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1. Introduction

In 1975, Yau [9, p. 87] posed the problem of the classificationof flat tori in the
unit 3-sphere 3. Concerning this problem, the author established a method for con-
structing all the flat tori in 3 ([2]), and obtained some results on flat tori in3 ([1],
[3], [4], [5]). In this paper, using this method, we study isometric deformations of flat
tori isometrically immersed in 3 with constant mean curvature, and we obtain the
classification of undeformable flat tori in3.

For positive constants 1 and 2 satisfying 2
1 + 2

2 = 1, let : R2 → 3 be an
isometric immersion given by

(1.1) ( 1 2) =

(

1 cos 1

1
1 sin 1

1
2 cos 2

2
2 sin 2

2

)

and 0 a lattice ofR2 defined by

(1.2) 0 = {(2π 1 1 2π 2 2) : 1 2 ∈ Z}

If is a lattice of R2 such that ⊂ 0, then we obtain a flat torusR2/ and an
isometric immersion

(1.3) / : R2/ → 3

with constant mean curvature. Conversely, every flat torus isometrically immersed in
3 with constant mean curvature is obtained in this way. Note that the immersion
/ is the composition of the covering mapR2/ → R2/ 0 and the embedding
/ 0 : R2/ 0 → 3. In [3] the author studied isometric deformations of/ 0, and

proved the following theorem.
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Theorem 1.1. If : R2/ 0 → 3, ∈ R, is a smooth one parameter family of
isometric immersions with 0 = / 0, then for each ∈ R there exists an isometry

: 3→ 3 such that = ◦ 0.

This theorem says that every isometric deformation of/ 0 is trivial. On the
other hand, there are many lattices ⊂ 0 such that the immersion / is de-
formable. Let +( ) and −( ) be lattices ofR2 defined by

(1.4) ±( ) = {(2π 1 1 2π 2 2) : 1± 2 ∈ Z} ⊂ 0

Then we can show that if ⊂ +( ) or ⊂ −( ) for some integer ≥ 2, the
immersion / is deformable (Theorem 3.1). Here, we give the following definition.

DEFINITION. For immersions 1 : 1 → 3 and 2 : 2 → 3, we write 1 ≡ 2,
and we say “1 is congruent to 2” if there exist an isometry : 3 → 3 and
a diffeomorphismρ : 1 → 2 such that ◦ 1 = 2 ◦ ρ. An isometric immer-
sion : → 3 is said to bedeformableif it admits an isometric deformation :
→ 3 ( ∈ R 0 = ) such that 0 6≡ 1.

The assertion of Theorem 3.1 leads us to the problem of findingall the lattices
⊂ 0 such that the immersion / is deformable. In this paper we study this

problem, and prove the following theorem.

Theorem 1.2. Let be a lattice ofR2 such that ⊂ 0. Then the immersion
/ is deformable if and only if there exists an integer≥ 2 such that ⊂ +( )

or ⊂ −( ).

Furthermore, as a corollary of this theorem, we obtain the following classification
of undeformable flat tori isometrically immersed in3.

Theorem 1.3. Let : → 3 be an isometric immersion of a flat torus into
the unit sphere 3. Then the following statements are equivalent.
(1) Every isometric deformation of is trivial.
(2) There exist positive constants1 and 2 with 2

1+ 2
2 = 1 such that is congruent

to the immersion / given by (1.3), where the lattice satisfies 6⊂ +( ) and
6⊂ −( ) for all integers ≥ 2.

REMARK. Let be a lattice ofR2 generated by the following two vectors

= (2π 1 1 2π 2 2) = (2π 1 1 2π 2 2) ∈ Z

Then it is easy to see that the following statements are equivalent.
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(1) 6⊂ +( ) and 6⊂ −( ) for all integers ≥ 2.
(2) ( 1 + 2 1 + 2) = ( 1− 2 1− 2) = 1.

The outline of this paper is as follows. In Section 2 we study the geometry of a flat
torus γ ⊂ 3 which is the inverse image under the Hopf fibration3 → 2 of a
closed curveγ in 2. In Section 3 we show that ifγ is an -fold circle in 2 ( ≥ 2),
then the flat torus γ ⊂ 3 is deformable (Lemma 3.2). Using this lemma, we obtain
Theorem 3.1. In Section 4 we prove Theorems 1.2 and 1.3. The key ingredient in the
proof of Theorem 1.2 is Lemma 4.1 which is obtained by using a method developed
in [2]. The assertion of Theorem 1.3 follows from the main result of [5] which states
that every flat torus isometrically immersed in3 with nonconstant mean curvature is
deformable. In the final section we prove Theorem 5.1. This theorem, which is used
in the proof of Lemma 3.2 , ensures the existence of certain deformation of an -fold
circle in 2 for ≥ 2.

2. Hopf tori in S3

In this section we study the geometry of a flat torus in3 constructed by using
the Hopf fibration 3 → 2. We start with the description of the Hopf fibration by
using the group structure of3. Let (2) be the group of all 2× 2 unitary matrices
with determinant 1. Its Lie algebrasu(2) consists of all 2×2 skew Hermitian matrices
of trace 0. We define a positive definite inner product〈 〉 on su(2) by

〈 〉 = −1
2

trace( ) ∈ su(2)

The inner product〈 〉 is invariant under the adjoint action Ad: (2)→ Aut(su(2)).
We set

1 =

[
0
√
−1√

−1 0

]

2 =

[
0 −1
1 0

]

3 =

[√−1 0
0 −

√
−1

]

Then { 1 2 3} is an orthonormal basis ofsu(2) such that

[ 1 2] = 2 3 [ 2 3] = 2 1 [ 3 1] = 2 2

where [ , ] is the Lie bracket onsu(2). For = 1, 2, 3, we denote by the left
invariant vector field on (2) corresponding to , and we endow (2) with a bi-
invariant Riemannian metric〈 〉 satisfying 〈 〉 = δ . Then (2) is a Rieman-
nian manifold isometric to the unit sphere3. Henceforth, we identify 3 with (2).
Let 2 be the unit sphere insu(2) given by 2 = { ∈ su(2) : | | = 1}, and

: 3→ 2 the Hopf fibration given by

( ) = Ad( ) 3
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The vector field 3 is tangent to the fibers of the Hopf fibration. For ∈ 3, it
follows that

〈 ∗ ∗ 〉 = 4{〈 〉 − 〈 3〉 〈 3〉}(2.1)

∗( 3) = − ( ∗ )(2.2)

where denotes the Riemannian connection on3, and denotes the almost complex
structure on 2 defined by ( ) = [ ]/2 for ∈ 2. We identify the unit tangent
bundle of 2 with the subset 2 ⊂ 2 × 2 defined by

2 = {( ) ∈ 2 × 2 : 〈 〉 = 0}

Here, the canonical projection1 : 2 → 2 is given by 1( ) = . Furthermore,
we define a double covering2 : 3→ 2 by

2( ) = (Ad( ) 3 Ad( ) 1)

Let γ : R → 2 be a 2π-periodic regular curve in 2. Using the Hopf fibration
: 3 → 2, we construct a 2-dimensional torusγ and an immersion γ : γ → 3

by

γ = {( ) ∈ 1× 3 : γ( ) = ( )} γ( ) =

where 1 denotes the unit circle inC. The immersion γ induces a flat Riemannian
metric on γ (see [8]). So we obtain a flat torusγ and an isometric immersion

γ : γ → 3

The immersion γ is called theHopf torus corresponding toγ.
In the rest of this section we describe the Riemannian structure of γ and the

second fundamental form ofγ . Let (γ) be the length ofγ and (γ) the total
geodesic curvature ofγ, that is,

(γ) =
∫ 2π

0
|γ′( )| (γ) =

∫ 2π

0
γ( )|γ′( )|

where γ( ) denotes the geodesic curvature ofγ( ) given by

γ( ) =
〈γ′′( ) (γ′( ))〉
|γ′( )|3

We now consider the curve ˆγ : R→ 2 given by

(2.3) γ̂( ) =

(

γ( )
γ′( )
|γ′( )|

)
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and denote by (γ) the element of the homology group1( 2) represented by the
closed curve ˆγ | [0 2π]. Note that 1( 2) ∼= Z2. Let ( ) be a lift of the curve ˆγ( )
with respect to the double covering2 : 3→ 2. Since 2(− ) = 2( ), we obtain

(2.4) ( + 2π) =

{

( ) if (γ) = 0

− ( ) if (γ) = 1

We set

(2.5) (γ) =

{

(γ) if (γ) = 0

(γ) + 2π if (γ) = 1

and define (γ) to be the lattice ofR2 generated by the following two vectors

(2.6) 1 =

(
(γ)
2

(γ)
2

)

2 = (0 2π)

Then the Riemannian structure ofγ is given by the following

Lemma 2.1. The flat torus γ is isometric toR2/ (γ).

To establish the lemma we consider the coveringϕ : R2→ γ defined by

(2.7) ϕ( τ ) = ( γ̄( ) exp(τ 3))

where γ̄( ) is a curve in 3 such that (¯γ( )) = γ( ) and 〈γ̄′( ) 3〉 = 0. Then it
follows from (2.1) that|γ′( )| = | ∗γ̄′( )| = 2|γ̄′( )|. So we obtain

(2.8) ϕ∗
γ =

1
4
|γ′( )|2 2 + τ2

where γ denotes the Riemannian metric onγ . Let ρ : R2 → R2 be a diffeomor-
phism given by

ρ( τ ) =

(
1
2

∫

0
|γ′( )| τ

)

and :R2→ γ a covering map defined by

(2.9) ( 1 2) = ϕ(ρ−1( 1 2))

Sinceρ∗( 2
1 + 2

2) = ϕ∗
γ , the map is a Riemannian covering, and so the assertion

of Lemma 2.1 follows from the lemma below.

Lemma 2.2. For , ′ ∈ R2, ( ) = ( ′) if and only if ′ − ∈ (γ).
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Proof. We set =ρ( τ ) and ′ = ρ( ′ τ ′). Then we obtain

(2.10) ( ) = ( γ̄( ) exp(τ 3)) ( ′) = (
′

γ̄( ′) exp(τ ′ 3))

Since ( ( )) = (γ̄( )), there exists a real valued functionµ( ) such that

(2.11) ( ) =γ̄( ) exp(µ( ) 3)

On the other hand, it follows from [4, Lemma2.2] that the curve ( ) satisfies

(2.12) ( )−1 ′( ) =
1
2
|γ′( )|( 2 + γ( ) 3)

Since
〈
γ̄−1( )γ̄′( ) 3

〉
= 0, (2.11) and (2.12) implyµ′( ) = (1/2) γ( )|γ′( )|. Hence

(2.13) µ( + 2π)− µ( ) =
∫ 2π

0

1
2 γ( )|γ′( )| =

1
2

(γ)

Using (2.4), (2.5), (2.11) and (2.13), we obtain ¯γ( + 2π) = γ̄( ) exp{−(1/2) (γ) 3}.
So it follows from (2.10) that ( ) = (′) if and only if there exist 1, 2 ∈ Z
satisfying

(2.14) ′ − = 2 1π τ ′ − τ = 1

2
(γ) + 2 2π

Since ′ − = {(1/2)
∫ ′

|γ′( )| τ ′ − τ}, we see that (2.14) is equivalent to

′ − =
(

1

2
(γ) 1

2
(γ) + 2 2π

)

This completes the proof.

We now deal with the second fundamental form of the immersionγ : γ → 3.
Let ξ be a unit normal vector field ofγ such that

∗ξ( ) = 2 ( ) ( ) ∈ γ

where ( ) = (γ′( ))/|γ′( )|, and let γ denote the second fundamental form of the
immersion γ with respect toξ. Then

Lemma 2.3. ϕ∗
γ = (1/2) γ( )|γ′( )|2 2− |γ′( )| τ .

Proof. We set

= γ ◦ ϕ =
∂

∂
=
∂

∂τ
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Since 〈γ̄′ 3〉 = 0, it follows from [2, Lemma 3.3] that

∗( ) = ∗( γ̄′ γ̄′) = ∇γ′γ′

where∇ denotes the Riemannian connection on2. Hence (2.1) implies

γ

(
∂ϕ

∂

∂ϕ

∂

)

= 〈 ξ(ϕ)〉 =
1
4
〈 ∗( ) ∗ξ(ϕ)〉

=
1
4
〈∇γ′γ′ 2 〉 =

1
2
〈γ′′ 〉 =

1
2 γ |γ′|2

(2.15)

Since ( τ ) = 3( ( τ )), it follows from (2.2) that ∗( ) = ∗( 3) =
− ( ∗ ) = − (γ′). Hence

γ

(
∂ϕ

∂

∂ϕ

∂τ

)

= 〈 ξ(ϕ)〉 =
1
4
〈 ∗( ) ∗ξ(ϕ)〉

=
1
4
〈− (γ′) 2 〉 = −1

2
|γ′|

(2.16)

Since the integral curves of the vector field3 are geodesics in3, we see that =
0. Hence

(2.17) γ

(
∂ϕ

∂τ

∂ϕ

∂τ

)

= 〈 ξ(ϕ)〉 = 0

The assertion of Lemma 2.3 follows from (2.15)–(2.17).

Using (2.8) and Lemma 2.3, we obtain

(2.18) | γ(ϕ( τ ))| = | γ( )|

where γ denotes the mean curvature vector field of the immersionγ .

3. Isometric deformations of F G

Let ±( ) denote the lattices ofR2 defined by (1.4). In this section we show the
following theorem.

Theorem 3.1. Let be a lattice ofR2 such that ⊂ 0. If ⊂ +( ) or
⊂ −( ) for some integer ≥ 2, the isometric immersion / given by (1.3) is

deformable.

To establish the theorem above we need some lemmas. For each integer ≥ 1,
let γ : R→ 2 be a 2π-periodic regular curve defined by

(3.1) γ( ) = (cosθ cos ) 1 + (cosθ sin ) 2 + (sinθ) 3
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whereθ is a constant such that

(3.2)
2
2 − 2

1

2 1 2
= tanθ −π

2
< θ <

π

2

Note that the geodesic curvature ofγ satisfies

(3.3) γ( ) = tanθ

We now consider the Hopf torusγ : γ → 3 corresponding toγ. Then

Lemma 3.2. The immersion γ is deformable for ≥ 2.

Proof. Since ≥ 2, it follows that there exists a smooth one parameter family
of 2π-periodic regular curvesγ : R→ 2, ∈ R, such thatγ0 = γ and

(γ ) = (γ) (γ ) = (γ)(3.4)

γ (0) 6= tanθ for all 6= 0(3.5)

The existence ofγ as above will be established in the final section (Theorem 5.1).
Let γ̄ : R → 3, ∈ R be a smooth one parameter family of curves in3 such that

(γ̄ ( )) = γ ( ) and 〈γ̄′( ) 3〉 = 0, and :R2→ γ the Riemannian covering map
defined in the same way as (2.9). Then, by Lemma 2.2, induces the isometry

˜ : R2/ (γ )→ γ

Since (γ ) = (γ), it follows from (3.4) that (γ ) = (γ). So, by setting =

γ ◦ ˜ ◦ ˜ −1
0 , we obtain a smooth one parameter family of isometric immersions

: γ → 3, ∈ R, such that 0 = γ . Let denote the mean curvature vector
field of . Then it follows from (2.18) and (3.5) that there exists a point ∈ γ

such that| 1( )| 6= | tanθ|. On the other hand, (3.3) implies that| 0( )| = | tanθ| for
all ∈ γ . Hence 0 6≡ 1, and so the immersionγ is deformable.

Lemma 3.3. The immersions / +( ) and / −( ) are deformable for ≥ 2.

Proof. We first note that / +( ) ≡ / −( ). So, by Lemma 3.2, it is suf-
ficient to show that γ ≡ / +( ). Let : R2 → γ be the Riemannian covering
defined by (2.9), and̃ γ : R2→ 3 an isometric immersion given bỹγ = γ ◦ . We
denote by˜ the second fundamental form of the immersion˜

γ . Then it follows from
Lemma 2.3 and (3.3) that

(3.6) ˜ = 2 tanθ 2
1 − 2 1 2
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Let be an isometry ofR2 given by

( 1 2) = ( 2 1 + 1 2 − 1 1 + 2 2)

Then it follows from (3.2) and (3.6) that

∗ ˜ = 2

1

2
1 −

1

2

2
2

Hence the isometric immersions̃γ ◦ : R2 → 3 and : R2 → 3 have the same
second fundamental form. So it follows from the fundamentaltheorem of the theory
of surfaces that there exists an isometry :3→ 3 satisfying

(3.7) ˜
γ ◦ = ◦

On the other hand, (3.1) implies

(γ) = 2 π cosθ (γ) = 2 π sinθ (γ) =

{

0 if is even

1 if is odd

So, by (2.6), the lattice (γ) is generated by

1 = ( π cosθ π sinθ + π) 2 = (0 2π)

Hence we obtain (γ) = { 1ξ1 + 2ξ2 : 1 + 2 ∈ Z}, where

ξ1 = (π cosθ π sinθ − π) ξ2 = (π cosθ π sinθ + π)

By (3.2) the vectorsξ1 and ξ2 can be written as

ξ1 = 2π 1( 2 − 1) ξ2 = 2π 2( 1 2)

This shows that ( +( )) = (γ), and so it follows from Lemma 2.2 that there exists
a diffeomprphism ¯: R2/ +( ) → γ satisfying ◦ = ¯ ◦ , where denotes
the canonical projection ofR2 onto R2/ +( ). Therefore (3.7) implies thatγ ◦ ¯ =
◦ / +( ).

By the lemma above the assertion of Theorem 3.1 follows from the following

Lemma 3.4. Let be a lattice ofR2 such that ⊂ 0 and the immersion
/ is deformable. Then for each lattice ⊂ the immersion / is deformable.

Proof. By the assumption, the isometric immersion/ : R2/ → 3 admits
an isometric deformation :R2/ → 3 such that 0 6≡ 1. Then the mean curvature
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vector field of , denoted by , satisfies

(3.8)

{

| 0( )| = | 2
2 − 2

1|/2 1 2 for all ∈ R2/

| 1( )| 6= | 2
2 − 2

1|/2 1 2 for some ∈ R2/

We now consider the canonical projection :R2/ → R2/ and an isometric defor-
mation of / given by ¯ = ◦ . Then (3.8) implies that̄ 0 6≡ 1̄, and so the
immersion / is deformable.

4. Proof of main theorems

In this section we give the proof of Theorems 1.2 and 1.3. Consider the map
σ : 0→ 0 defined by

σ(2π 1 1 2π 2 2) = (2π 1 2 2π 2 1)

The following lemma is the key ingredient in the proof of Theorem 1.2.

Lemma 4.1. Let be a lattice ofR2 such that ⊂ 0. If : R2→ 3, ∈ R,
is a -invariant isometric deformation of the immersion, then the deformation is
σ( )-invariant.

Proof. Let ∈ . Then it is sufficient to show that

(4.1) ( +σ( )) = ( ) for all ∈ R

Since :R2 → 3 is an isometric immersion, it follows from [7] that there exists a
diffeomorphism :R2→ R2 such that

(4.2) |∂ | = 1 (∂ ∂ ) = 0 for = 1 2

where denotes the second fundamental form of . We may assume that the map
( 1 2) 7→ ( 1 2) is smooth and

(4.3) (0 0) = (0 0) 0( 1 2) = ( 1( 1− 2) 2( 1 + 2))

By (4.2) we obtain∂1∂2 = (0 0). So it follows from (0 0) = (0 0) that

(4.4) ( 1 2) = ( 1 0) + (0 2)

We set

(4.5) ( 1( ) 2( )) = −1( ) ( ) = ( 1( ) 0)
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Then = 0( 1(0) 2(0)) = ( 1( 1(0)− 2(0)) 2( 1(0) + 2(0))), and so we obtain

+ σ( ) = 2 (0)

Since is -invariant, the relation above implies

(4.6) ( +σ( )) = ( + 2 (0))

Let : R2 → R2/ be a covering given by = ◦ , where :R2 → R2/

denotes the canonical projection. Since ( ) = (0 0), it follows from (4.3) and (4.5)
that (1( ) 2( )) = (0 0). So there exists a diffeomorphismϕ : R2 → R2 such that
◦ ϕ = and ϕ(0 0) = ( 1( ) 2( )). Then (ϕ( 1 2)) − ( 1 2) ∈ , and so it

follows from (4.5) that

(4.7) (ϕ( 1 2)) = ( 1 2) +

We now consider an immersioñ : R2 → 3 defined by ˜ = ◦ . Then, by (4.2),
we see that the immersioñ is a FAT. Here, we refer the reader to [2, p. 460] for
the definition of FAT. Furthermore, it follows from (4.7) that ˜ ◦ ϕ = ˜ . Therefore,
[2, Theorem 2.3] implies

(4.8) ϕ( 1 2) = ( 1 + 1( ) 2 + 2( ))

In particular, we obtain˜ ( 1 + 1( ) 2 + 2( )) = ˜ ( 1 2), and so it follows from [2,
Theorem 3.9, Lemma 5.5] that

(4.9) ˜ ( 1 + 2 1( ) 2) = ˜ ( 1 2)

On the other hand, combining (4.7) and (4.8), we obtain

(4.10) ( 1 + 1( ) 2 + 2( )) = ( 1 2) +

Using (4.4), (4.5) and (4.10), we see that

( 1 + 1( ) 2) = ( 1 + 1( ) 2( )) + (0 2)− (0 2( ))

= ( 1 2) + − (0 2( )) = ( 1 2) + ( )

This implies (1 + 2 1( ) 2) = ( 1 2) + 2 ( ), and so it follows from (4.9) that

(4.11) ( + 2 ( )) = ( )

By (4.6) and (4.11), we see that (4.1) follows from the assertion that ( ) = (0) for
all ∈ R. To establish this assertion, suppose that there exists0 such that (0) 6= (0).
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Since the set of all points ( )∈ R2 is not countable, there exists∈ R such that ( )
is not contained in the countable set

⋃∞
=1{ /2 : ∈ }. Let : R2/ → 3 be an

immersion defined by the relation ◦ = , and{ }∞=1 a sequence inR2/ given
by = (2 ( )). Then it follows from (4.11) that ( ) = ( ). Furthermore, as
2 ( ) 6∈ for all ≥ 1, we obtain 6= ( 6= ). So, using the fact that
is locally injective, we see that the sequence{ }∞=1 has no convergent subsequence.
This contradicts the fact thatR2/ is compact. Hence we obtain ( ) = (0) for all
∈ R.

We now recall the lattices ±( ) given by (1.4), and for each lattice ⊂ 0 we
consider the lattice

+ σ( ) = { + σ( ) : ∈ }

Then we obtain

Lemma 4.2. Let be a lattice ofR2 such that ⊂ 0. If 6⊂ +( ) and
6⊂ −( ) for all integers ≥ 2, then + σ( ) = 0.

Proof. Since +σ( ) ⊂ 0, it is sufficient to show that 0 ⊂ + σ( ). Let
and be generators of the lattice . Since ∈ 0, we can write as

= (2π 1 1 2π 2 2) = (2π 1 1 2π 2 2) ∈ Z

For each integer ≥ 2, using the assumption 6⊂ +( ), we see that there exist
, ∈ Z such that the integer does not divide (1 + 2) + ( 1 + 2), and so is

not a common divisor for 1 + 2 and 1 + 2. Hence the greatest common divisor for

1 + 2 and 1 + 2 is equal to 1. Similarly, using the assumption that6⊂ −( ) for
all ≥ 2, we see that the greatest common divisor for1− 2 and 1− 2 is equal to
1. Hence there exist , , ,∈ Z such that

(4.12) ( 1 + 2) + ( 1 + 2) = 1 ( 1− 2) + ( 1− 2) = 1

We now consider the elements ∈ given by

= + = +

Then it follows from (4.12) that

− ( 2 + 2)( + σ( )) = (2π 1 0)

− ( 1 + 1)( − σ( )) = (0 2π 2)

So the lattice +σ( ) contains (2π 1 0) and (0 2π 2). Hence 0 ⊂ + σ( ).
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Lemma 4.3. Let be a lattice ofR2 such that ⊂ 0. If +σ( ) = 0, then
every isometric deformation of / is trivial.

Proof. Let :R2/ → 3, ∈ R, be an isometric deformation of / . Then
we obtain a -invariant isometric deformation of given by =◦ , where
denotes the canonical projection ofR2 onto R2/ . Since +σ( ) = 0, it follows
from Lemma 4.1 that each is 0-invariant, and so we obtain

/ 0 : R2/ 0→ 3 ∈ R

which is an isometric deformation of the embedding/ 0 : R2/ 0 → 3. Then The-
orem 1.1 implies that for each∈ R there exists an isometry :3 → 3 satisfying
/ 0 = ◦ ( / 0). Let : R2/ → R2/ 0 denote the canonical projection. Since
= ( / 0) ◦ , we obtain

◦ 0 = ◦ ( / 0) ◦ = ( / 0) ◦ =

Hence the isometric deformation is trivial.

Proof of Theorem 1.2. To establish Theorem 1.2, it is sufficient to show the
converse of Theorem 3.1. Suppose that6⊂ +( ) and 6⊂ −( ) for all integers
≥ 2. Then it follows from Lemmas 4.2 and 4.3 that every isometric deformation

of / is trivial. In particular, the isometric immersion/ is not deformable. This
shows the converse of Theorem 3.1.

Proof of Theorem 1.3. By Lemmas 4.2 and 4.3, it is easy to see that (2) ⇒
(1). We now show that (1)⇒ (2). Recall the main result of [5] which states that ev-
ery flat torus isometrically immersed in3 with nonconstant mean curvature is de-
formable. Hence, the assumption (1) implies that the mean curvature of the immer-
sion : → 3 must be constant. So there exist positive constants1 and 2 with

2
1 + 2

2 = 1 such that is congruent to the immersion/ given by (1 3). Then
/ is not deformable, and so it follows from Theorem 1.2 that thelattice satis-

fies 6⊂ +( ) and 6⊂ −( ) for all integers ≥ 2.

5. Deformations of circles in S2

For each 2π-periodic regular curveγ( ) in 2, we recall the following notation.

(γ) =
∫ 2π

0
|γ′( )| (γ) =

∫ 2π

0
γ( )|γ′( )|
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where γ( ) denotes the geodesic curvature ofγ( ) given by

γ( ) =
〈γ′′( ) (γ′( ))〉
|γ′( )|3

In this section we prove the following theorem which was usedin the proof of
Lemma 3.2.

Theorem 5.1. For each integer ≥ 2, let γ : R → 2 be a 2π-periodic regular
curve defined byγ( ) = (cosθ cos ) 1 + (cosθ sin ) 2 + (sinθ) 3, where θ is a con-
stant satisfying−π/2< θ < π/2. Then there exists a smooth one parameter family of
2π-periodic regular curvesγ : R→ 2, −δ < < δ, such that
(1) γ0 = γ,
(2) (γ ) = (γ), (γ ) = (γ),
(3) γ (0) 6= tanθ for all 6= 0.

We first show the following lemma which proves the assertion of Theorem 5.1 in
the case ofθ = 0.

Lemma 5.2. For each integer ≥ 2, let α : R → 2 be a 2π-periodic regular
curve defined byα( ) = (cos ) 1 + (sin ) 2. Then there exists a smooth one param-
eter family of2π-periodic regular curvesα : R→ 2, −ǫ < < ǫ, such that
(1) α0 = α,
(2) (α ) = (α), (α ) = (α),
(3) α (0) 6= 0 for all 6= 0.

Proof. Let 1( ) and 2( ) be 2π-periodic functions defined by

(5.1) 1( ) = cos 2( ) = cos where = 2 + 1

For each = (1 2) ∈ R2, we consider the curve :R→ 2 given by

( ) = cos

(
2∑

=1

( )

)

α( ) + sin

(
2∑

=1

( )

)

3

Note that ( + 2π) = ( ), and

( ) = α( ) where = (0 0)

So there exists an open neighborhood of the origin∈ R2 such that for each ∈
the curve is regular. We consider the smooth functions,̄ ¯ : → R given by

¯( ) = ( ) =
∫ 2π

0
| ′ ( )| ¯( ) = ( ) =

∫ 2π

0
( )| ′ ( )|
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Since ( +π) = − ( ), we obtain | ′ ( + π)| = | ′ ( )| and ( +π) = − ( ).
Therefore

(5.2) ¯( ) = 0

Since :R → 2 is a geodesic, the origin ∈ R2 is a critical point for the smooth
function .̄ The Hessian of̄ at the critical point is given by

∂2 ¯

∂ ∂
( ) =

1
∫ 2π

0
( ′( ) ′ ( )− 2 ( ) ( ))

So it follows from (5.1) that

(5.3)
∂2 ¯

∂ 1∂ 1
( ) =

1− 2

π
∂2 ¯

∂ 2∂ 2
( ) =

2− 2

π
∂2 ¯

∂ 1∂ 2
( ) = 0

Since > 1 and = 2 + 1, the index of̄ at the critical point is equal to−1.
Hence the Lemma of Morse [6, p. 6] implies that there exists a local coordinate sys-
tem ( 1 2) in a neighborhood of the origin such that

(5.4) ¯( ) = ¯( )− 1( )2 + 2( )2
1( ) = 2( ) = 0

For a sufficiently smallǫ > 0, let ( ) = ( 1( ) 2( )), −ǫ < < ǫ, be a smooth curve
in defined by

(5.5) 1( ( )) = 2( ( )) =

and we consider the smooth one parameter family of 2π-periodic regular curves
α : R → 2, −ǫ < < ǫ given by α = ( ). Then it follows from (5.2), (5.4) and
(5.5) that

α0 = = α (α ) = ¯( ( )) = ¯( ) (α ) = ¯( ( )) = 0

This implies the assertions (1) and (2). Since the geodesic curvature ofα satisfies

α = 〈α′′ (α′)〉 /|α′|3, we obtain

(5.6) α (0) =
ϕ( )

2 cos2( 1( ) + 2( ))

whereϕ( ) = 2 cos( 1( ) + 2( )) sin( 1( ) + 2( ))− 1( )− 2
2( ). Note that

(5.7) ϕ(0) = 0 ϕ′(0) = ( 2− 1) ′
1(0) + ( 2− 2) ′

2(0)

Differentiating the relation¯( ( )) = ¯( ) and using (5.3), we obtain

(5.8) ( 2− 1) ′
1(0)2 + ( 2− 2) ′

2(0)2 = 0
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If ϕ′(0) = 0, it follows from (5.7) and (5.8) that ′1(0) = ′
2(0) = 0 which is a contra-

diction. Henceϕ′(0) 6= 0. So the assertion (3) follows from (5.6).

Proof of Theorem 5.1. Letα : R→ 2, −ǫ < < ǫ, be a smooth one parameter
family of 2π-periodic regular curves satisfying the conditions (1)–(3) of Lemma 5.2,
and a unit normal vector field alongα given by ( ) = (α′( ))/|α′( )|. Consider
the curveγ : R→ 2 given by γ ( ) = (cosθ)α ( ) + (sinθ) ( ). Then it follows from
the relation ′( ) = − α ( )α′( ) that

(5.9) γ′( ) = (cosθ − α ( ) sinθ)α′( )

Since α0( ) = 0 and cosθ > 0, there exists a positive numberδ such that

cosθ − α ( ) sinθ > 0 for | | < δ

So it follows thatγ : R → 2, −δ < < δ, is a smooth one parameter family of
2π-periodic regular curves. Hence it is sufficient to show thatthe family γ satisfies
(1)–(3) of Theorem 5.1. Using (1) of Lemma 5.2, we obtain0( ) = 3. This implies
the assertion (1). On the other hand, the geodesic curvatureof γ satisfies

(5.10) γ ( ) =
sinθ + α ( ) cosθ
cosθ − α ( ) sinθ

By (5.9) and (5.10) we obtain

(γ ) = cosθ (α )− sinθ (α ) (γ ) = sinθ (α ) + cosθ (α )

So the assertion (2) follows from (2) of Lemma 5.2. Furthermore, using (3) of
Lemma 5.2 and (5.10), we see thatγ (0) 6= tanθ for all 6= 0. This implies the asser-
tion (3).
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