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Abstract
In this article we prove a local Riemman-Hurwitz formula which compares the dimensions
of the spaces of vanishing cycles in a finite Galois cover of type (p, p,- - - , p) between formal

germs of p-adic curves and which generalises the formula proven in [6] in the case of Galois
covers of degree p. We also investigate the problem of the existence of a torsor structure for a
finite Galois cover of type (p, p,-- - , p) between p-adic schemes.

0. Introduction

Let K be a complete discrete valuation ring of mixed characteristic, R its valuation ring,
and k := R/nR the residue field of characteristic p > 0 which we assume to be algebraically
closed. We suppose that K contains a primitive p-th root of 1. In [6] the first author proved a
local Riemman-Hurwitz formula which compares the dimensions of the spaces of vanishing
cycles in a finite Galois cover of degree p between formal germs of R-curves. This formula
is quite explicit and involves the (usual) “generic”different, which measures the ramifica-
tion at the level of generic fibres, and a certain “special”different which involves certain
“conductors” attached to the induced covers between the formal boundaries of the formal
germs (cf. loc. cit. Theorem 3.4).

In this paper we generalise this formula to the setting of Galois covers of type (p, p,-- -,
p), i.e., with Galois group Z/pZ X --- X Z/pZ. In principle one can apply the formula in
the Galois degree p case obtained in [6] iteratively to derive such a formula. However, the
difficulty here lies in computing the conductors involved in the special different at the var-
ious degree p intermediate covers; the possibility of having generically purely inseparable
extensions at the level of special fibres doesn’t allow the use of the standard ramification
theory as in [10] in order to compute these conductors. In this paper we are able to compute
in §1 these conductors at the various degree p intermediate levels via direct, rather tedious,
computations (cf. Theorem 1.1). Although our main result computing these conductors is
stated only in the case of Galois covers of type (p, p) (cf. loc. cit.), it is quite straightfor-
ward to deduce from this result the relevant value conductors as well as the corresponding
Riemman-Hurwitz formula in the case of general Galois covers of type (p, p,- - - , p) (cf. Ex-
ample 1.7 for an illustration). In §2 we derive an explicit local Riemman-Hurwitz formula
which compares the dimensions of the spaces of vanishing cycles in a finite Galois covers
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of type (p, p) between formal germs of R-curves, which can be easily iterated to deduce a
similar local Riemman-Hurwitz formula in the general case of finite Galois covers of type
(p.p>-- 5 )

In §3 we investigate the problem of the existence of a torsor structure for a finite Galois
cover of type (p, p,--- , p) between R-(formal) schemes where we allow R to be of equal
characteristic p > 0. Let X be a normal flat and geometrically connected R-(formal) scheme
with an integral special fibre X; := X Xg k, {f; : ¥; — X}, torsors under finite and flat
R-group scheme G; which are generically pairwise disjoint, 1 <i < n,and f : ¥ — X the
morphism of normalisation of X in (the fibre product over Xx := X Xz K) [], ¥k, where
Yik :=Yi Xg K. Assume the special fibre Y := Y Xy k is reduced. Our main result Theorem
3.4 gives necessary and sufficient conditions for f to have the structure of a torsor under a
finite and flat R-group scheme (necessarily isomorphic to G| Xg - - - Xg G,,). In the case where
X is a relative curve these conditions are equivalent to the condition that at least n — 1 of the
group schemes G; are étale (cf. Theorem 3.5). This latter fact is false in relative dimension
> 1 (cf. 3.8).

Notations

In this paper p > 2 is a prime integer, K is (unless we specify otherwise) a complete
discrete valuation ring, char(K) = 0, R its valuation ring,  a uniformising parameter, vg
will denote the valuation of K which is normalised by vg(rr) = 1, and k := R/nR the residue
field of characteristic p > 0 which we assume to be algebraically closed. We suppose R
contains a primitive p-th root of 1.

For an R-scheme X we will denote by Xx := X Xg K (resp. X; := X Xy k) the generic
(resp. special) fibre of X. If X = SpfA is a formal affine R-scheme we will denote Xx :=
Spec(A ®g K) and X; := Spec(A/x) the special fibre of X.

A formal (resp. algebraic) R-curve is an R-formal scheme of finite type (resp. scheme of
finite type) flat, separated, and whose special fibre is equidimensional of dimension 1.

We will refer to a (generically separable) cover Y — X between normal connected (formal
R-)schemes which is Galois with Galois group Z/pZ xZ/ pZ as a Galois cover of type (p, p).

Let X be a proper, normal, (formal) R-curve with X; geometrically reduced. For x € X
a closed point let F, = Spf(OAX’x) be the formal completion of X at x, which we will refer
to as the formal germ of X at x. Thus, Oy, is the completion of the local ring of (the
algebraisation) of X at x. Let {P;}!_, be the minimal prime ideals of Ox.. which contain
m; they correspond to the branches {n;}_, of the completion of X; at x (i.e., closed points
of the normalisation of X; above x), and X; = X,; := Spf(O, p,) the formal completion of
the localisation of F, at P;. The local ring OAx’pi is a complete discrete valuation ring with
uniformiser 7. We refer to {X;}?_, as the set of boundaries of the formal germ F . We have a
canonical morphism X; — F, of formal schemes, 1 <i < n.

With the same notations as above, let x € X be a closed point and )?k the normalisation
of X;. There is a one-to-one correspondence between the set of points of X, above x and
the set of boundaries of the formal germ at the point x. Let x; be the point of X, above
x which corresponds to the boundary X;, 1 < i < n. Then the completion of X at x; is
isomorphic to the spectrum of a ring of formal power series k[[#;]] over k, where ¢; is a local
parameter at x;. The complete local ring OAx, p, 1s a discrete valuation ring with uniformiser r,
and residue field isomorphic to k((#;)). Fix an isomorphism k((z;)) =~ OAx,p,. /n. Let T; € OAx,pl.
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be an element which lifts (the image in OAX, p,/m under the above isomorphism of) #;; we shall
refer to such an element 7; as a parameter of OAx, p,» or of the boundary X;. Then there exists
an isomorphism R[[T;]{T; '} = O, p,, where
R[[TINT ™Y} := T, lim |a| =
() {i;a lim laj| = 0}
and | | is a normalised absolute value of R (cf. [1], §2, 5).
Given a power series g € k((z)) where z is an indeterminate we write

g(z) = Z a;z' + higher order terms,
i€lcZ
meaning all remaining monomial terms in z are of the form ¢z’ where ¢ € k and 7 > i for at
least one 0 # i € 1. Also given a power series H(Z) € R[[TI{T™"} we write

H(Z)=(F(2Z))" + Z 7t + higher order terms,
i€lcZ
meaning all remaining monomial terms in Z are of the form dZ" where either vx(d) > vg(c;)
for all i € I or there exists at least one i € I such that vg(d) = vg(c;) and t > i.

Background

In this section we collect/improve some background material form [6] that will be used
in this paper. Let A := R[[T]{T~'} and f : Spf (B) — Spf (A) a non-trivial Galois cover of
degree p. We assume that 7 (which is a uniformiser of A) is a unifomiser of B (this condition
is satisfied after possibly base changing to a finite extension of R, cf. [2]). Proposition 2.3
in [6] shows that f has the structure of a torsor under one of the three group schemes, u,,
H, where 0 < n < vg(Q), or H,,y (cf. loc. cit. 2.1 for the definition of these group schemes
and the local explicit description of torsors under these group schemes). To the torsor f
are associated some data: the acting group scheme as above, the degree of different ¢, the
conductor variable m, and ¢ = —m the conductor (cf. loc. cit. definition 2.4. The notation
c is introduced in this paper, only the conductor variable m was considered in loc. cit.).
Adapting slightly the proof of Proposition 2.3 in [6] provides the following details in the
three occurring cases:

(a) For the group scheme g1, where 6 = vg(p), the torsor equation is of the form

ZP =u

where u = Y,z a,T" € AX is a unit such that its image # modulo 7 is not a p-power.
On the level of special fibres the induced p,-torsor is given by an equation z” = i where
it = Y a;t € k(1)) for some integer [ with @ # 0 (here ¢ equals 7 modulo 7). There are
two cases to consider:

(al) gcd(l, p) = 1. Wehave it = £(3;5,@;t"™") and b := ¥, @t~ € k[[¢]] is a unit. Further,
we can write u = T'v where v := Yo, ;7" € R[[T]|{T '} is a unit whose reduction modulo
7 equals 0. After possibly multiplying u by a p-power we can assume 0 < [ < p. The unit
v € A* admits an [-th root s € A since [ is coprime to p and k is algebraically closed. Thus,
s! = vin A and after replacing the parameter 7 by 7"’ := T.s, which is also a parameter of A,

our u,-torsor f : Spf (B) — Spf (A) is defined by the equation Z” = (T
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(a2) ged(l, p) > 1, in which case [ is divisible by p and it = 3,5, a@;#. After multiplying
u by T~' (which is a p-power) we can assume i = Y5, @t = Y s0a;t’ € k[[1]]. Let
m := min{i | vg(a;) = 0,gcd(i — [, p) = 1} = min{j | gcd(j, p) = 1}. We can write it =
do+artP+- - ~+ap p) "™ PY +a,, " +higher order terms, and u = ag+a; TP+« +ap ,n T"PP+
Yoxtan=0 T  + Yoo a:T'. If a € A is a unit we can write a = b” + ¢ with b € A a unit

i>m

and vK(c) > 0. Thus, we can assume without loss of generality that u = ag +aT? +
cral TP 4 S ay=0 T+ Typapso @' Now af + a{TP + - + af, T[’"/P]I’ =

>m

(ap+a; T +--- +a[m/p]T[’”/1’])p —plag+aT+--- +a[m/p]T[’”/1’]) +higher order terms, and after
replacing u by u(ap + a\T + -+ + @y T"P))™P we can assume without loss of generality

that the torsor equation is: Z” = 1 + @, T™ + Y=o a;T" + ZUK(a_)>0 a;T'. Further, a,, T™ +
i>m
Zuk(a‘) —oa;T! + D@0 a;T' = T™v where v = a,, + Dook(an=0 AT ™"+ 0 (450 a,T™eAisa
i>m
unit which admits an m-th root u € A. Thus, u™ = vin A and after replacing the parameter T

by T’ := T.u, which is also a parameter of A, our y,-torsor f : Spf (B) — Spf (A) is defined
by the equation Z” = 1 + (T")™.

Simplified form: After a possible change of the parameter T of A, the torsor equation
ZP = u can be reduced to either the form

(al) Z” =T" where h € F,

[m/p]

or of the form
(@) zZ°P=1+T"

where m is as defined above for these two cases. The conductor is given in both cases by
(al) ¢=0,and (a2) ¢ = —m.

(b) For the group scheme H,, where 0 < n < vg(4) and 6 = vg(p) — n(p — 1), the torsor
equation is of the form

(1+7"2)" =1+ 7""u

where u = Y.z a;T" € A* is a unit such that modulo 7 it is not a p-power. Reducing modulo
m, on the special fibre the acting group scheme is @, and the torsor is given by an equation
¥ = u where u = ), a;t' € k(1)) for some integer [ with @ # 0 and which is defined
up to addition of a p-power. We define m := min{ilvg(a;) = 0,gcd(i,p) = 1} € Z. Then
it = aypt’!'P + -+ apy "™ + @, t™ + higher order terms, and u = a;, TPV + - +
Ay TP+ Y an=0 T + Yoo @T'. If a € A is a unit we can write a = bP + ¢

zm
with b € A a unit and vg(c) > 0. Thus, we can assume without loss of generality that
u= af/ PP .. -+a€m/p]T[’"/p]p+ZUK(a) oa;T' +ka(a )>0 i T'. Now 1+7r”p(a T” WPt

i>m

ap oy TPy = (14 7y, TP + -+ gy TPY)P = pr(ay, TP + -+ + a[m/p]T[m/p )+
higher order terms. Thus, since np < vg(p) + n, the torsor equation can be written (1 +
' Z)Y =(1+ ﬂ”(al/pTl/f’ +--- 4 a[m/p]T[’”/”]))l’ + 7P (D nk(a)=0 a; T + ZUK(a,-)>0 a;T") and after

izm
multiplying by (147" (ay, TP +- - -+ ap TP = 1= pr(@ TP + - - - + gy TP +

higher order terms, we get an equation (1+7"Z)” = 1+7"(Xug(a)=0 a:T" + X ap>0 aiT") and
i>m

can assume u = Yy, (a)=0 &; T + Dok(a)>0 a;T". Further, a, T™ + ¥ u(an=0 a;T' + Dok (an>0 aT' =

>m >m
T™v where v € A is a unit which admits an m-th root 2 € A. Thus, /™ = v in A and after
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replacing the parameter 7 by T’ := T.h, which is also a parameter of A, the H,-torsor
f : Spf (B) — Spf (A) is defined by the equation Z” = 1 + 7"7(T")".
Simplified form: After a change of the parameter 7, the torsor equation can be reduced
to the form
ZP =1+ a"PT"

where m is as defined above. The conductor is given by ¢ = —m.

(c) For the group scheme H,, 1) where 6 = 0, the torsor equation is of the form
A+22) =1+ u

where u = 3., a;T" € A* is a unit. On the special fibre the acting group scheme is Z/pZ
and the torsor is given by an equation z” — z = it where it = Y;5; @' for some integer [ with
a; # 0 and which is defined up to addition of an Artin-Schreier element of the form b” — b.
In fact, after such an Artin-Schreier transformation, # can be represented as: & = a,,t" +
A ™+ . +a ! = Zl;lm @t where a,, # 0 and m < 0 is the conductor variable such
that gcd(m, p) = 1. Indeed, for f(t) = 3o ait' € k[[£]] we have f(¢) = (f(O)+ f(£)" + f(t)l72 +
)= (f(O+ f(@)F +f(t)”2 +---)P. Moreover, it = apt" + a1 ™ + ...+ a_1t7 = "0 where
0= Gp+apit+...+a 7™ € k[[#]]is aunit. Letv = @y +ame T+...+a_; T~ € R[[T]] be
an element which lifts o and & an m-th root of v in R[[T']]. Then after replacing the parameter
T by T’ := T.h, which is also a parameter of A, our H,, () -torsor f : Spf (B) — Spf (A) is
defined by the equation Z” =1 + AP(T")".

Simplified form: After a change of the parameter 7', the torsor equation over R can be
simplified to the form

7P =1+ 2°T"

where m is as defined above. The conductor is given by ¢ = —m.

1. The type (p, p) case

In this section A := R[[T1{T"'} and X, := Spf (A). Let fix : (Xip)xk — (Xp)x be two
(generically) disjoint non-trivial degree p Galois covers. We have the following diagram:

Yp)k = Xip)k Xx)e Xop)k

(X1p)x G1xxGax (Xo)K

Gk Gax

(Xp)k

where G; g and G/ ;. are the acting group schemes on the various covers and as char(K) = 0,
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we have G, = G;’K ~ Z|pZ =~ p, is étale fori = 1,2. Fori = 1,2, let f; : X;, = X}
be the Galois covers of degree p where X;, is the normalisation of X}, in (X;,)g. Similarly,
let Y, be the normalisation of Xp, in (Y})g so that f : Y, — X, is a non-trivial Galois cover
of type (p, p). We assume that (¥}); is reduced. Note that in this case X is isomorphic to
Spf (RIITAINT; ') for 1 <i <2 (cf. [1], §2. 51). We have the diagram:

Yy = (X1 Xx, Xo)""

X, = Spf(A)

where:

e Y, and X;, are normal for i = 1,2, and Y, is the normalisation (X, ; Xx, X25)""" of
the fibre product (X, Xx, X25).

e ¢; (respectively c’) denotes the conductor of the torsor X;;, — X, (respectively ¥}, —
Xi»). The conductor c¢; (respectively c;) is dependent on the conductor variable m;
(respectively m;) (cf. Background).

o G, (respectively G?) denotes the finite and flat (commutative) R-group scheme of the
torsor X;, — X, (respectively ¥, — X;;). We know G;, G} are among the R-group
schemes H,,x), 4p, or H,, for 0 < n < vg(4) (cf. loc. cit.).

On the level of special fibres over k we have a diagram:

(Ype

X1k Xx,) (X2.p)k

(X1,5)k = Spec k((11)) (X2,p)r = Spec k((12))

(Xp)i = Spec k(1))
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where:

e (Yp)r and (X;p)y are reduced for i = 1, 2.

o k((t)) = A/(m) (respectively A /m =~ k((t1)), Aa/m =~ k((t2))) where ¢ (respectively ¢
and t,) is the reduction modulo 7 of T (respectively Ty, T», where T; is some suitable
parameter of X;, fori = 1,2).

e Giy =G;Xgkand Gl’.’k = G/ Xg k are the acting group schemes over k, a field with
characteristic p, so that these group schemes are necessarily isomorphic to either
Z[pZ, u, or a,,.

We aim to express the conductor ¢} in terms of ¢; and ¢, for the various torsor combina-
tions and likewise for ¢),. To achieve this, we express the conductor variables m| and m} in
terms of m; and m,. We have six cases to consider by taking all possible pairs of the group
schemes H,, (1), p, and H,, over R acting on X;;, X,;. The following is one of our main
results.

Theorem 1.1. Let X, = Spf(A) and suppose we have two (generically) disjoint non-
trivial degree p Galois covers fix : (Xip)xk = (Xp)k, fori =1,2. Let (Yp)x be the composi-
tum of these covers.

Fori= 1,2, let f; : X = Xj be the Galois covers of degree p where X; is the normal-
isation of X, in (Xip)k. Set Y}, as the normalisation of Xp, in (Yp)g so that f 1 Y, = X is a
non-trivial Galois cover of type (p, p). We assume that the ramification index of the corre-
sponding extension of DVR’s equals I and that the special fibre of Y}, is reduced. Thus, f; is
a non-trivial torsor under a finite flat R-group scheme G; of rank p with conductor variable
m; for i = 1,2. Let m; denote the conductor variable of the torsor Y, — X;;. Then, for all
possible pairs of G| and G, we can express the conductors m in terms of the m; conductor
variables for i = 1,2 as follows:

Xip Xop

my my

X

1. For Gy = Gy = My we have that m| = my and m}, = mp — ma(p — 1) when
my < my, and my = myp —m(p — 1) and m}, = my when m; > m.

For Gy = H,1y and Gy = uj, we have that m| = mop — my(p — 1) and m), = m,.
For Gy = H,.1) and Gy = H, we have that m| = myp — mi(p — 1) and m}, = m;.
For G| = H,, and G, = p, we have that m|; = myp — mi(p — 1) and m}, = m.

For Gy = G = uj, we have that m| = my and m}, = mip —ma(p — 1) when m; < my,

Al

and my = myp—myi(p—1) and m), = my when my > my. In this case these results are
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only valid when at least one of m) and my is non-zero (cf. Proof and Remark 1.8).

6. For G\ = H,, and G, = H,,, we have that m| = my and m’, = mp —ma(p — 1) when
ny < ny, that my = myp —my(p — 1) and m), = my when ny > ny, that my = mp and
m} = myp —my(p — 1) when both n; = ny and my < my, and m; = myp —my(p — 1)
and m}, = my when both ny = ny and my > my, where 0 < n,ny,ny < vg(A).

1.1. Proof of Theorem 1.1. Proof. We treat each of the six occurring cases individually.
However, there is an important distinction between the first three cases and the remaining
cases.

In the first three cases, that is when at least one of the acting group schemes is the étale
group scheme H,, 4, one can work modulo 7 at the level of special fibres for, in this case,
Y, = Xl,b XX, Xz,b which 1mphes (Yb)k = (Xl,b)k XXy (X2,b)k- Indeed, suppose G = HUK(/I)
so that the torsor X;;, — X, is étale. Then, by base change, the torsor X, X X2, — Xop
is automatically étale. The special fibre of X, is reduced (because it is dominated by Y,
whose special fibre is reduced) but as X , X X5, — X5 is étale, this implies the special fibre
of Xj, X X5 is also reduced. Then, by Theorem 3.4 in this paper, X, Xx, X2, 1S normal
and equal to Y}, as required.

In the last three cases, we do not have this situation, which means one must work above
X}, over R without being permitted to reduce to the special fibre. However, we still proceed
in a similar fashion, even if the computations are more involved. In particular, we start
with the equation of X;;, — X, base change it to X, for j # i and make appropriate
(Kummer) transformations in order to find the torsor equations of ¥, — X;;, and read off the
conductors m; for j = 1,2. Note that in each case we can perform a change of the parameter
T of A = R[[T]{T""} so that one of the two torsor equations above X, = Spf(A) is in its
simplified form but we must assume the other equation remains in its original full power
series form (cf. Background).

1. (M., Hogry)- Here my,my < 0. The H,, (4 torsor equation X;, — X, is given
by (1 + AZ)? = 1 + APu; where u; € A*. Modulo 7, these torsor equations reduce to
z} —z; = @i; on the special fibre, i = 1,2. We start by computing m}. We can choose the
parameter T so that u; = T™, uy = };cz a;T" is a power series, accordingly, it; = ™ and
iy = Zi_:lmz a;t* (cf. loc. cit.) where am, # 0. We can write ¢ in terms of z; in (Xjp)i:
d - =" e zf(l - zl_”) =M ot = (z}/’"')p(l —zl_p)l/m] . Thus a parameter of

1
(X15)x is z/™" and so by letting z := z;/™

now proceed to base change the torsor equation of (X»,)r — (Xp)r to (X )k to obtain the
torsor equation for (Y,)r — (X1 5k

-1 -1 —1 .
; ; _ _n\i/m _ r _ _
B —n= E ait' = E aiZ? (1 -z ) = E aiz”’(l -z =D )
1

i:mz i:m2 I =nmy

. _m( _1) ]/ml
wecanwrltetzzp(l—z 1p ) . We can

_ my e _ nmy + 1
= &y, 7" (1 — —=ymp=D ) + am2+lz(nzz+l)p (1 —

7me=by )+
mj

ni

_ My, — - .
= Gy, 7™P — —27mP~m =1 | higher order terms.
m

Expressing 77 as 77 — 7' + 7' gives rise (after an Artin-Schreier transformation) to an
mZL_lmz

o Zm2P~m (=1 4 higher order terms. The conductor

equation of the form: z’Z’ —20 = Qp, 2" —
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variable m is the smallest power of z in the above expression which is coprime to p. The
expression above indicates there are two candidates, namely m, and myp — m(p — 1). Note
that myp — my(p — 1) < my is equivalent to m; > my. Therefore, when m; > m, we have
m| = myp —my(p—1) and when m; < m we have m| = my. The formula for 7] is obtained
in a similar way as a consequence of the symmetry occurring in this case.

2. (Hy (), f1p)- Here my < 0 while my > 0 hence m; < my. The torsor equation for H,, (4
is given by (1 + AZ;)” = 1 + APu, and for u, by Zg = up where uy, u, € A*. Modulo 7, these
torsor equations reduce to z’l’ —zy =iy and z’z’ = ilp with acting group schemes Z/pZ and u,,
respectively on the special fibre.

We start by computing m}. We can choose the parameter T so that u; = 7™ but uy =
Yicz a;T" remains as a power series and therefore, accordingly, it; = ™ and ity = Y5, a;t'
for some integer / where @; # 0. As in case 1 of this proof, we have that the parameter of
Xipi s 7 := Zi/m] and we can write r = zP (1 - Z""‘(p_l))l/ml. We now have two cases to
treat, namely (al) and (a2), depending on whether or not / is coprime to p.

(al) In this case, ged(l,p) = 1 = mp = 0. We base change the torsor equation of
(X2.0)k = (Xp)x to (X )k to obtain the torsor equation for (Yy)r — (X1.p)k:

: : : : i
Z127 _ Zaitl — Z&iz’p(l _ Z—ml(p—l))z/ml — Zaizlp(l _ m_z—ml(ﬁ—l) + )
|

i>l i~/ i>l

_ [ _ [+1
= a7 (1 - P me=D 4 )+ @ 2P - p—
1 1

Z7me=h 4 Y+

As this is a u,-torsor equation, the factor @;z'” can be eliminated by multiplication by a
suitable p-power to obtain an equation: z = 1 — milz""l(p‘l) + higher order terms. So the
conductor variable is m| = —m(p — 1), as this is the smallest power of z in the above
expression which is coprime to p.

(a2) In this case ged(/, p) # 1. By the details outlined at the start of this paper (cf.
Background), we know that the torsor equation of (X»,)r — (Xp)r can be expressed as
follows: 20 = 1 + @y, t™ + Yo, @it = 1 + Y5, @it'. By a suitable change of variables, we
can express this y,-torsor as: 2y = 1+ Ys,, Git' © (22— DP = Yinp, @it = 25 = Vs, Git'.
We can now proceed to base change the torsor equation of (X5,)r — (Xp)r to (Xip)k to
obtain the torsor equation for (Y3)r — (X1.5)k:

3 azri (1 - o)™ 23 g (1 - Lomoh s )

i>my i>ny

_ my _. - _ my+1 _
amzzmzp(l _ m_Z mi(p=1) 4 ) + am2+1Z(m2+l)p (1 _ m—Z mp=D |4
1 1

P
)

_ mya o (p— .
= Gy, "P — —"27mP~m =1 4 higher order terms.
mi

Som} = myp —m(p— 1) as this is the smallest power of z in the above expression which
is not divisible by p.

We now determine m,. We choose T so that u; = a;T' and u, is given by T in the
case (al) and by 1 + 7™ in the case (a2). After reducing these equations modulo 7, we have
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-z = Z;:lml a;t' and (al) zZj = 1" or (a2) zJ = 1 + ™ on the special fibre.

(al) We can write 7 in terms of z; in (Xp); since 25 = " & 1 = (z;/ h)p. This implies
that z := zé/ h
of (X1p)k — (Xp)k to (X2)x to obtain the torsor equation for (Yp)r — (Xop)k: zf —-z1 =
S @it = X2, @2 = @, 2™ + higher order terms. The leading term 27 (as well as all
the other terms z'”) is a multiple of p but, as in case 1 of this proof, after an Artin-Schreier
transformation we obtain: zf — 21 = G, 2™ + higher order terms. Therefore, the conductor
variable m}, = m;.

(a2) As above, we write ¢ in terms of 25 in (Xo )it 25 = 141™ © -1 =" © (-1 =
M et= ((22 - 1)1/m2)1’ . This means that the parameter of (X5); is z := (z2 — 1)!/" and so,
from the above, we obtain ¢ = z°. Now, we base change the equation of (X )r — (Xp)x to
(X2.5)x to obtain the torsor equation for (Y;)r — (X24)k: zf = Zi_:lml a;tt = Zi_:lml a;7’? =
am, 2™MP + higher order terms. After an Artin-Schreier transformation we obtain: z’f -71 =

is a parameter of (X;,)r and we have that r = z°. We base change the equation

Gpm, 2™ + higher order terms. Therefore, as in the (al) case, the conductor variable m), = m;.

3. (Hy1), Hy). Here m; < 0 while m, € Z. The torsor equation for H,, (4 is given by
(1 +AZ1)? =1+ Auy and for H,, by (1 + n"Z,)? = 1 + n"Puy where uy, u, € A*. Modulo 7,
these torsor equations reduce to zf — 21 = 4 and zg = i, with acting group schemes Z/pZ
and a), respectively on the special fibre.

We start by computing m}. We can choose the parameter 7" so that u; = 7™ but uy =
ez a;T' remains as a power series and therefore, accordingly, #; = ™ and i; = ;5 a;t'
for some integer / where a; # 0. Recall that / = m; here. As in case 1 of this proof, we have
that the parameter of (X|,); is z := zi/m‘ and we can write ¢ = 77 (1 - z""‘(p‘l))l/m]. We
base change the torsor equation of (X2)r — (Xp)x to (X )x to obtain the torsor equation
for (Yp)r = (X1 p):

. . _ -~ i/m _ . i _ -~
Zg = E C_Iill = E C_ll'Zpl (1 -z m(p 1)) ' = E Cll‘Zpl (1 — m—Z m(p=1) + )
1

i1 =1 =l
[ [+1
= Enz*"l(l —— Mm@ D L 4 PV 1 - ——meD )
my m)

= a" - %zll’_m‘(”_l) + higher order terms.
1
As this is an @,-torsor equation, the term @z”’ can be removed and we can ignore the terms
involving i’s which are divisible by p. So the conductor variable m| = myp —m(p — 1), as
this would be the smallest power of z which is not divisible by p.
It remains to compute m} in this case. This time we choose the parameter T so that u; =
Yiez a;T" is the power series and uy = T™. After reducing modulo 7, we have ii; = Zl;lml

and 1, = ™ on the special fibre. We can write ¢ in terms of z, in (X5 ;)x since zg =" &

a;t'

p C . .
t= (z;/ mz) . This implies that z := Z;/ " is the parameter of (X;,); and we have that 7 = z7.
We base change the equation of (X )iy — (Xp)k to (X2)x to obtain the torsor equation for
Yk = Xop: z’f -1 = Zi_:lml ait = Zi_:lml a7’ = am,2™P + higher order terms. After an
Artin-Schreier transformation we obtain: zf — 2] = 4y, 2™ + higher order terms. Therefore,

the conductor variable m), = m.
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We remind the reader that in the remaining three cases, we cannot reduce modulo 7 and
work at the level of special fibres. Thus, the computations here are slightly more involved.
It will be useful to recall in advance here the following equality given by the Binomial
Theorem

p-1
L+ (@bZ) = (1+72"2)" = (p ) (b2 (+)
ok

which can be generalised to the Multimonomial Theorem (or Identity)
p
1+ Z (ﬂ”b,-Zi)p = (1 + Z Jr"b,-Zi] -p Z 7'b,Z! + higher order terms ().

We also mention here that to circumvent our inability to take, say, p-th roots of coefficients
belonging to the ring R, we can adopt the following technique for a given element a; where
vk(a;) = 0; namely, it can be expressed as a; = bf +¢; for some b;, ¢c; € R such that vg(b;) =0
and vk (c;) > 0.

4. (H,,up). Here my € Z while my > 0. The torsor equation for H, is given by (1 +
n"Z)P = 1 +n"Puy and for u, by Zf = u, where u, u; € A*. We start by computing m|. We
can choose the parameter 7" so that u; = 7™ but uy = ),z a;T"' remains as a power series.
We can express T in terms of Z; in order to read off the parameter for X ;:

p—1
(L+7"Z) =1+ 2"7T™" & 72zl + Z ([]:)n"sz +1=1+n"Tm™
=1

p—1
S (’; )n"kz’; e
k=1
1

-1 1/m
oT= (le/’"‘)p (1 + PZ: (i)nﬂk-mz’;"’] .

k=1

We know from the proof of case 3 that Z := le fm

(hence it is a parameter of X ;) and so we can write:

-1 1/my
P\ _—n(p—k) 7—mi(p—
— 7P n(p—k) 7—m(p—k)
T =27 [1 + E (k)n Z ) .

k=1

is the parameter of X, modulo 7

For convenience, set B = Zf:_ll (i’)ﬂ‘”(l"k)Z""l(”‘k) sothat T = Z” (1 + B)"/™ . We now have
two cases to treat, namely (al) and (a2), depending on whether or not [ = min{ilvg(a;) = 0}
is coprime to p.

(al) In this case, gcd(l,p) = 1 = mp = 0. We base change the torsor equation of
X — Xp to X, to obtain:
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7 = Za,.Tf = Za,-zfl’ (1+ B)i™ = Za,-zfp (1 + n%lB + )

i€Z i€Z i€Z
=Yazh+ Y= fai 2B
i€Z i€Z
. ia;
= > azl+ Y @+ Z 'Z””B
vk (a;)=0 vk (a;)>0 i€Z

For the terms where vg(a;) = 0, we can express a; = bl’.’ + ¢; for some b;,c; € R with
vk (b;) = 0 and vk(c;) > 0 to obtain:

= Y WZv+ Y az?+ Y a Z’P+Zmlzll’3

vk (b)=0 vk (c;)>0 v (a; )>0 i€Z
i\P
S e Y azre ) s
vk (b)=0 vk (d)>0 i€Z

where we set d; = ¢; if vg(a;) = 0 and d; = a; if vg(a;) > 0. Now, as this is generically a
P .

Hp-torsor we can take the p-power term (b,Z’) in the first summation into factor, so that we

get a new equation:

Z;: 1+ Z (bl_lbizi_l)p+ Z b szp(t l)+z mlz Zp(z hp+

vk (b1)=0 vk (d)>0 i€Z
il
which can be rewritten using the identity (%), and after multiplying by a suitable p-power,
as:

b"a
Zy=1-p Z b 'b:Z7 + Z b, d;z""P + Z ~ D G gping higher order terms.
ok (b)=0 ok (d)>0 ez !
i#l
The summation 3}, -0 dibl_p ZP=D does not contribute to the conductor variable since
the powers of Z involved are p-powers so we can safely exclude it. Indeed, if the coefficient
with smallest K-valuation in the right hand side of the above equation occurs in the above
summation say in the term d;b,"ZP""" then vk (d;) is necessarily divisible by p (since (¥;)
is reduced), and we can assume without loss of generality that this summation is of the form
aP'(f(Z)" + ng(Z)), where f(Z) € A; is a unit and g(Z) € A,. Writing 1 + 7' f(Z)? =
1+ f2)r - Zf:_ll (1;) (7' £(Z))* and multiplying the above equation by (1 + 7' f(Z))? we
obtain an equation:

p—l g —p
. k ib,"a; .
Zy=1-p Z bl‘lbiZ’_l - Z (l]:) (n’f(Z)) + Z —L _zri=hp 4 higher order terms.
vk (b)=0 k=1 iz ™

il
Furthermore the summation Zf;ll (‘z) (=" f (Z))k doesn’t contribute anymore towards the
coeflicient with smallest possible valuation in the right hand side of the above equation. For

the rest of this proof we will automatically operate in this way and ignore such summations.
Then, up to multiplying the coefficients by units, we have:
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. ib,"a;
zZy=1- nok () Z bl_lb,-Z’_l + gk (P)=np=1) Z —L T zpl=bom(p=1) 4 higher order terms.
ok (5)=0 iz ™
i#l

Clearly the smallest power of 7 is vg(p) —n(p — 1) and so we look to the summation with
that coeflicient for the conductor variable. For zero valuation coefficients, the index of the
summation will start at the integer /, the index corresponding to the lowest zero valuation
coefficient. As m] is the smallest exponent appearing in the relevant summation which is
coprime to p, we have that m| = —m(p — 1).

(a2) In this case ged(/, p) # 1. Again, we take T = ZP (1 + B)'/™ where B is as defined
previously. We then base change the p,-torsor equation of X, ;, — X to X;, to obtain:

Zf:ZaiTi:1+ Z aT' + Z aT!

i€Z vk (a;)=0 vk (a;))>0
i>my
=1+ Z a;Z'" (1 + By™ + Z a;Z'" (1 + Byilm .
vk (a;)=0 vk (@;)>0
i>my

For the terms where vg(a;) = 0, we can express a; = bf + ¢; for some b;,c; € R with
vk (b;) = 0 and vk (c;) > 0 so that:

Zi=1+ Y BZPA+BM+ Y oz 4B+ Y @z (1+ B

vk (b)=0 v (ci)>0 vk (a;)>0
=1+ > BZPa+B™+ ' dz"(1+B)f™,
vg (b)=0 vk (di)>0

where we again set d; = ¢; if vx(a;) = 0 and d; = q; if vg(a;) > 0. Now we continue by
expansion of the binomial terms:

Zr=1+ Z bfZip(l + mLIB+ ) + Z d,-Z”’(l + mLIB+ )

UK(h,’)=0 UK(di)>0
. i . .
=1+ > (bZY + > —bZPB+ Y dzZ?
ok (B)=0 oxB=0 "1 ok @)>0

i .
+ E —d;Z'? B + higher order terms.
my
vk (di)>0

The summation ), >0 d;Z'P does not contribute to the conductor variable since the
powers of Z involved are p-powers so we can safely exclude it (cf. Proof in case (al)). Now
using the identity (**), and after multiplying by a suitable p-power, we obtain an equation:

Zy=1-p Z biZ' + Z mef Z'P B + higher order terms
vk (bi)=0 vk (bi)=0 1
=1-p Z biZ' + Z LbfZipB + higher order terms,

b 4 ni
>my i>my

which equals:
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|
1-p Z biZ' + Z —bp zir [Z (i)ﬂ"(” K z=mp k)} + higher order terms

i>my i>my

— 1 — %P Z b,Z! + pox@r-np=1) Z b Z’l’ m(P=1) 4 higher order terms;

i>my i>my 4

up to multiplying the coefficients by units. The second summation has the smallest 7 valua-
tion and so the conductor variable is m} = myp —m(p — 1).

We now determine m,. We choose the parameter T so that u; = ez ;T “and u, = T" in
the case (al) while u, = 1 + T™ in the case (a2).

(al) In this case, m, = 0. The parameter of X, is Z := Zé/ " Where T = ZP is obtained
from the torsor equation Zé’ =Th o (Z21/ h )p = T. We base change the torsor equation of

X1 — Xp to X5, to obtain:
(1 +7Z) =1+ 7" Z aT =1+n" Z aZl =1 + " Z a.ZP + 1'P Z aZP
i€Z i€z vk (a;))=0 vk (a;))>0

0, we can express a; = bf + ¢; for some b;,c; € R with

For the terms where vg(a;)
vk (b;) = 0 and vk (c¢;) > 0. Hence

(1 +#"Z) =1+x" Z brZP + 1P Z ciZP' + P Z a,Z"

vk (bi)=0 vk (ci)>0 vk (a;)>0
=1+ (ﬂﬂb,-Z")p + Z a'Pe; 7P+ Z 7P, 7P
vk (bi)=0 vk (ci)>0 vk (a;)>0
=1+ > (TbZ) + 7 d;Z",
vk (b;)=0 vk (d;)>0

where we again set d; = ¢; if vg(a;) = 0 and d; = q; if vg(a;) > 0. Using the identity (x:x),
and after multiplying by a suitable p-power, we get: (1 +7"Z1)P = 1= p X, (5)=0 b Z' +
Dok(di)>0 n"d;ZP" + higher order terms = 1 — g% (P+" Dism b;Z' + higher order terms; up to
multiplying the coefficients by units. Now, m) is the smallest exponent appearing in this
leading summation which is coprime to p and so m} = m;.
(a2) In this case ged(l, p) # 1. From the torsor equation Zf =1+ T we can deduce:
p—1
Z=14T" o2 -1=T" o Z-1)-) (i)(—l)kzk =™
k=1

k=1

p-1
o (Zy -1y [1 ~Z-)7" Yy (Z)(—l)kz’g) —Tm

which implies: 1

FRY: - p—1 p my
T=((Zz—1)’”2) {1 ~Z-1) P;(k)(—l)"ZS} ,

and so we take Z := (Z, — 1)/, which we already know to be the parameter of X, by case
2 of this proof, in order to write:

p-1 "'Lz
T :Z”[l —Z"””’Z(l,:)(—l)k(l +Z’”2)"] .

k=1
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For simplicity, let us denote Zf;ll (i)(—l)k(l + Z™)K by B so that we can write T =

T .
ZP (1 —Z"™PB)™ . We can now base change the torsor equation of X;;, — X, to X, to
obtain:

(A +A"Z)P =1+7" ZaiTi =1+ Za,Z”"(l _Z—MzPB)é

i€z i€Z
. i
=1 +7r””Za,Z’”(l - —Z7Z"™PB + )
i€z mz
=1+ Z a;ZP" — 7'"P Z Wi gpt-m g
i€Z i€Z mz

Partitioning any summation above over the index i into the terms where vg(a;) = 0 and
the terms where vk (a;) > 0 gives:

. 1a; .
Gewzy =10 S azi—av Y Dgimg
vk (a;))=0 vk (a;)=0 "2
+ 7" Z a;ZP" — 7'"P Z ﬂZ‘I’(’;’”Z)B+....
vk (a;)>0 vk (a;)>0 i

Again, for the terms with vg(a;) = 0, we can express a; = bf’ + ¢; for some b;, ¢; € R with
vk (b;) = 0 but vg(c;) > 0 and so we have:

(L+7'Z) =1+ > bz

vk (b)=0
n i n lb{) (i—my) n ici (i—my)
+ chZp—ﬂ” Z —igp ZB—JTPZ —Lgpti-m) g
vk (c))>0 vk (bi)=0 n v (ci)>0 e
+ 1'"? Z a;ZP" — 7"f Z —7P=m) B | higher order terms
vk (a;)>0 v (a;)>0 n

n i\ n lbf) (i—m2) 3
=1+ Z (71' biZ) - Z —ZP"""™) B 4 higher order terms;
v (bi)=0 v (bi)=0 g

excluding summations whose coeflicients have positive valuation. Using the identity (xx*),
and after multiplying by a suitable p-power, yields:

) b’
1+""Z)Y=1-p Z ‘bz — 7P Z —L zPt=m) B 4 higher order terms

vk (b)=0 vk (b))=0 g
. p-1
= 1= g0y pzi— gy i pti-m {Z (1]:)(_1)k(1 + Z””)"]
i>l ok bn=0 "2 =1

+ higher order terms

-1 ,Tuk<p>+nz b,Z! + pixPrnp Z ibi ZPi=m)(q 4 zm)
>l ok B=0 "2
+ higher order terms;

up to multiplying the coefficients by units. Since vg(p) + n is the smallest exponent of 7 and
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I = min{ilvg(a;) = 0,gcd(i, p) = 1} = my is the starting index, we have that m}, = m is the
conductor variable.

5. (up,pp). Here my,my > 0. The first u,,-torsor is given by the equation Zf = u; and the
second p,,-torsor by Zf = up where uy,u, € A*. Modulo 7, these torsor equations reduce
to zf = 1) and zg = ilp with acting group schemes u,, on the special fibre. On the special
fibre the reduced power series are of the form i = };5; a;¢' for some integer /. Depending on
whether or not these / are coprime to p or not, there are three cases to consider. In particular,
the pairs (al,al), (al,a2) and (a2,a2). We only treat the cases (al,a2) and (a2, a2), the
case (a2, al) is treated in a similar way to the case (al, a2). For the case (al, al) see Remark
1.8.

(al,a2) Here m; = 0 and my > 0. We start by computing m}. We can choose the parameter
T sothatuy = T"butur = 1+ Yue(ap=0 ;T + Y, (ap>0 @:T' remains as a power series. From

>y
the torsor equation Zf = T", we can write T = ZP where Z = le/ " is the parameter of X 5.
Then we can base change the torsor equation of X, — X; to X, ;, and obtain:

=1+ Y aT'+ Y aT' =1+ > aZ'+ ) az"

vk (a;)=0 v (a;)>0 vk (a;)=0 v (a;)>0
>ny i>my

For the terms with vg(a;) = 0, we can express a; = bf + ¢; for some b;,¢c; € R with
vg(b;) = 0 and vg(c;) > 0 and so we have:

Z) =1+ Z brzP + Z ciZP + Z aZ"

v (bi)=0 vk (ci)>0 vk (a;)>0
>my >nmy
_ i\ pi pi
=1+ (b,-Z ) + cZP' + a;,zZ".
v (bi)=0 vk (ci)>0 vk (a;)>0
i>my izmy

Using the identity (xx), and after multiplying by a suitable p-power, we get:

Zg =1-p Z b.Z' + Z ¢ ZP + Z a;,Z"" + higher order terms

v (bi)=0 vk (c;)>0 vk (a;)>0
i>my i>my
=1 — 7P Z b.Z' + Z c;ZP + Z a;Z"" + higher order terms,
v (bi)=0 vk (ci)>0 vg(a;)>0
i>my >ny

up to multiplying the coefficients by units. Therefore, m| = m,. Here we ignored the last
two summands in the above equality (cf. proof of case 4 computing m).

Now we want to determine m),. We can choose the parameter T so that u; = };cz a;T' is
a power series and up = 1 + 7™ is in simplified form. We know from case 4 that the torsor

1
equation Z) = 1 + T™™ gives rise to: T = Z” (1 —Z7mp Zf;ll (i’)(—l)k(l + Z’”Z)k) "2 where
Z := (Z, — 1)"/™ is the parameter of X, ;. We have that Z!' = ¥,c; a;T" = Yocar-oaiT’ +

i>l
Dok (an>0 a;T' where [ is such that gcd(l, p) = 1. We can write T = Z" (1 — Z‘”’”’B)é by
letting B = Zf;ll (2’)(—1)"(1 +Z™)k_ Then we base change the torsor equation of Xip— Xp
to X, and obtain:



Covers ofF TYPE (p, -+, p), VANISHING CYCLES 275

Z'= > azt(1-Z"rB)yE + Y aZ?(1-Z "By

vk (a;)=0 vk (a;)>0
i>l

For the terms where vg(a;) = 0, we can express a; = bf + ¢; for some b;,c; € R with
vk (b;) = 0 and vg(c¢;) > 0 and so we have:

Z0= Y BZP(1-Z"B) + Y Gz (1 - 2By
vr (b)=0 vk (ci)>0
>l >l
+ > aZ"(1-Z"rB)
vk (a;)>0
U[((.bl';ZO UK(di)>0
>

where d; = ¢; if vg(a;) = 0 and d; = a; for vg(a;) > 0. Hence:

7P = b'zP 1—iz—’"zpB+... + d.zv 1—iz—m2”B+..,
: Z ' ( my ) Z ( my

v (b))=0 v (di)>0
i>l
= > Bzr- ) b"Z”’m ZMIB+ Y diZ?
vk (bi)=0 vk (bi)=0 2 vk (di)>0
i>l i>l

o )
- Z d; 7'’ —Z7"™" B + higher order terms.
w0

Taking into factor the p-power by Z? = (b,Zl)p we obtain:

Z0=1+ Y btz - N p Pz Lzmrp > bdizr

ny

vk (b))=0 vk (b))=0 vk (d;)>0
>l i>l
- Z b, d;z"D Z_m”’ B + higher order terms
v (@)>0 2
=1+ > (by'miz™) = > b bz L gmrp > bdzr
ok (B)=0 o (=0 "2 vk (@)>0
>l i>l

- Z b, "d;z"" Z_m“’ B + higher order terms.
o (dp)>0 g

Using the identity (x#), and after multiplying by a suitable p-power, we get

Z'=1-p Z bz - Z by pbPZp(z l)_z—mzpB+ Z bl—l’dizp(i—l)

o (B)=0 ok (B)=0 g ok @)>0
[ >l
- Z b, diz" Z_m”’ B + higher order terms
0 (@)>0 "
l .
=l-p > b'bz = " bblzrD z—mw( ( )(—1)k(1+zm2)’<)
ok (B)=0 ok (B)=0 k=1

i>l i>l
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+ higher order terms

=1 — 7% Z bl—lbiZi—l + %) Z bl—l’bfizp(i—l)—mzp(l +2Z™)

m
ok (b)=0 vk (b)=0 2
>l >l

+ higher order terms,

up to multiplying the coefficients by units. Then, clearly, m}, = —my(p — 1) is the conductor
variable. Here we ignored the term 3, 4-0 b, "d;ZP~" in the above summation (cf. proof
of case 4 computing m).

(a2,a2) Here both m;,m, > 0 and we start by computing m/. The parameter T can
be chosen so that u; = 1+ 7™ but up = Yz, T' remains as a power series. From
the torsor equation Zf = 1+ 7™, we know from case 4 that we can write 7 as: T =

€
zp (l —Z7mp Zf;l (’,Z)(—l)k(l + Z’”‘)k)”’1 where Z := (Z; — 1)!/™ is the parameter of X .
As before, for purposes of convenience, we write 7 = Z7 (1 —Z""”’B)ﬁ where B =

Zf;ll (‘Z)(—l)k(l + 7™M )k. Then we can base change the torsor equation for X, — X, to
X » and obtain:

=1+ Y aT'+ Y aT

vg(a;)=0 vk (a;)>0
i>my
=1+ Y @zZP(1-Z"™PB)" + > aZ?(1-Z""B)n
vK(a,-)=0 UK(ai)>O
i>my
) i . I
-1+ Z a,»Z”’(l——Z""‘PB+...)+ Z aiZ”’(l——Z""‘f’B+...)
vk (a;i)=0 m vk (a;)>0 m
i>my
. o .
=1+ > aZl- > aZP—Z"™"B+ ) aZ"
ok (@)=0 ok (@)=0 n 0 (@)>0
i>my i>my

] .
- E a;Z'* —Z"™P B + higher order terms.
m
vk (a;)>0

For the terms where vg(a;) = 0, we can express a; = bf + ¢; for some b;,c; € R with
vk (b;) = 0 and vk(c;) > 0 to obtain:

=1+ Y wzv- ) bzt zmrp > azr- czvLz-mrp

v (bi)=0 v (bi)=0 it vk (ci)>0 vk (ci)>0 i
i>ny >y
. o _
+ Z a;,Z'"? — Z a;Z'* —Z"™P B + higher order terms
vg(a;)>0 vg(a;)>0 i
\P A .
=1+ > (bZ) = > wzr—zmrB+ Y diZ?
v (bi)=0 v (bi)=0 4 v (di)>0
i>my i>my

g .
- Z d;Z'? —Z7Z""™P B + higher order terms,
o0 M

where we take d; = c¢; if vg(a;) = 0 and d; = a; with vg(a;) > 0. Using the identity (%), and
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after multiplying by a suitable p-power, we get:

=1- Z biZ' - Z pr”’ Z‘”“”B + higher order terms
m

UK(b) 0 vk (b))=0
i>my i>my
p—-1
=1- p Z biZi _ Z bPZlP Z—mlp[ (i)(_l)k(l + Zml)k]
vk (b1)=0 vk (bi)=0 k=1
i>my i>my

+ higher order terms.

Then up to multiplying the coefficients by units we have:

Zé’ =1 — 7% Z b;Z' + noxP Z bfLZ(i_ml)p(l + Z™") + higher order terms.

m
v (bi)=0 v (bi)=0 !
i>nmy i>my

In order to determine which is the smallest power of Z and hence the conductor variable
m/, we need to compare my with myp — m(p — 1) since both summations have coefficients
with the same m valuation. Note that m, < myp — m;(p — 1) is equivalent to m; < my.

Assuming m; < mp, we have m/

| = my and, by symmetry, m}, = myp — ma(p — 1). The case

my < my is entirely similar.

6. (H,,.H,,). Here m;,my € Z and both are coprime to p. The H,, -torsor equation is
given by (7"'Z; + 1) = 1 + " u; and the H,,,-torsor equation by (722, + 1)? = 1 + nP™u,
where u;, u, € A*. The two torsors have associated conductor variables m;, m, respectively.

We begin by computing m}. We can choose the parameter T so that u; = 7™ but u, =
Yz a;T remains as a power series. By case 4, we can express T in terms of Z := Z} fm

1
the parameter for X, as: T = Z7 (1 + Zf:_ll (i)ﬂ‘"l(P‘k)Z""'(P‘k))'"‘ and, for convenience,

_ . ol
we set B = Z,lel (Z)ﬂ‘"l(”‘k)Z""‘(p"‘) so that we can write 7 = Z” (1 + B)™ . Then we base
change the torsor equation for X, ;, — Xj, to X to obtain:

Z) =1+n" Za,-Ti =1+n Z a;T" + 7™ Z a;T'

i€Z vk (a;))=0 vg(a;))>0
i>my
=L+ > aZP(1+ B +7™ > aZP (1+B)n
vk (a;)=0 vk (a;)>0
i>my
. I ; i
=1+ g Z a;,Z'"? (1 + —B+ ) + P Z a;Z'"f (1 + —B+ )
vk (a;)=0 i vk (a;)>0 i
i>my
=1+ 7" Z a;Z'? + 7™ Z Z’p B + ™ Z a;Z'"
vk (a;)=0 vk (a;)=0 d vk (a;)>0
i>my i>my

+ P Z Z”’ B + higher order terms.
m

vk (a;)>0

For the terms where vg(a;) = 0, we can express a; = bf + ¢; for some b;,c; € R with
vk(b;) = 0 and vg(c;) > 0O to obtain:
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Z=l+n Y WV Y Wz B4 > iz

ok (=0 0k (=0 e ok (@)>0
i>my i>my
+ P Z ;7P — B+7rp”2 Z a;Z'?
v (ci)>0 mi vg(a;)>0
+ " Z a; zr L B + higher order terms
w@so
. p .
=1+ Y (wenz!) wam Y bz B > dzv
ok (=0 ok (=0 m ok (@)>0
i>my i>my

+ "2 Z d; zin L B + higher order terms,
o0 M
where d; = ¢; if vg(a;) = 0 and d; = a; if vg(a;) > 0. Using the identity (xx), and after
multiplying by a suitable p-power, we get:

72+ 1Y =1-p Z b7l + b Z pr”’ B + higher order terms

ok (b)=0 ok (6)=0 m
>my 2nmy

=1 - p Z ﬂ”zbiZi
vk (b))=0
i>my

. (p-1
+ 7" Z b? zir L [Z (Z)n"‘(k_” )z mp _k)] + higher order terms.
mi

vk (bi)=0 k=1
i>my

Then up to multiplying the coefficients by units we have:
Zh =1 — gy Z biZ'
vk (bi)=0
i>my

4 kP pma=m(p=1) Z brz?— Z‘””(p Y 4 higher order terms.

m
ok (b)=0 !
i>my

We have to compare vg(p) + np with vg(p) + pn, — ni(p — 1) in order to determine the
smallest power of 1. Note that vg(p) + ny < vg(p) + pny —ni(p — 1) is equivalent to n; < n;
and so when this happens, m| = m; and when n; > n,, we have m| = myp —mi(p — 1). We
also need to consider the case where n; = n,. Comparing m, with myp —m(p — 1) we have
that:

, . {MQ if my; < nmp
m} = min{my,myp —my(p — 1)} = ]
mop—my(p—1) iftm >my
Now we want to determine m), but by the symmetry present in this case this is entirely similar
to the above consideration. In particular, if n; < ny then m}, = mip —my(p — 1), if ny > ny
then m}, = m; and, finally, if n; = n; then:
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’ _ mp—-m(p—1) iftm <mm
m)y, = min{my, m;p —my(p — 1)} = .
m if my = myp

All six possible cases have now been treated. O

We are also able to state when the Galois cover Y, — X}, has a torsor structure by taking
into account when base changing in the above proof without additional modification resulted
in the equation of the normalisation (see also Theorem 3.4).

Theorem 1.2. Let f; : X;;,, — Xj be non-trivial Galois covers of degree p above the
formal boundary X, which are generically disjoint for i = 1,2. Let G; be the corresponding
group schemes fori = 1,2 and let Y}, be as defined in Theorem 1.1. Then Y), = X, Xx, Xo 4,
in which case Y, — X}, is a torsor under G| Xspecr G2, if and only if at least one of the two
group schemes G; is the étale group scheme H,, ).

Proof. See Theorem 3.5. O

Derinttion 1.3. For the extension B/A of DVR’s where X, = Spf (A) and Y, = Spf (B)
are as in Theorem 1.1, we define the special different(s) by

dy, = (ci = Dp(p=D+ (| -Dp-1

dy, = (2= Dp(p-D+(c;, —Dp-1)
Lemma 1.4. The above two special differents are in fact equal: ds, = ds,.

Proof. Follows immediately by substituting the possible values for ¢ and ¢/ under each
of the six cases given in Corollary 1.2. m|

This dj,, i = 1,2, coincides in fact with the term ¢(s) which appears in Kato’s vanishing
cycles formula in the case of a Galois cover of type (p, p) (Theorem 6.7 in [3]). We will also
see this variable makes an appearance in our genus formula in Theorem 2.2.1 in the next
section.

Corollary 1.5. We have the following relationship between conductors:

ch—cj =(c1 —c2)p.
Proof. Follows from rearranging the relationship between conductors given by d;, = d,.
O

Had Corollary 1.5 been given, we would have only needed to perform half of the com-
putations in the proof of Theorem 1.1. In particular, with m} (or equivalently c}) obtained,
m), (or equivalently ¢}) would be determined by this relationship. In fact, this formula could
have been derived independently using the theory of higher ramification groups as per [10]
but only for the (H,, (1), Hy (1)) case, the first of the six cases in Theorem 1.1. This is because
this ramification theory only holds when the residue field extension is separable and so both
group schemes G;, i = 1,2, must be étale.

From the calculations in the proof of Theorem 1.1 it is also possible to compute the degree
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of the different ¢ in the extension B/A. Since the ramification index of this extension e = 1,
we see easily that 6 = 6y + 6] = 63 + 0, (cf. Theorem 1.6 for notations).

Theorem 1.6. With the situation described in Theorem 1.1, let &' (resp. ;) denote the
degree of the different corresponding to the extension Y, — X;p (resp. Xip — Xp), i = 1,2.
Then, for all possible pairs (G, G2), we can explicitly state the values for & as follows:

Table 1. Degree of the differents §”, (5&

| (G1,Go) | 9 | 9
Ho s oy 0 0
Hogys Hp vk(p) 0
Hyeys Ha vg(p) —n(p—1) 0

Hos bty ok (p) = EEZER (p ~ 1) ok(p) = =L (p ~ 1)

Ips 11y ok(p) — “2(p - 1) ok(p) — “2(p - 1)

If ny < ny then & equals: If ny < ny then &) equals:
Hoys o, ok(p) = B2 (p — 1) ok (p) — PR () — 1)

If ny > ny then 0] equals:

If ny > ny then &) equals:

vK(p)+nzp—n1(p—l)(p -1

ok (p) — L o (p) — L (p — 1)

Proof. For an arbitrary rank p torsor with conductor variable m and torsor equation Z7 =
1 + 7"PT™ + higher terms, where 0 < n < vg(A), the degree of the different is given by
0 = vg(p) — n(p — 1). This means that computing the degree of the different 6 reduces
to obtaining n from the exponent of 7 in the coefficient of the term corresponding to the
conductor variable m. From our calculations obtained in the proof of Theorem 1.1, we can
simply read off the n value in each of the cases and substitute into the formula vg(p)—n(p—1)

to obtain the degree of the different at that particular stage. Strictly speaking, we can only
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rely on this approach for the last three cases because in the first three cases we worked
modulo 7 on the special fibre. In the first three cases to compute ¢ we use the fact that the
degree of the different is preserved by étale base change. |

ExampLE 1.7. With the type (p, p) case established it is possible to manually perform
the same calculations in the type (p, ..., p) setting. We illustrate this with a type (p, p, p)
example, using the (p, p)-type results in Theorem 1.1 and Corollary 1.2 iteratively at each
stage to determine the conductors in terms of the base level conductors.

Y

(X1 X Xo)™" (X2 X X3)""

X] X2 X3
. L‘zl/
Cy 3

X

Suppose X; — X are torsors under the R-group scheme G; of rank p for i = 1,2, 3 which are
pairwise generically disjoint, i.e X; is generically disjoint from X; for i # j. Write (X;xX5)""
and (X, x X3)"" for the normalisation of X in X x Xx, X» ¢ and X» x Xx, X3k, respectively,
and Y for the normalisation of X in X g Xx, Xo x Xx, X3 k. For the purposes of an example, let
G; = Hyy) for all i and assume ¢; < ¢; < ¢3 and ¢, < ¢. Then, by applying the type (p, p)
formula iteratively we can compute the conductor ¢}’ as follows (similarly one can compute

Al =cip-chip—-D=(p—cxp-1)p-ci(p—1) =c3p* —cap(p— 1) —ci(p - 1).

Remark 1.8. We discuss an example which illustrates the case (al, al) occuring in the
proof of Theorem 1.1, the case (up, u,). Here m; = my = 0. In this case one can show that
the group schemes acting on the torsors Y, — X;;, with conductor variables m’ are Hy with
0 < n} <wvg(A) fori = 1,2. Moreover, one can show n| = n), and m| = m),. Suppose u; = Th
and u, = T'(u(T)) where v(T) = 250 a;T" such that ap € R* is a unit. The conductor
variables m/, m} are in fact encoded in v(T). The proof is complicated to present in general.
Instead, we treat an instructive example to illustrate the computations involved.

Suppose p # 2, u; = T andup = T + T3 = T(1 + T?). Then the yu,-torsors above
X, generically defined by Zf =T and Zé’ = T(1 + T?) are linearly disjoint. We begin by
computing m}. We can write T = ZP where Z = Z; is the parameter of X; ;. Then we can
base change the torsor equation for X, ;, — Xj, to X :

ZV=T(1+T? =2Z"(1+Z°).

Removing the multiplicative factor Z” (which is a p-power) gives rise to an equation of
the form:

<

-1
Z=1+27=(1+2%) - (’;)ZZ".
1

o~
I
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Multiplying this equation by the p-power (1 + Zz)_p = 1—pZ®+..., results in an equation
of the form:

p—1
zZy=1- Z ([]:)ZZk + higher order terms.
=1

The smallest power of Z which is coprime to p is obtained when k& = 1. Therefore,
my = 2.

Now we want to determine m/,. We have that Zzp = T(1 + T?) which we can write Zé’ =
T' & ZP = T’ where the parameter of X, ;, is Z = Z,, and the relation 7’ = T'(1 +T7) implies:
T=1(1+ TZ)_1 =T (1-T*+T* =T+ ) =T"+(-I'T> + T'T* - T'T + ...) . From
this we deduce that 7" can be expressed as 7’+ higher powers of 7’. In particular, 7 =

T" —T? +T7 —-T"7 + ... We can now proceed to base change the torsor equation of
Xl,b — Xb to ngb:

Z'=T =T —T7 +T"” —T" + higher order terms
= 7P — 7% + 75 — 7"P 4 higher order terms
=Z7P (1 — 7% + 7% — 75 4 higher order terms) .
Removing the multiplicative factor Z?, gives rise to an equation of the form:
ZP = 1-27% +Z* - Z° + higher order terms
= (1 -7Z7+ Z4...)p —p Z}(Z2 +Z* + ...) + higher order terms;

by using the formula (). Multiplying this equation by the inverse p-power (1 — Z? +
Z4...)_p , results in an equation of the form:

Z'=1-p Z:(Z2 +Z* + ...) + higher order terms
=1 — 7% Z:(Z2 + Z* + ...) + higher order terms;

up to multiplying the coefficients by units. Therefore, the conductor variable is m}, = 2 = m

and n) = %2 = '
P 1

2. Computation of vanishing cycles

2.1. Computation of vanishing cycles in Galois cover of degree p. In this section we
recall some results from [6].

DeriniTion 2.1.1. For an R-curve X and a closed point x € X, we let X := Spf@x,x denote
the formal spectrum of the completion of the local ring of X at x. Assume X} is reduced.
Then the genus of the point x is given by:

gy =0y — 1+ 1
where
e 0, = dimy (@X/OX)’
e 7, is the number of maximal ideals in O,.

Here O, := @X,x /m denotes the stalk of the special fibre X} at x and O, denotes its normali-
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sation in its total ring of fractions.

If g, = 0, the point x is either a smooth or an ordinary multiple point (where 6, = r, — 1).
Here is a result which provides an explicit formula—a local Riemann-Hurwitz formula—
comparing the (above) genus in a Galois cover of degree p.

Theorem 2.1.2. (¢f. Theorem 3.4 in [6]) Let X := Spf (@x) be the formal germ of an
R-curve at a closed point x with X reduced (cf. Notations). Let f : Y — X be a Galois
cover of degree p with Y normal and local. Assume that the special fibre Y of Y is reduced.
Let {@;}ic; be the minimal prime ideals of (§x which contain n, and let X, 1= Spf ((9@.) be the
formal completion of the localisation of X at ¢;. For each i € I the above cover f induces
a torsor fp, Yy, — Xp, under a finite and flat R-group scheme G; of rank p above the
boundary X, with conductor c;, we write ¢; = 1 in case this torsor is trivial. If y € Y is the
closed point of Y, then:

Zgy_zzp(zgx_z)"'dn_ds

where g, (resp. g.) denotes the genus of y (resp. x), d, is the degree of the divisor of
ramification in the morphism fx : Yx — Xk induced by f on the generic fibre, and d; =

Zier(ci = D(p = 1.

We will refer to this formula simply as the genus formula. The following corollary is
immediate from Theorem 2.1.2.

2.2. Computation of vanishing cycles in Galois covers of type (p, p). In this section
we prove that the degree p genus formula in Theorem 2.1.2 can be extended to the case of
Galois covers of type (p, p). Let f : ¥ — X be a Galois cover of type (p, p) where X is a
formal germ of an R-curve, Y is local and normal, and Y} is reduced. We can express f as
the compositum of two, generically disjoint, degree p Galois covers Y; — X with ¥; normal
and local for i = 1,2 as follows:

Y2 Y
9np

Y1 Y, Y,
. Z/pZ Z/pZ

X X

Let {x;}; € Xk be the (finite) set of branched points in the cover fx : Yx — X between
generic fibres and {y;;}; ; C Yk the set of ramified points in fx with r = Card{{y;;}; ;}. Thus,
for fixed i the {y;;}; ; are the points of Y above x;.

We assume there are r; points (C Y;) ramified in Y ¢ — X and r, ramified points (C Y)
in Yx — Y| . Because the Galois group G is of type (p, p) an inertia subgroup of G has at
most cardinality p since char(K) = 0 and so the inertia subgroups must be cyclic. Therefore,
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two cases occur: at the first stage we have one point above a branched point then at the
second stage there must be p points which sit above it or at the first stage we have p points
above a branched point then at the second stage there is 1 point above each of these p points.
In summary, for a branched point x = x;, we have one of the two situations occurring:

N L

The diagram on the left depicts ramification occurring at the first stage while the diagram
on the right depicts ramification occurring at the second stage. Since these two cases are
disjoint, this gives us that r = r; p + r, where:

e r; = Card{ ramified points in ¥Y; — X }
e 1, = Card{ ramified points in ¥ — Y; }

For the branched points {x;}; € Xk in the cover fx : Yx — Xk, we can visualise the
general picture, including decomposition groups, as follows:

yijij C Yk

Yij

T | {7ijbi € Yk

Uij

{x;}; € Xk

where Dy, < Z/pZ and D,,; < Z/ p’Z denote the decomposition groups of the point ; ; at the
first stage and the point y; ; above 7; ; at the second stage respectively. If only one point sits
above x; in Y} then the order of the decomposition group Dy, ; (resp. Dy, ;) will equal p (resp.
1) and, otherwise, the opposite is true. This means we have a natural test for ramification in
the first and second step as follows:

p =Dy | & p#|D, | =1 & x; ramifies at 1st stage

p # Dyl =1 p=|D, | & x; ramifies at 2nd stage

Now we turn to address the decomposition above the boundaries. Let {Xj, }, denote the
boundaries of X. For each ¢, the Galois cover f : ¥ — X induces a Galois cover f; :
Y;,, — X, above the boundary X}, (note that Y}, is not necessarily connected). Unlike the
degree p case, the cover Y;,, — Xp, is not a torsor under G, X G, unless at least one of
the group schemes G, and G, is étale (see Theorem 1.2 and Theorem 3.5). However, at
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each intermediate degree p stage, the corresponding cover is indeed a torsor where c;, and
2, (respectively ¢}, and ¢} ,) are the conductors associated to the torsor under the finite flat
R-group schemes G 1, and C’}z,, respectively (respectively G’l’t and G’2J). Below is the picture
when Y}, is connected; the case we refer to as being unibranched throughout.

Y,

t

(G1) (Gy05,)

Yip, Yo,

(Groc1s) (Ga,c21)

Xp

1

Our main Theorem in this section compares the genus in a Galois cover of type (p, p).

Theorem 2.2.1. Let X := Spf (@x) be the formal germ of an R-curve at a closed point x
with Xy reduced. Let f : Y — X be a Galois cover with group 7] pZ X Z| pZ—that is, of type
(p, p)—where Y is normal and local and the special fibre Y; of Y is reduced.

Let fi : Yy = Xand f, : Yo — X be two generically disjoint degree p Galois covers
such that Y is the compositum of Y| and Y,. Let {X}, }ie1 denote the boundaries of X. The
Galois cover fi induces a torsor Y, — X;, under a finite and flat R-group scheme of type p
with conductor ¢y for each t. Similarly, C'U denotes the conductor associated to the torsor
Yy,
let ry (resp. ry) denote the number of ramified points in Y| x — Xk (resp. Yx — Y1 k).

Ify € Y is the closed point of Y, then:

— Y1y, In cases these torsors are trivial we write ¢i; = 1 and ¢}, = 1, respectively. We

29, -2 = p*(2g, - 2) + d, — d,

where g, (resp. g,) denotes the genus of y (resp. x), d, := (ry + r2)p(p — 1) is the degree of
the divisor of ramification in the morphism fx : Yx — Xk induced by f on the generic fibre
and

do= > [, = D=1+ = Dpp-1)

boundary unibranched

throughout

D (eu=bpp-D+ > (€, - Dp-D.

boundary unibranched boundary p-branched
then p-branched then unibranched

Proof. By Theorem 2.1.2 we have the following genus formula for the degree p Galois
cover Y1 — X expressing g,, in terms of g, where y; is the point of Y above x: 2g,, —2 =
pQ2gy —2) +ri(p—1) = Yes(crs — 1)(p — 1). Each boundary X}, is either unibranched or
p-branched in Y; and so we can break up the d; summation as follows:

2, —2=pQg-+n(p-D=- >, (L,-DE-H- >, (c,-Dp-1.

tel
X}, unibranched X}, p-branched
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Also by Theorem 2.1.2 we have the following genus formula for the degree p Galois cover
Y — Y, expressing g, in terms of g, : 2g,—2 = p (2gy1 - 2)+r2p(p— D=2 ei(c},—D(p=1).
Again, we rewrite the d; summation into unibranched or p-branched cases:

29,-2=pQgy, - +rp(p-D- > (€, =Dp-D- > (¢, ~Dp-D),

Y} 5, unibranched Yy, p-branched

Tracing a boundary X}, through the entire type (p, p) Galois cover f : ¥ — X, keeping
in mind that under the cover ¥; — X the boundary can be p-branched or unibranched
and, likewise, under the cover ¥ — Y, we have four possible cases which can arise. In
particular, the boundary is unibranched throughout, unibranched and then p-branched p-
branched and then unibranched or finally p-branched throughout. Now, substituting, our
first genus formula expressing g, in terms of g, into the second genus formula expressing
g, in terms of g,,, will give us a genus formula expressing g, in terms of g, as required:

29,-2=pQgy, =D +rp(p-= > (ci,~Dip-D= > (,-DHp-1

el el

Y1 p, uni. Yip, p-b.

=p|pQgc -2+ n(p-D= ) (ci,~Dp=D= Y (cr,=D(p-1)

rel tel

X;,, uni. sz p—b
+rp(p-D= Y (€, -Dp-D=- > (¢, ~Dp-1)
Y] ,b[le{lni‘ Y] ,bllglp-b.
— 2 ’
=pPQg =2+ (n+m)pp-1= Y |ter = Dpp - 1)+, - H(p-1)]
uni.r,EIuni.
- > eu—bplp-D= Y (€, ~Hp-D- > 0
uni.l,E Ip—b‘ p—bf,duni. p»bflp—b.

So, we obtain a genus formula in the form 2g, — 2 = P29, —2) + d, — d; where d,, and
d, are as expressed in the statement of the Theorem. O

For illustration purposes, we explain this picture on the boundary in the case of a uni-
branched throughout cover above an open disc and, so in what follows X = SpfR[[T]] and
Xy, = SpERI[T {7}

Case: unibranched throughout. Write, as above, c; for the conductor in the first stage
and ¢/ for the conductor in the second stage above Xj,. By Theorem 2.1.2 we have that
gy, = w and by the genus formula given in Theorem 2.1.2 we can write 2g, — 2 =
PQ2gy, —2)+rap(p—1)—(c| = 1)(p—1) and so substituting the first equation into the second

results in
29, -2=pQ2g,, -2)+nrpp-1)-(;-DpEp-1
=p((rn—-c-Dp-1)=2)+np(p-1)-(;-D(p-1)

=-2p"+2p" 2p+ (r +r)p(p— 1) = (p— D () = 1 + p(ci + 1))
e
0
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=p*(0-2)+(r +r)p(p—1) = (p— 1D () = 1+ pci +1) = 2p)
=p*0-2)+ (1 +r)p(p— D= (p - D((c) = D+ pler = 1)).
dy dy

The results from the above discussion are summarised in the table below.

Table 2. Values for d,, and d; in the (p, p) setting above one boundary

Ist step | 2nd step dy dy
uni uni (ri+r)pp—1 | (c;=D(p—-D+(1—-Dplp-1)
uni p (r+r)plp-1) p(p—Dc-1)
P uni (ri+r)p(p-1) (p—Dc-1
P P (ri +r)p(p—1) 0

From this we can deduce that the general form for the genus formula for (p, p)-type covers
in case X = Spf(Oy) has a unique boundary (or equivalently X is unibranch) is given by

29, =2 = p*(2g. = 2) + dy — d
where d,, = (r; + r;)p(p — 1) and where

(i =D(p=1)+(ct —1)p(p—1) boundary unibranched throughout

(c—Dpp-1) boundary unibranched, then p-branched
(c—Dp-1 boundary p-branched, then unibranched
0 boundary p-branched throughout

We can derive from the above formula some interesting results:

Proposition 2.2.2. Let X = Spf (R[[T]]) be the formal germ of an R-curve at a smooth
point x and let f : Y — X be a Galois cover with group 7| pZ X Z] pZ. Assume Y is normal
and local and that the special fibre Y of Y is reduced. Let X, = Spf(R[[T]]{T‘l}) be the
boundary of X and f, : Y, — X, the induced Galois cover on the boundaries. Let y be
the unique closed point of Yy and d,, := (r1 + r2)p(p — 1) be the degree of the divisor of
ramification in the morphism fx : Yx — Xk induced by f on the generic fibre and ¢\ and
| are as in cases 2 and 3 below and where c is the only acting conductor at the relevant
unibranched stage. Then:

o —e1=D=¢)=1)(p—1
1. If Yy is unibranched above x then g, = (e, 2) a-De-b)

2. The morphism Y, — X; is unibranched and then p-branched above x then
_ (pritr—c=D)-2)(p-1)
9y = 2 .

3. The morphism Y, — X; is p-branched and then unibranched above x then
gy, = (p(ri+r=2)—c=D(p=1)
5 .

4. The morphism Yy is p*-branched above x then g, = w.

Proof. Follows directly from rearranging the type (p, p) vanishing cycles formula with
gx = 0. m|

In this situation, we have the following test for whether y is a smooth point or not.
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Corollary 2.2.3. With the same assumptions as in Proposition 2.2.2, y is a smooth point
if and only if we are in the case 1 of loc. cit. and p(ry +r, — 1) = 1 + ¢| + c1p holds.

Proof. (=) Suppose y is a smooth point. Then 6, = dimk(@y /O,) = 0 and r,, = 1 since
there is one branch and so g, =6, -r,+1=0-1+1=0. If g, = 0 in the unibranched
case then, by the previous proposition, p(r; + r2 — ¢y — 1) = ¢; — 1 = 0 which rearranges to
pri+rn-1)=1+c +cip.

(<) Suppose that we are in case 1 and p(r; +r; — 1) = 1 +¢| +c1p, then g, = 0. As there
is one branch r,, = 1 and so we have that 6, = g, + r, — 1 = 0 + 1 — 1 which in turn implies
y is a smooth point. O

3. On the existence of a torsor structure

In this section we discuss the question of the existence of a torsor structure for a Galois
cover of type (p, p) between formal normal R-schemes. In addition to the notations set at the
beginning of this paper, in this section we allow R to be a complete discrete valuation ring of
equal characteristic p > 0 with algebraically closed residue field k. Let X be a (formal) R-
scheme of finite type which is normal, geometrically connected, and flat over R. We further
assume that the special fibre X; of X is integral. Let fx : Yx — Xk be an étale torsor under
a finite étale K-group scheme G of rank p' (t > 1), with Yx geometrically connected, and
f Y — X the corresponding morphism of normalisation. (Thus, Y is the normalisation of
X in Yk.) We are interested in the following question.

Question 3.1. Whenis f : ¥ — X a torsor under a finite and flat R-group scheme G
which extends G, i.e., with Gx = G?

The following is well known.

Theorem 3.2 (Proposition 2.4 in [7]; Theorem 5.1 in [11]). If char(K) = 0 we assume
that X is locally factorial. Let  be the generic point of Xi and O, the local ring of X at
n, which is a discrete valuation ring with fraction field K(X): the function field of X. Let
fx : Yx — Xk be an étale torsor under a finite étale K-group scheme G of rank p, with Yk
connected, and let K(X) — L be the corresponding extension of function fields. Assume that
the ramification index above O, in the field extension K(X) — Lequals 1. Then f : Y — X
is a torsor under a finite and flat R-group scheme G of rank p which extends G (i.e., with
Gk =G).

Strictly speaking the above references treat the case where char(K) = 0. For the equal
characteristic p > 0 case see [8], Theorem 2.2.1. Theorem 3.2 also holds when X is the
formal spectrum of a complete discrete valuation ring (cf. [6], Proposition 2.3, and the
references therein in the unequal characteristic case, as well as Proposition 2.3.1 in [9] in
the equal characteristic p > 0 case). It is well known that the analog of Theorem 3.2 is false
in general. There are counterexamples to the statement in Theorem 3.2 where Gis cyclic of
rank p?, see [11], Example 6.2.12, for instance.

Next, we describe the setting in this section. Let n > 1, and for i € {1,--- ,n} let

fix : Xixk = Xk

be an étale torsor under an étale finite commutative K-group scheme 5,-, with X; x geometri-
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cally connected, such that the {f; k", are generically pairwise disjoint, i.e. f;x and f;x are
generically disjoint for i # j. Assume that f; x : X; x — Xk extends to a torsor

ﬁ:Xi—>X

under a finite and flat (necessarily commutative) R-group scheme G; with (G;)x = 51‘, and
with X; normal, Vi € {1, --- ,n}. (Thus, X; is the normalisation of X in X; x.) Let

Xk = X1k Xx Xo.x Xx * Xx, Xnks

and X the normalisation of X in fK. Thus, 5(} is the generic fibre of X and we have the
following commutative diagrams

Xk
X1k Xo.x X3k Xk
G»
5] al
Xk
and
X

Gy
G1 Gn

X

where X Xy X5 Xx- - -Xx X, denotes the fibre product of the {X;}_, over X, the morphism X —
X1 XxXoXx- - -XxX, is birational and is induced by the natural finite morphisms X - X;, Vi€
{1,---,n}. Note that fx : Xy — X (resp. f : X XxXaXx- - -XxX, — X) is a torsor under the
étale finite commutative K-group scheme G := G, XSpec «G> XSpeck* * *XSpec «Gn (resp. atorsor
under the finite and flat commutative R-group scheme G| Xspeck G2 Xspecr - * * Xspeck Gn), a8
follows easily from the various definitions. Note that (G1 Xspeck G2 XspecR * * * XSpecR G,,)K =

G.
In this setup Question 1 reads as follows.
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QuEsTioN 3.3. When is f : X — X a torsor under a finite and flat (necessarily commuta-
tive) R-group scheme G which extends G, i.e., with Gx = G?

Our main result in this paper is the following.

Theorem 3.4. We use the same notations as above. Assume that Xvk is reduced. Then the
following three statements are equivalent.

1. f: X — X is a torsor under a finite and flat commutative R-group scheme G, in
which case G = G| Xspecr * * * Xspeck Gn necessarily.

2. X = X1 Xx Xo Xx +++ Xx X,,, in other words X1 Xx X» Xx +++ Xx X}, is normal.

3. (Xy Xx Xo Xx -+ Xx X))y 18 reduced.

Note that the above condition in Theorem 3.4 that )~(k is reduced is always satisfied after
possibly passing to a finite extension R’ /R of R (cf. [2]). It implies that the (X;); are reduced,
Vi e {l,---,n}. Moreover, Theorem 3.2 and Theorem 3.4 provide a “complete” answer to
Question 1 in the case of Galois covers of type (p,-- -, p), i.e., the case where rank(G;) =
p, Yie{l,---  n}

In the case of (relative) smooth curves one can prove the following more precise result
when rank(G;) = p, Vi e{l,--- ,n}.

Theorem 3.5. We use the same notations and assumptions as in Theorem 3.4. Assume
further that X is a (relative) smooth R-curve, n > 2, and rank(G;) = p for 1 <i < n. Then
the three (equivalent) conditions in Theorem 3.4 are equivalent to the following.

4. At least n-1 of the finite flat R-group schemes G; acting on f; : X; — X are étale, for
iefl, - ,nk

RemMarks 3.6. 1) Theorem 3.4 holds true if X is the formal spectrum of a complete discrete
valuation ring (cf. the details of the proof of Theorem 3.4 below which applies as it is in this
case).

2) In 3.8 we provide examples showing that Theorem 3.5 doesn’t hold in relative dimension
> 1.

Proof of Theorem 3.4
Next, we prove Theorem 3.4. We start by the following.

Proposition 3.7. Let G be a finite and flat commutative R- -group scheme whose generic
fibre is a product of group schemes of the form Gg = G1 XSpeck Gz XSpeck * * * XSpeck G,,, where
the {G; Y, are finite and flat commutative K-group schemes. Then G is a product of finite
and flat commutative R-group schemes {G;}_,, i.e., G = G| Xspeck G2 Xspecr * ** XSpeck Gns
with (Gy)x = G;

=1’

Proof. First, we treat the case n = 2. Thus, we have G = 51 XSpeck 52 and need to show
G = G Xspecrk G2 where (G)k = 51', fori = 1,2. Let G; be the schematic closure of 5,~ in
G, fori = 1,2 (cf. [5], 2.1). Therefore, G| and G, are closed subgroup schemes of G which
are finite and flat over SpecR (cf. loc. cit.). We have a short exact sequence

1-G,—-G->G/G| — 1,

and likewise
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1->G,»>G—->G/G, — 1,

of finite and flat commutative R-group schemes (cf. loc. cit.). It remains for the proof
to show that the composite homomorphism G, - G — G/G; is an isomorphism. The
morphism G — G/G; is finite. The morphism G, — G is a closed immersion, hence finite.
The composite G, — G/G, of the above morphisms is then finite. We will show it is an
isomorphism. The morphism G, — G/G; is a closed immersion since its kernel is trivial.
Indeed, on the generic fibre the kernel is trivial: (G} N Gy)x = a N a; = {1}. The map
G, — G/G; is then an isomorphism as both group schemes have the same rank. Similarly,
the morphism G; — G/G is an isomorphism. Therefore, G = G| Xspecr G2 as required.
Now an easy devissage argument along the above lines of thought, using induction on n,
reduces immediately to the above case n = 2. m|

Proof of Theorem 3.4. (1 = 2) Assume that f : X — X is a torsor under a finite and flat
R-group scheme G. In particular, G = G and G is necessarily commutative. We will show
that X = X1 Xx X2 Xx - -+ Xx X,,, 1.€., show that X; Xy X5 Xx - -+ Xx X,, is normal (this will
imply that G = G| Xspecr * ** Xspeck G necessarily, as G| Xspecr * * *+ Xspeck G 18 the group
scheme of the torsor f : X1 Xx Xo Xx -+ Xy X, = X). One reduces easily by a devissage
argument to the case n = 2 which we will treat below.

Assume n = 2. We have the following commutative diagrams of torsors

/
\

&

Xz

\/

and

/N

where X — X; is a torsor under a finite and flat R-group scheme G;., for j # i. Moreover,
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—~ \schematic closure ~ )schematic closure

G| = (Gl) ,and G, = (G2 (where the schematic closure is taken
inside G) holds necessarily, so that G = G| Xspeck G5 (cf. Proposition 3.7). Note that
X /G’ = X must hold as the quotient X /G is normal: since (55 /G )k is reduced (as fk is
reduced and X dominates X/G'), and (X/G}) . = X, x is normal (cf. [4], 4.1.18). Similarly

X /G% = X holds. We want to show that X=X | Xy X, and we claim that this reduces
to showing that the natural morphism G — G Xspecr G2 (cf. the map ¢ below) is an
isomorphism. Indeed, if one has two torsors, in this case X — Xand X 1 Xx X» — X above
the same X, under isomorphic group schemes, which are isomorphic on the generic fibres,
and if we have a morphism X — X Xx X» which is compatible with the torsor structure
and the given identification of group schemes (cf. above diagrams and the definition of ¢
below), then this morphism must be an isomorphism. (This is a consequence of Lemma 4.1.2
in [11]. In [11] char(K) = 0 is assumed, the same proof however applies if char(K) = p.) We
have two short exact sequences of finite and flat commutative R-group schemes (cf. above
diagrams and discussion for the equalities G; = G/G, and G, = G/G))

1-G,—G—G =G/G),— 1,
and
1-G, -G—-G,=G/G] = 1.

The morphisms G — G1, and G — G, are finite. Consider the following exact sequence

1 — Ker(¢) —» G — G| Xspeck G2,

where ¢ : G — G| Xgpecg G2 1s the morphism induced by the above morphisms. We want
to show that the map ¢ : G — G| Xgspecr G2 is an isomorphism. We have Ker(¢) = G| N G,
by construction. However, G| N G} = {1} since G = G| Xspecr G, by Proposition 3.7, and
therefore Ker(¢) = {1} which means ¢ : G — G| Xgpecr G2 is a closed immersion. Finally, G
and G| Xspecr G2 have the same rank as group schemes which implies ¢ is an isomorphism,
as required.

(2 = 3) Clear.

(3 = 1) By assumption (X| Xy X» Xx ... Xx X;,); is reduced. Moreover, we have
(X1 Xx X2 Xx ... Xx X)) = fK is normal. Hence X; Xx X, Xx ... Xx X,, is normal (cf. [4],
4.1.18), and X = X;| Xx X2 Xy ... Xx X,. We know that f : X; Xx X» Xx ... Xy X, = X is a
torsor under the group scheme G| Xspeck G2 XspecR ---- Xspeck Gn» S0 f : X — X is a torsor
under the same group scheme. O

Proof of Theorem 3.5

Next, we prove Theorem 3.5.

Proof. (1 = 4) Suppose that f : X — X is a torsor under a finite and flat R-group scheme
G; in which case X = X1 Xx Xo Xx...Xx X, and G = G Xspecr * * * Xspeck G (cf. Theorem 3.4).
We will show that at least n — 1 of the finite flat R-group schemes G; (acting on f; : X; — X)
are étale, for i € {1,--- ,n}. We argue by induction on the rank of G.

Base case: The base case pertains to rank(G) = p? and n = 2. Thus, rank(G;) =
rank(G;) = p. We assume X = X| Xx X» and prove that at least one of the two group
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schemes G or G, is étale. We assume that X is a scheme, and not a formal scheme, in
which case the argument of proof is the same.

Let x € X be a closed point of X and & the boundary of the formal germ of X at x, so X
is isomorphic to Spec (R[[T]]{T‘1 }) (cf. Background). We have a natural morphism X — X
of schemes. Write X} := X Xx X1, X> := X Xy X5, and X=X Xx X. Thus, by base change,
X > X (resp. X1 — X, and X, — X) is a torsor under the group scheme G (resp. under
G1, and G,) and we have the following commutative diagram:

Note that X is normal as (2?);( is reduced (recall ()Y)k is reduced) and (2?)1( is normal (cf. [4],
4.1.18), hence X = X Xy X5 holds (cf. Theorem 3.4 and Remarks 3.6, 1).

Assume now that G; and G, are both non-étale R-group schemes. Then we prove that
X — X can not have the structure of a torsor under a finite and flat R-group scheme which
would then be a contradiction. More precisely, we will prove that X} Xy X, can not be
normal in this case, hence the above conclusion (cf. Theorem 3.4).

We will assume for simplicity that char(K) = 0 and K contains a primitive p-th root of
1. A similar argument as the one used below holds in equal characteristic p > 0. First, X
is connected as Xk is unibranch (the finite morphism Xk — X is radicial). As the group
schemes G| and G, are non étale, their special fibres (G;); and (G,); are radicial isomor-
phic to either u, or a,. We treat the case (G)i is isomorphic to u, := u,x and (G2)i is
isomorphic to @, := a@,y; the remaining cases are treated similarly. Recall & is isomorphic
to Spec (R[[T]]{T‘1 }). For a suitable choice of the parameter 7T the torsor X, — X is given
by an equation Zé’ =1+ 7"PT™ where n is a positive integer (satisfying a certain condition)
and m € Z (cf. Background. Also see Proposition 2.3.1 in [9] for the equal characteristic
case), and the torsor X; — X is given by an equation Zf = f(T) where f(T) € R[[T1{T™"}
is a unit whose reduction f(7') modulo 7 is not a p-power (cf. loc. cit.). We claim that
X = X Xy &> can not hold. Indeed, by base change X} Xy X> — &> is a G-torsor which is
generically given by an equation Z” = f(T'), where f(T) is viewed as a function on &,. But
in &, the function 7 becomes a p-power modulo 7 as one easily deduces from the equation
Zé’ = 1+a"PT™ defining the torsor X, — X. Indeed, after a change of variables we can write
the above equation as (1 +7"Z))? = 1 + #"PT™ which reduces, after an easy computation, to

an equation lep = 1" hence ((z’z)i)p = t. In particular, the reduction m modulo 7 of f(T),
viewed as a function on (&»);, is a p-power. This means that (X} Xy &,); is not reduced and
X — X, cannotbea G ~ Hp r-torsor (cf. the proof of Proposition 2.3 in [6]), and a fortiori
)? + X Xy Xp.

Inductive hypothesis: Given G, we assume that the (1 = 4) part in Theorem 3.5 holds
true for smaller values of n > 2. Then Yl = X1 Xy X» Xx ... Xy X,—1 1s normal (since
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its special fibre is reduced (as it is dominated by X whose special fibre is reduced) and its
generic fibre is normal (cf. [4], 4.1.18)), hence at least n — 2 of the corresponding G;’s, for
i €f{l,---,n— 1}, are étale by the induction hypothesis. We will assume, without loss of
generality, that G; is étale for 1 <i<n-2.

Inductive step: We have the following picture for our inductive step (the case for n):

. Gn—l
étale

X

We argue by contradiction. Suppose that neither G,_; nor G, is étale. This would mean
that X2 — X, where X2 is the normalisation of X in (X,,—1)x Xx, (X,)k, does not have the
structure of a torsor (as this would contradict the induction hypothesis). This implies that
X — X does not have the structure of a torsor since it factorises X — X2 — X, for otherwise
X, > X being a quotient of X — X would be a torsor. Of course, X — X is a torsor to start
with by assumption and so this is a contradiction. Therefore, at least one of G,_; and G, is
étale, as required.

(1 & 4) Suppose that at least n — 1 of the G; are étale, say: G1,G,,--- ,G,-; are étale.
Write X1 = X1 Xx Xp Xy ... Xx X,—1. Then Xl — X is a torsor under the finite érale R-group
scheme G’l =Gy XspecRGz XSpecR " * XSpecRGn 1. Moreover, X; Xx Xo Xx...Xx X, X1 Xx X,
and X1 Xx X5 Xy...Xx X, — X, is an €tale torsor under the group scheme G/ (by base change).
In particular (X1 Xx X5 Xx .. - Xx X, is reduced as (X,,); is reduced. Indeed, X dominates
X, and Xk is reduced. Hence X = X| Xx X3 Xx ... Xx X, (cf. Theorem 3.4) and X > Xisa
torsor under the group scheme G := G| Xspeck G2 Xspecr * * * Xspeck Gn- m]

3.8. Counterexample to Theorem 3.5 in higher dimensions. Theorem 3.5 is not valid
(under similar assumptions) for (formal) smooth R-schemes of relative dimension > 2. Here
is a counterexample. Assume char(K) = 0 and K contains a primitive p-th root of 1. Let
X = Spf(A) where A := R < Ty, T, > is the free R-Tate algebra in the two variables T'; and
T>. Let G| = Gy = u, = pp R, neither being an étale R-group scheme. For i = 1,2, consider
the G;-torsor X; — X which is generically defined by the equation
Zr =T;.

2

We have the following commutative diagram:
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X1 XX,
Mp Hp
(Z3)P =T (Z))P=T,
Xy Xa
ZP=T, =T,
Hp Hp

X = Spf(R <T, T, >)
The torsor X; Xx X, — X is a G| = u,-torsor defined generically by the equation
@) =T

where T is viewed as a function on X,. This function is not a p-power modulo 7 as follows
easily from the fact that the torsor X, — X is defined generically by the equation Zg =T,.
In particular, X; Xx X, — X is a non trivial y,-torsor, and (X; Xy Xo)r — (Xp) is a
non trivial p,x-torsor. Hence (X; Xy X»)i is necessarily reduced (as (X»); is reduced since
(X2)r — (X1)r is a non trivial u, x-torsor). Thus, X; Xx X5 is normal (cf. Theorem 3.4) and
X; Xx Xo = f, where X is the normalisation of X in (Xq Xx X»)k, which contradicts the
statement of Theorem 3.5 in this case.
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