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0 Introduction

Let #e(0, 1) be an irrational number and x — [0: av a2, •••] be the con-
tinued fraction expansion of x. The principal convergents pnjgn of x are
obtained by so called continued fraction transformation S as follows: let S be a
transformation on X=[0, 1) such that

[ 1-ΓJL1 if « e ( o, i)

0 if x = 0

and put «„(#)= I, then the principal convergents pjqn, » = 1 , 2, ••• of α

are given by

(in ?.-Λ = (<h 1\ /αn 1\

We know in [1] and [5] that the transformation S has an invariant measure
v with density

log 2(1 + *)

and that the natural extension S of 5 on ^ = [ 0 , l )x [0, 1) given by

x L » J \\.\χ\-\-y

has an invariant measure p with density

I o g 2 ( l + x y ) 2 '

and that the dynamical systems (X} S, v) and {X, S, v) are ergodic.
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As an application of BirkhofPs ergodic theorem, we obtain several metrical
results.

Theorem. For almost x G [0, 1),

(1) l ^ l o g g ^ ^ - ,

(2) l i m — - log

(3) lim—'{wlO;

6 log 2 '

, qn \qnx-pn

log 2

- λ + l o g 2 λ + l
log 2

for

for

(4)
v J logN 12

0<X<l/2.

Remark. The first proof of the statement (1) and (2) is given by Kinchine,
and the proof from ergodic theoretical standpoint is given by C. Ryll-Nard-
zewski in [7]. The statement (3) is obtained from the ergodicity of the natural
extension of S (see [2] and [5]). The number theoretical proof of statement
(4) is given by P. Erdϋs for "any" λ > 0 in [4], and an ergodic theoretical proof
for 0 < λ < l / 2 is found in [5].

In this paper, an algorithm T which induces the mediant convergents

n±h=L\k=\y —yan+1-ly n = ίy 2"') of x is proposed as follows: let Γ b e a

transformation on X such that

ί-x
1-x

x
and put

Let us define the matrices

and

n i\
A I I0 vo υ

if xelo = [0, 1/2)

if * e / x = [1/2, 1],

if T»-ιx<=I0

if T'

- * -
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Then the convergents wn\vn, n—\, 2, •••, where vn=rn+sn and wn=tM+unf are
not only principal convergents of x but also mediant convergents of x. However,
the mediant convergents transformation T has only a σ-finite but infinite
invariant measure μ with density dμ=dxjx, and so the ergodic theorem is not
useful to observe the limit distribution. Therefore a modified algorithm Tv

which is constructed by the jump transformation from Γ, is provided as follows:

ί-x

x
X

1-x

if *<Ξ[l/2, 1)

if *e[ l/3, 1/2)

l-(;Γ-2)» i f *e[l/(Λ+l), 1/Λ) (*£3).

We see in Theorem 2.1 the algorithm Tx generates the approximation fractions
wPlvί1* of x9 w=l, 2, , which is not only the principal convergents but also the

first mediant convergents P*~*P*-ι and the last mediant convergents ±-*—P*=IΛ

We see also the transformation Tx has a finite invariant measure μx with
density

dμx =

1 dx

2 log 2 l + x
if *e=[0, 1/3)

2 log 2 *
ax_ i f , 1),

and the dynamical system is ergodic.
By constructing of natural wxtension of Tλ and applying ergodic theorem,

we obtain the metrical results.

Result. For almost all Λ?G[0, 1),

(1) A f

(2) l i m - —log

( 3 )

24 log 2

x — ,(1) 12 log 2 f

2 log 2

2-λ+2 log λ
2 log 2

(4)
logN

for

for

= -^— λ for
12
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1 Mediant convergent transformation

In this section an algorithm which induces mediant convergents is proposed.
Let X=[0, 1] and let the map T be defined on X by

if x

if

1-χ9

ί-x

where 70=[0, 1/2] and J1==[l/2,1] (see figure 1).

1/41/3 1/2

figure 1

We denote the inverse branches of T by

) vQ{x) = -^— and V1(x) =
x-\-\

All inverse branches are modular transformations. So we use the following
matrix representations for them:

1

0, if

1, if

For irrational #e(0, 1) put

(1,4) en = 6n(x) =

and

ίr ? \ / r (κ\ c (v\\
/ 1 C \ I ' n ύn\ / 'n\^J n̂V1*/ 1 Δ Δ . . . A

Then we obtain the following.
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Proposition 1.1. For any irrational » e ί we have

1 6) x = t«{x)+T"x un{x)
rn(x)+T*χ.sn(x)

Proof. Let X9l...iH be a cylinder set of rank ny that is,

Then Tn is a bijective map from Xtl...tn to /, and the matrix representation of

the inverse branch of Tn restricted to -XΓ8l...8 is (r" M .

Let S be the simple continued fraction transformation:

(1.7) S * = ^ - * , if * e Γ J - , JL)

We denote the inverse branches of S by

(1.8) Wh(x) = 4 τ
x+k

and the associated matrices by

ίk

r -

For each irrational Λ;S(0, 1) put

an = an(x) = k, if

and

p. P.J o
where

p0 pj Vo

The following formula is well known: For any irratoinal * ε ( 0 , 1)

(1.11) χ = P +S"* P.-i
qn+S x qn-!

The relation between T and 5 is given by

(1.12) Sx=T>x, if *
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If # e Γ — — , — ) , then (S^x), •••, £*(#))=((), 0, —, 0, 1). Therefore the inverse

map Wk of S is represented by

, that is,

(ί ΰ-G !K X ΰ
Lemma 1.1. P«ί j=j(n: x) — *{k; 6k(x)= 1, &<»} and 1 =

max {A; £*(»)= 1, k<n} where l=l(w; x) = 0 if {k; £*(*)=1, A<w}=ψ
/or «»)' irrational xG(0, 1)

(1,14)

Proof. If /=0, then

\tu(x) un(x)J Vθ 1/ V̂O 1/ Vθ 1/

v/>o i>.iAo 1/

I f ; ^ l , t h e n Six=Tai+'"+aJx and Γ Λ Λ;=Γ Λ -i(Γ^)=Γ M -i(5^). Therefore, by
(1,13), the representation of the inverse branch of T" is

γ V ^ Ψ
i oΛi i/ vi oAo l

The fraction " is called the w-th principal convergent of x and the fractions
in

fx'P»+P"-i: χ = l, 2, •••, an+1— l) are called mediant convergents of £*.

Theorem 1.1. Put vn(x)=rn(x)-\-sn(x) and zon(x)=tn(x)-\-un(x). Then for
any irrational jce(θ, 1)

Proof. Put

1 = ϊ(n: x) = min{Λ: £Λ(Λ?)= 1, ra

= l(n: x) = max {A; Sk(x)= 1, k^n} .
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Then from (1,12) we have

563

rn+sλ = /(n-
J

By the lemma 1.1.

Putting λ=w—1+1, we have l < λ < ^ .H and so we obtain the result.

We now call a fraction

the w-ίA mediant convergent of #, and the algorithm (X, T) the mediant conver-
gent transformation. We prepare some formulae concerning the approximation.

Proposition 1.2. For any irrational xe(0, 1)

l-Tnx
(1,15)

In particular,

x- vn(x)

vn(x)
and \vn(x)-x-wn(x)\

converge to 0 as n -> oo.

Proof. By proposition 1.1. and since rnun—sntn=±ly we have

wn tn+T*x-un_tn+un
x—-

rn+Tnχ.sn rn+sn

ί-Tux

vn(rn+Tnχ.sn)'

From rn/Όo and the definition of vni wny we obtain the proposition.

For any 0—1 sequence 6ly £2,
 # ,^Λ, let <p9. be the affine transformation of

the (£,__!, ίy^^-plane into the (ξi9 ^^-plane such that

Then we have
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Proposition 1.3. For any irrational #e(0, 1)

(1.16) \x ξo-Vo\=g(x)g(Tx) -

In particular,

(1.17) \x-vM-toΛ\ =g(x)g(Tx)

where

1—Xy if #
8{X)-{ x , if *<=/,

Proof. By φtl(X) the linear form xξo—Vo is transformed into the following
linear form:

J (l-x^Tx^-rj,), if χς=I0

I -^Ttf ̂ - ^ ) , if Λ?e/lβ

This shows that formula (1,16) is valid for w=l. The general case is ob-
tained by induction. Using the relation

We obtain (1,17) by putting (£„, Vn)={l, 1).

It is well known that the simple continued fraction transformato transforma-

tion (X, S) has the invariant measure v with density dv= — and that the
V ; J Iog21 + x

dynamical system (X> S, v) is ergodic. The following was proved in [3] and [6].

Theorem. The mediant convergent transformation (X, T) has a σ-finite
invariant measure μ:

7 dx

x

and the dynamical system (X> Γ, μ) is ergodic.

This can also be seen by using a suitable jump transformation [9].
Here we introduce the natural extension of (X> T). We will see afterwards

that the natural extension is useful for number theoretical considerations.
Let X=[0, 1]X[O, 1] and let the map Γ be defined on X by



ALGORITHMS WITH MEDIANT CONVERGENTS 565

(1,18)
1 - * '

— , —),
x 1+j'

(Tx, Voy), if

(Γ*, Voy), if
Then we see the map T is one to one and onto.

Theorem 1.3. Let jz be the measure on X given by

— dxdy

if x<=I0

if

(1.19)
(χ+y-χyf

Then -μ is a σ-finite invariant measure for T, and the natural extension {X, T, ~μ)
is ergodic.

Proof. The Jacobian J(T) of T is

1 1

1 1

if χ(=I0

if

Putting k(x, y)=

holds:

1

(x+y-xy)
, it is not difficult to see that the following equation

k(T(x,y))J(T) = k(x,y).

Hence jz is an invariant measure for T. The ergodicity of (X, T, jz) is due

to [6].

Sub-lemma. Let (Sly ••-,£„) be a 0—1 sequence. Put

ίr ? \

(1,20)

Then

(1,21) t'n+u'n = rn and ri+s',, = rn+sa .

The proof is easily obtained by induction.
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Fundamental-lemma.

Proof. By the definition of T and notation (1,20), we have

In particular,

T"(*, 1) = ( Tnx, -ϊ*—) (sub-lemma).
^ ru+su/

We know the following basic properties:

(1) If q\qx—p\ <l/2 and (q, p)=ly then J- is a principal convergent of x> i.e.,

there exists k such that £- = & (Legendre's theorem [8]).
9 ?*

(2) If q\qx— p\ < 1 and (qy p)=1, then •£_ si a principal or a mediant conver-
gent of #. ^
Conversly, for all irrational x

(3) ί . l ϊ ^ - A l < l for all

For the mediant convergents ^ , the values vn\vn x—wn\ are unbounded

in general. In fact, put

«

Then from proposition 1.2. and the fundamental lemma we have

(1,23) vn\vn>x-wn\=f(Tn(x,l)) n>\.

This suggests that the values vn\vn x—wn\ are unbounded for some x.
Let Z\(λ>0) be the subset of X defined by

Then we have

Proposition 1.4. For any irrational # e ( 0 , 1)

iff Tn(x,
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2 Nearest mediant convergent transformation

In this section another algorithm which will be called nearest mediant con-
vergents transformation is proposed.

Let X=[0, 1] and let the map Tx be denned on X by

1 - *

(2,1)

where

(see figure 2).

X

X

1 - * '

if

if x(Ξj2

if

/ / /

/
/////

ί
/

1

/ \

The

(2,2)

and

(2,3)

0

relations betweer

7 >

Sx

1/51/41/3 1/2

l the

- ί
ί

figure

maps Γ, S

Tx,

7 > ,

Tlx,
Tlx,

1

2

and Tx are as follows

if X&J1UJ2

if JίGU/t

if x^Jλ

if x&J2

if *6UΛ.

We denote the inverse branches of Tx by



568 S. Iτo

Zι{x) = *e[0, 1]

(2,4)

and

Zk(x) = *e[l/3, 1/2]

and their associated matrices by

<«> * - ( ! ί) * < !) - * - G *72)
Then, the relations (2,2) and (2,3) have the representations:

(2,6)

and

(2,7)

Bt =

A ... A

> ° - '
Λs—2

if k=l

if A=2

if k^>3

k ~ [ i o ) -

Blf

1 >

if Λ = l

if k=2

if Λ ^ 3 .

Put δΛ=δn(Λ;)=Λ, if T" 1x^Jk. Then the sequences of digits δn have the
following Markov property:

(2,8)
if 8,.>3, then δ ί + 1 = 2

if S<=2, then δ ί + 1 = l .

if δ, = l , then there is no restriction on δ, + 1,

Let the 2 X 2 matrix ) b e d e f i n e d b y

ί(1) ι4ίv ~~ l(x) *(x) " # " ω '
(2,9)

Then we have the following.

Proposition 2.1. For any irrational #e(0, 1)

x -
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The proof is easily obtained by using the identity:

x = .

569

Sub-lemma
(i) // xejk (ft^3), then (1) a1(x)=8ι{x)=k, 82(x)=2, 83(x)=l

(2) T3

lX=Sx

(3)

(ii) IfxeJ2,then (1) a1(x)=S1(x)=2, δ2(*)=
(2) T\x=Sx

(3)
ω = ( ^ ) J)

(iii) Ifxejvthen (1) β ι (*)=δ 1 (*)=

(2)

(3) ω = ( ^ ) J).
Lemma 2.1. Let j=j{n: x) = *{k: 8k(x) = l, k<n} and l=l(n:x) =

max {A: 8k(x)=l, k<,n}. Then the matrix I " " J has one of the following
forms: tn Un

1 ϊy-Λ/1

Λ
-Λ/1 1\
^ΛO 1/'

if n=l

if w—/=1 and

J D

if w—/=1 and

S'x^Ju

if n—l=2 and

Proof. From the sublemma we have

V 1 θ A

i o

/«,(*) 1

v i o

*«3(*) ""
Rr £ «„(*>>

i f

i f

if

Repeating this procedure with * replaced by Sx, S2x, •••, S'x and so on, we
obtain the lemma. For j = 0 , lemma 2.1. is also valid.
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Theorem 2.1. Put υiι)=ri1\x)+si1\x) and w^=
any irrational #e(0, 1)

u^\x). Then for

Proof. By lemma 2.1.

ϊy+ϊy-i '
2Pj+Pj-ι

if »=/

if M - / = 1

Pj+ι-P' , if «-/=l and S'ae/*

if »—/=2 and

Therefore for any

Conversely, from (2,7), for any •̂ >*̂ "**~1 there exists » such that
fc+ft-i

Therefore

Similary, for any -ί*-, if β*^2 then there exists an n such that
?*

{ 9* 9*-i) _ i r» s» ^

ft+ft-i _ w^

ft-i ft-.Vl β»-2Vl lλ M» 4 υ

W ι A-2Ao 1 Λo 1/ Vί(» βs

if α Λ =l then there exists an n such that

(ft-l ft-2^ = ^ ? > tf>\

Therefore
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Finally, for any

hence

** ^k~1( =t=£*=2 \ there exists an n such that

W i AVM) 1 / Vtf> tf

We now call the fraction -£-= ' the w-th
)

mediant con-

vergent of Λ, and the algorithm (X, Γ2) the nearest mediant convergent trans-

formation. We prepare also some formula concering the approximation.

Proposition 2.2. For any irrational #e(0, 1)

(2,11) X —
1-Tΐx

The proof is the same as for proposition 1.2.

Proposition 2.3. For any irrational x&(0, 1)

(2,12) \x-v?Xx)-wP(x)\ =gι{x)gι{Tιx) . . . f t ( :

where

x, if

1 - * , if

if

Proof. The proof is similar to that of Proposition 1.3. In fact, for each

sequence {ΰx(x), •••, Sn(x))y we consider the affine transformations <pB. from

(?i-i> *7ί_i)-ρlane to the (ξ, , 97t )-plane defined by

The absolute value of the linear form x ξ0—y0 is transformed in the

following way:

\x-ξo—Vo\ =gι(x)\TiX ξι-V1\

Therefore, we have

(2,13) \x ξo-Vo\=g1(x)-gi(TΓ1x)\T»1χ.ξtt-yn\

On the other hand we know
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Hence, we obtain the result by putting the value (£„, 97Λ)=(1,1) into (2,13).

Now, we introduce the natural extension of (X, 7\). Let R be the subset
of X such that

or and y^ 1/2)}

where 7=[0, 1] and 71=[l/2, 1], and let the map Tλ be defined on R by

if (x,y)ξ=J2XI

l-(k-2)x

In other words,

if (β.

if (*,

Theorem 2.1. ΓΛe transformation (R, Tj) tϊ ίAe induced map of {X, T)
on R. Therefore, the transformation (R, Tj) has an invariant probability measure
-μR with density

dxdy_
™ 2 log 2 {x+y-xyγ

Moreover, the dynamical system (R, Tλ, ~pR) is ergodic.

Proof. From the definition (2,1), we can easily see that

f(/,x/) = /x[l/2, 1]

f(/2X/)=/,X[0,l/2]

and for k>3

and

(see figure 3).

T'(J,xI)Γ\R=φ
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0 1/3 1/2

figure 3

Therefore let TR be the induced automorphism of T on R> then

Hence by proposition 2.1. the invariant measure ηzR is given by

d- - 1 - dxdy
μ* 2 log 2 '\x+y-xy) 2

where 2 log 2 is a normalizing constant. The ergodicity of the dynamical
system (i?, Tlf ηzR) follows from the ergodicity of (X, T, jή.

Taking the marginal distribution we have

Corollary 2.1. The transformation (X, Tj) has an invariant measure μx:

1 dx
2log2 ί+χy

1 m dx
2 log 2 x '

and the dynamical system (X, Tly μx) is ergodic.

Corollary 2.3.

if * e [0,1/3]

if *e[l/3,1]

Proof. There exists an m=m(n, x, 1) such that TΊ(x, l)=Tm(x, 1) and so
rm=r{n) and sm = si1). Therefore we obtain the result, from the fundamental
lemma in § 1.
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Corollary 2.3.

(i) Let a fraction •£- satisfies q\q x—p\<l and (q, p)=l. Then there exists a

k such that — = ^ 7 (Fatou).
q v\'

(ii) // —̂ r- is the n-th convergent of x, then v\p \ v^ x—wP \ < 2 .

Proof. To prove (i), note that by property 1.2. and theorem 1.1., there

exists n such that -£- = —5, that is, — is the «-th mediant convergent and satisfies
q vn vn

VJVHX—WJ^I.

From proposition 1.4. this is equivalent to

Since Dx is a subset of R, there exists k such that

f 4(«, l) = τ\χ, i
, in other words, Tk

R{xy l)—TΪ(x, 1). Therefore

Part (ii) can be seen as follows. By proposition 2.1. and corollary 2.2.

On the other hand, Tϊ(x, l ) e i ? and D2Z)R. Therefore

\Jn \Vn X Wn I ϋa-ώ .

3. Some metrical results

In this section we prove Erdόs' theorem for 0 < λ ^ l by using the ergodic
theorem.

Proposition 3.1. For almost all # e ( 0 , 1)

(3,D

Proof. Let {ak{x)\ k^N} be a sequence of digits with respect to a
simple continued fraction. Put

n(m) = *{k; ak{x) = 1, k^m}+2*{k; ak{x) = 2, k<m}+3'{k; ak(x)>3, k<m} .

Then, from theorem 2.1. we have
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By using the ergodic theorem for the dynamical system (X, S, v), we know
([1]) that for almost all #e(0, 1)

(1) limϋ£!_,(Λ

and

(2) lim — ~Oτm 1 O 1 o -
*»•+*> m 12 log 2

Therefore,

log β gi, = lim J$- -L log g. =
24 log 2

Noting that mn{m-\-\)—n{rn)<s'i and v ί+^^ί^ , we get the result.

Proposition 3.3. For almost all Λ?e(0, 1)

(i) lim——log | #£**•#—w^\=
»+- n 24 log 2

and

(ii) lim——log
12 log 2

Proof. From proposition 2.2. we have

- i - logK1 '.*-*'" I = -1 log β<» - 1 log/(f ϊ(«, 1)).
n n n

We show that for almost all xe(0, 1)

(3,2) lim — log f(T"(x> 1)) = 0 .

From (1,21) and theorem 2.2. we have

= τ*i(/(*> y)<v) = n>J* o

Therefore, we see that for any £ > 0

Σ Th<f(fi(χ, y))<e-"}<+oo .
« = 1

Hence, by using the Borel-Cantelli lemma,

'{n; —-logf(Tu(x,y)>ε]< + o
I n )
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for almost all (x, y)> that is,

(3,3) lim — log/(Ti(#, y)) = 0 for a.a. (x, y),

Note that the following inequality holds:

\f(χ,y)-f(χ,y')\ζc\y-y'\

where

1

min
— x

In particular, remarking that from the definition of T1

we have from sublemma in § 1

Therefore, from proposition 3.1. there exists 0<?7<l such that

\f{f"1{x,y))-f{Ti{x,\))\<c 7in,

and so (3,3) imply (3,2). This completes the proof of (i). Part (ii) is obtained
from

- - l o g x — = 2-1 log ̂ - 1 log/(Tϊ(^, 1))

Theorem 3.1. For almost all #e(0, 1)

lim

Proof. From proposition

\vO).χ_w(i

l<n<N}

1.4. we get

' l^λ, 1<»<^

2 log 2

2-λ+2
2 log

ΛΓ

log λ -
2 •'"

—

x(Tϊ(x, 1))
N N

where Xx is the indicator function of the set Zλ.
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On the other hand, it is clear from the ergodic theorem that

for almostl al (x, y).
Note that

{(x,y): % λ (ί?(*, D>))Φ%λ_(?ϊ(*, 1))}

c {(x,y): \-cv"<f(Tϊ(x, y))<X+cv"}

where c and 57 are the same constants as in the proof of proposition 3.2. There-
fore, we have

log 2

Hence, by using the Borel-Cantelli lemma, for almost all (*, y)

By easy calculation for 7&i(Oλ), we obtain the conclusion.

Theorem 3 3 For 1 > λ > 0

12
logiV π2

for almost all x.

Proof. If ί£ίi <ΛΓ<ί;ί1), then by corollary 2.3.

Hence, by theorem 3.1. and proposition 3.1.

log N

, \<k<n-ί}

log Ϊ;^

12
= λ —- for almost all x.

π

Replacing v^ by v^li we obtain the reverse inequality.
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