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On the Pseudo-Harmonic functions

By Yukinari Tόκι and Kόichi TARUMOTO

Introduction. Let F be an orientable surface. Let u(p) be a real-
valued function in a neighborhood Np0 of p0 on F where Np0 corresponds
to the unit circular disc in the complex plane by the topological map-
ping z=TpQ(p)y z = x + iy..

Set u(p) = u(TPo(p)) = U(z).

Then u(p) is termed pseudo-harmonic at p0, if U(z) is harmonic and
not identically constant in \z\<^l. A real-valued function on F is
termed pseudo-harmonic if it is pseudo-harmonic on each point of F.
In this paper we will prove that there exist the local parameters such
that F is a Riemann surface with respect to them and u(p) is harmonic
on F.

1. Terminologies and notations.

Let u(p) be a pseudo-harmonic function on F. By the level-curve
of u(p) with the height c, we mean the locus of the equation u(p) = c.
It is well known that with each point p0 e F, there exists a suitably
chosen neighborhood NpQ of p0 and a topological mapping z=Tp0(p) of
NpQ onto |zK|l under which p0 goes into z—0 and the level-curves
of u(p) in Np0 go into the level-curves of Re zn in z|<^ll:>. we shall
term this Np0 a canonical neighborhood of />0. When « = 1, we shall call
pQ a regular point and N/>0 a simple canonical neighborhood. When n^2y

we shall call p0 a saddle-point of fl/ύter w. A real-valued function υ(p)
on F is called "pseudo-conjugate to a pseudo-harmonic function u(p)", if
it satisfies the following condition.

There exists a topological mapping z=Tp0(p) by which Np0 cor-
responds to |*|<[1, and U(z) = u(Tp0(p)) is conjugate-harmonic to V(z) =
v(TPo(p)) in i

1) Y. Tόki, A topological characterization of pseudo-harmonic functions, Osaka Mathe-
matical J. 3 (1951), 101-122. See also J. Jenkins and M. Morse, Topological methods on Rie-
mann surface, pseudoharmonic function. Contributions to the theory of Riemann surfaces
1953 p. 114.
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2. The triangulation of a surface.

Let F be an orientable surface and u(p) be a pseudo-harmonic func-
tion on it. In the first place, we can easily triangulate the surface F
such that each saddle-point of u(p) is a vertex of a triangle and each
triangle of F is contained in a canonical neighborhood, especially any
triangle without the saddle-points is contained in a simple canonical
neighborhood. We shall prove the following lemmas on this triangula-
tion.

Lemma 1. We can triangulate the surface F such that each side of
any triangle of F intersects every one of the level-curves of u(p) at most
at the finite number of points.

Proof. Let Δ be any triangle on F and a, b, c, be the three vertices
of it. Let Li (ί = l, 2 «) and Mj (j = l,2 m) be the sides of the
triangles with the common vertex a and b respectively: especially L1

denotes the arc aby M1 denotes the arc ba. There exists a canonical
neighborhood N^ C/V^^>Δ) and a topological mapping z—Tj(p) under
which Δ is mapped onto a curvilinear triangle Δ' in |2|<^1. Let the
points a', b', c'y be the three vertices of Δ' and L/ (/ — I, 2 ••• n) and
MJ (.7 = 1, 2 ••• m) the mapped images of the arc L, (ι = l, 2 ••- n) and
MJ ( / — I, ••• m) in N^. Let Ca

f and CV be the sufficiently small circles
with the center 0', V and contained in |*K1 respectively. Let a/
(/ = !, 2, ••• n) be the points at which the arc L/ cut the circle Ca' for
the last time. We can choose the points b/ (7 — 1, 2 ••• m) on Cv
similarly. We can connect #/ and &/ by a polygon without intersect-
ing LI (i = 1,2 -n) and M/ (j = l,2 m) out side of the circles

Fig. 2.
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Ca' and Cbf. We also connect a/ and a! by the radius in the circle Ca'.
We connect b/ and V similarly. We repeat this deformation with respect
to every side of the traingles on F. In this repetition, each side of the
triangles are varied in finite times: for instance, side ab varies in
(m-\-n—l)-times. When some part of a side of a triangle lies on a level-
curve, then we can deform slightly it such that each one of sides of
the deformed triangle cut the level-curves at most once.

Therefore we have after a finite number of time the desired
triangulation. A point p on the sides of a triangles is termed a critical
point when the side through the point p is on one side of the level-
curve u(p) except to the point p in the neighborhood of p from now.

Lemma 2. We can triangulate the surface F such that each side of
any triangle of F intersects every one of the level-curves of u(p) at most
at one point.

Proof. Let Δ be any triangle of F such that each side of it inter-
sects every one of the level-curves of u(p) at most at a finite number
of points. When Δ have ciritical points or saddle-points on its boundary.
Let us subdivide Δ into triangles and polygonal domains by the level-
curves through the critical points and the saddle-point.

Let one of these polygonal domains be 2 The polygonal domain
Σ can be mapped onto a rectangle Σ* by the topological mapping
z = S^(p) under which the level-lines in ]Γ] go into the lines parallel to
the jy-axies and the vertices of X] go into points on the boundary of 2*

The polygonal domain 2* can be subdivided into triangles by lines
connecting the center of ]ΓJ* to the vertices. Let us subdivide 2 into
triangles which are the inverse images of the triangles of

level-curve of «(p)
level-curve of «(p)

simple-canonical neighborhood. Fig. 1. Saddle-point of order 2.
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Subdivide each polygonal domain of F into triangles similarly. We
can easily deform the above triangulation slightly such that each side
of the triangles intersect the level-lines at most once.

Theorem. Let u(p) be pseudo-harmonic on F. We can associate the
local parameters of F 'such that F is a Riemann surface with respect to
them and u(p) is harmonic on it.

Proof. By the lemma 2, we can subdivide the surface F such that
each side of any triangle of F intersects every one of the level-curves
of u(p) at most at one point. Therefore each triangle of {Δ} can be
mapped onto the rectilinear one in the £-plane and at the same time the
level-curves of u(p) can be mapped onto the lines parallel to the y-axis.

Let these transformations be z = rj(p). It is clear that the function
u(rjl(z)) is harmonic. Let p0 be any point on F and Δ^0 be a triangle
such that Δ^0 3 p0. The following three cases will arise:

( i ) p0 is contained in Δ^0.
( i i ) p0 lies on one of the sides of Δ^0.
(iii) pQ is a vertex of Δ^0.
We can associate the local parameters as follows, corresponding to

the above three cases.
( i ) We associate the function z = τjpQ(p) as a local parameter to p0.

(ii) There exists the two neighboring triangles Δy and Δk such that
the point p0 is contained in the common side of Δy and Δ^. We can
transform Δy and Δk onto the rectilinear ones Sy and Sk by the trans-
formation z = r4j(p) and z = τjlc(p) respectively. We can also map Sj
and Sk onto the triangles Rj and Rk lying on the upper and the lower
half-plane with common side of the interval 0<lΛ;<ll by two linear
transformations resepctively. Any point on the common side of Δy and
Δ^ is mapped on the different points on the side of Sy and Sk respecti-
vely. Since these two points lie on the same level-curve parallel to the
Λr-axis, it is clear that these are mapped on the same point on the
interval 0 <: x <; 1 by the two linear transformations. Thus we can map
the curvilinear quadrilateral Δ y \jΔ Λ onto the rectilinear quadrilateral
RjVRk topologically and the common side of Δy and Δ^ can be mapped
onto the interval 0<^x<Ll. Let this transformation be z = r4j,jtt(p).
We associate this function to p0 as a local parameter of pϋ.

(iii) Let Δ^, Δ/2, ••• Δ«Λ be the triangles with the common vertex
pQ. Each Δ, Λ (k = !9 2 ••• n) is mapped onto a rectilinear one S»k (k = l,
2, -,n) and p0 goes into zιk by the transformation z—Tjiic(p). Let the
vertical angle of z%k of Sίk be oak. The triangle Sik is mapped onto S'.
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and Zik goes into Wik by the transformation w = z^/(.^ί1-
Jr^ί2^ — H««n). Let

w

the vertical angle of wιk of S'ik be βik. Then 2 /3tk~2τr. Accordingly, we
fc=l

can map S^ and S< onto S7 and S" by linear transformations
respectively such that Wt£ and Wik+l go into ξ" = 0 and the common side
of the two neighboring triangles Δ^ and Δ, Λ+1 goes into the common
side of S"k and SJ/ . Thus the polygonal domain composed of Δ»Λ

(£ = 1, 2 ~ n) is mapped onto the polygonal domain consisting of S"
= ~L, 2 •" n) in the f-plane. Let this mapping be ξ = ...jc (p).

the surface F.
Fig. 3.

We associatet he function f = τjt . . . 4 t ( P ) to ^0 as a local parameter.
These local parameters r^p), r^j^p) and τj< ι f... J<fi(ί) satisfy the
conformal neighboring relation and w(^) is harmonic on F with respect
to them.

Corollary. Let u(p) be a pseudo-harmonic function on F. Then there
exists always a conjugate pseudo-harmonic function to u(p) on F.

Proof. We can assume that the function u(p) is harmonic on F
with respect to the suitably chosen local parameters by the theorem.
Then there exists always a conjugate harmonic function to u(p) on
F. The corollary follows at once. This conjugate pseudo-harmonic
function v(p) is multiple-valued on F in general.

(Received April 1, 1955)






