds. Again, each C{ represents the same element
of the divisor class group of 7. So do each &,. Hence, from the generic
equality, it follows that, C=¢, for each A. In particular, each C{ is connected.
Being smooth it is irreducible. Hence, each C, is irreducible.

Now the arithmetic genus, p,(C,)=a, say. By equisingularity, it follows
that, the geometric genus, g(C,)=1, is the same for all A and the number of
places at infinity, o(Cy)=0 say, is also the same for all A. So, it follows that
the topological Euler characteristic

is the same for all A. Hence, we have the product formula:
X(C?) = X(G)X(C)

which implies that, X(C,)=1. This in turn yields that, g(C,)=0 and o(C,)=1.
Thus, we have shown that, f has one place at infinity, as claimed.

5. Proof of iv)=v)

0)=>10)

As indicated before, we appeal to theorem 7a) of [2] to conclude that {p,=0}
defines an equisingular family of plane algebroid curves at P, if the X-discri-
minant Ax(g,) is of the form:

Ax(p)) = €(Z, M)ZV
for some unit, &(Z, A) in the power series ring C[[Z, A]]. Writing
&Z, \) = 0y+0,Z+--+6,Z*

with ;,C[\], and 0,0, the above condition is the same as saying that 6, is a
nonzero constant.

Now the discriminant Ay(F,) of the homogeneous polynomial F, is a
homogeneous polynomial in ¥ and Z and we have,

Ax(F)(1, Z): = Ax(Fy(X, 1, Z)): = Ax(pr) »
and
Ax(F)(Y, 1): = Ax(Fu(X, Y, 1): = Ax(fy)

Hence, it follows that, Ay(f,) has the form:

Ax(f) = YM(O,Y*4-0,Y+ 4 46,) .
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Thus, the statement v) implies that, §, is a nonzero constant, which in turn, as
observed above, implies the statement iv).

10)=>v):

Here, we need to appeal to the proof of theorem 7 b) in [2], rather than the
theorem itself. For in our context, the condition that the line Z=0 is not
tangential to the curves 9),, is not satisfied. However, the proof of theorem
7 b) of [2] uses only Lemma 6 of [2] and a corollary to it. In this lemma, the
required condition is that the corresponding local branches of &), under the
equivalence, should have the same intersection number with the line L given
by Z=0. Since, we have already shown that, iv) is equivalent to iii), it follows
that, each 9), has a unique branch at P. Thus, we need to verify that each 9,
has the same intersection number with Z=0. But ¢,(X, 0)=X", and hence,
the intersection number, (9),, L)=n for each A and hence, we are done.

This completes the proof of the theorem.

I am grateful to R. Narasimhan for getting me interested in the Jacobian
Problem and then keeping this interest alive by his everreadiness to discuss
this problem for hours and hours. Thanks are also due to Balwant Singh,
Mohan Kumar and Madhav Nori for many helpful discussions.
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