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Abstract
Let b ≥ 2 be an integer. Not much is known on the representation in base b of prime numbers

or of numbers whose prime factors belong to a given, finite set. Among other results, we
establish that any sufficiently large integer which is not a multiple of b and has only small (in a
suitable sense) prime factors has at least four nonzero digits in its representation in base b.

1. Introduction and results

1. Introduction and results
We still do not know whether there are infinitely many prime numbers of the form 2n + 1

(that is, with only two nonzero binary digits) or of the form 11 . . . 11 (that is, with only the
digit 1 in their decimal representation). Both questions are notorious, very difficult open
problems, which at present seem to be completely out of reach. However, there have been
recently several spectacular advances on the digital representation of prime numbers. In
2010, Mauduit and Rivat [18] established that the sum of digits of primes is well-distributed.
Subsequently, Bourgain [8] showed the existence of prime numbers in the sparse set defined
by prescribing a positive proportion of the binary digits. This year, Maynard [19] proved
that, if d is any digit in {0, 1, . . . , 9}, then there exist infinitely many prime numbers which
do not have the digit d in their decimal representation. The proofs of all these results depend
largely on Fourier analysis techniques. On a neighboring topic, Shparlinski [23, 24] and
Bourgain [7] obtained lower bounds on the number of prime divisors of integers whose
representation in a given integer base contains a fixed number of nonzero digits; see also
Elsholtz [14]. In these four papers the proofs use bounds for exponential sums.

Lastly, we mention a result of Stewart [25], who established that, if a and b are mul-
tiplicatively independent positive integers, then for every sufficiently large integer n, the
representation in base b of the integer an has more than (log n)/(2 log log n) nonzero digits.
The proof rests on a subtle application of Baker’s theory of linear forms in the logarithms of
algebraic numbers.

In the present note we study a related problem, namely the digital representation of in-
tegers all of whose prime factors belong to a given, finite set of prime numbers. We apply
techniques from Diophantine approximation to discuss the following general (and left inten-
tionally vague) question:
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Do there exist arbitrarily large integers which have only small prime factors and, at the
same time, few nonzero digits in their representation in some integer base?

The expected answer is no and our results are a modest step in this direction.
Let n be a positive integer n and P[n] denote its greatest prime factor, with the convention

that P[1] = 1. Let S = {q1, . . . , qs} be a finite, non-empty set of distinct prime numbers.
Write n = qr1

1 . . . q
rs
s M, where r1, . . . , rs are non-negative integers and M is an integer rela-

tively prime to q1 . . . qs. We define the S -part [n]S of n by

[n]S := qr1
1 . . . q

rs
s .

The S -parts of linear recurrence sequences and of integer polynomials and decomposable
forms evaluated at integer points have been studied in [15, 9, 10].

In the sequel, for a given integer k ≥ 2, we denote by (u(k)
j ) j≥1 the sequence, arranged

in increasing order, of all positive integers which are not divisible by b and have at most k
nonzero digits in their b-ary representation. Said differently, (u(k)

j ) j≥1 is the ordered sequence
composed of the integers 1, 2, . . . , b − 1 and those of the form

dkbnk + . . . + d2bn2 + d1, nk > . . . > n2 > 0, d1, . . . , dk ∈ {0, 1, . . . , b − 1}, d1dk � 0.

We stress that, for the questions investigated in the present note, it is natural to restrict our
attention to integers not divisible by b. Obviously, the sequence (u(k)

j ) j≥1 depends on b, but,
for shortening the notation, we have decided not to mention this dependence.

Our first result shows that, for any base b, there are only finitely many integers not di-
visible by b which have a given number of nonzero b-ary digits and whose prime divisors
belong to a given finite set.

Theorem 1.1. Let b ≥ 2, k ≥ 2 be integers and ε a positive real number. Let S be a finite,
non-empty set of prime numbers. Then, we have

[u(k)
j ]S < (u(k)

j )ε,

for every sufficiently large integer j. In particular, the greatest prime factor of u(k)
j tends to

infinity as j tends to infinity.

The proof of Theorem 1.1 rests on the Schmidt Subspace Theorem and does not allow
us to estimate the speed with which P[u(k)

j ] tends to infinity with j. It turns out that, by
means of the theory of linear forms in logarithms, we are able to derive such an estimate,
but (apparently) only for k ≤ 3.

The case k = 2 has already been considered. It reduces to the study of a finite union of
binary linear recurrence sequences of the form

(d2bn + d11n)n≥1, where d1, d2 are digits in {1, . . . , b − 1}.
We gather in the next theorem a recent result of Bugeaud and Evertse [9] and an imme-
diate consequence of a lower bound for the greatest prime factor of terms of binary linear
recurrence sequences, established by Stewart [27].

Theorem BES. Let b ≥ 2 be an integer. Let S be a finite, non-empty set of prime numbers.
Then, there exist an effectively computable positive number c1, depending only on b, and an
effectively computable positive number c2, depending only on b and S , such that
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[u(2)
j ]S ≤ (u(2)

j )1−c1 , for every j ≥ c2.

Furthermore, there exists an effectively computable positive number c3, depending only on
b and S , such that

P[u(2)
j ] > (log u(2)

j )1/2 exp
( log log u(2)

j

105 log log log u(2)
j

)
, for j > c3.

We point out that the constant c1 in Theorem BES does not depend on S .
The main new result of the present note is an estimate of the speed with which P[u(3)

j ]
tends to infinity with j.

Theorem 1.2. Let b ≥ 2 be an integer. Let S be a finite, non-empty set of prime numbers.
Then, there exist effectively computable positive numbers c4 and c5, depending only on b
and S , such that

[u(3)
j ]S ≤ (u(3)

j )1−c4 , for every j ≥ c5.

Furthermore, for every positive real number ε, there exists an effectively computable positive
number c6, depending only on b and ε, such that

P[u(3)
j ] > (1 − ε) log log u(3)

j

log log log u(3)
j

log log log log u(3)
j

, for j > c6.(1.1)

The proof of Theorem 1.2 yields a very small admissible value for c4.
We point out the following reformulation of the second assertion of Theorem 1.2. Recall

that a positive integer is called B-smooth if all its prime factors are less than or equal to B.

Corollary 1.3. Let b ≥ 2 be an integer. Let ε be a positive integer. There exists an
effectively computable positive integer n0, depending only on b and ε, such that any integer
n > n0 which is not divisible by b and is

(1 − ε)(log log n)
log log log n

log log log log n
-smooth

has at least four nonzero digits in its b-ary representation.

It is very likely that any large integer cannot be ‘very’ smooth and, simultaneously, have
only few nonzero digits in its b-ary representation. Corollary 1.3 provides a first result in
this direction.

The proofs of our theorems are obtained by direct applications of classical deep tools
from Diophantine approximation, namely the Schmidt Subspace Theorem and the theory
of linear forms in the logarithms of algebraic numbers. The latter theory has already been
applied to get lower bounds for the greatest prime factor of linear recurrence sequences
(under some assumptions, see [26]) and for the greatest prime factor of integer polynomials
and decomposable forms evaluated at integer points (see e.g. [16]). The bounds obtained
in [26, 16] have exactly the same order of magnitude as our bound in Theorem 1.2, that is,
they involve a double logarithm times a triple logarithm divided by a quadruple logarithm.
A brief explanation is given at the end of Section 2.

An interesting feature of the proof of Theorem 1.2 is that it combines estimates for
Archimedean and non-Archimedean linear forms in logarithms. Similar arguments appeared
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when searching for perfect powers with few digits; see [3, 4].

2. Auxiliary results from Diophantine approximation

2. Auxiliary results from Diophantine approximation
The Schmidt Subspace Theorem [20, 21, 22] is a powerful multidimensional extension of

the Roth Theorem. We quote below a version of it which is suitable for our purpose, but the
reader should keep in mind that there are more general formulations.

Theorem 2.1. Let m ≥ 2 be an integer. Let S ′ be a finite set of prime numbers. Let
L1,∞, . . . , Lm,∞ be m linearly independent linear forms in m variables with integer coeffi-
cients. For any prime � in S ′, let L1,�, . . . , Lm,� be m linearly independent linear forms in
m variables with integer coefficients. Let ε be a positive real number. Then, there are an
integer T and proper subspaces S 1, . . . , S T of Qm such that all the solutions x = (x1, . . . , xm)
in Zm to the inequality

∏

�∈S ′

m∏

i=1

|Li,�(x)|� ·
m∏

i=1

|Li,∞(x)| ≤ (max{1, |x1|, . . . , |xm|})−ε

are contained in the union S 1 ∪ . . . ∪ S T .

We quote an immediate corollary of a theorem of Matveev [17].

Theorem 2.2. Let n ≥ 2 be an integer. Let x1/y1, . . . , xn/yn be positive rational num-
bers. Let b1, . . . , bn be integers such that (x1/y1)b1 . . . (xn/yn)bn � 1. Let A1, . . . , An be real
numbers with

Ai ≥ max{|xi|, |yi|, e}, 1 ≤ i ≤ n.

Set

B = max
{
1,max

{
|b j| log Aj

log An
: 1 ≤ j ≤ n

}}
.

Then, we have

log
∣∣∣∣
( x1

y1

)b1
. . .
( xn

yn

)bn − 1
∣∣∣∣ > −8 × 30n+3 n9/2 log(eB) log A1 . . . log An.

The next statement was proved by Yu [29]. For a prime number p and a nonzero rational
number z we denote by vp(z) the exponent of p in the decomposition of z in product of prime
factors.

Theorem 2.3. Let p be a prime number and n ≥ 2 an integer. Let x1/y1, . . . , xn/yn be
nonzero rational numbers and A1, . . . , An real numbers with

Ai ≥ max{|xi|, |yi|, e}, 1 ≤ i ≤ n.

Let b1, . . . , bn be nonzero integers such that (x1/y1)b1 . . . (xn/yn)bn � 1. Let B and Bn be real
numbers such that

B ≥ max{|b1|, . . . , |bn|, 3} and B ≥ Bn ≥ |bn|.
Assume that

vp(bn) ≤ vp(b j), j = 1, . . . , n.
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Let δ be a real number with 0 < δ ≤ 1/2. Then, we have

vp
(( x1

y1

)b1
. . .
( xn

yn

)bn − 1
)
< (16e)2(n+1)n3/2 (log(2n))2 p

(log p)2

max
{
(log A1) · · · (log An)(log T ),

δB
Bn

}
,

where

T = 2Bnδ
−1e(n+1)(6n+5) pn+1(log A1) · · · (log An−1).

There are two key ingredients in Theorems 2.2 and 2.3 which explain the quality of the
estimates in Theorem 1.2. A first one is the dependence on n, which is only exponential: this
allows us to get in (1.1) the extra factor triple logarithm over quadruple logarithm. The use
of earlier estimates for linear forms in logarithms would give only the factor involving the
double logarithm in (1.1). A second one is the factor log An occurring in the denominator
in the definition of B in the statement of Theorem 2.2. The formulation of Theorem 2.3 is
slightly different, but, in our special case, it yields a similar refinement. This allows us to
save a (small) power of u(3)

j when estimating its S -part. Without this refinement, the saving

would be much smaller, namely less than any power of u(3)
j .

3. Proofs

3. Proofs
Proof of Theorem 1.1. Let k ≥ 2 be an integer and ε a positive real number. Let  1 be

the set of k-tuples (nk, . . . , n2, n1) such that nk > . . . > n2 > n1 = 0 and

[dkbnk + · · · + d2bn2 + d1]S > (dkbnk + · · · + d2bn2 + d1)ε,

for some integers d1, . . . , dk in {0, . . . , b − 1} such that d1dk � 0.
Assume that 1 is infinite. Then, there exist an integer h with 2 ≤ h ≤ k, positive integers

D1, . . . ,Dh, an infinite set 2 of h-tuples (nh,i, . . . , n1,i) such that

nh,i > . . . > n2,i > n1,i = 0,

[Dhbnh,i + · · · + D2bn2,i + D1]S > (Dhbnh,i + · · · + D2bn2,i + D1)ε, i ≥ 1,

and

lim
i→+∞ (n�,i − n�−1,i) = +∞, � = 2, . . . , h.(3.1)

We are in position to apply Theorem 2.1.
Let S 1 denote the set of prime divisors of b. By (3.1), for any prime number p in S 1, we

have

vp(Dhbnh,i + · · · + D2bn2,i + D1) = vp(D1),

if i is sufficiently large. Consequently, we may assume that S and S 1 are disjoint. Consider
the linear forms in X = (X1, . . . , Xh) given by

Lj,∞(X) := Xj, j = 1, . . . , h,

and, for every prime number p in S 1,
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Lj,p(X) := Xj, j = 1, . . . , h,

and, for every prime number p in S ,

Lj,p(X) := Xj, j = 1, . . . , h − 1, Lh,p(X) := DhXh + . . . + D1X1.

By Theorem 2.1 applied with S ′ = S ∪ S 1, the set of tuples b = (bnh , . . . , bn2 , bn1 ) such that
nh > . . . > n1 ≥ 0 and

h∏

j=1

|Lj,∞(b)| ×
∏

p∈S∪S 1

h∏

j=1

|Lj,p(b)|p < b−εnh(3.2)

is contained in a finite union of proper subspaces of Zh. Since the left hand side of (3.2)
is equal to [Dhbnh + · · · + D1bn1 ]−1

S , this shows that the set of tuples (bnh , . . . , bn1 ), where
(nh, . . . , n1) lies in 2, is contained in a finite union of proper subspaces of Zh.

Thus, there exist integers t1, . . . , th, not all zero, and an infinite set 3, contained in 2,
of integer tuples (nh, . . . , n1) such that nh > . . . > n1 ≥ 0 and

thbnh + · · · + t1bn1 = 0.

We then deduce from (3.1) that t1 = . . . = th = 0, a contradiction. Consequently, the set 1

must be finite. This establishes the theorem. �

Proof of Theorem 1.2. Below, the constants c1, c2, . . . are effectively computable and
depend at most on b and the constants C1,C2, . . . are absolute and effectively computable.

Let q1, . . . , qs be distinct prime numbers written in increasing order. Let j ≥ b4 be an
integer and write

u(3)
j = d3bm + d2bn + d1, where d1, d2, d3 ∈ {0, 1, . . . , b − 1}, d1d3 � 0, m > n > 0.

There exist non-negative integers r1, . . . , rs and a positive integer M coprime with q1 . . . qs

such that

u(3)
j = qr1

1 · · · qrs
s M.

Assume first that m ≥ 2n. Since

Λa := |qr1
1 · · · qrs

s b−m(Md−1
3 ) − 1| ≤ b1+n−m ≤ b−(m−2)/2,

we get the upper bound

logΛa ≤ −
(m

2
− 1
)

log b.(3.3)

For the lower bound, by setting

Q := (log q1) · · · (log qs) and A := max{M, d3, 2},
and by using that r j log q j ≤ (m + 1) log b for j = 1, . . . , s, Theorem 2.2 implies that

logΛa ≥ −c1Cs
1 Q (log A) max

{
log

m
log A

, 1
}
.(3.4)

If m ≥ 3 log A, we combine (3.3) and (3.4) to get
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m
log A

≤ c2 Cs
1 Q log

m
log A

.

Since X ≤ Y log X implies X ≤ 2Y log Y for all real numbers X, Y ≥ 3, we deduce that the
estimate

m ≤ c3 Cs
2 Q (log Q) (log A)(3.5)

always holds, whether or not m exceeeds 3 log A.
Assume now that m ≤ 2n. Let p be the smallest prime divisor of b. Set

Λu := qr1
1 · · · qrs

s
M
d1
− 1 =

bn

d1
(d2 + d3bm−n)

and

A = max{M, d1, 2}, B = max{r1, . . . , rs, 3}.
Observe that

vp(Λu) ≥ n − log b
log p

≥ m
2
− log b

log p
.(3.6)

It follows from Theorem 2.3 applied with

δ =
Q(log A)

B
that

B < 2Q log A, if δ > 1/2,(3.7)

and, otherwise,

vp(Λu) < c4Cs
3Q(log A) max

{
log
( B
log A

)
, 1
}
.(3.8)

Since 2B ≤ u(3)
j < bm+1, we get B ≤ c5m and deduce from (3.6) and (3.8) that

m ≤ c6 Cs
4 Q (log Q) (log A).(3.9)

If (3.7) holds, then, setting

Q∗ := (log q1) + · · · + (log qs),

it follows from u(3)
j ≥ bm that

m log b ≤ BQ∗ + log M ≤ c7QQ∗(log A).(3.10)

Observe that A ≤ max{M, b}. It then follows from (3.5), (3.9), and (3.10) that if

m > c8 Cs
5 Q Q∗ (log b),

then A = M and, using that log u(3)
j < (m + 1) log b, we conclude that

M ≥ (u(3)
j )(c9Cs

5 Q Q∗)−1
,

thus
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[u(3)
j ]S =

u(3)
j

M
≤ (u(3)

j )1−(c9Cs
5 Q Q∗)−1

.

In the particular case where M = 1 and q1, . . . , qs are the first s prime numbers p1, . . . , ps,
written in increasing order, the above proof shows that

m ≤ c10 Cs
6
( s∏

k=1

log pk
)

(log ps).(3.11)

Let ε be a positive real number. We deduce from (3.11), the Prime Number Theorem, and
the inequality log u(3)

j < (m + 1) log b that

log log u(3)
j ≤ c11 +C7s +

s∑

k=1

log log pk ≤ (1 + ε)ps
log log ps

log ps
,

if j is sufficiently large in terms of ε. This establishes (1.1) and completes the proof of
Theorem 1.2. �

4. Additional remarks

4. Additional remarks
In this section, we present additional results, discuss related problems, and make some

suggestions for further research.
Arguing as Stewart did in [26], we can apply the arithmetic-geometric mean inequality

in the course of the proof of Theorem 1.2 to derive a lower bound for Q[u(3)
j ], where Q[n]

denotes the greatest square-free divisor of a positive integer n.

Theorem 4.1. Let b ≥ 2 be an integer. There exist effectively computable positive num-
bers c1, c2, depending only on b, such that

Q[u(3)
j ] > exp

(
c1 log log u(3)

j

log log log u(3)
j

log log log log u(3)
j

)
, for j > c2.

Outline of the proof. We keep the notation of the proof of Theorem 1.2 and assume that
m is large. We consider the case where M = 1 and r1, . . . , rs are positive, thus Q[u(3)

j ] =

q1 · · · qs and Q∗ = log Q[u(3)
j ]. We conclude from (3.5), (3.9), and (3.10) that there exist an

absolute, effectively computable real number C1 and an effectively computable real number
c3, depending at most on b, such that

m < c3Q(Cs
1 log Q + Q∗).

The arithmetic-geometric mean inequality gives us that Q ≤ (Q∗/s)s. Then, as in [26], we
distinguish the cases s < (log m)/(log log log m) and s ≥ (log m)/(log log log m) in order to
bound Q∗ from below in terms of m. We omit the details. The theorem then follows since
bm ≤ u(3)

j < bm+1. �

It is not difficult to make Theorem 1.2 completely explicit. Even in the special case where
the cardinality of the set S is small, the bounds obtained are rather large, since estimates for
linear forms in three or more logarithms are needed. Thus, it is presumably not straightfor-
ward to solve completely an equation like
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2a + 2b + 1 = 3x11y, in non-negative integers a, b, x, y with a > b > 0.

Sometimes, however, congruences are very helpful: as observed by Mike Bennett, by argu-
ing modulo 8, we deduce that if 2a + 2b + 1 = 3x5y holds for non-negative integers a, b, x, y
with a > b > 0, then x and y must be even and we can then apply Szalay’s result [28] on
squares with few binary digits to solve completely that equation.

Presumably, other techniques, based on the hypergeometric method, could yield effective
improvements of Theorem 1.2 in some special cases.

Problem 4.2. Take S = {3, 5}. Prove that there exists an effectively computable integer
m0 such that, for any integers m, n with m > m0 and m > n > 0, we have

[2m + 2n + 1]S ≤ 23m/4.(4.1)

No importance should be attached to the value 3/4 in (4.1). Similar questions have been
successfully addressed in [5, 6].

Perfect powers with few nonzero digits in some given integer base have been studied
in [11, 13, 1, 3, 4, 2]; see also the references given therein. We briefly discuss a related
problem. Let a, b be integers such that a > b > 1. Perfect powers in the bi-infinite sequence
(am+bn+1)m,n≥1 have been considered by Corvaja and Zannier [12] and also in [3, 4]. All the
general results obtained so far have been established under the assumption that a and b are
not coprime. To remove this coprimeness assumption seems to be a very difficult problem.

We note that the methods of the proof of Theorem 1.2 allow us to establish the following
result.

Theorem 4.3. Let a, b be distinct integers with gcd(a, b) ≥ 2. Let v = (v j) j≥1 denote the
increasing sequence composed of all the integers of the form am + bn + 1, with m, n ≥ 1.
Then, for every positive ε, we have

P[v j] > (1 − ε) log log v j
log log log v j

log log log log v j
,

when j exceeds some effectively computable constant depending only on a, b, and ε.

We point out the following problem, which is probably rather difficult.

Problem 4.4. Give an effective lower bound for the greatest prime factor of 2m + 3n + 1
in terms of max{m, n}.

Acknowledgements. The author is very grateful to the referee for a detailed report.
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