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0. Introduction

Group actions without fixed points are called fixed-point free actions. The
existence of fixed-point free actions on acyclic manifolds has been studied by
R. Oliver in [9] and [10]. In [10], he showed that, for any compact Lie group
G, if the identity component G, is non-abelian, or G/G, is non-solvable, then
there is a fixed-point free smooth G-action on a disk (and hence on a compact
Z,-acyclic smooth manifold). So, for such a G, it is natural to ask the follow-
ing question: What is the minimum dimension of disks (or compact Z,-acyclic
smooth manifolds) with fixed-point free smooth G-actions? On the question,
R. Oliver proved in [11] that when G=S0(3), the minimum dimension of such
disks is 8. But, for any compact connected simple Lie group of rank>2, the
minimum dimension of such disks (or compact Z,-acyclic smooth manifolds) has
not been determined.

The object of this paper is to investigate the minimum dimension of com-
pact Z,-acyclic (p; prime) smooth manifolds with fixed-point free smooth
SU(p+1)-actions. Our main results for the object are Theorems A and B below.
The notation X,,(p+1, p) in those theorems denotes a compact Z,-acyclic smooth
manifold with a fixed-point free smooth SU(p-1)-action, which is constructed
in Example 2.3 (Section 2). From the construction, the SU(p-1)-action on
X,(p+1, p) satisfies all assumptions in Theorem A. So, from Theoerm A, we see
that X,,(p+1, p) (p=3) has the minimum dimension in all compact Z,-acyclic
smooth manifolds which have fixed-point free smooth SU(p-1)-actions satisfy-
ing the assumptions in Theorem A. In particular, Theorem B shows that,
without any assumption on orbits, X,(3, 2) has the minimum dimension in all
compact Z,-acyclic smooth manifolds with fixed-point free smooth SU(3)-actions.
In Theorem A, the group S, denotes the inverse image of the subgroup S,=
S,X1CS,,, (symmetric group of p-+1 letters) by the natural projection from
N(8T,4,) onto N(ST,,,)/ST,,=2S,+,, where N(ST},,,) is the normalizer of the
maximal torus ST, of SU(p+1) specified in 1.1. The group S,,, coincides
with N(ST,,,) itself. For the other notations, see the list at the end of In-



320 A. YaAMAKAWA

troduction.

Theorem A. Let p (p+3) be a prime number and let X be a Q-acyclic
smooth manifold with a fixed-point free smooth SU(p+1)-action. If XS@®XUM

+®, XSrn1=® and X% is connected, then dim Xz%(p+1)2(p+4) p—1=
dim X,,(p+1, p) holds.

Theorem B. Let X be a compact Z,-acyclic smooth manifold with a fixed-
point free smooth SU(3)-action. Then dim X >26=dim X,,(3, 2) holds.

In Section 1, we recall weight systems of G-manifolds and state some
results about induced representations, which are useful to prove our main results.
In 2.1 (Section 2), under the condition p<<n<<2p (p; prime), we give a method to
construct compact Z,-acyclic smooth manifolds with fixed-point free smooth
SU(n)-actions. By the method, for fixed » and p, we can construct many dif-
ferent compact Z,-acyclic SU(n)-manifolds without fixed points. We will write
all of them by the same notation X(n, p). And in 2.3 (Section 2), we give a
typical and useful example of X (n, p) denoted by X, (n,p). When n=p-+1, the
manifold X,,(n, p) just coincides with X, (p+1,p) in Theorems A and B. In
Section 3, we prove that if n=p+1 (p=3), then X,(n,p) has the minimum
dimension in X(#, p)’s (see Theorem C). And then we prove Theorem A.
Lastly, in Section 4 we give the proof of Theorem B.

From now on, manifolds and actions mean smooth manifolds and smooth actions.
And notations that are not defined in the later sections can be found in the list
below:

(1) Let G be a compact group.
RRep(G)=the set of real representations of G,
CRep(G)=the set of complex representations of G,
Irr(G)=the set of irreducible complex representations of G,
G=the set of equivalence classes of all irreducible complex representations of
G.
(2) Let H be a closed subgroup of G above. For ¢ &RRep(G) (or CRep(G))
and J»ERRep(H) (or CRep(H)),
Ind§p=the induced represenation of G by 4,
Resyp=the restriction of ¢ to H,
dr(p)=the degree of @ over F=R or C,
dimpV=the dimension of a vector space V over F,
We=the representation space of ¢,
#Q(p)=the number of weights in () (see 1.1),
kp=the direct sum of % copies of o,
@.~the complexification of @ € RRep(G),
@*=the conjugate representation of p &€ CRep(G),
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S°p=the a-th symmetric power of g,
A’p=the a-th exterior power of g,
0=1-dimensional trivial representation over R or C.
(3) Let G, G, and G, be compact groups. For ¢,, ¢, RRep(G) (or CRep(G))
and Y, € RRep(G;) (or CRep(G))) (i=1, 2),
@,@,=the tensor product representation of G by ¢, and ¢,
4r,®r,=the tensor product representation of G,;X G, by yr, and +r,
@,—@,=the representation @ such that ¢ P, is equivalent to ¢,,
@,==@, means that ¢, and @, are equivalent,
G,=G, means that groups G, and G, are isomorphic.
(4) For subgroups K; of U(n;) (=1, 2),
S(Kyx Ky)={Xx YeK, X K,|det X det Y=1}.
(5) Finally, for a G-space X,
Xi={xeX|h-x=x for all h&H},
G ,=the isotropy subgroup of «,
dim X=the dimension of a manifold X.
When X¢=®, as mentioned in the first paragraph, the G-action is called fixed-
point free.

1. Preliminaries

1.1. Weight systems of G-manifolds. Weight systems of G-manifolds play
an important role in this paper. So we first recall weight systems of representa-
tions and then state the definition of (geometric) weight systems of G-manifolds
introduced by W.Y. Hsiang (see [6]).

Let G be a compact connected Lie group, 7 a maximal torus of G and
W(G)=N(T)|T the Weyl group. Denote by L(T) the Lie algebra of 7. Then
the restriction Res;@ of any @ & CRep(G) is decomposed into k@, Dk,p,D-+ D
kn@n, Where each @; is an irreducible representation of degree 1 and %;p; denotes
the direct sum of k; copies of ;. Via the exponential map of L(T) onto T, each
@; can be identified with an element in the dual space L(T)* of L(T). The set
k{p,} U -+ Uk, {p,} whose elements are regarded as elements in L(T)* is called
the weight system of @, and is denoted by Q(p@). Here k;{p,;} denotes the union
of k; copies of {@p;}. And each element in Q(p) is called a weight of . If pE
RRep(G), then by Q(p) we also denote the weight system of @.. In both cases,
Q(e) is invariant under the action of W(G) induced from the natural action of
W(G) on L(T)* (see 5.18 in [1]). And ¢ is equivalent to another representation
@’ if and only if Q(p)=Q(p’). When G is disconnected, we can define the
weight system of a representation @ of G by Q(Resg@). Here G, is the identity
component of G.

Let G be also a compact connected Lie group and X a @-acyclic manifold
with a G-action ¥. For ¥ X and gG, the differential of W(g, ) at x induces
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a real representation ¥, of G, on the tangent space at x. The ¥, is called the
tangential representation at x. Since X is @-acyclic, by Smith theory (see Chapter
IIT in [3]) the submanifold X7 is also @-acyclic, and consequently, connected.
Thus the weight system of the tangential representation ¥, at x,& X" does not
depend on the choice of points. This weight system Q(¥, ) which is an invariant
of the given action ¥ is defined to be the (geometric) weight system of a @-acyclic
G-manifold X and will be denoted by Q(X). Clearly X7 is W(G)-invariant, and
hence Q(X) is invariant under the naturally induced W(G)-action. The W(G)-
action on Q(X) is equal to the W(G)-action on (¥, ) which is mentioned before.

Especially put G=U(n). The Lie algebra is the set of skew Hermitian
matrices of degree 7, and a Cartan subalgebra I is chosen as the subset of diago-
nal matrices (see 2.31, 4.16 in [1]). Let 7, be the maximal torus of U(z) with
L(T,)=4, and {x;} the coordinate with respect to the canonical basis for L(T,).
Then every weight of representations, and hence every element in Q(X), is ex-
pressed as a linear form \: (%, &, -+, %,)—>a;%,+a,x,+ -+ +a,x, where a;EZ.

We write the A by é a;%;. The Weyl group W(G)==S, (symmetric group of z

letters) acts on Q(X) by permutations on x;’s. When G=SU(n), we choose a
maximal torus ST, consisting of matrices in 7, with the determinant=1. Then
L(ST,) is a subspace of L(T,) with the trace=0, and every weight takes the form

X above with the relation 33 x;=0. Throughout this paper, the notation 3 a;x;
i=1

denotes a weight in the above meaning and the natural W(SU(n)) (== W(U(n))==
S,)-action on a set of weights means the action induced by permutations on x;’s.
We often regard a weight as an element in Irr(T).

1.2. Induced representations. Let G be a group and H its subgroup.
When G is a finite group, we find in [12] various important properties about
induced representations Indfp. Most of those are naturally extended to the
case that G is a compact group and H is a closed subgroup of finite index. We
state here two of those which are needed in the later sections. The proofs are
the same as those of the corresponding propositions in [12]. Note that Ind§g
is defined by the same method as in the case of a finite group G.

Proposition 1.2.1 (cf. Proposition 22 in [12]). Let G be a compact group,
and let K and H be its closed subgroups such that the index (G; H) is finite. Put
H,=sHs™' N\ K for a representative s of the double cosets K\G/H. Then, for each
@ECRep(H), Resy Ind§p is equivalent to @ Indf @°, where o' CRep(H,) is

SER\G/H

defined by @*(x)=q@(s'xs) for all x€ H,.

Proposition 1.2.2 (cf. Proposition 23 in [12]). Let G, H and ¢ be the same
as in Proposition 1.2.1.  Then Ind%ep is irreducible if and only if the following a)
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and b) hold: a) @ is irreducible, b) for each s&€ G—H, Resy, @ and ¢° have no ir-
reducible direct summand in common, where H=sHs™*NH and @' CRep(H,) is
defined by @°(x)=g(s'xs) for each x H,.

1.3. Representations of group extensions. For any compact group K, we
write by 9 the equivalence class of y&Irr(K).

Let G be a compact group and H its closed normal subgroup, that is, con-
sider an extension 1->H—>G—>G/H—>1. Then G acts naturally on H by (g-7)
(R)y=v(g"'hg) for 9€H, g&G and heH. Dneote by G, the isotropy sub-
group of 9. Gy is a closed subgroup of G containing H. If the index (G; H)
is finite, then G is described in terms of representations of H as follows.

Proposition 1.3.- Let G be a compact group and H a closed normal subgroup
such that (G; H) is finite. Let 9 be any element of H and let Gy= {9 Gy| Resyv
is equivalent to a multiple of v}. Then G is a disjoint union

A N v
G = U {(Indg,,v)lﬁEGy} .
YEH/G
Moreover if «v extends to v’ €Irr(Gy), then v is equivalent to o'y’, where o’ is the
natural lift of o €Irr(Gy/H) to Irr(Gy).

Proof. Take p=G. Then we may put We,,,=@W, = 56'2» W,, where

%, ; EIrr(H), W;=@&; Wy, and v; ;=7 , if and only if i=s. 'This decomposition
@ W,;is unique, that is, it does not depend on the choice of bases (see Theorem
i<i<k

8 and 4.3 () in [12]). In general, for an H-invariant subspace V of W,, p(g)V=
{p(g)v|vEV} becomes a gHg '-invariant subspace. Thus, for each g&G, there

holds Wreepo=Waesggg-10 = P(&) Wresge = P(8) (15'-95/. W;) as H-spaces because of

gHg'=H. This shows that p(g) permutes W;'s. Since p is irreducible, the
permutation by G is transitive. Furthermore the subgroup {g€G | p(g)W,=W}
equals Gy, , and W, becomes an irreducible Gy, -space. Therefore if we write
this irreducible representation of Gy, by », then ﬁer'.,b , and p is expressed as
Indg,, v. Clearly the equivalence class of Indg, v depends only on the class
of4,,in ﬂ/G Consequently we have GA;A U {(Indgy v)| ﬁE(v;y}.

YER/G
Conversely take ﬁe(;‘,,. Suppose that Gy,=%=G and, for some s€G—Gy,
Res,, v and »° have an irreducible direct summand in common (see Proposition
1.2.2 for the definitions of (Gy), and »°). Then Resyv and Resyv® also have a
common direct summand, because (Gy), contains H. Thus we have y=¢".
This contradicts st Gy, and hence from Proposition 1.2.2, Ind¢,v is irreducible.

N i
Consequently we have U {(Ind &) PEG}SG .
YEH/®
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Next we show the second statement. Let A®B denote the tensor product
of matrices 4 and B, and let I, denote the identity matrix of degree k. Take
ﬁGGV,. We may assume Resyv=my. Thus, for each h€H and g Gy, we have
v(ghg™)=IL,@7(ghg™)=1.Q7'(8)) 1.®Y (k) (1.®7'(g)™") and v(ghg™")=r(g)
v(h) v(g) '=v(g) (I,Qv(h)) v(g)™'. This shows that »(g)*(1,®7'(g)) and I,Q
v(h) commute. And hence there is an automorphism F(g) of W,, such that
v(8) " (1.Q7'(8)=F(g)®I; o holds. The F satisfies F(hg)=F(g) for each
heH. Therefore by setting o(g)=F(g)™" for g=Gy/H, we have o €Irr(Gy/H)
and v=¢'"y’. The irreducibility of & follows from that of ». q.e.d.

ReEMARK 1.3. Proposition 1.3 holds for locally compact groups with some
conditions. See Theorem 8.1 in [8] or Chapter III, Theorem 2 in [7] for the
details.

2. SU(n)-manifolds X(n, p) and X, (n, p)

Throughout this section, we fix an integer #>3 and a prime number p
with p<n<<2p. The purpose of this section is to construct certain compact
Z,-acyclic SU(n)-manifolds without fixed points which will be denoted by X(, p)
and X,(n,p). In 2.1 we state the method to construct X(n,p). In 2.2 we
prove that X(n,p) is Z,-acyclic. And in 2.3, we define X, (n, p) as a typical
example of X(z, p).

For each k>0, let z(resp. sz;) denote the natural projection from N(T})
(resp. N(ST,)=SN(T})) to N(T,)|T=S, (resp. N(ST})/ST,=S,;). Here T,
(resp. ST) is the maximal torus of U(k) (resp. SU(k)) specified in 1.1 and N(T})
(resp. N(ST,)) is the normalizer of T} (resp. ST}) in U(k) (resp. SU(k)). Es-
pecially, we denote ST, and sz, by T and = respectively. And, for a subgroup
H of S,, we write z }(H) by H. Furthermore, for a subgroup K of SU(n), we
write Resg Adsy,y— Ady simply by ¢4, where Ad; is the adjoint representation of
a group L. For a compact group G and a point x in a G-manifold X, Res; Ad;—
Ad;_means the tangential representation at x restricted on the orbit G/G,.

2.1. First we consider @,ERRep(S,) and @,=RRep(S(U(p)Xx U(n—p)))
satisfying Condition A below.

ConpITION A.
i) There exist points in W,,(i=1, 2) whose isotropy subgroups coincide with
5,X S,
ii) Ress,xs, (@:Des5,)=Ress x5, (@:DPiscwup xun-m)-

Given such a pair (¢, @,), a fixed-point free SU(n)-mani/f_cﬂ;i/ can be con-

structed as follows: To simplify the notations, we put H=S,xS,,, K;=S,,
K,=S(U(p) X U(n—p)) and G=SU(n). Take two disk bundles
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. = d (vi) ] =
X; G}éjgn (=12,
where K; acts on Dr®? via ;. Then, from i) in Condition A, two submanifolds
e g ) — W (1 =
Y, Gé(K' ﬁJE"R ) Gﬁjg"n E=12)

are equivariantly embedded into 6.X;(i=1, 2) respectively. Here +J; is the real
representation of H defined by

VB (Resy Ady,— Ady) = Resyp;—0

and H acts on D?RY? via +f;. The above @ is the 1-dimensional trivial re-
presentation over R. Moreover, from ii) in Condition A, the above 1, and
+r, are really equivalent, and hence Y, and Y, are equivariantly diffeomorphic.
Thus, by identifying 8.X, with 8X, along Y,=Y,, we obtain an SU(n)-manifold
with boundary. Here SU(#n) acts on X, and X, by the left translations. This
resulting SU(n)-manifold will be denoted by X(n, p). Clearly the SU(n)-action
on X(n, p) is fixed-point free.

Taking another pair (g,, @,), another SU(n)-manifold is constructed by
the above method. Thus X(n,p) depends on the choice of (@,, @,). But we
will write all of such manifolds by the same notation X{(n, p).

Remark 2.1.1. In Section 11 of [13], all connected subgroups of SU(k)
(k>1) with the maximal rank are determined up to an automorphism of SU(k).
From the result, it follows that a proper subgroup of SU(k) (resp. U(k)) con-
taining N(ST}) (resp. N(T})) must be N(ST,) (resp. N(T})) itself.

ReMARK 2.1.2. In Condition A, i) for @, can be always replaced by the
condition dimRWg}:g"—»>dimRW§;. Because a proper subgroup of S, contain-
ing S,xS,-, is only S,XS,_,. Now suppose n=p+1. Then, from Remark
2.1.1, it is seen that a proper subgroup of S(U(p)x U(1)) containing S:;—.S/X:S',
coincides with S, itself. Thus, if n=p-1, then i) for g, is also replaced by the

condition dimpW jp>dimpW ;{0 ®> < UM,

ReMARK 2.1.3. The weight system of any representation of S,=N(T) is
clearly invariant under the natural W(SU(n)) (= S,)-action (see 1.1). Thus, from
ii) in Condition A, the following is automatically derived: iii) Q(p,P:3,) = @D
tsuepxum-p») 18 invariant under the natural W(SU(n))-action. This condition
iii) is a necessary condition in order that the above X(n, p) becomes a @-acyclic
SU(n)-manifold, that is, that (X (#, p)) is W(SU(n))-invariant (see 1.1).

2.2. Let ¢ and g, be the natural projections from SU(#n)/S,XS,-, to
SU(n)/S, and to SU(n)/S(U(p) X U(n—p)) respectively. Then, from the following
Proposition 2.2 and Mayer-Vietoris exact sequence for (X(n, p), X), X,) in 2.1,
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X(n, p) becomes a Z,-acyclic manifold with boundary.

Proposition 2.2. If x>0, then via gf+g¥, H*(SU(n)/S,; Z,)®H*(SU(n)/
S(U(p) x U(n—p)); Z,) is isomorphic to H¥*(SU(n)/S, X S,-,; Z,).

Before proving Proposition 2.2, we state a basic theorem about cohomologies
of groups.

Theorem 2.2 (see Chapter III, Proposition 10.4 in [4]). Let G be a group,
M a G-module and H a subgroup of G such that the index (G; H) is finite and in-
vertible in M. Then, via the restriction map resy, H*(G, M) is isomorphic to the
set of G-invariant elements of H*(H, M).

The restriction map resf; is a homomorphism of H*(G, M) to H*(H, M)
given by regarding M as an H-module. And an element 2z of H*(H, M) is cal-
led a G-invariant element if resi, jy-1 2=res%, 3,1 g*z holds for all g€G. Here
g* is the inverse of the map of H*(gHg™', M) to H*(H, M) which is induced
from the map sending % to ghg™ for ke H. See Chapter III, Section 8 in [4]
for the precise definition.

Proof of Proposition 2.2. Let S,—Es—>Bs be the universal bundle for
S,. Consider the following commutative diagram:

SU(n)/S,
=
(4) SU®)/T— E, = Es,xSU@)|T Pa Bs,
7 o Tm
” qu s SUMIS,X S
(B) SUWIT—E,=Es_x SUWT 22> By, ,.

ﬁx n—p

In the diagram, the maps ¢y, gy, Gy, Pa, P> 74 and zp are all projections and g, is
the bundle map between the fibre bundles (A)=(SU(n)/T—E,—Bs,) and (B)=
(SU(n)/T—Es—>Bs,s,_,). Clearly z, and 7 yield the isomorphisms = and #§
on the cohomologies. Thus, through #% and =¥, we may identify ¢¥ with g¥.

It is known that the E3‘-term of Serre’s spectral sequence for the fibre
bundle (A) with the coefficient group Z,, H'(Bs,; H(SU(n)/T; Z,)), is iso-
morphic to the cohomology of the group S,, H'(S,, H(SU(n)/T; Z,)). Here
H(SU)|T; Z,) is the Serre’s local coefficient system of {H!(pz'(x); Z,)|xE
By}, and the coefficient H(SU(n)/T'; Z,) of H'(S,, H'(SU(n)|T; Z,)) is regard-
ed as an S,-module via the characteristic homomorphism of ! (SU(n)/T; Z,).
That is, S, (=W(SU(n))) acts on H¥(SU(n)/T'; Z,)=Z [y, Y2 ***» Vu)] {515 $2 =+,
su} (see Section 20 in [2]) by permutations on ¥;’s, where the degree of each y; is
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two and s; is the elementary j-th symmetric polynomial of y,, y,, +*+, ¥,. Similarly
the Ei'-term for (B), H*(Bs,xs,_,; H'(SU(n)/T; Z,)), is isomorphic to H*(S,X
Su-p H(SU(n)/T; Z,)). It is clear that the homomorphism (g,, ,)* on Ej3'‘-
terms induced by the bundle map g, corresponds to the restriction map ressz.s, _
of H¥(S,, H(SU(n)/T; Z,)) to H(S,X S,_,, H(SU(n)/T; Z,)).

Let S, , be a p-Sylow subgroup of S, and N(S, ;) the normalizer of S, , in
S,. Then, from the assumption p<<n<2p, we may fix S, , as the cyclic subgroup
Z,x1of S;x1. Thus we have N(S, ,)CS,XS,-, and S, ,NgS, ,g'={1} for
any g&N(S, ,),. This shows that, for s$>0, an element in H*(S, ,, H/(SU(n)/
T; Z,)) is S,-invariant if and only if it is S, X S,_,-invariant. Hence, for s>>0,
Theorem 2.2 gives the isomorphism (res$2 s »-#)~ res§z —=res3n, s

»

n-p"

H*(S,, H(SU(n)|T; Z,)) = H*(S, X Sy-p H'(SU(n)/T; Z,)) .

And consequently E3~terms for (A) and (B) are isomorphic via (g,, g,)* if s>0.
On the other hand, for E3-‘-terms (¢>>0), the followings hold:

ES* for (A) = H{(SUMm)|T; Z,)5* = 0, EY' for (B) = H(SU(n)/T; Z,)5»*Sr-».

Now consider the projections ¢q: SU(n)/T—SU(n)/S, X S,-, and g,=g,°q:
SU(n)|T—-SU(n)/S(U(p) x U(n—p)). Then g¢* equals the composite of maps:
H!{(SU(n)[S,X S,-p; Z,) — E%'for (B) c E3*for (B). Furthermore, by

surjection injection

applying Theorems 14.2 and 20.3 in [2] to the fibre bundle S(U(p) x U(n—p))/T

eSU(n)/T—qiSU(n)/S(U(p)X U(n—p)), we see that g¢F: H*(SU(n)/S(U(p) X
U(n—p)); Z,)—H'(SU(n)/T; Z,) is injective and the image of ¢¥ coincides with
H'(SU(n)|T; Z,)? SO®*Ve=-m—F).!-term for (B). Therefore ¢f is injective
and ¢* is surjective to E%'* for (B). Consequently the differential dy:* for (B) is
a zero map for all 7.
From these observations, we get, for >0,
— g +g¥(g¥)™ -
H*(SU(n)[S,X Sy-p; Z,) = H*(SU(n)/S,; Z,)DEy* for (B)
identity@Dg¥ ~
= HXSU®)s,; Z,)OH*(SU@)/S(U(p)x U(n—p)); Z,) . q.ed.

ReEMARK 2.2. In general, ecah X(n, p) becomes Z -acyclic (¢; prime) if ¢
does not divide |S,|=n!. The proof is the same as that of Proposition 2.2.

2.3. Here we give a typical example of X(n, p), that is, of representations
o, and @, satisfying Condition A.

ExampLE 2.3. Let u, (k>2) be the standard irreducible complex represent-
ation of U(k) of degree k. Then Ressy(S%u,S*uif —uuf) is irreducible and has
a real form. In fact it is equivalent to a self conjugate direct summand of
(S?Adsuyw)e-  Put n,=Ressycn(S7u,S?uf —u,uyf). Lemmas 2.3.1 and 2.3.2 be-
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low show that Ress, 7 and Resscqy xum-pn 7 have direct summands equivalent to
¢5, D0 and tsep) xucn-p» DO respectively. Thus we can define @, and @, by @, =
Ress n—5,—6 and @,=Resswp) xuin-pm 1—tswep xum-m—0. From the defini-
tion, @, and g, clearly satisfy (ii) in Condition A. Before and after Lemma 2.3.2,
it is shown that they satisfy (i). We denote by X,,(, p), the X(n, p) constructed
by the above @, and @,. And we write these ¢, and @, by ¢, ,, and @, ,, respec-

tively. Obviously, dim X,,(n, p) is equal to d¢(n.)— l=l n’(n+3) (n—1)—1.

Lemma 2.3.1. Resyq,)xuo-p(S*%, Suf —uuk) is equwalent to (S*u, S’uf
—uu¥)QRODIR(Su,_, Su¥_,—u,_ ,,u,, ») DS, Q Sk, D S%uf Q S%u,_,B {(S?
uﬁ) Up —up} ®un—p@u;k ® {(Sz Uy p) un —p Uy p} SY {(Szu )up—up}®un p@up®
{(S"udp) - py— 10k} B (w5 —0) @ (- p i p—0)D (w5 — 0)QODIR (- -
—0)DPu,Qut_ ,DufQu,_, B if n>p+1, and equivalent to (S*u, S’uf—u, uf)@
0D (S'u,) @ (k) B(S) @ (1) B (S,) i —u,} @ ut @ (S* 1) u,— 1k} O, D
(wuf—0)Q0Du,Qu¥ Puf Qu, Db if n=p+1. Moreover each direct summand is
irreducible and Res sy x ucn- ) (U, @Ur_ , Duf Qu,_ ,) is equivalent to (tsuep x uen—pm)e-

The proof of Lemma 2.3.1 is a routine work. So we omit it.

Take p,& RRep(N(T})) (k>2) as follows: The representation space W,, is a
vector space over R with a basis {s;;=s;;|1<i<j<k} on which N(T}) acts by
(5) =Seyingorcn for cEN(T,). Tt is clear that dimp W T)=1 and dimy
W T"l)x NMTw)~0 hold for any positive integers k,, k, with k,+k,=k. Especial-

or—0
ly denote Resysr,) ps by p. Then by taking (p, n—p) as (k,, k,), we have dimpg

WS’XS" *>(. This is equ1va1ent to that there exists a point in W,_, whose

isotropy subgroup is just S X S,_,(see Remark 2.1.2). Thus, from Lemma 2.3.2,
@1,m Satisfies i) in Condmon A.

Lemma 2.3.2. For each k>2, Resycr,)(S%u; S*uf—wuf) has a direct sum-
mand equivalent to (p;),B(Resycr,) Adywy—Adycry).. Especially, Ress (S*u, S'uf
—u,uf)=Ress, 1, has a direct summand equivalent to p,B(c3,)..

Proof. It is sufficient to prove the first statement. Let {¢;| 1<¢<k} (resp.
{e¥|1<i<k}) be the standard basis for W, (resp. W,?), and put S-~=i (e:Qe;
+¢;Q¢;) and SF=— (e*®ej"-}—ej“®e*) Then {S;;®@S% |1<z<]<k 1<s<t
<k} becomes a canomcal basis for Wz, s2,;. Now consider three subspaces W;
(z_l 2, 3) of Wg2,,s2,: whose bases are B,= { E S;,;®8%11<j,t<k}, B,=A{S;;

Sk11<i<j<k} and B,={S;;QS¥, S;;® ,,|1£z<] <k} respectively. It
is clear that W, and W, are in the complement of W,. Moreover we see that W,
is equivalent to W, . as U(k)-spaces, and that, as N(7T})-spaces, W, and W, are
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1 [ r__ .
equwalent. to Wi=W,. and Wi= W(R“mr,,) Ady=Ad g e respectively. Thus,
up to equivalence, W7 and W} can be regarded as N(T,)-invariant subspaces of
Wszu,,szu;-uku:- qed

Put & =Ressup xucn-p (S, Suf —u,uf)®0 and £,=Res s xu-p) 0Q
(S%uy-, S*ut y—u,_,ur_p). Then from Lemma 2.3.2 and Remark 2.1.1, we see
that there exist points in W;, and W, whose isotropy subgroups coincide with
S(N(T,) x U(n—p)) and S(U(p) X N(T,-,)), respectively. Thus, in We;, there
exists/_\a/point with the isotropy subgroup S(N(T,) x U(n—p)) N S(U(p) x N(T,_,))
=S8,X8S,-,- On the other hand, from Lemma 2.3.1, (,,). has a direct sum-

mand equivalent to £,B&, if n>p+1, and to &, if n=p+1. Therefore ¢,,,
satisfies i) in Condition A.

3. The minimum dimension of X (n, p)’s and the proof of Theorem
A

Let X(n,p) and X,(n,p) be Z,-acyclic SU(n)-manifolds constructed in
Section 2. The purpose of this section is to prove Theorem A in Introduction
and Theorems C and D below. The notations are the same as in the previous
sections.

Theorem C. Suppose n=p+1(p=3). Then, for any X(n,p), we have
dim X(n, p)=>dim X, (n, p).

Theorem D. Let p (p=+3) be a prime number and let X be a Q-acyclic
manifold with a fixed-point free SU(p+1)-action. If dim X5»>dim XSU®xv)

>0 and X°» is connected, then dim Xz%_-(p—{—l)2 (p+4) p—1=dim X, (p+1, p)
holds.

Let @, @, »ERRep(S(U(p)x U(1))) be the representations constructing
X(p+1,p)and X, (p+1,p). Then Theorem C is equivalent to dg(p,)=>dr(@;,m)

forany @,. Recall here that every o, satisfies: (1) dimgW §p>>dimpW§I®x0M),
(2) U@, Ptswep xuay) is invariant under the natural W(SU(p--1))-action (see
Remarks 2.1.2 and 2.1.3). So, in 3.1-3.5, we first investigate which represent-
ations @ of S(U(p)x U(1)) satisfy the above (1), (2) and dp(p)<dg(®.m). The
goal is to prove Proposition 3.5, that is, that if @ € RRep(S(U(p) x U(1))) satisfies
the above (1), (2) and dg(@) <dg(p:,n), then @ must be equivalent to @, ,,. From
this we obtain Theorem C immediately. The proof of Theorem D follows that
of Theorem C, and Theorem A is given as a corollary of Theorem D. The
complete proofs of Theorems A, C and D are given in the last subsection 3.6.
Throughout this section, we often identify U(p) with the subgroup S(U(p) x
U(1)) of SU(p+1). Then the maximal tori T, and ST,,, specified in 1.1 are

identified, and the normalizer N(T,) of T, is regarded as the subgroup S, X S,=
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S, of S,,, in Section 2. Furthermore, any welght 2 bix; ( 2 x;=0) of p= CRep
(S(U(p) x U(1))) corresponds to a weight 2 (6; b,+1) x; of @ regarded as a re-
presentation of U(p). Here {x;|1<:< p—l—l 2 x;=0} is the coordinate with

respect to the canonical basis for L(ST),.,) (see 1.1). To simplify the notations,
we denote the identified ST,,+1 and T, by T, and omit to describe the relation

b+1
> ;=0 on each weight 2 b; x; if there is no confusion. And, unless otherwise

i=1

specified, p denotes a prime number. The other notations are the same as in the
previous sections.

3.1. Here we give a dimension formula for o Irr(U(p)). Denote by &
the highest weight of a complex representation £ of a semisimple Lie group G.

Take SU(p) as G. Then each weight of an arbitrary representation of G is
uniquely expressed as a linear combination of x;, ¥, -+, x,_; from the relation

?
> x;=0. Hence we can fix on a set of weights the lexicographical ordering with

respect to the basis #,>x,>-.->x,_,. In the rest of this section, % for £ CRep
(SU(p)) means the highest weight under this ordering. It is known that 4 for

gsIrr(SU(p)) can be expressed as 2 a;( 2 x;) by non-negative integers {a;}
(see Theorem 0.9 in [5]).
For pIrr(U(p)), suppose hR“smp)": jg aj( Z_,: x;)= Zz‘; ( g a;) x;. 'Then

by using Weyl’s dimension formula (see Theorem 0.24 in [5]), we get

dolp) = dol(Rressup ) = B« arte—+nr]. 6

Al

Moreover, for the g, there exists a unique integer @, such that ¢ is equivalent to
an irreducible direct summand of (A u,): (A2 uy)2++(A? u,)». That is, up to

equivalence, @ is determined by % 2 ( E_ a;) x; and the mteger ap So,

R“SU(p)‘p

in order to dlstxngulsh @, we often descrlbe hR"SU( o by the form 2 ( Z a;) x;

(—2(2a,)x+a,2x)

3.2. In this subsection, we give two necessary conditions (3.2.1) and

(3.2.2) in order that p&Irr(U(p))\{0} satisfies dimeW3»>0. The conditions
play an essential role in proving Lemma 3.3.

Lemma 3.2. Suppose that p& Irr(U(p))\ {0} satisfies dimcW $9>0.  Then
Q(p) contains {2(x;—x;), (x;—x;)|1<i<j < p}.
b-2

—Ae—
Proof. Let K=U(2)x U(1)X - x U(1) (CU(p)) and let Ny(T) be the nor-
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malizer of 7'in K. Furthermore, take an element » € S, corresponding to a cyclic

permutation of p letters 1, 2, -+, p, and put K;=r'K(r')~'. If we suppose W§=

WD then WE®= (y W¥i= (A W¥x@®=W3s holds. This contradicts the
i=1 i

i=1

assumption dimgW52>0. Thus we have WE=(WI"Wr*/1®*=(I*somg
(WI*WeD1® — (WI%)0®  Here T* is the corank one subtorus of T whose
Lie algebra L(T”) is perpendicular to a=x,—x,. That is, L(T*) consists of
diagonal matrices diag (ix,, ix,, -+, ix,) with x,=x,. This shows that the restrict-
ed representation @, of SO(3) on W1” has at least one irreducible direct sum-
mand of degree >5. Therefore 2a and « are contained in Q(gp,), and con-
sequently Q(p) (DQ(ep,)) contains {2(x;—x;), (x;—x;) | 1<i<j< p}. q.e.d.

. ?» . .
For ¢ in Lemma 3.2, put hR"SSU(p)“’z >1( X3 a;) x; by non-negative integers
i=1 0 j=i

aj(1<j<p—1) and an integer @,. Then A
2(%,—=x,), and hence {a;} satisfies

Ressucp® is higher than or equal to

1< Sa;. (3.2.1)

Moreover, from the assumption dimeWZ >dimgW >0, Res(Au,)’s (A*u,)’2--
(A?u,)’» has a trivial summand. Thus {a;} has the relation
?:31 ka, = 0. (3.2.2)

3.3. Put I=dg(pyn)=dim Xn(p-+1, p)—dim SU(p-+1)/S(U(p)x U(1))=
1
Le+3r— (oD,

Lemma 3.3. Suppose that p & Irr(U(p))\ {0} satisfies dimgW §6>0. More-
over suppose that do(@)<l if @ has a real form, and 2d(p)<! if @ has no real

form. Then @ is equivalent to one of the following o;’s and the conjugate o¥’s ; each
o 1s the direct summand of r; with h Ressyepy? =h Ressyp and dg(o;)=d;.

oY = (W)"(A%u,)™™ (2<m<10) d, =2m+1 p=2
o5t Yy = (Us) (A%t5) (A;)~? dy =35 p=3
o3t Yy = (u)¥(A%u,;) ™2 d, = 28 p=3
Ty Yry = (1) 3(A%uy)¥(Adu,) ™3 d,= 64 p=3
st Y5 = () (AP, (APuy) ™ ds = % (p+3)(p—1) p =3

RemARK 3.3.1.  Denote by R(U(p)) the complex representation ring of U(p)
and by ¢ the homomorphism of R(U(p)) which sends a complex representation to
the conjugate representation. Then H=*ker(1—t)/Im(14-t) becomes an algebra
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over Z, with generators Afu, A?” u,(A?u,)™ (2<2i<p) (see 7.3 in [1]). Thus
neither o, nor o, has any real form.

Lemma 3.3 is given by calculations of degrees which are straight but long.
So we give only the outline here.

Outline of the proof. Put ﬁ} ( zi‘, a;)x;. 'Then {a;} must satis-

Ressucp® ™ &
fy (3.2.1) and (3.2.2). By applying (3.1) to @ under these conditions on {a;}, we
see that if d¢(@)</, then {a;|1<j<p—1} is one of the followings: (1) p=3,
a,=4, a,=1, (2) p=3, a,=1, a,=4, (3) p=3, a;=a,=3, (4) p=3, a,=6, a,=0, (5)
p=3, a,=0, a,=6, (6) p=3, 4,=9, a,=0, (7) p=3, 4,=0, a,=9, (8) p=5, a,=3,
a,=1, a,=a,=0, (9) p=5, a,=a,=0, a,=1, a,=3, (10) p=5, a,=5, a,=a,=a,=
0, (11) p=5, ay=a,=a,=0, a,=5, (12) p>3, a,=a, ,=2, the other a;=0, (13)
p=2,a,=2m,2<m<10. Here only the ¢ corresponding to (3), (12) or (13) has
a real form (see Remark 3.3.1). And the ¢ corresponding to (1), (4), (6), (8) or
(10) is conjugate to that corresponding to (2), (5), (7), (9) or (11), respectively.
So from the assumption 2d¢(@) </, (6), (7), (8) and (9) are excluded. Moreover
we see that ¢ =S%;(A%;)™" corresponding to (10) does not have 2(x;—x;) as its
weight. Thus, from Lemma 3.2, (10) and (11) are also excluded. Consequently
the required result is obtained. q.ed.

Proposition 3.3. Suppose that o = RRep(S(U(p)x U(1))) satisfies the con-
ditions: (i) () <1, (ii) dimg W 35>dimgW §CO<CM, (iii) Qp@tspvay) i
invariant under the natural W(SU(p+1))-action. Then @, has a direct summand
equivalent to Resswpxuq) (S, Suf—uuf)Q0 where S*u, S*uf—u,ufclrr
(U(p)) and 8 Irr(U(1)).

Proof. Identify RRep(S(U(p)x U(1))) with RRep(U(p)). Then from (i)
and (ii), @, has an irreducible direct summand satisfying all assumptions in
Lemma 3.3. On the other hand, S*u, S*u} —u,u} is equivalent to o5 in Lemma
3.3if p=>3, and to o, for m=2 if p=2. So we have only to show that, up to
equivalence, any othet ¢; in Lemma 3.3 can not appear in @, We give the
proof only for the case of p=2. The other cases are proved by the same method.

Suppose that o, for some m(2<m<10) appears in ¢,. Since the &, coin-
cides with S*™u,(A%u,)"™, the assumption (iii) derives

Qp.—ay) 2 {Lk(x,—x,), T-R(x,—x,)|2<k<m} .

This shows 4(m—1)<#Q(p,—0))<d¢(p,—0,) <I—(2m+1)=21—2m, that is,
2<m<4. (Note that if we suppose that o,, o, or o, appears in ¢,, then the
contradiction is derived at this step. For o;(1=2, 3), we consider Q(p,—o;—
o'¥) because they have no real form.) Suppose m>3. In general, if an irreduci-
ble complex representation of SU(2) has 2kx, (resp. (2k+1) x;) as its weight,
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then {0, 4-2hx, | 1<h<k} (resp. {4-(2k+1)x,|0<h<Rk}) are also contained in
the weight system. This shows Q(Ressye) (p.—ay)) 2 {d-kx,, +kx|2<k<m}
U{0,0, 4+x, +x,}. Thus from (iii) we get #Q(p.—0o,)>21—2m. Hence we
conclude m=2. q.e.d.

3.4. From now on, for a set S of weights, let mS denote the union of m
copies of S and W(SU(p—+1))S the orbit containing .S under the natural
W(SU(p-+1))-action.

Suppose that @ € RRep(S(U(p) x U(1))) satisfies all assumptions in Proposi-
tion 3.3. Then we may put Y=, —Resswpnxuvay (S*%, S*uf —u,uf)®6. In
this subsection, we investigate the weight system of .

First we can easily calculate

Q((eswep xua))c DResswn xvan (S*u, S”uf—upuf)®9)
= ,C{0} U {£(x;—x,4,) [ 1 <2< p}
U(p—D{£(—x) | 1<i<G < p} U {£2(x;—w;) |
1<i<j<p} U {Qu;—x;—x,) | 1< j<k<p, 1<i< p,
7, j, k; each other different} U {(x;+x;)—(x,+x;)
[1<i<j<p, 1<h<k<p,1,j, h, k; each other different}.

Here the last two parts of the union are excluded if p=2, and the last one is
excluded if p=3. Thus, from (iii) in Proposition 3.3, we see that Q(+) contains

(P—2) {(®m—2,) [1<I< P} U {200 —2, ) [1i<ph. (341)
If p>3, Q(«) also contains
{+£ 2%y —x;—2,) | 1< j<k<Z p} U {20, —x;—x,41) |
1%, 14, <p}. (3.4.2)
And if p>5, the following is added more in Q(y).

{4 %0 —x,—x) [ ISA<kLS p, 1<i< p,
1, h, k: each other different} . (34.3)

The above (3.4.1), (3.4.2), (3.4.3) and (i) in Proposition 3.3 imply that if another
weight o is in Q(«r), then it satisfies the following inequalities:

BW(SU(p+1)) {Lo} <I—do(S*u, S*uk—u,uf)—4{(3.4.1), (3.4.2), (3.4.3)}

p+2p—1 if p>5,
={pPP—2p"+4p—1=20 if p=3,
P4p*p—1 =13 if p=2. (3.4.4)
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Lemma 34. Let o = %_,%bixi be a nom-zero weight which satisfies the in-

equalities (3.4.4). If p>3, then o is in W(SU(p+1)){+w,}, where o, is one of
o+ 1)
Jollowings:  a(x;—x,), ax,, a(x,+x,), a( 2 x;) (p=15).
jl j2
2+l e
Proof. We may put wy= 3 ¢;x; s0 that (c;,¢,, -+, Cpe1) =(dy, -+, dyy Ay, +++, +
Je Jit1 =
dpy 5 dyy 0, -0+, 0), 1< j,<:+<j, and d,’s are each other different non-zero

integers. Furthermore, from the relation g x;=0, we may assume j,<f,,.

Suppose k23‘ Then #W(SU(P+ 1)) {iwﬂ}zl’*‘l Cflxp+1—f1 Ci2Xp+1—i1—J'2 Cja
. .. 1 1

>(p+1) (p+10) (p+1—i=3 2 (p+ D) (p+1—251) (p+1-211) holas.

This contradicts (3.4.4). Similarly we can show that if k=1 or 2, then w, must
be one of four types in the lemma. The details are omitted. q.e.d.

Proposition 3.4. Suppose that & RRep(S(U(p)x U(1))) satisfies all as-
sumptions in Proposition 3.3 and p=>5. Then we have Q'(\r)=Q(yr)—=zero weights
={(3.4.1), (3.4.2), (3.4.3)} U W(SU(p+1)){x;—x,} where yr=gp,— Ressasep) xuay
(S*u, S*uf—uuf)®0.

Proof. We first note Q'(y)=+ {(3.4.1), (3.4.2), (3.4.3)}. If the equality
holds, then hR,_,SSU(D‘;. is w,=2x—(x,4%,4,) =2%,+ _pz_—}lxi, and hence 4 has an ir-

reducible direct summand equivalent to Resscycp xuw) {(S*%,) § —u,} @u¥. Thus
W(SU(p+1)){x;—x,} must be added to {(3.4.1), (3.4.2), (3.4.3)} because of
Q({(S%u,) uf —u,} Qu¥) 2(p—1) {w;—x,,| 1<i<p}. Therefore, to get the re-
quired result, it is sufficient to prove that, except x;,—x,, any o, in Lemma 3.4 is
not contained in Q'(yr)—{(3.4.1), (3.4.2), (3.4.3)}.

From (3.4.4) we may put

Q'(y) = {(3:4.1), (3.4.2), (3.4.3)} U W(SU(p+1)){F-w.} (3.4.5)

or = {(3.4.1), (3.4.2), 34.3)} U
W(SU(p+1)){Lawx;, Fa, -+, Sapx} (3.4.6)

(k< (p—1)

or = {(3.4.1), (3.4.2), 3:4.3)} U
W(SU(p+1)) {a(a,+x,+;), +bx} . (3.4.7)

The case of (3.4.7) may occur only for p=5. Moreover, the degree of v clearly
satisfies
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de(P) <I—d(S%u, S*uf—uuy) = p>+3p°—p—1. (3.4.8)

(1) Case of (3.4.5). First suppose w,=a(x,+x,)(a<2), ax,(a<3) or
a(x,+x,+x;) (a<2, p=5). Then the above w, becomes hR“sm»"" Thus
W(SU(p+1)){x,—x,} is contained in Q(yr). This contradicts (3.4.5). Next
suppose w,=a(x,+x,) (a>3), ax,(a=>4), a(x,—x,) (a=2) or a(x,+x,+x,) (a=>3,
p=>5). We replace w,=a(x,—x,) by a(x;—x,). Then, in any case, w, becomes
hpes sucn?? and hence Ressy,Yr has an irreducible direct summand p with z,=o,.
The p has a real form only when w,=a(x,—x,). Thus by applying (3.1) to p, we
see dg(r) > dg(p) >+ 30 —p—1 if 0,—a(x,—x,), and do(¥) > de(p@p*)>p*+
3p*—p—1 if w,=a(x,+x,) or a(x;+x,+x,). These contradict (3.4.8). And if
w,=ax;, then (a—1) x,+x,€0(S,) is contained in Q(Ressyyr) because of
p==S‘u,. This contradicts (3.4.5).

(2) Case of (3.4.6). If a;<3 for all 7, then o, is hResSU(p)"" If a;>4 for
some 7, then so is w,=a;x;,. Thus this case does not occur by the same reason
as in (1).

(3) Case of (3.4.7). If a>3 or b>4, then w,=a(x,+x,+x,) or bx, becomes
Pressepyt- And if a<2 and 5<3, then so does w,. Thus, by the same reason
as in (1), neither do this case occur.

From these results, only x,—x, remains as o, in (3.4.5) and hence the
proposition is proved. q.e.d.

3.5. @<=RRep(S(U(p)x U(1))) (p=3) satisfying all assumptions in Proposi-
tion 3.3 is really equivalent to ¢,, in Example 2.3. That is, we have the fol-
lowing Proposition 3.5. As in the previous subsections, we put r=¢p,—
Resssep xuan (%, Suf —u,uy) 6.

Proposition 3.5. Suppose that @ &RRep(S(U(p)x U(1))) satisfies all as-
sumptions in Proposition 3.3 and p=+3. Then (p@Diswepxuan). 18 equivalent to
Resswep xoan(SUpey Sufs1—tp gy 1) —0.

Proof. Case of p>5. From Proposition 3.4, we first see that 2x,—x,—x,,,
in (3.4.2) becomes hg,, ¥ Hence Y has yr,==Ressp xvay {(S™%,) tF —u,} @
u¥ and ¥ as its direct summands. Note that 4Jr, does not have a real form.
Next investigate PRessiscpyb=r=9D)- It is x,—x, and hence yr—Jr,—¥ has an ir-
reducible direct summand +r,==Resswp xvay@¥i —0)Q0. Similarly we see
Yr—fry—YF — = Ressup xuan 1(5°%,) @ (uf ) D(S*uf)®@ui}. This shows (P
tswep xuan)e=Resswp xvan(S*ps1 S*Uf1— 11y 4f11)—0 (see Lemma 2.3.1).

Case of p=2. From (3.4.1), Q'(yr) contains 2(x,—x,;). Thus 4 has an ir-
reducible direct summand ), with 2(x,—x;) €EQ’(yr;). Regard 4 as a represent-
ation of U(2). Then we see yr,==S°*u,(A’u,)° with 6-2¢>0 (that is, c¢<2), and

N
¥ also becomes a summand of . Because U(2) is {S“u,(A*s,)*|a>0, beZ}
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in which only the type of S™*'u,(A%,)* has a real form. Note that if 6-2c¢=0,
then 2(x,—x;) is not in Q(S®*u,(A*,)°). Moreover, from the assumption 14—4c
=2d¢o(Yr)) <dc(V) <I—do(S?u, S*uf —u, uf)=17, we get 0<c<2. Put ¢=0 or
1. Then #W(SU(3)){Q' (Y DY ¥)-(3.4.1)} >13 is derived. This contradicts
(3.4.4). Therefore we conclude ¢c=2. Next calculate W(SU(3)){Q'(yr,D¥TF)-
(34.1)}. Then we have 3x,€Q'(yr—yr,—F). Hence by the same way as
above, Jr—r,—¥ has Yr,=S%, and ¥ as its direct summands. Repeating
this argument, we can show that +» regarded as a representation of U(2) is
equivalent to (S?s,) (A%%,)*D(Su¥) (A’u,) "D S%u, D S%uF B(S°u,) (A*u,)~". Thus,
from Lemma 2.3.1, we get the required result. q.e.d.

3.6. Here we give the complete proofs of Theorems C, D and A in this order.

Proof of Theorem C. Suppose dim X(p+1,p)<dim X,(p+1,p). Then
@,ERRep(S(U(p) X U(1))) constructing the X(p-+1, p) satisfies all assumptions in
Proposition 3.3 (see Remarks 2.1.2 and 2.1.3). Thus, from Proposition 3.5, we
have @,~@, ,, and consequently dim X(p+1, p)=dim X, (p+1,p). This com-
pletes the proof. q.e.d.

We remark here that Theorem C is obtained only from the conditions on ¢,,
that is, (1) dimgW 53> dimpW{"®*Y® and (2) Q(g,Btscuep xvan) is W(SU(p+
1))-invariant.

Proof of Theorem D. Since XS(UW*UM 4P and XSV =P, there exists
a point x with SU(p+1),=S(U(p)x U(1)). Let s, denote the slice represent-
ation at x. Then dimpW S$r>dimgWSE®*V@ holds. Otherwise we have
dim X5 = dim XSU® XU hecause X5 is connected. Since X is a Q-acyclic
SU(p+1)-manifold, Q(X)=Q(s,Peswepxuay) is clearly W(SU(p+-1))-invariant
(see 1.1). Thus s, satisfies the above (1) and (2). And hence, to get the theorem
we have only to replace @, in the proof of Theorem C by s,. q.e.d.

Proof of Theorem A. Suppose dim X »=dim XS©®*U®  Then we have

XSo=XSU®*VM and hence XSUG+D = XSU@®XUM» ) X5p11P. This is a con-
tradiction. Thus the required result follows from Theorem D. q.e.d.

ReMARK 3.6.1. From the definition, any X(p-+1, p) clearly satisfies all as-
sumptions in Theorem D and in Theorem A.

ReEMARK 3.6.2. When p=3, there exists an X(4,3) whose dimension is
less than that of X,(4,3). First put H,=H,=<{(34))>, H,=<(23)>, H,=<(12),
(34)> and Hy=1xS,, where (mn) < S, denotes the transposition between m and
n. Next take five irreducible representations, Yr,=u,Qu¥ Q60 & Irr(U(1) x U(1) x
U(2)), Yr,=(1,)*Q ) @0 Irr(U(1) x U(1) X U(2)), ¥rs=(14)Q(A%uF) Q0 Irr
(U)X UR)XU(D), =) @AHE Irr (U)X U (D), Yro=(u)'@IE [rr
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(U(1)x U(3)), and define i Irr(H,) by Resg\p; (1<i<5). Furthermore, let
o, Irr(H;) (i=1, 3) be non-trivial irreducible representations of H; of degree 1
and A € Irr(S,) the standard permutation representation of .S, of degree 3. Denote
by o/ and A’ the lifts of o; and X to H; and S, respectively. Then, as @, and

@, constructing the above X(4, 3), we can take the followings: (¢,).=( g}? 3Ind ;3;:
Vi o)D( B Ind 3t v)DInd 475 oiDInd (78 * DN, (92)e=Resscoemxoan {(S*
4, SuF —u,u¥) QOD(S*u,) QOD(S*uF) QOD(S?u,) @ (uF ) B (S uf) Qui PIR (u,)*
POIR(ut)'t. These @, and ¢, really satisfy Condition A in 2.1. The proof is
omitted here. Anyway dim X(4, 3) = dg(:5,Dp;) = dr(tscwosxuvan Pp,) =77 is
less than dim X,(4,3)=83. And the weight system of yr=(g,).—Resscc) xvay
(S%u, S?u¥—uuf)®0 is given by {(3.4.1), (3.4.2)} U W(SU4)){L-4x,, x,+x,—
x;—x,} (cf. Proposition 3.4).

4, Proof of Theorem B

The purpose of this section is to prove Theorem B in Introduction. The
notations are the same as in the previous sections.

First we classify fixed-point free SU(3)-actions on compact Z,-acyclic mani-
folds X into two types: (I) XSU@*xUD 4P, (II) XSUG*UM =, Theorem B
is given by showing

(i) every X of type (I) satisfies all assumptions in Theorem A, and hence
dim X >26=dim X,(3,2),
(i) there is no X of type (II) with dim X<26=dim X,(3,2).

It is easy to show (i). The most part of this section is offered to show (ii).
Roughly speaking, under the assumption that X is an SU(3)-manifold of type
(IT) with dim X<26, in 4.3 and 4.4 we prepare some conditions on the weight
system Q(X) and on the tangential representations at certain points in X. And
then we prove that any SU(3)-manifold of type (IT) can not really satisfy all of
the conditions in 4.3 and 4.4. As seen in the proof of Proposition 4.3, every
SU(3)-manifold X of type (II) contains a compact Z,-acyclic submanifold X7*
with a fixed-point free SO(3)-action such that Q(X)DQ(X’"). In order to
determine Q(X), it is useful to investigate Q(X”"). So, in two subsections
4.1 and 4.2 preceding 4.3, we first state a known result for actions of finite groups
on Z,-acyclic manifolds in [9], and study the weight systems of compact Z,-
acyclic manifolds with fixed-point free SO(3)-actions. The final proof of The-
orem B is given in the last subsection 4.5.

4.1. For prime numbers p and ¢, G} denotes the family of finite groups
G with series of normal subgroups as follows: H<JK<]G, where H is a p-group,
K/H a cyclic group and G/K a g-group. Write U, 4} by &G,. Then by cal-
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culating Euler characteristics of fixed point sets, we have the following. For
the details, see Lemma 1 and Proposition 1 in [9].

Proposition 4.1.  If a finite group G can act on a compact Z ,-acyclic manifold
without fixed points, then G is not in G,.

4.2. Throughout this subsection, let Y be a compact Z,-acyclic manifold
with an SO(3)-action ¥, and specify the maximal torus 7" of SO(3) by SO(2)=

ab0
{ (c d 0) €S0(3)}. Furthermore {t} denotes the coordinate with respect to the
001

canonical basis for L(T'). Then mteL(T") (see 1.1) corresponds to the repre-
sentation of SO(2) defined by (A, v)—A"v for A=S0(2), vER?, and Q(Y) is
written in the form @, {0} U a, {42} Ua, {32t} U ---.

The object of this subsection is to describe (Y) when ¥ is fixed-point
free. To do this, we can apply the procedure in Section 1, [11] where the
weight system for a fixed-point free SO(3)-action on a disk has been described
by comparing the tangential representations at fixed points by O(2) and an
octahedral subgroup. Consequently we obtain Proposition 4.2.2 below which
follows from Lemmas 4.2.1-4.2.3 and Proposition 4.2.1 stated before it. The
details of the proofs are omitted here. Because the proofs are the same as
those of the corresponding lemmas and propositions in [11], except that, in
our case, the fixed point set Y? by a p group P is not always connected if p=2.

For any g&S0(3) and any ye Y fixed by g, X,(g) denotes the character
of g for the tangential representation at y. And by Q,(Y), we denote the char-
acter of g&S0(2) for the representation of SO(2) giving Q(Y). Furtheremore
Z,, D, and O denote a cyclic subgroup of order 7, a dihedral subgroup of order
2n and an octahedral subgroup of SO(3) respectively. Both D, and O are in
G,. From Proposition 4.1 and the fact that Y? is connected for a 2 group P
(see Chapter IIT in [3]), we get Lemmas 4.2.1, 4.2.2 and consequently Proposi-
tion 4.2.1.

Lemma 4.2.1 (cf. Lemma 1 in [11]). Y°® and Y© are both non-empty.

Lemma 4.2.2 (cf. Lemma 2 in [11]). Assume that g,, g,&S0(3) are con-
jugate elements of 2 power order and y,, y,EY are points fixed by g, and g, re-
spectively. Then X, (g,)=X,,(g,) holds.

Propositton 4.2.1 (cf. Proposition 1 in [11]). Suppose that ¥ is fixed-
point free. Then the followings hold:

(1) Y°%®; for any yY® and any g0 of 2 power order, there exists
&'€8S0(2) conjugate to g such that Q(Y)=X,(g),

(2) YOO £D; WY) is the weight system of an actual representation of O(2),
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(3) Q(Y) contains t,
4) dim YP>dim Y°,
(5) dim YZ>dim Y%  for all s>2.

(1) and (2) follow from Lemmas 4.2.1 and 4.2.2. (3) is based on that ¥
has an orbit of type SO(3)/O(2) and tEQ(¢o))- And (4) is given from the
fact that YOS Y242 Y°® YON YO®=YS0® and Y™ is connected. Similarly
we obtain (5). Note that (1) and (2) do not depend on whether ¥ is fixed-
point free or not.

It is well known that O(==S,) has just five irreducible real representations
(see Section 5 in [12]). For those, we will use the same notations W,, W1,
W3, W, and W} as in [11]. The W; (resp. W) denotes the orientable (resp.
unorientable) representation of degree i. Especially W, is the trivial represen-
tation and W} is the only non-trivial representation such that D, has positive
dimensional fixed point set on the representation space. Lemma 4.2.3 below
follows from (1) in Proposition 4.2.1.

Lemma 4.2.3 (cf. Lemma 3 in [11]). Put Q(Y)=a,{0} Ua,{+1} Ua, {1+
2ty U -+, and for all s>1, set ky=a,+a,+a,;++--. Let ¥, denote the tangential
representation at y= Y°. Then ¥, is equivalent to bW,B(—a,+k,—k,—2k,+b)
W {D(a,—k,+2k,+k,—b) WD (k,—2k,+-k,) W,D(k,—k,) W3, where b is a non-
negative integer.

Proposition 4.2.2 (cf. Proposition 2 in [11]). Suppose that V is fixed-point
free. And let {a;} and {k;} be the non-negative integers defined in Lemma 4.2.3.
Then Q(Y) satisfies the followings: (i) a,>0, (i) k,>k,, (i) 0<k,—2k,<a,
and (iv) k, >k, for all s>2.

(1) and (iv) immediately follow from (3) and (5) in Proposition 4.2.1 respec-
tively, and (iii) from (2) by the same reason as in [11]. If (1) in Proposition
4.2.1 holds. then all coefficients of ¥, in Lemma 4.2.3 are non-negative. More-
over if (4) holds, then the coefficient for W3 of ¥, is positive. From these we
have (ii).

4.3. Return to SU(3)-actions. In the rest of this section, by 7" we denote
the maximal torus ST, of SU(3) specified in 1.1, and by T the corank one
subtorus whose Lie algebra is perpendicular to a=x,—x, (see the proof of
Lemma 3.2). As in Section 2, for a subgroup H of N(T)/T=S, H means
="' (H), where  is the projection from N(T) to S,. Furthermore let =, be the
projection from N(T*)=S(U(2)x U(1)) to N(T*)/T*==SO(3) which is given by
Adgeyxuay—0, and for a subgroup K of SO(3), we write z,(K) by K,.
Groups D, and O are the same as in 4.2.

In this subsection, from now we suppose that X is a compact Z,~acyclic SU(3)-
manifold of type (II) (that is, X3V®*VM =) with dim X<26.
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Proposition 4.3. The non-zero weight system Q'(X) is
3
{£(xi—x;), £4(x;—x;), £m(x;—x;), +n(x;—x;) | 1<i<j <3, § x; = 0}

for m=2 (mod 4), n=1 (mod 2).

Proof. Since XSU®xUM)—(XT*)¥a*/1%—(X7%)S0® = and by Smith theo-
ry X* is Z,-acyclic, Proposition 4.2.2 can be applied to the restricted SO(3)-
action on X7°, The a corresponds to ¢ in Lemma 4.2.3 and we may put Q(X7*)
=a,{0} Ua,{d-a} Ua,{+2a} U---. Let k,=a,+a,+--+(s>1). First dim X<
26 implies k,<4. Furthermore, from Proposition 4.2.2, we get 4,>0, k=4,
k=2, k,—a,—1 and k=0 for s>2. This shows Q'(X7")={+e, +4a, +me,
+na} where m=2 (mod 4) and n=1 (mod 2). Hence Q'(X) is given as in
the proposition, because dim X<26 and Q(X) is invariant under the natural
W(SU(3))-action (see 1.1). q.e.d.

By Proposition 4.3, we may assume dim X=24 or 25. So put d=dim X—24
and A= {a, 4a, ma, na}, where a=x,—x, and m, n are as in Proposition 4.3.
Since S,, 0€G,, X% and X%=(X7")° are both non-empty (see Proposition
4.1). Thus there are points x and y in X such that the isotropy subgroups
SU(3),=3S, (see Remark 2.1.1) and SU(3),20, respectively. Denoting by ¢,
and @, the tangential representation at x and the restriction of that at y to O,
respectively, they satisfy the conditions:

(a) Qp,) = Q(X)=d{0} UW(SUQ)) A, (d=0or1),
(b)  Respyu p==Resp,) s Py - (4.3)

The condition (a) follows from Proposition 4.3 and (b) from the facts that XSc
X022 X% and D, is a 2-group, and consequently X P« is connected.

4.4. In this subsection, we investigate the above @, and @, more pre-
cisely.

ab0
First we fix some subgroups of SO(3). Set SO(2)= {(c d 0) €S50(3)} and
ab 0 001
O0@2)={|cd O) €80(3)}. For any n>2, Z, is the cyclic subgroup of SO(2)
0041 0—-1 0
of order z and D, is the subgroup generated by Z,and [ —1 0 O). And fix
0 0-1

O as the subgroup of all 3-square matrices with one non-zero entry in every row
and column.

Lemma 4.4.1. (p,), is equivalent to EBA (Ind 53 ¥)BdL', where §’ € CRep(S;)
ye
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is the lift of {€CRep(S,) with dg(§)=1. Moreover each direct summand is
irreducible.

Proof. Consider the extension 1—T—§;,—S,—1. Clearly S, acts on
W(SU(3)) A freely. Thus, by Proposition 1.3 and (a) in (4.3), we have the
quired result. q.e.d.

Let S be a set of representatives of double cosets (D,),\S,/7T, that is, S={1,

010/ \100
Lemma 4.4.1 and Proposition 1.2.1, we have

Ret{(p.)~dE'y= @ Resoa Ind o
=@ (P IndZ32"). (4.4)

YEA teS

001\, /010
(l 0 O), (0 0 1)}. Then for each ¢t S, tTt™'N(D,),=(Z,), holds. Thus, from

Here y*€Irr((Z,),) is defined as in Proposition 1.2.1.

Lemma 4.4.2. If y=a(x,—x,), a0 (mod 4) and t¥1, then Ind{343 " is
trreductble.

Proof. Put g:diag(e‘%‘, e+, 1)e(Z,), and take any s&€(D,),—(Z,)).. Then
by calculating (v*)°(g) and v%(g), we see (v)*2«y*, where ()’ is defined as in
Proposition 1.2.2. Thus from Proposition 1.2.2, we obtain the lemma. q.e.d.

Consider the central extension 1->7%—0,—~0—>1. This is a restriction of
1-T*-N(T*)=5(U(2) x U(1))>SO(3)—1. 'Thus the product of elements (g,,
hy) and (g, y) in O,=0 x T* (as sets) is given by (£, 1)°(&x h:)=(g1 £, X(&1, £2)
hy hy), where X(g,, g,) is 1 or diag(—1, —1, 1). 'This shows that if y&Irr(T*) is
the form ax, and a=0 (mod 2), then v extends to v’ &€Irr(0,). In fact, ¥’ can
be defined by v'(g, A)=7(h). Therefore, from Proposition 1.3, the lemma below
follows.

Lemma 443. O,= U 15€(0,),=0,}. Moreover, if y=ax, and
yer®/0 ”
a=0 (mod 2), then v is equivalent to o’ 7', where o' and ' are the lifts of o€
Irr(O) and v to O, respectively.

4.5. Now we can prove Theorem B.

Proof of Theorem B. Let X be a compact Z,-acyclic manifold with a fixed-
point free SU(3)-action. As mentioned before, we classify X into two types: (I)
XSU@xUM 4P, (II) XSUO*XUM=@. First suppose that X is of type (I).
Since S,€4, and S,2=Z, X5%+® and X% is connected. Thus X satisfies all
assumptions in Theorem A, and hence we have dim X >dim X,,(3, 2)=26. Next
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suppose that X is of type (IT) and dim X<<26. Then Q'(X) s given as in Propo-
sition 4.3, and we can take the representations @,&RRep(S,) and ¢,E RRep
(O,) satisfying (4.3). From (4.4) and Lemma 4.4.2, Res(p,)4(;). has an irreduci-
ble direct summand equivalent to Ind{34)s m(x,—x,)! (t31) of degree 2. And
from (b) in (4.3), we have Res;s @,=Res;« p,. Hence, from (b) in (4.3) and
Lemma 4.4.3, Res(p,),(,). has a direct summand which is equivalent to Resp,),
[0’ Respa{m(x,—x,)'} '] (c €Irr(0)) and is decomposed into an irreducible direct
summand of degree 2 and others. This implies that o is of degree 3. Because
the restriction of any other irreducible representation of O to D, is a sum of
representations of degree 1 (see Section 5 in [12]). Therefore, at least two
weights v with Res;ay=+3mux, are added more to Q'(X). This is a contradic-
tion. Thus we have dim X >26. q.e.d.
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