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0 Introduction

Let x<(0, 1) be an irrational number and x=[0: a,, 4, ---] be the con-
tinued fraction expansion of x. The principal convergents p,/g, of x are
obtained by so called continued fraction transformation S as follows: let S be a
transformation on X=[0, 1) such that

L~[l] if xe(0, 1)
Sy—4 x x
0 if =0

], then the principal convergents p,/q,, n=1, 2, -+ of

£ 2 96 )
P P/ \1 0/ \1 0).

We know in [1] and [5] that the transformation S has an invariant measure
v with density

and put a,,(x):[

are given by

1
Srly

1 dx
log2 (14x)

and that the natural extension S of S on X=[0, 1)x [0, 1) given by

S =(313] )

has an invariant measure p with density

dv =

do — 1 dxdy ’
log 2 (1+ xy)?

and that the dynamical systems (X, S, ») and (X, S, ) are ergodic.
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As an application of Birkhoff’s ergodic theorem, we obtain several metrical
results.

Theorem. For almost x<[0, 1),

. 1 7
1) lim—=—1 =
1) o8 4= 0g 2

. 1 P 7’
2) lim—-L log|x—2x |= :
@ iy n 8|* qn 6log 2

3) gﬂ%'{nlogns_N, 9l gur—pal <N}

A
A 0=
Tog 2 for 0=A<1/2
—A+ log 2A+1
+10<;g2 L e 12sa<,
1] _ —
(#) lim (¢, P)1qlgx Pl10<g7\],v(q,p)—1,q<N}=;rzzx for 0<A<1/2.

Remark. The first proof of the statement (1) and (2) is given by Kinchine,
and the proof from ergodic theoretical standpoint is given by C. Ryll-Nard-
zewski in [7]. The statement (3) is obtained from the ergodicity of the natural
extension of S (see [2] and [5]). The number theoretical proof of statement
(4) is given by P. Erdos for “any” A>0 in [4], and an ergodic theoretical proof
for 0<A<1/2 is found in [5].

In this paper, an algorithm T which induces the mediant convergents
{kp—"—'—!ﬁlk=l, v a,n—1,n=12 } of x is proposed as follows: let T be a

kgutquy
transformation on X such that

X if xel,=][0,1/2)
1—x
Tx = 1
=% i xel,=[1)2,1],
X
and put
0 if T*'xel,
&, = .
() {1 if T*xel,.

Let us define the matrices

11 11
Ao=( ) and A1=( )
0 1 10

r’l S’l
tou) = Ande A

and
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Then the convergents w,[v,, n=1, 2, ---, where v,=r,-+}s, and w,=t,+u,, are
not only principal convergents of x but also mediant convergents of x. However,
the mediant convergents transformation 7' has only a o-finite but infinite
invariant measure p with density dy=dx/x, and so the ergodic theorem is not
useful to observe the limit distribution. Therefore a modified algorithm T,
which is constructed by the jump transformation from 7, is provided as follows:

s i xe[l)2, 1)
Ty ={ 10— if xe[1/3, 1/2)
lj(ki_z—)x if xe[l)(k+1), 1/k) (k=3).

We see in Theorem 2.1 the algorithm 7} generates the approximation fractions
wP o of x, n=1, 2,---, which is not only the principal convergents but also the

first mediant convergents PutPu-1 and the last mediant convergents Pa—Pay,
qﬂ"'qn—l 9n—qn-1
We see also the transformation 7 has a finite invariant measure g, with

density

1 dx .
— f 0, 1/3
2log2 14 it x<[0,173)
=1 g
_— if x<[1/3, 1),
2log2 «x it >l 1)

and the dynamical system is ergodic.
By constructing of natural wxtension of 7) and applying ergodic theorem,
we obtain the metrical results.

Result. For almost all x€[0, 1),

(1) lim-Llogo®—_"
wre 24 log 2’
. 1 w!) nt
2) lim— L logle—%r|—__ 7
2) we 7 B o | 121og 2
3) 1im’{nlv$,”|v$,”x—~w$,”f<7\., 1=n =N}
N> N
A
A1
2log 2 for n=
2—A+2log A 1<
ATTL0E A A<2,
2log2 for 1=a<

N> log N 12
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1 Mediant convergent transformation

In this section an algorithm which induces mediant convergents is proposed.
Let X=[0, 1] and let the map T be defined on X by

E

. if xel,

(1,1) Tx =

[SEr —y

® R

=% i xel,
X

where I,=[0, 1/2] and I,=[1/2,1] (see figure 1).

[ P

.___/.L/
07
i
I 1
0 1/41/3 12 1
figure 1

We denote the inverse branches of T by
1
(1,2) Vy(x) = ,ﬁ and Vl(x)=m.

All inverse branches are modular transformations. So we use the following
matrix representations for them:

0 A= (=) = 4= o) (=)

For irrational x&(0, 1) put

L4 6 6.0 { 0, if T*'zel,
n = Cp(X) = .
(14 1, if Tr'xel,
and
Tu Sa) = (14(®) s.(®)) _
(1’5) <t,, u”) <t,,(x) u”(x)> - Azl(z)Azg(:) Ac,,(x) .

Then we obtain the following.
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Proposition 1.1. For any irrational xX we have

(1,6) x — @)+ T x-u,(x)
rn(x)_,f- T"x . S,,(x)

Proof. Let X,,..,, be a cylinder set of rank , that is,
Koo, = {x; TH'x€1,, 1<k<n}.

Then T" is a bijective map from X, .., to I, and the matrix representation of

108y

the inverse branch of T restricted to X,,..,, is (r,, S )

tﬂ ufl
Let S be the simple continued fraction transformation:
1 . 1 1
1,7 Sx—=1_k, i [_ 1) &>1
(1,7) oL it vl L) =1

We denote the inverse branches of S by

1
1,8 Wi(x) = ——
(1,8) #(%) itk
and the associated matrices by
k1 140-x
1,9 C, = = .
(L.9) * (1 0 ( k+1-x)
For each irrational x&(0, 1) put
aw—a®=k, i STwe[ i 1),

k+1 k
and
1,10 9 Gn ) = (a®) 1) o (@(®) 1
(110 <m Do (G 0= o)
where

(o 52)=(0 1)

The following formula is well known: For any irratoinal x&(0, 1)

1,11 _ Dut S % Pary >1).
(1,11 e

The relation between T and S is given by

. 11
1,12 Sx— Tk, if [— 1y,
(1,12) x x if xe R k)
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If xe[k—}-l’ %), then (§(x), -+, &(x))=(0, O, -+-, 0, 1). Therefore the inverse

map W, of S is represented by

ch = V!;(x) Vez(z) ot th,(z)
, that is,

113 1= )6 )G o)

Lemma 1.1. Put j=j(n: x)=4k; E(x)=1,k<n} and 1=1(n; x)=
max{k; E(x)=1, k<n} where 1=1(n; x)=0 if {k; &(x)=1, k<n}=¢. Then,
for any irrational x<=(0, 1)

wo G )G ke ) e

Proof. If j=0, then
(o = - )
n

=(& =G 9

If j>1, then Six=T¢**"*%x and T*x=T""YTx)=T""Y(S’x). Therefore, by
(1,13), the representation of the inverse branch of 7" is

G o -G ol "

The fraction 2* is called the n-th principal convergent of x and the fractions

G 7

qn
{u“_’_—P"‘J A=1,2, ., a,,+1—1} are called mediant convergents of Px,
Aoyt Gy qn

Theorem 1.1. Put v,(x)=r,(x)+s,(x) and w,(x)=t,(x)+u,(x). Then for
any irrational x(0, 1)

{Ev_”: ngl} = G {Mm—_l: h:l’ 2, ceey ak+l} .
Vs k=0 AN Gyt Gh—y

Proof. Put
I=1n: %)= mkin{k: E(x) =1, n<k}
1

1
= 1(n: x) = max{k; §(x)=1, k=<n}.
k
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Then from (1,12) we have
I-1=a;u().
By the lemma 1.1.

G = G

Putting A=n—1+1, we have 1<A<a;,, and so we obtain the result.
We now call a fraction

Wy _ 2,(%) ()
vﬂ rﬂ (x) +sﬁ(x)

the n-th mediant convergent of x, and the algorithm (X, T') the mediant conver-
gent transformation. We prepare some formulae concerning the approximation.

Proposition 1.2. For any irrational x<(0, 1)

(1,15) _wa(x)| _ 1—-T"x )
e v3() {;_»(1—T"x)+ T"x}
In particular,
x—ZT"(%) and | v,(x)-x—w,(x)|

converge to 0 as n—> oo.

Proof. By proposition 1.1. and since 7,u,—s,t,=-=41, we have
o Wa| _ |t T %0, _t,tu,
Un r,,—i—T"x-s,‘ T”—I'—S,,
_ 1—T"x
Oy (ry T xes,)

From 7, /o and the definition of v,, w,, we obtain the proposition.

For any 0—1 sequence &, &,, -+, &,, let @, be the affine transformation of
the (&;-,, 7;-1)-plane into the (&;, »,)-plane such that

i ()= (5)

Then we have
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Proposition 1.3. For any irrational x<(0, 1)

(1,16) |2 Eo—mo| = g(*)g(Tx) -+ g(T*7'%) | T"%+Ep— 4l
In particular,
(1,17) %0, —w,| = g(x)g(Tx) - g(T""'x)(1—T"x)
where
1—x, if xel,
g(x):{ x , i xel

Proof. By @) the linear form x£,—7, is transformed into the following
linear form:

(1—x)(Tx-&,—n) if xel
xeEg—mp = .
—x(Tx-E,—7n) if xe1,.
This shows that formula (1,16) is valid for n=1. The general case is ob-
tained by induction. Using the relation

(50) = o = o (5r) = (2 2X(52)-
We obtain (1,17) by putting (&,, 7,)=(1, 1).

It is well known that the simple continued fraction transformato transforma-

1 _dx and that the

og214x
dynamical system (X, S, v) is ergodic. 'The following was proved in [3] and [6].

tion (X, S) has the invariant measure » with density du:l

Theorem. The mediant convergent transformation (X, T) has a o-finite
invariant measure p:

and the dynamical system (X, T, ) is ergodic.

This can also be seen by using a suitable jump transformation [9].
Here we introduce the natural extension of (X, 7). We will see afterwards
that the natural extension is useful for number theoretical considerations.

Let X=[0, 1]x[0, 1] and let the map T be defined on X by
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x Y i
_ (l—x’ 1+y), if xel,
(1,18) T(x,y) = 1 1
(=5 1), i ee
x 14y

_ { (Tx, Vyy), if x€l,
(1%, Vey), i xel.

Then we see the map T is one to one and onto.

Theorem 1.3. Let 7 be the measure on X given by

dxdy

1,19 dg— Py
(L) .

Then % is a o-finite invariant measure for T, and the natural extension (X, T, )
is ergodic.
Proof. The Jacobian J(T) of T is
1 1

—_— e if xel,
_ ) = ey
Jn =177
<t if xel
& (14y)
Putting k(x, y)=m, it is not difficult to see that the following equation

holds:
k(T (%, y)J(T) = k(=, y).

Hence 7 is an invariant measure for T. The ergodicity of (X, T, &) is due
to [6].

Sub-lemma. Let (&, -+, &,) be a 0—1 sequence. Put

(’n ‘n) = A, - A,

tn u,
and
(1,20) (:, ;) — A, - A,
Then
(1,21) trtu,=r, and ry+sy=r,+s,.

The proof is easily obtained by induction.
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Fundamental-lemma.

s, 1) = (17, ,,'J_s,)'

Proof. By the definition of 7 and notation (1,20), we have

T"(x, y) = (T"x, %?—éj{) .

In particular,

T, 1) = (T"x, e ) (sub-lemma) .

We know the following basic properties:

(1) If g|gx—p| <1/2 and (g, p)=1, then 2 isa principal convergent of , i.e.,
q

there exists % such that 2 =P# (Legendre’s theorem [8]).
9 %

(2) If glgx—p| <1 and (g, p)=1, then 2 i, principal or a mediant conver-
gent of x. 7
Conversly, for all irrational x

3) 4. @.x—pa | <1 forall n>1.

For the mediant convergents %, the values v,|v,-x—w,| are unbounded
v’l
in general. In fact, put

. 1—x
(1,22) fe =gt on

Then from proposition 1.2. and the fundamental lemma we have
(1,23) V| Vg x—w, | = f(T*(x, 1)) n>1.

This suggests that the values v,|v,+x—w,| are unbounded for some x.
Let D,(A>0) be the subset of X defined by

D, = {(=, y)EX; f(x’ Y)<A)
Then we have

Proposition 1.4. For any irrational x<(0, 1)

V|0, x—w,| <N iff T'(x, 1)€D, .
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2 Nearest mediant convergent transformation

In this section another algorithm which will be called nearest mediant con-
vergents transformation is proposed.
Let X=[0, 1] and let the map 7 be defined on X by

= if xe],
x
2,1) Tyx = l—_’i; if xe],
X .
S f xe k>3
TGz FSSh (k23)
where
[l 1
Jo= n+1’ n)
(see figure 2).
///
’ [T |
0 1/51/41/3 1/2 1
figure 2

The relations between the maps T, S and T are as follows:

Tx, if
2.2) Tlxz{ v it x€ LU/,
T* 2, if xeU]J,
rz
and
T, if xeJ,
(2,3) Sx=1{ Tix, if xe],
3x, if xekgs‘]',,.

We denote the inverse branches of T} by
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1
Zy(x) = —— , 1
(%) Tr= x€[0, 1]
2, Zyx) = % 1/2, 1
@4 =1 se[1/2, 1]
and
Z(x)= — % 1
H(%) T (—2) x€[1/3, 1/2] (k=3)
and their associated matrices by
(1 1 1 1) (l k—Z)
B = ) B = = .
(2,5) 1 (1 O) (0 ] and B, 0 1

Then, the relations (2,2) and (2,3) have the representations:

A, if k=1
(2,6) B,=1{ 4,, if k=2
Ay A4, if k>3
k—2
and
v 1 B,, ff k=1
(2,7) C, = ( 1 0) =14 B,B,, if k=2

B,B,B, , if k>3.
Put §,=38,(x)=k, if T1"'x< J,. Then the sequences of digits 8, have the
following Markov property:
if §;=3, then §;,,=2
if §;,=2, then §&;,=1.

if §,=1, then there is no restriction on §;,, .

(2,8)

(1) (1)
Let the 2 2 matrix (:m ;;1)) be defined by

rsxl) Ss,l)
(2,9) (t‘” u(”> = By, Bsys) *** By -
Then we have the following.

Proposition 2.1. For any irrational x<(0, 1)

_ 4 uV-Tiw

(2,10) x = A D. Ty
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The proof is easily obtained by using the identity:

x = Zy ()(ZLsyo) ** Zay(T1%)) .

Sub-lemma
@) If x J, (k=3), then (1)
)
Q)
(i) If x€ J,, then 1
)
)
(i) If x& J,, then 1)
)

3)

569

a,(x)=23,(x)=k, 8,(x)=2, &;(x)=1
T3x=Sx

By (5)Bsy(2) By =(‘11’(x)

a,(%)="08,(x)=2, y(x)=1
T2x=Sx

Ba1<x>Ba,<x)=(‘ll‘(x)

a(3)=8,()=1
Tyx=S8x

)

1
0

)

Lemma 2.1. Let j=j(n: x)=*%k: §;(x)=1, k<n} and l=I(n: x)=

max {k: Sy(x)=1, k<n}. Then the matrix <

a ,-+1—2> ’
1
),

1
0

1
0

1

forms:
(41 91’—1)’
Pi Pia
(Qi %‘—1)(1
<r,(,‘) sf,”) _ | \Pi Pia 0
@ )7 (1 g
P: Pi—l 0
4 gi-1\(1
(Pj Pi-l)(o
Proof. From the sublemma we have
( (al(x)
1
Bi(9Bsy(s) *** By = (al(lx)
(al(x)
1

Repeating this procedure with x replaced by Sx, S%x, -

0

rdd
A

)384(::) -
>B83(x) -

Vo

e

* BS,,(:) )

° BS,,(::) )

B&,.(x) ’

obtain the lemma. For j=0, lemma 2.1. is also valid.

s .
’ ) has one of the following

if n=l

if n—I=1and
Sixe ],

if n—I=1 and
Sixef,,

if #—I=2and
SixE]k

if xe]k

if xe],

if xe],.

, Six and so on, we
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Theorem 2.1. Put v{"=r{(x)+s"(x) and wP=1t{(x)+us’(x). Then for
any irrational x< (0, 1)

(in=1) = §f 2t 2o, ).

Proof. By lemma 2.1.

( Pitpsm if n=I
9;+4-
2pjtPi1 _ Pina if n—I=1and SixeJ,,

wl 2¢;+q;.1  Gjm

vg) (@j—1)pj4Pj-y _ Pinr —Pi if n—I=1and Sixe T
(@4j—1)4;+9;-1  gin— qJ
Pint if n—I=2and SixeJ,
\ 9j+1

Therefore for any n>1.

w,(.l)e {Pr‘l’k 1 Pk’ Plz—}_Plz—l}.
o G—G-1 O GtGaer

Conversely, from (2,7), for any ﬂ—i—&i there exists # such that
QT G

' (Ik—) ("(l) Sf.’))
D Das 1 ud/’
Therefore

Gt Qo1 _ @(i) .
Detpr- o

Similary, for any £% P k if a,=2 then there exists an #z such that
(qk—l qk-z>(1 a;.—Z)(l 1) — (rf," S$.”>
Pier Pel/\NO 1 /N0 1 1w/’
if @,=1 then there exists an #z such that

(8 Bs) = ().
DPr-1 P2 N u®

P _ wiV

r o

Therefore
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Finally, for any p”——ﬂ’i'—l(#P"—‘z), there exists an z such that
Qe qr-1 Qr-2

(g B0 a2 = (5 %),

Pr—Da-y _ W .
G~y O
wi" _ 1V(%)+uid (%)
oD rI(x)4-s§0(x)
vergent of x, and the algorithm (X, T)) the nearest mediant convergent trans-

formation. We prepare also some formula concering the approximation.

hence

We now call the fraction the n-th nearest mediant con-

Proposition 2.2. For any irrational x<(0, 1)
w(x)| _ 1—Tx

'v:,l)(x) (vﬁl))z{%(l——T'{x)—l— T’ltx}

,11) lx——

The proof is the same as for proposition 1.2.

Proposition 2.3. For any irrational x<(0, 1)

(2,12) |+ 03D(x) —wiP () | = g(*)gu(Ty) -+ go(T17'x)(1—T'i)
where
I x, if xe],
sx)=1¢ 1—x, if xe],
l 1—(k—2)x, if xe], (k=3).

Proof. The proof is similar to that of Proposition 1.3. In fact, for each
sequence (8,(x), -*+, 8,(x)), we consider the affine transformations g, from
(&;-1 7:i-1)-plane to the (&;, 5;)-plane defined by

e ) = 2l)

The absolute value of the linear form x-£,—%, is transformed in the
following way:

|x-Eo—no| = gu(x)| Tyx-&,—my| .
Therefore, we have
@213)  |xEeml = &) &) | Tix-fmm | (n=1).

On the other hand we know
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(52) = By -+ B (f]:) = (:g: ﬁx)))(,g,:)

Hence, we obtain the result by putting the value (&,, 7,)=(1,1) into (2,13).

Now, we introduce the natural extension of (X, 7;). Let R be the subset
of X such that

R= {(x,y)eX; x>1/3 or (x<1/3 and y>1/2)}
2]1XIU]2XIU(}EJSJI¢X11)

where I=[0, 1] and I,=[1/2, 1], and let the map T, be defined on R by

1—x 1 .
(Tx TJF}) if (0, y)eJix]
T ={ (% 125) i (x,9)€fux]

X y .
\(1—(k—2)x’ 1—|—(k—2)y)’ i (e,

In other words,

(T, Z()) , if (x,y)e/ix1
= {(Ty, Z(y)), if (x, y)e,xI
(T, Zi(y)) if (% )€ ixl;.

Theorem 2.1. The transformation (R, T)) is the induced map of (X, T)
on R. Therefore, the transformation (R, T,) has an invariant probability measure
B with density

1 dxdy
2log2 (x+y—wxy)?

dg =

Moreover, the dynamical system (R, T, Tg) is ergodic.
Proof. From the definition (2,1), we can easily see that
T(J,xI) = Ix[1/2, 1]
T(J: xI) = J:x[0, 1/2]
and for k>3

T(ix D) = X[+ )

and
T(JxI)NR=¢p (1<j<k—2).
(see figure 3).
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T2
1 T
AN TN
- .Ti \
0 13 1)2 1
figure 3

Therefore let Ty be the induced automorphism of T on R, then
Ti(x, y) = Ty ) -
Hence by proposition 2.1. the invariant measure 7z, is given by

_ 1 - dxdy
2log2 (x+y—xy)®

dig
where 2log2 is a normalizing constant. The ergodicity of the dynamical
system (R, T, 7z) follows from the ergodicity of (X, T, &).
Taking the marginal distribution we have

Corollary 2.1. The transformation (X, T,) has an invariant measure p,:

1 dx .
——— .=, if x<[0,1/3
2logZ 1ta’ o *E01B]
dll'1= 1 d
X xe[1)3, 1]
2log2 «x

and the dynamical system (X, T\, u,) is ergodic.
Corollary 2.3.

Ton " 7’5,1)
Tiee D= (Tt 25w
Proof. There exists an m=m(n, x, 1) such that T%(x, 1)=T"(x, 1) and so

r,=r" and s, =s". Therefore we obtain the result, from the fundamental
lemma in § 1.
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Corollary 2.3.
(i) Let a fraction 2 satisfies q|q-x—p|<<1 and (q, p)=1. Then there exists a

k such that p _wi® (Fatou).
q

o

@) If

m
w(,;) is the n-th convergent of x, then v{"|v{"-x—w(®P| L 2.
Un

Proof. To prove (i), note that by property 1.2. and theorem 1.1., there

exists z# such that A =%, that is, % is the n-th mediant convergent and satisfies
q wﬂ vﬁ

v, | ve—w,| L1,
From proposition 1.4. this is equivalent to
T"(x, 1)eD, .
Since D, is a subset of R, there exists & such that
Th(x, 1) = T"(x, 1)
, in other words, Tk(x, 1)=T%, 1). Therefore

Part (ii) can be seen as follows. By proposition 2.1. and corollary 2.2.
oo e x—w® | = f(Th(x, 1)).
On the other hand, T(x, 1)€R and D,DR. Therefore

P o x—wiP [ <2.

3. Some metrical results

In this section we prove Erdess’ theorem for 0<<A <1 by using the ergodic
theorem.

Proposition 3.1. For almost all x<(0, 1)

2

.1 b 4
3,1 lim L log o (%) = .
S o o8 (") = e 2

Proof. Let {a)(x); k<N} be a sequence of digits with respect to a
simple continued fraction. Put

n(m) = Hk; ay(x) = 1, k<m} +-2{k; a,(x) = 2, k<m} +-3%{k; ay(x)=3, k<m} .

Then, from theorem 2.1. we have
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Oy = forall m>1.

By using the ergodic theorem for the dynamical system (X, S, v), we know
([1]) that for almost all x&(0, 1)

iﬂli(ﬂ)=ll D ¥/ =
(V) lim 22—y 20( [+ 30(Y J)=2

and
.1 7?
2) lim Llogg, =" .
@ i 8 I =17 10a 2
Therefore,
2
i logo®, =lim " Llogg = 7
o (m) 8 M = am)m eI T 24leg 2

Noting that mn(m—+1)—n(m)<3 and v{); >0, we get the result.

Proposition 3.3. For almost all x(0, 1)

2
e
and

iy g 1 w® At
@) lm—log = G = T3 tog 2

Proof. From proposition 2.2. we have
1 (1 w1 w_ 1 T
——log|ovfP - x—wi’ | = = log v{" —— log f(Ti(x, 1)).
n n n
We show that for almost all x&(0, 1)
(3,2) lim L log f(T4(x, 1)) =0.
nr 71

From (1,21) and theorem 2.2. we have

AT 9)>0) = B(f D<) = 572

for 0<n<1.
Therefore, we see that for any €>0

S (T y)<e ™ <+oo.
Hence, by using the Borel-Cantelli lemma,

' 1 _
{n; - log f(T"(x, y)>8}< o0
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for almost all (x, y), that is,

(3,3) lim 1 log (T%(x, y)) =0 for a.a. (%, %).
n>e N

Note that the following inequality holds:

| f(x, y)—f(x, ) | <cly—y'l
where

1
. X )
en (y T 1— x)
In particular, remarking that from the definition of T,

Tn . n tr/t(l)—'"y'u:,z(l)
Tl(x, ;V) = (T1 Xy r,’,“’—}—y'S,’,(‘) ’

C =

we have from sublemma in § 1

| (T3, ) —f (T4, 1))| < o| ity _ 60+ s

O ysi® i h O

c 4

riO L gm T M
Therefore, from proposition 3.1. there exists 0<<np<<1 such that

| AT4(x, ) —ATi(x, 1)) <c-n",

and so (3,3) imply (3,2). This completes the proof of (i). Part (ii) is obtained
from

wi?
¥ om

n

1 log —21 log vf,”—l log f(T%(x, 1)) .
n n n

Theorem 3.1. For almost all x<(0, 1)

A for 0=a<1
fim Hn; o0 | o - x—w’| ), 1<n<N} _ 2log 2
o N 2-n+2lgn 4 1o .
2log2

Proof. From proposition 1.4. we get

N —
M o o x—wf | <n, 1<n< Ny _ 2= X(T1 1))
N N ’

where X, is the indicator function of the set D,.
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On the other hand, it is clear from the ergodic theorem that

S a(Ti )
},IE.}. H—N“—* = (D))

for almostl al (x, y).
Note that

{5 9): 0(Ti(x, ) %(Ti(, D)}
(@, 3): h—er <fTix, ) <NFer'}

where ¢ and » are the same constants as in the proof of proposition 3.2.

fore, we have

7 06 (TH ) 2 (TH o DF <
og 2

Hence, by using the Borel-Cantelli lemma, for almost all (x, y)
His Xu(Ti(w, ) +=X0(TH(, 1)} <oo.
By easy calculation for 7,(D,), we obtain the conclusion.

Theorem 3-3- For 1>A>0

lim (@ 2); glgx—p| <N, (¢, p)=1,g<N} | 12
L log N n*

for almost all «.

Proof. If v{2, <N<o{", then by corollary 2.3.

Hg, p); qlgx—pI<N, (¢, p) =1, ¢<N}
=H(0f", wi); vfP | o x—wi | <\, k<n—1}.

Hence, by theorem 3.1. and proposition 3.1.

lim 1@ 2); glgr—p| <N, (¢, p)=1, g<N}

e log N
> fim s 20 2 —wf’| <A, 1<k<n—1}
wre log v{"
= X'J—% for almost all «.
7z

Replacing o5 by v§2; we obtain the reverse inequaliiy.

577

There-
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