
Title A REMARK ON CONDITIONS THAT A DIFFUSION IN THE
NATURAL SCALE IS A MARTINGALE

Author(s) Shimizu, Yuuki; Nakano, Fumihiko

Citation Osaka Journal of Mathematics. 2018, 55(2), p.
385-391

Version Type VoR

URL https://doi.org/10.18910/68358

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Shimizu, Y. and Nakano, F.
Osaka J. Math.
55 (2018), 385–391

A REMARK ON CONDITIONS THAT A DIFFUSION IN THE
NATURAL SCALE IS A MARTINGALE

Yuuki SHIMIZU and Fumihiko NAKANO

(Received April 26, 2016, revised December 19, 2016)

Abstract
We consider a diffusion processes {Xt} on an interval in the natural scale. Some results are

known under which {Xt} is a martingale, and we give simple and analytic proofs for them.

1. Introduction

1. Introduction
Let −∞ ≤ l− < l+ ≤ ∞ and let m be a Borel measure with supp m = (l−, l+). We denote

by
{
{Xt}t≥0, {Px}x∈(l−,l+)

}
the minimal diffusion process on (l−, l+) with the speed measure m

and the scale function s(x) = x. It is well known that a local martingale {Xt} is a martingale
if and only if {XT : T is a stopping time with T ≤ t} is uniformly integrable for any t ≥ 0.
Here our aim is to have more explicit condition for the one-dimensional diffusions in the
natural scale. If |l±| < ∞, {Xt} is bounded so that it is a martingale. If l− = −∞, l+ < ∞, this
can be reduced to the case of l− < ∞, l+ = ∞ by replacing Xt by −Xt. Hence it suffices to
consider the following two cases.

Case I : −∞ < l−, l+ = +∞, Case II : l− = −∞, l+ = +∞.

Let P(l−, l+) be the set of Borel measures on (l−, l+), and for μ ∈ P(l−, l+) let Pμ(·) :=∫
(l−,l+) Px(·)μ(dx). According to Lemma 4.1 ([1], Lemma 2), {Xτ

t } is a Pμ-martingale for

some μ ∈ P(l−, l+) with
∫

(l−,l+) |x|μ(dx) < ∞ if and only if {Xτ
t } is Px-martingale for any

x ∈ (l−, l+). We further set

τa := inf
{
t ≥ 0

∣∣∣Xt = a
}
, τ± := lim

a→l±
τa, τ := τ+ ∧ τ−

Xτ
t := Xt∧τ.

Kotani [1] showed the following theorem.

Theorem 1.1 ([1]). {Xτ
t } is a Px-martingale for any x ∈ (l−, l+) if and only if

Case I : ∫
[r,l+)

xm(dx) = ∞, r ∈ (l−,∞)

2010 Mathematics Subject Classification. Primary 60J60; Secondary 60G44.



386 Y. Shimizu and F. Nakano

Case II : ∫
[r,l+)

xm(dx) = ∞ and
∫

(l−,r]
|x|m(dx) = ∞, r ∈ (−∞,∞).

By Feller’s criterion, Px(τ� = ∞) = 1 if |l�| = ∞, � = ±∞. Thus Theorem 1.1 implies that
{Xτ

t } is a martingale if and only if the boundaries at infinity are natural. Hulley, Platen [2]
derived another condition. Let

 f :=
d2

dmdx
f

be the generator of {Xt} and for λ > 0 let f− (resp. f+) be the positive increasing (resp.
positive decreasing) solution to the equation  f = λ f , which are unique up to constants
unless the boundary is regular.

Theorem 1.2 ([2]). {Xτ
t } is a Px-martingale for any x ∈ (l−, l+) if and only if

Case I :

lim
z→∞ f ′−(z) = ∞

Case II :

lim
z→∞ f ′−(z) = ∞ and lim

z→−∞ f ′+(z) = −∞.
Gushchin, Urusov, and Zervos [3] derived a condition that {Xτ

t } is a submartingale or a
supermartingale.

Theorem 1.3 ([3]). {Xτ
t } is a Px-submartingale if and only if

∫ ∞
r xm(dx) = ∞, r ∈ (l−, l+).

By [2] Proposition 3.16, 3.17, this condition is equivalent to limt→∞ f ′−(t) = ∞. Together
with Theorem 1.3 we thus have

Theorem 1.4. {Xτ
t } is a Px-submartingale if and only if limt→∞ f ′−(t) = ∞.

Moreover in [3], they further derived a condition in Case I such that {Xτ
t } is a strict Px

supermartingale, that is, {Xτ
t } is a Px-supermartingale but is not a Px-martingale.

Theorem 1.5 ([3]). Let −∞ < l−, l+ = ∞. Then {Xτ−
t } is a strict Px-supermartingale if

and only if

lim
t→∞ Ex[Xt∧τ−] = l−

for any x ∈ (l−, l+).

We believe that Theorem 1.5 is also true for l− = −∞. The goal of this paper is :
(1) To give a simple analytic proof of Theorem 1.4 without using the results in [2]. We note
that the proofs of Proposition 3.16, 3.17 in [2] is more or less probabilistic using Tanaka’s
formula.
(2) To give a simple analytic proof of Theorem 1.5 ; the original proof of that in [3] is done
by embedding {Xt} into the geometric Brownian motion on the torus.

The rest of this paper is organized as follows. In Section 2 (resp. Section 3), we give a
proof of Theorem 1.4 (resp. Theorem 1.5). In Appendix, we prepare some tools for these
proofs.
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2. A proof of Theorem 1.4

2. A proof of Theorem 1.4
In Case I, the statement follows from Theorem 1.2, for {Xτ−

t } is always a Px-
supermartingale being bounded from below. Henceforth we consider Case II.

Suppose {Xt} is a Px-submartingale and let z < x. Then {Xτz
t } is bounded from blow so that

it is a Px-martingale. For λ > 0, let f z
− (resp. f z

+) be the positive increasing (resp. positive
decreasing) solution to the equation  f = λ f such that f z

−(z) = 0. Then we have

f z
−(x) = f−(x) − f−(z)

f+(z)
f+(x), f z

+(x) = f+(x).

Since f ′+ is increasing, we have

f ′−(x) = f z
−
′(x) +

f−(z)
f+(z)

f ′+(x) ≥ f z
−
′(x) +

f−(z)
f+(z)

f ′+(z), x ∈ (z,∞).

Applying Theorem 1.2 to {Xτz
t } yields limt→∞ f z

−
′(t) = ∞ and thus limt→∞ f ′−(t) = ∞.

Conversely, suppose limt→∞ f ′−(t) = ∞ and let z < x. Then

lim
z→∞ z

∫ ∞

0
e−λtPx(τz < t)dt = lim

z→∞
z
λ

Ex[e−λτz] = lim
z→∞

z
λ

f−(x)
f−(z)

= lim
z→∞

f−(x)
λ

1
f ′−(z)

= 0

where we used Lemma 4.3 and l’Hospital’s rule. By Fatou’s lemma,∫ ∞

0
e−λt lim inf

z→∞ zPx(τz < t)dt = 0.

Hence lim infz→∞ zPx(τz < t) = 0 so that we can find a sequence {zn} ⊂ (x,∞) with
limn→∞ zn = ∞ such that

lim
n→∞ znPx(τzn < t) = 0.

On the other hand {Xτzn
t } is a Px-submartingale being bounded from above and

x ≤ Ex[Xt∧τzn
] = znPx(τzn < t) + Ex[Xt; τzn ≥ t].

Since limn→∞ Px(τzn ≥ t) = 1, x ≤ Ex[Xt]. Markov property implies {Xt} is a Px-
submartingale. �

3. A proof of Theorem 1.5

3. A proof of Theorem 1.5
Without losing generality, we may suppose l− < 0. For λ > 0, let f− (resp. f+) be the

positive increasing (resp. positive decreasing) solution to the equation  f = λ f such that
f−(l−) = 0. Let G be Green’s function of  :

G(x, y, λ) :=
{ 1

h f−(y) f+(x) (y < x)
1
h f−(x) f+(y) (x ≤ y)

h := f+(x) f ′−(x) − f−(x) f ′+(x).

Then we have
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(3.1)
∫ ∞

l−
G(x, y, λ)(y − l−)m(dy) = Ex

[ ∫ ∞

0
e−λt(Xt∧τ− − l−)dt

]
.

Let α+ := limt→∞ f+(t). Then f ′+ ∈ L1(a,∞) for a ∈ (l−,∞) and

f+(x) = α+ −
∫ ∞

x
f ′+(y)dy.

Therefore limx→∞ f ′+(x) = 0. The equation  f+ = λ f+ yields

f ′+(x) = −λ
∫ ∞

x
f+(y)m(dy)

f+(x) = α+ + λ

∫ ∞

x
(y − x) f+(y)m(dy)

so that we have

λ

∫ ∞

x
y f+(y)m(dy) = f+(x) − α+ − x f ′+(x).

Similarly,

f ′−(y) = f ′−(l−) + λ
∫ y

l−
f−(z)m(dz)

f−(x) = f ′−(l−)(x − l−) + λ
∫ x

l−
(x − y) f−(y)m(dy)

λ

∫ x

l−
y f−(y)m(dy) = f ′−(l−)(x − l−) − f−(x) + λx

∫ x

l−
f−(y)m(dy).

Substituting them into (3.1) yields∫ ∞

0
e−λtEx[Xt∧τ− − l−]dt =

x − l−
λ
− α+ f−(x)

λh
.(3.2)

We note that (3.2) and Lemma 4.1 also proves Theorem 1.1 in Case I.

Suppose {Xτ−
t } is a strict Px-supermartingale. The discussion above implies α+ > 0. We

shall show below that

(3.3) lim
λ→0

(
x − l− − α+ f−(x)

h

)
= 0.

Let φ, ψ be the solution to  f = λ f with the initial condition

φ(0) = 1, φ′(0) = 0

ψ(0) = 0, ψ′(0) = 1.

Then f± satisfy

f+(x) = φ(x) −
(

lim
x→∞

φ(x)
ψ(x)

)
ψ(x), f−(x) = φ(x) −

(
lim
x→l−

φ(x)
ψ(x)

)
ψ(x).

ψ, ψ can be decomposed by the method of successive approximation :



Diffusion to be aMartingale 389

φ(x) = 1 +
∞∑

n=1

λnφn(x), φ0(x) = 1, φn(x) =
∫ x

0
(x − y)φn−1(y)m(dy)

ψ(x) = x +
∞∑

n=1

λnψn(x), ψ0(x) = x, ψn(x) =
∫ x

0
(x − y)ψn−1(x)m(dy)

which is convergent locally uniformly w.r.t. λ [4], which yields

lim
λ→0

φ(x) = 1, lim
λ→0

φ′(x) = 0, lim
λ→0

ψ(x) = x, lim
λ→0

ψ′(x) = 1.

Moreover

lim
λ→0

(
− lim

x→ł−

ψ(x)
φ(x)

)
= lim

λ→0

(∫ 0

l−

1
(φ(x))2 dx

)
=

∫ 0

l−
dx = −l−

implies

lim
λ→0

f−(x) = 1 − x
l−
, lim

λ→0
f ′−(x) = − 1

l−
.

On the other hand, by α+ > 0 and by Lemma 4.2, we have
∫ ∞

r xm(dx) < ∞, r ∈ (l−,∞) so
that we can find g satisfying

g(x) = 1 + λ
∫ ∞

x
(y − x)g(y)m(dy)

by successive approximation. Using α+ > 0, limt→∞ f ′+(t) = 0, limt→∞ g(t) = 1 and
limt→∞ g′(t) = 0, we have

f+(x)g′(x) − f ′+(x)g(x) = 0

which implies f+(x) = Cg(x) for some positive constant C. Because limλ→0 g(x) = 1,
limλ→0 g

′(x) = 0, we have

lim
λ→0

f+(x) = C, lim
λ→0

f ′+(x) = 0.

Therefore

lim
λ→0

(
x − l− − α+ f−(x)

h

)
= x − l− −

C
(
1 − x

l−

)
C ·

(−1
l−

)
− 0 ·

(
1 − x

l−

) = 0

proving (3.3). Since Xt∧τ− is a supermartingale, f (t) := Ex[Xt∧τ− − l−] ∈ C1[0,∞) is mono-
tone decreasing which shows that limt→∞ f (t) exists and f ′ ∈ L1(0,∞). Thus by (3.2) and
Lemma 4.4

lim
t→∞ Ex[Xt∧τ− − l−] = 0.

Conversely, suppose that lim
t→∞ Ex[Xt∧τ− − l−] = 0. Then

lim
λ→0

λ

∫ ∞

0
e−λtEx[Xt∧τ− − l−]dt = 0

which implies α+ > 0 since otherwise it would contradict to (3.2), (3.3). Therefore {Xτ−
t } is

not a martingale. �
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4. Appendix

4. AppendixLemma 4.1 (Lemma 2 in [1]). Suppose {Xt∧τ−} is a Pμ-martingale for some μ ∈ P
(
l−,∞)

.
Then for any t ≥ 0, x ∈ (l−,∞),

(4.1) Ex[Xt∧τ−] = x.

Conversely, if (4.1) is valid, then {Xt∧τ−} is a Pμ-martingale for any μ ∈ P
(
l−,∞)

with∫ ∞
l−
|x|μ(dx) < ∞.

Lemma 4.2. Let λ > 0 and let f+ be the positive decreasing solution to  f = λ f with
α+ := lim

x→∞ f+(x). Then the following three conditions are equivalent.

(1) α+ = 0

(2)
∫ ∞

a
ym(dy) = ∞

(3) λ

∫ ∞

x
(y − x) f+(y)m(dy) = f+(x).

Lemma 4.3. Let f± be the ones defined in the proof of Theorem 1.5. Then

Ex[e−λτa] =
f+(x)
f+(a)

, a < x

Ex[e−λτb : τb < τ−] =
f−(x)
f−(b)

, −∞ ≤ l− < x < b.

Lemma 4.4. Suppose f ∈ C1[0,∞) and f ′ ∈ L1(0,∞). Then
(1) limt→∞ f (t) exists, and
(2) limt→∞ f (t) = λ limλ↓0

∫ ∞
0 e−λt f (t)dt.
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