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Automatic Control of Arc Welding (Report III)*
—Theoretical Consideration of the Kinetics of Heat Processing

by a Travelling Heat Source—

Yoshiaki ARATA* and Katsunori INOUE**

Abstract

The kinetic equation is derived assuming’ a simple model for the various kinds of heat processings. Discussion is
made on some characteristics of the derived equation. Behavior of feedback control system composed on the basis of

these characteristics is also described.

Travelling
1. Introduction H‘f"s"‘l‘[‘e speed ,
Reference raveller| ‘ Hperr-.:)t_ Output
The heat sources travel relative to the work, rise Controller cessing [ | (Controlled
. . . Heat supply] variable)
its temperature and perform various kinds of heat Hing device|Energy (Controltled)
X ] o ) ) system
processings, such as welding, building up, cutting, ( Control element ) Manipulated,

annealing and so on. The dynamic properties of such
processings and, in consequence, their kinetic equ-
ations have particular forms owing to the heat source
travelling. We must consider this fact sufficiently

when designing the automatic feedback control system.

In this report, the kinetic equation is first derived
by assuming a simple model for the above process.
Discussion is made on some characteristics of the
derived kinetic equation follows. Behavior of feed-
back control system composed on the basis of these
characteristics is described.

2. Feedback Control of Heat Processings

The schema of the feedback control system for
heat processings by a travelling heat source is shown
in Fig. 1. The sensor receives information from the
heat processing proceeding part in the base material
and transmits it to the controller. The controller con-
trols the travelling speéd of the heat source (speed
control) and/or controls the heat generating source
on the basis of that information so as to maintain
proper quality for the heat processing.

Sensor

Fig. 2. Block diagram of feedback control system for heat processing.

The block diagram of this feedback - system is

“shown in Fig. 2. The automatic control may be per-

formed with one or both of two kinds of the
manipulated variables, (the travelling speed and the
input energy), so that the controlled variable may
follow the reference in such a system.

3. Formularization of Heat Processings

The kinetic equation can be derived for a simple
model of the heat processing for which the following
three assumptions are made. The schematic explana-
tion for the model is shown in Fig. 3.

Assumption 1 The heat processing proceeding part
(part A, the meshed part) has the heat quantity Q, the
heat capacity C and travels together with the heat
source. The temperature of part A is raised uniformly
by the heat quantity Q and the heat processings pro-
ceed.

Assumption 2 One or more of the variables which
prescribe the quantity of the heat processings are

Travelling i
- Hff;f:{f;eﬂj sensed by the sensor. Hereafter, these variables are
¥ (Controller called “the output of the heat processing” or simply
Heat supply, - -
-ing device Travelling speed V

&

Ener%

Output of heat
Input energy processing X
(per unit ti

Qin

! Processed part /f /ﬁOutput energy-
~ = Quu
Base material

Heat processing
proceeding part

Fig. 1. Feedback control system for heat processing by a travelling
heat source.
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\!\Procqssed part
Heat processing proceeding part
(part A)

Fig. 3. Simplified model of heat processing.
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“the output”. This output x is the value which is pro-
portional to or-corresponding to the temperature of
part A.

Assumption 3 The flowing out energy from part A,
Q.. s 1s proportional to the output x and the travell-
ing speed v.

From Assumption 3,

OB ——— )

where k, is constant.
The change of the heat quantity 4Q in time 4t
in part A is

4(2:(Qin—_Qou1)"At
=(Qin—ki-x.v) . dt.

From Assumption']l and 2, the change of the output
4x due to the change of the heat quantity 4Q is

4 k
X=k2'TQ:T2(Qin*k1'X'V)'At, -------------- (2)
where k, is constant.

Then, at 4t—0, we obtain the differentail equa-
tion as follows,
ks dx Qi

=k -
v dt x=ki v 3)

where k,=-= and ke=—2. We call (3) as the

kinetics equation of the heat processing.

In the steady state, %% =0, then,

X=K4r——, ~omrmmommmmmmmeeeees “4)

that is to say, the equation of the static characteristics
is obtained.

4. Comparison of Kinetic Equation with Primary
" Lag Element and Derivation of Non-linear
Equation

A typical primary lag element is shown in Fig. 4,
which is formularized as follows,

R

€in €out

Fig. 4. Typical primary lag element.

de
CR d—zul +eout =€jny mmommmmommomee- (5)

where CR= 7 is time constant.
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Equation (5) is rewritten as

d (output)

time constant) -
( ) Ot

=+ (output)= (input) ------ (6)
When we compare (3) with (6), we may put that

Qin

k
time constant= 73 and input=k,: <— - Ifv=

constant and Q,, is the manipulated variable, (namely,
the heat processing is controlled by input energy only),
time constant 7= % and (3) is the same form as (6).
This means that the controlled system is regarded as
a primary lag element in case the input energy is the
manipulated variable. In such case, we can apply the
linear automatic control theory to the system analysis,
but we must consider the fact that the time constant
7 and the gain constant of the system are inverse to
the travelling speed of the heat source v.

If Q;, =constant and v is the manipulated vari-
able, inversely, canceling the denomination of (3) by
multiplying v, we obtain,

dx
dt

ks - +xv=Kks, -----m--- (7)
where ks =Xk, -Q;, is constant.

As (7) is a non-linear differential equation, the
linear automatic control theory in which Laplacian
transformation is used cannot be applied to the
system analysis. Let us investigate the characteristics
of (7) in the followings. In the steady state, corres-
ponding to (4), we obtain,

For a certain travelling speed v, and a steady-
state output x, corresponding to v,, (8) becomes

XoVo=Ks . - -- (8)'

Dividing both members of (7) by (8)’, and introducing
dimensionless variables of (10), the simplified dimen-
sionless equation is obtained

K x*v¥=1, s %)
where ~ dx*
dt*
and
« v ; : : N
v*=—— dimentionless travelling speed
Vo
(dimensionless input),
X . .
x*= — : dimensionless output, === (10)
Xo
L Vl) 't . . .
t* = : dimensionless time.
3 ~
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‘ If we choose the minimum value of the travelling

speed as v,, v*>1 and x*<1 should always hold.
We call (9) the dimensionless non-linear equation of
the controlled system.

5. Frequency Response for Non-linear Controlled
System

The frequency response method is applied to the
non-linear controlled system, which is formularized in
(7), to investigate its characteristics.

When the input v* is given as

s

vi=vyr 4y et - ---

-- (1)

where 4v*<v* and w* is the dimensionless angular
frequency, it is assumed that the output x* includes
higher harmonic components

X*=)d< + ZOO‘AX;,ej(m'w"""’?sm) ______________________
m=1

Susbstituting (11) and (12) into (9), neglecting the

second order of 4 term and rearranging,

R 2 -

+x.*-dv*-ej'w =0.
-- (13)

Iré’l(j-m-a)-i-v,*)-zlx,’ﬁ,-

From the condition that all the coefficient of e™«*
(m=1, 2, 3...) are equal to zero,

(14)

Axx=0 for m=z2 ,

that is to say, x* has no higher harmonic term. In

case m=1, we obtain
Adx*-el?(jow+vi)+xr-dv:=0,

X

Ax*
4v*

* -1, ®*
Vi jtan” (=
— el (5 X

N+ Gy

where we replace Ax*=Adx!* and ¢= ¢, .
We can see from (15) as the log magnitude

it

X L
* 2
log V(lu— =log \:0* , (16)
2 - 2
+(5) S )
and as the phase
T N (e (17)
Vi

An example of Bode diagram is shown in Fig. 5,
in which the log magnitude curves and the phase
curves are drawn for both cases vi=v5 and v{=2v3.
It is seen that the static characteristic depreciates by
—12 decibel and the speed of response doubles at
the input equal to twice its original value.
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Fig. 5. Bode diagram for non-linear controlled system.

This means that the gain constant of the control
element should be four times so that error may
remain less than the definite value and that it may be
eight times to assure the definite phase margin when
the static component v of the input v* becomes
doubles.

6. Proportional Control System and Disturbance
Entering into

When the disturbance enters into the system, we
need to change the constants k, —k,’, ks —ks’ in (3)
and (7) according to the changing of the constant k,
—k,” in (2). As the result, the right member of (9)
is changed from 1 to d (=¢1), then,

S T R T [

We should solve (18) under the initial condition

at t*=0, x*(0)=d-x{. 19)

In case d=constant, equations (18) and (19) ex-
press the step disturbance enters into the system.
Such a step response of the proportional 'control
system is investigated as follows. The equation of the
control element in the proportional control system is

VF=A (X=X F v, (20)

where
xi . the reference value for the output x*. (at the
steady state before the disturbance enters, the out-

put value is x)
¥

v : the input value at the steady state corresponding
to the input x{, namely, v{-xF=1.
A : the gain constant of the control element.

The block diagram of the proportionai control
element is shown in Fig. 6. Substituting (20) into (18),
we obtain '
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Fig. 6. Step response in proportional control system.

X*+A-x**+B-x*—d=0, -- (21)

where B=v{f—A-x{ .
As (21) is Riccatti’s equation of constant coef-

ficient, it can be solved analytically under the initial
condition of (19) as ’

d-AxF—a,)a,. e +(a—d-A-x¥) a,-e®

Xt = A{(d-A-xf—a))e®” +(a,—d-A-xext
............... (22)
—B+yJ/B+4-d-A
where a, and «; are 5

Transforming (22),

P at®
a,(d Arxi aZ)e {1+ (d'A'X]’k*az)al

(a,—d-A-x") a, e(az—a.)x‘}

Tes Ald-A-xi—az) e {l4 LZLAXT e
' : d-Axf—a, ’
-------------------- 23)
and replacing the following terms
a,—d-A-x{
=228 (<,
A d-A-xf—a, (<)
o (24)
— 2
«a o, cn,
da=a,—a, (>0).
we obtain the approximate equation
"o a,(1— A, a-e~4«")
X*(t*) = By P
A(l+ A, -e et )
= s (1—A,- a"e_d‘“.—A, .e—dwt‘) _____ (25)
A
= X {1—A(+a)e 2"},
A
then,
. (28]
m X* (1) = — e 26
Jim X (t*) A (26)

As (26) can also be introduced from (22) directly, it
is seen that (22) and (26) are in accord with t*—c0,

The relative steady-state error of the step re-
sponse is

X=Xt
Estep_l‘h_llnm{ Xl*(d_l) }

1 1
*+f(—x; —Ax?)H4-d-A
1

— — —A'x;
Xy

2-A-x¥d—1) ’
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and it does not only depend on the gain constant A
of the control element, but also on the value of the
disturbance d and the static values of the input v, and
the output x*. This is the essential feature of a non-
linear control system. Examples of the step response
which are calculated from (23) are shown in Figs. 7
and 8. The step response curves are drawn for
several values of the gain constant A in Fig. 7 and of
the static component v* of the input in Fig. 8.

A example of the relative steady-state error
calculated from (27) is shown in Fig. 9. It is natural

d=08, xr=06

A=3
1

Fig. 7. Step response in proportional control system.

d=08,A=8
' T T T
10F W10 -
* / 08 4
x
0.6
05k -
r 04 1
[
< . L . |
0 1.0 20
-_ t*

Fig. 8. Step response in proportional control system.
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Fig. 9. Relative steady-state error of step response in proportional
control system.
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that the relative steady-state error should decrease as
the gain constant A increases, but they also decrease
as the values of v| increase. The latter is due to the
fact that the magnitude curve in Fig. 5, Bode diagram,
goes down as v; increases.

7. Integral Control for Non-linear Controlled
System

It is necessary to compose the integral control
element for the controlled system, which is expressed
by (9), in order to avoid the steady error as is pro-
duced in the proportional control system on a step
disturbance entering into the system. Considering the
discussion made in section 5, it is desirable for the
control element in the system to be modified by its
own output. The integral control system having such
a function is realized in the block diagram as shown
in Fig. 10.

The gain of the integrator in the control element
is proportional to its output to the nth power in this
system. The equation of the control element is given
as

VE=Av*T (x*—x) .

If we solve (18) and (28) under the condition of (19),
we can see the behavior of the system, but these non-
linear equations cannot be solved analytically. Then,
we solve them numerically. An example of the
numerical solution by R. K. G. method is shown in

Fig. 11. The numerical calculation was conducted
with NEAC—2000 series model 700 at Computation
AV*| amplitier V" | Raiser
(xA) (to nthpower)
X7 Muiltiplier Integrator n
a'es v*:AJv'(x*—x’f)dt*
AvA(x*=x7)
*

Fig. 10. Block diagram of integral control element.
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~ p— ]
— 2
——3
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t*
Fig. 11. Step response in integral control system.

(244)
Center Osaka University. The square integral of
error IEZ=/;DO{XI*—X*(t*)}2dt* is also caluculated
and plotted by power n for a few values of v{ in
Fig. 12.

When the power n is equal to 2, the value Ig, is
nearly constant, independently of the value v{.

_1 A=4,dx=-01
10 | T ]

310°

107

——

310
-3 1 1 1
10
0 1 2 3
S 4 |
Fig. 12. Square integral of error in integral control system.

8. Conclusion

1. The Kkinetic equation of the heat processings by
travelling heat source in derived by assuming a
simplified model for it.

2. The derived kinetic equation is a first order linear
differential equation in the case .that the input
energy is the manipulated variable to the controlled
system.

3. The derived kinetic equation is a non-linear differ-

ential equation in the case that the heat source

travelling speed is the manipulated variable.

The frequency response method is applied to the

non-linear controlled system and Bode diagram is

obtained.  Both the magnitude curve and the
phase curve in Bode diagram shift their position
according as the static component of the input.

The proportional feedback control for the non-

linear controlled system is described in Riccatti’s

equation which can be solved analytically. This
feedback control shows characteristics peculiar to

a non-linear system.

6. On performing an automatic control for the non-
linear system, the system whose control element
can be modified by its own output is desirable.
Such a system can be realized in the special
integral control element.
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