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Introduction

This is a continuation of the author's previous work [6] on the cobordism

generators defined by J.M. Boardman in [1]. Previously we have used the

Landweber-Novikov operations to calculate the coefficients %2i and z4i+1 of a
primitive element

n

This time we use the Steenrod-tom Dieck operations in the unoriented

cobordism theory ([2], [8]) to deduce that the coefficient z^ for the "canonical

primitive element' ' P0 is represented by the "iterated Dold manifold' ' (Rl)
a(P2b)

for ί=2β(2ft+l), where R1(M)=S1x(MxM)/aχT (Theorem 3.2).

In other words, let L=Z2[eί_1: /Φ2*] be the Lazard ring of characteristic
2 and F(x, y)=g-l(g(x)+g(y)) with g(x)=^ίei_1x

i(e0=\ί ezk_=ϋ) be the univer-
ί'̂ l

sal formal group law. Then the canonical ring isomorphism of Quillen [5]

φ: L->9ί* sends the generator e^ to [(R1)
a(P2b)] for ί=2β(26+l).

We also study the behaviour of the Dold-tom Dieck homomorphism

Rf. 9&*-»3l2*+y defined by Rj([M])=[S^x(MxM)lax T]. In particular, we

present the following product formula (Lemma 2.2)

*X*y)= Σ (ΣΠ[P2,r^W»ωy>ft + «>o »>o

In the final section, we examine the relation between the algebra structure of

yi*(BO(l))^yi*(Z2) and the coalgebra structure of 5ft*(5O(l)). As an applica-

tion, we obtain the following formulas for the Smith homomorphism Δ ([3]);

, β]) [5", a]+[Sm, a] (Δ[S", fl])+[PJ(Δ[5", «]Δ2[5", a]

, and
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for 2k>m^0 (Corollary 4.3). The former equation would be an answer to a
question of J.C. Su [7] on the relation between Δ and the multiplication in
•Jϊŝ Z j). The latter formula for &<3 was first proved by Uchida [9] utilizing the

multiplicative structures of S1, *S3 and S7.
In the appendix, we state brief comments on the unrestricted bordism ring

of involution I*(Z2) ([3], IV 28). We define the "switching involution" homo-

morphism S: yi^-^I2^(Z2)9 which is a ring monomorphism with a left inverse.
We see, by definition, that Rj=KjoS with Kj the 3^-homomorphism studied
by Conner-Floyd in [4], and thus give a proof for the well-definedness of the
Dold-tom Dieck homomorphism Rj.

The author would like to acknowledge stimulating conversation with Profes-
sor Tammo torn Dieck. The author also wishes to express his gratitude to Pro-
fessor Larry Siebenmann for cordial and constant encouragement.

1. Formal group law in the unoriented cobordism theory

As in [6], let

ft*
be the comultiplication defined by the /f-space map.

The cobordism first Stief el- Whitney class Wί is mapped by μ* to a
formal power series

(1.1)

The formal power series defined by these coefficients

(1.2) F(x,y)=x+y+ Σ atjxfy*
i,j>ί

is a commutative formal group law [5] it satisfies the following properties

(1.3) (1) F(*,0)=0,

(2) F(F(x, y), g)=F(x, F(y, *)) ,

(3) F(x,y)=F(y,x).

The following lemma explains the relation of primitive elements in ίJί1

(BO(l)) to the formal group law F(x,y) of (1.2) .

Lemma 1.4. An element g(W1)=W1+^ίzί_lW1

i of yi\BO(l)) is primitive
i>2

if and only if F(x,y)=g~1(g(x)J

Γg(y))y where g~\x) is the inverse of g(x)\ g(g~\x))

=g-W)=χ
Proof, If g(W^ is primitive, then
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=g'

Conversely, if F(x, y)=g'\g(x)+g(y)), then

μ*g(Wl)=g(μ*W1)=g(F(W1®l,l®Wl))=g(W1®l)+g(l®W1)

Lemma 1.5. Concerning the coefficients of the formal group law (1.2), we
have the following formulas for every integer & > 1 .

(1) *,. *-,=<>.

(2) Σ fllliy[P«*-yJ=0 .
k>j>Q

(3) tΣo«1>2,[P*_y]
2=[P2J.

k- j: even

In the above formulas , P, denotes the real protective space of dimension ί .

Proof. Putting m=\ in (3.4) of [2] (p. 190), we obtain

where H(l, n) is Milnor's hypersurface in PjXP,,. But [P2t _J=0 and [H(l, n)]
=0 for every n^l ([!]). So Σ «ιfy[P»_y]=0. Letting n= 2k— 1, we have

« - / : even

Σ Λι,2y-ι [^>2C*-y)]==0 an<i Part (1) follows by induction on k. Analogously
k>j>ι

letting n=2k^2, part (2) follows. Now, from part (2).

βι.*+ [Pa]= Σ^y^α-p] -

So [P2fe]=«1,2*+ Σ ( Σ
*>/>o y>»I>

=fl,,2*+ Σ βι.,y ( Σ
*-2>;>0 ^-y-l^

This yields part (3) since ϋft* is a Z2-vector space.

2. Steenrod-tom Dieck operations

T. torn Dieck has defined in [8] the stable cohomology operations

Sf: W*(X) -> 9l*+i(X) (-oo<ί<oo)

such that

(2.1) (a) For

(b)

(c)
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(d) For the natural transformation μ=$l*( )-»#*( Z2), it holds

that μoRk=Sq

koμy (Sg

k: Steenrod operation, 5/=0 for K<0).

On the other hand, torn Dieck has also defined in [8] the following mapping

Rji 9Z*-»5K2*+y for j>0; for a closed differentiable manifold M, let Λ/M) be the

orbit space of the free involution (SJχ(MχM), ax Γ), where α is the antipodal

involution and T is the switching map. It was proved in [8] that, if M is bor-

dant to M', then Rj(M) is bordant to -Ry(M') and that this construction yields

consequently a mapping of the bordism set Rji %l*-*3l2*+j
The mappings 7?y are expressed by the operations on 3l*(pt)

and vice versa as in the following lemma. (Recall that we are always identifying

ϊίt with 9Ϊ~*' via the Atiyah-Poincare duality.)

Lemma 2.2.

(1) For xt=yim, Rf(x)= Σ [P/_/]#~w~y(#), βwd consequently,

(2) Λχ*+y)=JR

(3) R,(Xy)= Σ

summation runs through all the sequences of non-negative integers

(n0, n19 ••-, wt , •••) ίw^A ίAβί 2 2i+1ni=j—(k+m) .
i>0

Proof. Part (1) follows easily from (14.1) of [8]. Since the R* are stable

cohomology operations, they are additive and so part (2) follows from (1). For

and eSR,,,

(2.3) Λ/*y)= Σ [ΛJ( Σ Λ-Λ^ 11

y>2, >o ft + ff=«y-2,

by part (1) and 2.1 (c). On the other hand,

Σ [P*]( Σ Λ^Λ^y))
y>2ι>0 k + q=j-2i

=Σ [̂ .] [Λ]( Σ [PJ( Σ Λ— '(*)/z-"-'Cy))) by (i)
«,* y>2ι>o « + /=cy-β-*)-2»

=Σ [ΛJ [P«]^_,ce+B(*y) by (2.3)

Σ

Substituting repeatedly the latter part of the right hand side, we obtain part (3).

REMARK 2.4. In 2.4 below, we give a complete description of the mapping

R1 with respect to the "canonical ring generators" of 9i*. This would be a

partial answer to a question of torn Dieck ([8]) on the behaviour of the mappings
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Corollary 2.5. Let 1 = [ρi\ e 9i* fo ίAe Mm'ί element. Then, for —°°<j
<00,

Riw=\fi (f10 ( 7 :

Proof. Fory>0, the assertion is clear by 2.1 (a) and (b) . So let j =—i
(i<0). Then /?,.(!)= [P, ] by definition. On the other hand, by 2.2 (1),

So jR~''(l)= 2 [P,_ y]jR~'(l) and the assertion follows by induction on i. (Of
»>y>o

course, this result can also be obtained directly from the definition of the opera-
tion RΛ)

Corollary 2.6. Let P= H^+ΣX -iWY be a primitive element in W
ι>2

Then, for every integer j( — °°<y<l), RJ(P) is also primitive.

Proof. μ*RJ(P)=&(μ*(P))=R'(Pχ 1 + 1 xP)

= Σ (R'WxR'-'M+R'MxRJ-'p)) by 2.1 (c)
, =a-βO

=R'(P) x 1+ 1 X Λ>(P) by 2.5.

Lemma 2.7. Lei -X^ΣX-i WV *e an arbitrary element of W(BO(\)).
»">!

Then

=Σ( Σ

β Λ l f 2 y Λrβ ̂  coefficients in (1.1).

Proof.

=Σ Σ Λ^K -O^WiO by 2.1 (c)
ι>l _/=-«>

=Σ Σ R-^-JRWfi by 2.1 (b)
ί>ι »>y>i -i

} by 2.1 (a)

It was observed in [2] (p. 141) that
y j&t

by 1.5(1)), and /2~'(*i_i)=^i(*<-i) by 2.2 (1). Therefore the lemma follows.
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3. Determination of Boardman's generators

Let P0=ίF1+Σ*ί-ι^ι''e5K1CBO(l)) be the (unique) primitive element such
ι>2

that z2k_1=0 (&>1) (see [1], [6] Introduction).
Then we have

Lemma 3.1 R\P0)=P0 .

Proof. By 2.6, R\P0) is primitive, and by 2.7, R\P0) is of the form W,+

Σ#ί -ιW/ιί'> with #2*-ι= ̂ ι(Λ?2*-1-ι)= 0 (Λ>1). So, by the uniqueness of such a
ι>2

primitive element ([!]), the lemma follows.

Theorem 3.2 Γλe coefficient zi_l of the canonical primitive element
P0=ίΓ1+Σ>ί_1ίΓ1

fe5R1(5O(l)) wίίA ^2*-ι=0 (&>1) is the cobordίsm class of the
j'^2

"iterated Bold manifold" (/?1)
β(PlS)=JR1( . (Λ1(PlΛ)) ) /or ί=2"(2i+l) (α>0, i

>1).

Proof. We prove by induction on fl>0, using 3.1 and 2.7.
(1) In case α=0. By 3.1 and 2.7, we have

Z2b= Σ (*2*)X,2y2ft + >=»*

So #2— (00)
2 Λ1|2=[P2] by 1.5 (2), and inductively on b we can deduce, by 1.5 (3),

that*a>= Σ'[P2*]2fl1>2> = [P2J.
2jfe + y=6

(2) If we suppose that the theorem holds for a— 1>0, then for i=2α(2i+l),
3.1 and 2.7 imply that #i_i=/?i(*y_i) withy=2α~1(2ό+ 1). So, by induction hypo-

thesis, arί.1=/?1([(/Z1)
β 1(Λ5)])=[(Λ1)

β(P2»)] as desired.

Corollary 3.4.
(1) ΓA^ cobordism class [(R1)

a(P2b)] can be taken as a ring generator of 31*
in dimension 2β(2A+l)— 1.

(2) Denoting [(Rλa(P2b}] by X(a, ft), an additive basis for 5ft* is given by {

(α, ft)2λcα,6)+βcα,6). χ^ ̂ >Q, 1 > £ (β, ft) > 0, λ(β, ft) = f(β, ft) =

number of pairs (a, ft)}.
(3) ϊϊΎίA respect to this basis, the additive homomorphίsm

is determined by the following formula

RI( Π X(a, i)««*
«>0,6>1

A)( Π
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Proof. Part (1) and (2) are the consequence of the fact that the coefficients
#,-_! of the primitive element P0 are indecomposable in Sft* ([!]). Part (3) follows
from 2.2 (3) and the definition of the X(ay b).

4. Bordism algebra of free involutions

In this section we consider the relation between the algebra 9 (̂50(1)) with
the multiplication

9?*

and the coalgebra 9έ*(.BO(l)) with the comultiplication

μ*:
3?*

via the cap product ([2] p. 186)

Π : W(X)®MJ(X)

Let ηn: Pn-*BO(l) be a classifying map of the canonical line bundle over
PM, and denote by {n} the singular bordism class [Pny ηn]^3ln(BO(l)). It is
well-known that 5R*(fiO(l)) is a free ^-module with basis {{0}, {!},•-, {n}y •••}.

Let αΛ(w, n)e5Jlw+Λ_A. be the element such that

It is equivalent to define [5m, α] [5", α]=Σ«*(^ *)[$"> a} in ^*(Z

2) ([9]).

Theorem 4.1.
(1) ak+1(m, ri)= X] at tjak(m~ i, n—j), where the aitj are the coefficients in

ι'f j>0

(1.1).

(2) Σ # -ι#*+ί(w> w)=2'8r/-i(a*(m~' z> W)+<^A(W> w~ 0)> wA^re ίA^ ^^j «rβ
» >o ί>o

ίA^ coefficients of a primitive element P (Uchida [9])).
(3) 2 a2i+1(m, n)[P2i] = [H(m, n)}, where H(m, n) denotes Milnor's hyper sur-

Proof. The proof of [2] XIII (3.3) shows that

{n})=W^ (Σ ak+1(m, n

= Σ Λί.yMί^—O® {»—>})= Σ <iij(ΊloLk(m-ί
ί,y>o 'y i,y>o A

=Σ( Σ a^aάm-ί, n-j)){k} .
k i,j>0

Comparing the coefficient of {k}, part (1) follows. Analogously,
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Pn M*( W® M)=Σ(Σ>, -ι«*+, K »)){*}

Part (3) follows from the proof of [2], XII (3.3).

Corollary 4.2. In 3l^(Z2), the following multiplicative relations hold.

(1) [S\ a] [S2n, β]=Σβι>2, [ Sr2""2ί+1, a], where the α l>2/ are determined by the

formula 1.5 (2).

(Uchida [9])

(2) [S\ a] [S2», flHΣ^-DS'"-*"1, a]
i>0

+Σ(«o(2, 2ί -ί>0

-1, α]=Σ{α.(2, 2i-2)+ε(n-i)(altiγ+a^1}[S"-2i+\ a]

where 8(n—i)=0 (n—ί: even), =1 (n—ί: odd), and

«0(2, 20=

«.(2, 2f-2;) toiίft α0(2, 0)=0 .

Proof. Letting m=l in 4.1 (1), we have

This yields, by induction on A, the former part of (1) and [S\ a][S2n+\ a]=Q.

Together with 5.1 (2), this in turn gives [S\ fl](Σ[Λy] [S2""2y, β])=Σ( Σ [P*j]
=

^\ a]=[S^\ a]. So [S™+\ a] [S2»+\ a] = [S\ a] [S2Λ+1, a]

[S2m-2^, α])=0.
Analogously, letting m=2 in 4.1 (2), part (2) follows.

Corollary 4.3. Concerning the Smith homomorphism Δ> we have the follow-
ing formulas.

(1) A([Sm, a] [S", «])= Σ βί.yΔ'[5", α] Δy[5", β]
ί.y^o

=(Δ[5", β])[5", α]+[5m, a](A[S», a])

+ [P,](Δ[Sm, a]Δ2[5", α]

(2) Δ2*([5ra, β].*)=[5", α] Δ2» for

(3) Δ2ft([S2*, β] ̂ )=[52ft, β] Δ2»
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Proof. Part (1) is a paraphrase of 4.1 (1).
Substituting repeatedly the second factor in the right side of 4.1 (1), we obtain

as+2k(m, n)=Σ Π ̂ iqjq)oίs(m—^iq, n—^jg)
1<Ϊ<2* * q q

= g,K,)rta.O»-2*i, n-2*j)

=α.(», n-2*)+ Σ («, .y)2
?*αί(m-2*z) π-2*/) .

f>ι»y>o

This yields part (2) and (3).

Appendix. Unrestricted bordism algebra of involutions

In this appendix, we consider the unrestricted bordism module of all involu-
tions (admitting fixed point sets). The basic notations are found in Conner-Floyd

[3], IV 28.
The unrestricted bordism group of involution I*(Z2) has an S^-algebra

structure via the cartesian product. The direct sum *Σβl#(BO(m)) also admits a

multiplicative structure by the formula [M, ξ] [N, ή\ = [MxN, p

Lemma 1. There is the well-defined ring homomorphism

defined by τ[M] = [M, TM], where TM denotes the tangent bundle of M.

Proof. Let W be a manifold giving the bordant relation of M to N\ dW=
M(JN. Then d(W, τw)=(M, τM01) \j (N, τ^φl). So we have

(**.H+ι)*[M, τM]=(intn+1)*[N, rN]

where /Λ > Λ + 1: BO(n)-*BO(n-\-l) is the canonical map (up to homotopy). But

(i«.«+ι)*: 'WJiBO(n))-+ϊfln(BO(n+l)) is a monomorphism ([3], 26.3). So [M, TM]
— [N, TN] The assertion that r is a ring homomorphism is clear from the
definitions.

Corollary 2. There is the ring homomorphism

defined by S([M])=[MχM, 71], where T(x, y)=(y, x).

Proof. Consider the ring monomorphism i* : I*(Z2) -+ *Σ$l*(BO(m)) of [3]
m

(28.1). By the definition of ί* and the proof of [3] (24.3), i*([M X M, T])=[M,

TM] and i*([NxN, T^])=[^> TΛT] Therefore by the preceding lemma, [MxM,
T]=[NxN, T\ if [M]=[N]. Next we show that S is additive. 5([M]+[JV])

= [(MUΛOx(MUΛO, T]=S([M])+S([N])+[(MxN)\J(NxM), T]. Since
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any free involution bords in /*(Za), [(MxN) U (NxM), T]=0 and S is additive.

The multiplicativity of S is clear by difinition.

Corollary 3. R—K^Sy i.e. the following diagram commutes

where Rj is the Dold-tom Dieck homomorphism of (2.2) and Kj is the %l*-homo-

morphism defined by Kj([M, μ])=[SJ'xM/aXμ] (Conner-Floyd [4]).

The proof is obvious from the definitions.

Corollary 4. As a ring, I*(Z2) contains the polynomial subalgebra Z2[*S'(^_1) :

/— 1Φ2*-— 1] as a direct summand.

Proof. Let 6: *Σpfl*(BO(m))-*yi* be the augmentation homomorphism in-

duced by the constant map. Then £ oi^oS= id: 9ϊ*~^ ϊϊ* and £, ί% and S are all

ring homomorphisms. So the corollary follows.
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