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Abstract

     This thesis proposes a programmer performance model in order to 

evaluate the activities of a programmer in a quantitative and objective way. This 

model is then extended to evaluate the activities of the programmers of a team. 

Analysis of experimental evaluations shows the validity and the effectiveness of 

the proposed model. In addition, this thesis describes a measurement 

environment called GINGER which automatically collects and analyzes the data 

from the activities of programmers during software development and shows the 

obtained and analyzed data to the programmers as feedback information. By 

providing these features, GINGER aims to control the software development 

project in a meaningful and objective way. 

     The programmer performance model and the team performance model 

are defined based on a novel concept of error life span. The life span of an error 

is defined as the time duration from when the error manifests itself in the 

software to when the error is removed from the software. Results of 

experimental evaluations show that the programmer performance model has a 

high correlation with the "aptitude" of a student programmer. Additionally, the 

team performance model, which is defined by regarding a team as a virtual 

programmer, turns out to have a high correlation with the time a team spends 

debugging. 

    The proposed GINGER environment evaluates the activities of 

programmers by concentrating its attention on programmer productivity.
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Additionally, the concept of program modification is introduced as a metric to 

estimate the activities of programmers and based on this metric, GINGER tries to 

analyze the activities of programmers in detail and to improve programmer 

productivity by using the analysis. A prototype system of GINGER is currently 

being developed and the validity and usefulness of the prototype system are 

shown by experimental evaluation in an academic environment. 

     In Chapter 1, related progress and topics in software engineering are briefly 

summarized for background and the outline of the thesis is described. 

     Chapter 2 describes the software development process, product, and 

software metrics. The software metrics include as objects of evaluation the 

software development process as well as the software product. 

     Chapter 3 introduces a new concept of error life span and proposes a 

programmer performance model based on the concept. Then, the programmer 

performance model is extended to a team performance model in order to 

evaluate the activities of programmers on a team. The team model makes it 

possible to devise an optimal team organization strategy based on the model. 

    Chapter 4 describes the experimental evaluation of the proposed models 

in both academic and industrial environments. The results of the experimental 

evaluations prove that the models are valid and effective in evaluating the 

activities of software development. Furthermore, a method is presented to 

automatically collect the estimated values of the error life spans based on the 

textual changes among successive versions of the program text made during the 

coding and debugging processes.
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     Chapter 5 describes the major functions of project management during 

software development. The chapter stresses that "controlling" is the most 

important of these functions. 

    Chapter 6 presents the system organization and functions of GINGER. 

GINGER supports collecting and analyzing data during software development. It 

supports information feedback to improve programmer productivity with 

respect to measurement-based control of the software development project. The 

first prototype system of GINGER is described. 

     Chapter 7 shows some experimental results of the prototype system. 

Results of experiments show that the prototype system provides the primitive 

functions needed to measure and control the software development process and 

product as well as to evaluate programmer productivity. 

    Chapter 8 presents a summary of the ideas discussed in the thesis and 

draws some conclusions. Finally, it summarizes future research work and 

describes key points for designing future measurement environments.
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Chapter 1: Introduction

1.1 Progress in software engineering 

     Large software systems often provide incomplete functionality for what 

customers want, take too long to construct, cost too much time, use too much 

memory space or other resources to run, and rarely evolve to meet the changes 

needed [Lamb 1988]. These problems associated with development of software , 

especially large-scale software, have emphasized the need for a more disciplined 

and systematic approach. In the late 1960's, the term "software engineering" was 

coined as a rubric for a variety of techniques and tools to allow the production of 

cost-effective, reliable software within specified time constraints [Conte et al . 

1986]. 

     In the IEEE standard [IEEE 1983], software engineering is defined as the 

systematic approach to the development, operation , maintenance, and 

retirement of software. Boehm, on the other hand, defines software engineering 

as the application of science and mathematics by which the capabilities of a 

computer equipment are made useful to man via computer programs , 

procedures, and associated documentation [Boehm 19811. 

     In the intervening years, the practitioners and researchers have developed 

many techniques for addressing these problems mentioned above . These 

techniques are mainly for 

     - coping with the complexities of large systems , 

     - managing cooperating groups of programmers
, and
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    - measuring the quality of a software system [Lamb 19881. 

In addition, a number of notable concepts, which are still useful as the 

foundation for developing and maintaining the current software, have been 

established. These concepts include: 

     - software development and maintenance methods and models, 

     - assessment methods, 

     - software project management , and 

     - software development environments. 

    The DoD's STARS (Software Technology for Adaptable, Reliable System) 

program is one of the typical trials to apply these concepts to a practical software 

development [Druffel et al. 1983]. Actually, the STARS program intends to 

improve productivity while achieving greater system reliability and adaptability 

by using software engineering techniques in all phases of the software life cycle. 

The driving need is to have the capabilities of producing more powerful, 

reliable, and adaptable systems through software development, and in-service 

support processes that are more responsive, predictable, and cost-effective. 

    The major technological aspects within the STARS program are 

summarized as the following four areas [Conte et al. 19861: 

     - Measurement and Project Management Tasks Area , 

     - Human Resources and Human Engineering Tasks Area, 

    - Application-Specific Task Area, and 

     - Support Systems Task Area .
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1.2 Measurement in software development 

     The Measurement Task Area is considered to be the most important area 

within the STARS program since the ability to measure objectively is a 

foundation for all scientific and engineering disciplines [Dunham & Krusei 

19831. In other words, software engineering can attain the status of a scientific 

discipline only if it is built upon a solid foundation of objective measurement . 

Thus, the maturity of software engineering as a discipline may be reflected in the 

degree to which the use of metrics becomes normal and natural in the software 

development and maintenance process [Conte et al. 1986]. 

     In general, activities for the measurement task area concern the 

development of evaluation criteria and their associated measures and metrics , 

and the experimental evaluation of techniques, methods, and tools . The strategy 

for progress needs, among other things, to establish success criteria for other task 

areas, and execute cost/benefit analysis of various opportunities . It also needs to 

collect baseline data against which to measure progress, instrument automated 

supports environments, and develop techniques for experimentally testing 

hypotheses related to software development and in-service support [Druffel et al . 

1983]. 

    Practical benefits of measurement consist of the following capabilities , (1) 

through (5) [Conte et al. 1986] [Dunham & Krusei 1983]: 

 (1) Describing the current state of the world - the ability to describe 

     quantitatively the current state of software parameters, such as software 

    quality, resources expended, and productivity.
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 (2) Monitoring progress and providing feedback - the ability to monitor 

    progress, to anticipate problems, and to provide feedback to software 

    personnel about potential problems. 

 (3) Predicting project parameters such as cost, delivery time, functions, quality 

     etc. - the ability to predict software parameters, such as system cost, 

    delivery time, and reliability. 

 (4) Expressing requirement and goals quantitatively - the ability to express 

     requirements quantitatively both as goals and as acceptance criteria. 

 (5) Analyzing costs and benefits - the ability to quantify trade-offs that can be 

     used by management in allocating resources. 

This thesis focuses on the first two, and proposes a concrete method to 

implement them. 

1.3 Understanding software development activities 

     The most fundamental function of measurement is to describe the current 

state of development. For complex software, this is extremely important because 

it allows us to discern trends and pattern [Druffel et al. 1983]. 

     The measurement of resource expenditures is a good example of the 

benefit of this type of description. The resources expended on a project, 

particularly in terms of a human effort, are translated directly into costs. By 

collecting and analyzing information about exactly where these resources are 

being expended (for example, what phase of the life cycle, what types of activities, 

what parts of the system), one can identify the major cost drivers within a 

software organization. Then, one can answer questions such as "What types of
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activities consume large portions of the available manpower?" and "Where is 

the effort being wasted?" Therefore it can lead to the search for software tools or 

development methods designed to reduce the cost drivers [Druffel et al. 1983]. 

     This thesis concerns the activities of programmers that contribute to 

improved software productivity and quality during software development, and 

proposes a programmer performance model to understand and evaluate these 

activities. To this end, the concept of error life span has been introduced as one 

metric to measure the negative effect of errors on software development 

[Matsumoto et al. 1988c] [Matsumoto et al. 19871. 

     In addition, we discuss the relation between programmer performance 

and team performance [Scott & Simmons 1975] and devise a strategy to organize 

reliable teams of programmers so that the activities of each team (thus, the 

activities of programmers) may increase. Three models, M1, M2, and M3, are 

presented to define the performance of a team based on the programer 

performance model. M1 summarizes the performance of programmers. M2 

takes an average of the performance of programmers. M3 evaluates the sum of 

error life spans under the assumption that the team is regarded to be a virtual 

programmer. These models are evaluated and compared by applying them to an 

experimental software development project.

1.4 Controlling software development activities 

    In the classic management model [Mackenzie 19691 [Thayer 19881, 

management is partitioned into five distinct functions or components: 

planning, organizing, staffing, directing, and controlling. These functions can be
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classified into two types. The first type includes planning, organizing and 

staffing, which are executed before constructing the activities of the software 

project, in order to accomplish the objectives of the project effectively. In 

contrast, the second type includes directing and controlling, which are executed 

dynamically during the software construction phase of the project. These latter 

are done to carry out the project if deviations from this prescribed plan occur. 

Therefore, the second type of functions, directing and controlling, are more 

important than the first type of functions. Since it is impossible to forecast all 

phenomena in the project when it starts, we have to develop a mechanism to 

correct deviations, and ensure the execution of the project in pursuance of the 

prescribed plan. 

     From a manager's perspective, monitoring progress, foreseeing problems 

before they get out of control, and taking appropriate corrective actions are very 

important to a project's successful completion. In other words, for controlling a 

project, the manager has to know the actual state of the project, clarify the 

difference between the prescribed plan and the actual state of the project, and 

help the developers to accomplish the prescribed plan. 

     Thus, measurement is one of the most powerful and effective 

technologies for controlling software development activities in a quantitative 

and objective way. Furthermore, measurement adds visibility to the software 

project; tracking can be carried out in a meaningful and objective way [Druffel et 

al. 1983]. DeMarco succinctly makes this point in stating, "You can't control what 

you can't measure." [DeMarco 1982]

6



     In this thesis, we concentrate on programmer productivity as a metric to 

control the software project. Then, we propose a system that automatically 

collects and analyzes the data from the activities of programmers during 

software development and shows the obtained and analyzed data to the 

programmers as feedback information [Onishi et al. 1986]. This feedback allows 

the programmers to recognize their weaknesses and improve their activities 

[Basili & Rombach 19871. We expect that the overall productivity during 

development and the quality of the resulting products can be controlled by using 

this system. 

     Other systems and environments for improving both programmer 

productivity and the quality of products have been developed. One of them is 

the TAME (Tailoring A Measurement Environment) project at the University of 

Maryland [Basili & Rombach 1988] which provides a software engineering 

process model. This software engineering process model is based upon various 

kinds of improvement and goal/question/metric paradigms . The system will 

ultimately run on a distributed system consisting of at least one mainframe 

computer and a number of workstations. The mainframes are needed to host 

the experience base, which can be assumed to be very large. Thus, we can say that 

TAME will be a large-scale system. 

     The proposed measurement environment, described in this thesis, is also 

improvement-oriented and suitable for distributed environments . The 

prototype system of the measurement environment uses the existing functions
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of UNIX* in order to collect data from many workstations in software 

development. Therefore, it is easy to apply the prototype system to various kinds 

of projects if their software is developed on UNIX workstations.

1.5 Outlines of the thesis 

     First, this thesis proposes a programmer performance model and a team 

performance model based on the concept of error life span in order to 

understand and evaluate the activities of the programmer and the programmers 

of a team in a quantitative and objective way. Then, it describes a measurement 

environment called GINGER which automatically collects and analyzes the data 

from the activities of programmers during software development and shows the 

obtained and analyzed data to the programmers as feedback information in order 

to control (and manage) the software development project in a meaningful and 

objective way. 

    Chapters 2, 3, 4 outline a programmer performance model and a team 

performance model. Chapter 2 describes the software development process and 

product, and software metrics which evaluate the software development process 

and product in a quantitative and objective way. Chapter 3 introduces a new 

concept of error life span and proposes a programmer performance model based 

on this concept. Then, the programmer performance model is extended to a 

team performance model in order to evaluate the activities of programmers of a 

team and devise an optimal team organization strategy based on the model.

 UNIX is a registered trademark of AT & T Bell Laboratories.
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Chapter 4 describes the experimental evaluation of the proposed models in both 

academic and industrial environments. The results of the experimental 

evaluation show the validity and the effectiveness of the model. Furthermore, a 

method is introduced for automatically collecting the estimated values of the 

error life spans based on the textual changes among successive versions of the 

program text during coding and debugging. 

     Chapters 5, 6, 7 outline a measurement environment, GINGER. Chapter 5 

describes the major functions in software development project management and 

shows that controlling is the most important function among them. Chapter 6 

presents the system organization and functions of GINGER that support 

collecting and analyzing data from a software development process and support 

information feedback to improve programmer productivity. Then, the first 

prototype of GINGER is described. Chapter 7 shows some experimental results 

using the prototype system. 

    Chapter 8 presents a summary of the ideas discussed in the thesis, draws 

some conclusions, and summarizes some areas for future research.
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Chapter 2: Software Development

2.1 Product and process 

     One of the purposes of software engineering is to improve software 

productivity and quality. Various kinds of studies in this field have been 

undertaken over the years. According to the results of these studies, the scope of 

the targets to be analyzed and discussed can be classified into two groups: (1) 

software products and (2) software development processes. 

     In the IEEE standard [IEEE 1983], a software product is defined as a software 

entity (computer programs, procedures rules, and possibly associated 

documentation and data pertaining to the operation of a computer system) 

designated for delivery to a user. A software development process is defined to 

be the process by which user needs are translated into software requirements, 

software requirements transformed into design, the design implemented in 

code, and the code tested, documented, and certified for operational use. 

     When we want to understand and control a software product and a 

software development process in a specific way, the concept of a software life 

cycle is useful. The software life cycle is defined as the period of time that starts 

when a software product is conceived and that ends when the product is no 

longer available for use [IEEE 1983]. The software life cycle typically includes a 

requirements phase, a design phase, an implementation phase, a test phase, an 

installation and checkout phase, an operation and maintenance phase, and
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sometimes, a retirement phase. Each of the phases is defined as follows [IEEE 

19831: 

 (1) Requirements phase: the period of time during which the requirements 

     for a software product, such as the functional and performance 

    capabilities, are defined and documented. 

 (2) Design phase: the period of time during which the designs for the 

     architecture, software components, interface , and data are created, 

    documented, and verified to satisfy requirements . 

 (3) Implementation phase: the period of time during which a software 

    product is created from design documentation and debugged. 

 (4) Test phase: the period of time during which the components of a software 

    product are evaluated and integrated and the software product is 

    evaluated to determine whether or not the requirements have been 

   satisfied. 

 (5) Installation and checkout phase: the period of time during which a 

    software product is integrated into its operational environment and tested 

    in this environment to ensure that it performs as required . 

 (6) Operation and maintenance phase: the period of time during which a 

    software product is employed in its operational environment , monitored 

    for satisfactory performance, and modified as necessary to correct problems 

    or to respond to changing requirements. 

 (7) Retirement phase: the period of time during which support for a software 

    product is terminated.
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2.2 Software metrics 

    Measuring the software product and the development process throughout 

the software life cycle, described in subsection 2.1, is essential for improving 

software productivity and quality. Software metrics are often classified into 

product metrics and process metrics, and are applied respectively to either the 

software product or the development process [Conte et al. 1986]. 

     Product metrics are measures of the software product [Conte et al. 1986]. 

Product metrics include the size of the product (such as the number of lines of 

code or some count of tokens in the program), the logic structure complexity 

(such as . flow of control, depth of nesting, or recursion), the data structure 

complexity (such as the number of variables used), the function (such as type of 

software: business, scientific, systems, and so on), and combinations of these 

[Conte et al. 1986]. 

     Among these product metrics, the complexity metric for a program is the 

most well-known product metric. It is used for the implementation phase and 

the test phase. The complexity metric is often a good indicator of whether a 

product is well-designed, understandable, and easy to modify [Basili 1980]. 

Unfortunately, the complexity metric and most product metrics may reveal 

nothing about how the software product has evolved into its current state [Conte 

et al. 19861. 

    Process metrics quantify attributes of the development process (including 

product evolution) and of the development environment [Conte et al. 19861. 

Process metrics can evaluate such various items as development techniques (the 

use of top-down or bottom-up development techniques, structured
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programming, and other software engineering techniques), developmental aids 

(the use of design languages and systems, editors, interactive systems, and 

version control systems), supervisory techniques (such as the type of team 

organization and number of communication paths), and resources (human, 

computer, time schedule, and so on) [Conte et al. 1986]. 

     The software reliability growth model is a well-known process metric 

(model) used for both the test phase and the operation and maintenance phase 

[Matsumoto et al. 1990] [Musa et al. 1987]. The software reliability growth model 

can estimate the mean time to failure (MTTF), the number of residual faults in 

product and so on. 

     Most process metrics require greater efforts to collect and analyze data than 

do product metrics. It is especially difficult to collect reliable data on human 

activities. However, process metrics can provide more valuable information for 

improving software productivity and quality than can the product metrics. 

2.3 Programmer activities 

     Among the attributes of the development process, mentioned in 

subsection 2.2, the human resource is one of the most important to be evaluated. 

The reason why we emphasize the human resource is that human activities are 

strongly related to productivity and to the quality of software [Curtis 19851. 

Moreover, there are very large individual differences in human activities with 

respect to productivity and quality of software. For example, Sackman, Erikson 

and Grant [Sackman et al. 1968] showed that for most performance variables, 

there are very large individual differences in the programming performance.
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Also in COCOMO (COnstructive COst MOdel)[Boehm 19811, the programmer 

capability is one of the major attributes, having a range of 2.03 for software 

productivity. The programmer capability is the highest cost driver among 14 cost 

drivers in COCOMO. 

      However, since there are no model-based approaches to evaluate 

programmer activities, it has been believed that programmer activities cannot be 

measured absolutely. Thus, very simple but insufficient measures have been 

widely used in the practical applications. For example, the number of years that a 

team has been using a programming language, the number of years that a 

programmer has been with the organization, the number of years that a 

programmer has been associated with a programming team, and the number of 

years of experience constructing similar software or managers' intuitive 

evaluations have been used. 

2.4 Team activities 

     Generally, large software systems are developed by teams that consists of 

many analysts, designers, programmers and so on. Several ideas have already 

been proposed to organize a software development team efficiently [Myers 1976]. 

     The chief programmer team concept was originated by Mills [Baker 1972]. 

The team is headed by a chief programmer (that is, a senior-level programmer 

who is highly skilled and experienced). The chief programmer performs all of 

the design tasks, writes the code for all critical modules, and performs the 

integration and testing of the team's code. He or she is also the primary interface 

to outside organizations such as other teams and the user organization and thus
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reduces the number of lines of communication among project members. The 

chief programmer is assisted by a back-up programmer and a programming 

librarian [Myers 1976]. The remainder of the team varies on the particular stage 

of the project [Myers 1976]. 

     The specialist team has been proposed by Brooks [Brooks 1975]. The major 

differences between this team and the chief programmer team are that the team 

members remain within the same team for the entire project and each member 

of the team has a special assignment that takes advantage of his or her particular 

talents [Myers 1976]. 

     Another proposal for programming teams is the democratic team 

[Weinberg 19711. This team is different from other teams in that it has no 

formally appointed leader or initial individual assignments. A particular team 

member may become an informal leader when the team enters a stage for which 

that team member is most qualified. The team makes its own work assignments 

based on the talents of the members. One big difference between this team and 

the chief programmer team is that the democratic team stays together from 

project to project. When a project is completed, the team is not broken up but is 

assigned as a whole to a new project. This means that the rapport, working 

relationships, and group standards within the team are maintained from project 

to project. 

    These organizations are valuable because they recognize that 

programming is largely a social activity rather than an individual activity [Myers 

19761. However, programming teams do have a few disadvantages. The, work of 

each individual programmer is less visible to the project manager, making
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performance evaluations more difficult. In the teams with a formal leader, the 

leader can become the sole interface between the manager and other team 

members, leading to significant morale problems. Therefore, a quantitative and 

objective method needs to be devised to evaluate the performance of team 

member and team.
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Chapter 3: Programmer Performance Model

3.1 Error and fault 

    It is widely recognized that errors have a close relation to software 

productivity and quality. Numerous studies have been conducted in the field of 

so called "error analysis" in order to clarify the effect of each error on software 

productivity and quality. For example, Weiss [Weiss 1979] used errors as a way of 

evaluating the software development process. He investigated causes of errors 

and efforts involved in fixing errors and proposed methods of error detection 

and correction. 

    According to Basili and Rombach [Basili & Rombach 19871, an "error" is a 

defect in the human thought process made while trying to understand 

                Problem understandine phase Tnol usage phase

Software

X Fault 

X Fault 

X Fault

Figure 3.1 Error and fault
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information for solving a problem or while trying to use methods and tools. A 

"fault" is the concrete manifestation of an error within the s
oftware. Figure 3.1 

illustrates these definitions. 

     In the IEEE standard [IEEE 19831, an error is defined as a human action that 

results in software which contains a 'fault. Examples include omission or 

misinterpretation of user requirements in a software specification and incorrect 

translation or omission of a requirement in the design specification. And, a fault 

is defined as a manifestation of an error in software. A fault, if encountered, may 

cause a failure (synonymous with bug). 

     Myers has said that an error is a mistake in translating information [Myers 

1976]. Software production, then, is simply a number of translation processes , 

translating the initial problem into various intermediate solutions until a 

detailed set of computer instructions is produced. Software errors (faults) are 

introduced whenever one fails to completely and accurately translate one 

representation or solution of the problem to another more detailed 

representation [Myers 19761. 

    Myers has also pointed out that a person has to perform the following 

four steps in order to translate information [Myers 1976]. 

 Step 1: He (or she) receives the information using his read mechanism R. 

 Step 2: He stores this information in his memory M. 

 Step 3: He retrieves from his memory this information and other 

        information describing the translation process, performs the 

        translation, and sends the result to his writing mechanism W.

18



  Step 4: The information is physically depressed by writing, typing on a 

        terminal, or speaking. 

Myers has summarized the errors that may be generated in each step [Myers 

19761: 

  Step 1: Errors are introduced by misreading the input information, seeing 

        what is expected as opposed to what is actually there, making 

        assumptions about missing facts, or simply overlooking information. 

  Step 2: Errors in this step result from misinterpreting or misunderstanding 

        the input information. The reason may be that the information may 

         be too complex, the person may not have the necessary education 

        background, or the information may be ambiguous. 

  Step 3: The largest source of errors in this step is the phenomenon of 

        forgetting the input information or how to perform the translation 

        properly. Weaknesses in other mental abilities, such as clarity of 

        thought and retrieval of related knowledge, also contributes errors. 

  Step 4: Many people do not write or express themselves clearly and that 

        obscures their output. If there is a large amount of output 

        information, the person takes shortcuts or assumes that facts will be 

        "intuitively obvious" to his audience . 

     The emphasis on error and fault in these past studies shows its 

prominence in, and therefore the necessity of studying it in regards to, the 

activities of programmers. Unfortunately, it is practically impossible to count 

errors. We can however count faults which are manifestations of errors in 

software, to evaluate the activities of programmer. "Error" in this thesis is
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almost the same as "fault" in this subsection. However multiple faults which are 

dearly caused by one defect are treated as one error.

3.2 Error life span 

     In order to measure the negative effect of errors on the development 

processes, one may want simply to count the total number of errors involved in 

the program texts throughout the processes. We believe, however, that counting 

the total number of errors is insufficient since each error has different effects on 

the software productivity and quality. Thus, we introduce a weight into the 

error, which could represent a particular rate of effect of each error. The weight 

to be introduced in this thesis is called a life span (time duration) of the error. 

     An error life span Te for an error e has been defined as time duration from 

when the error e manifests in the software to when the error e is removed from 

the software [Matsumoto et al. 1988c] [Matsumoto et al. 1987]. Figure 3.2 shows an 

example of error life span Te. In Figure 3.2, x and 0 represent respectively the 

times of error manifestation and error removal. 

     For example, we consider a case in which an error causes some faults in a 

program text. If the life span of an error is long, that is, the faults remain for a 

long period of time in the program text, then the programmer would have a 

hard time removing them. One cause of this difficulties is that the programmer 

would forget the details of the old code relating to the faults. Also the erroneous 

codes affect other codes appended to the program text afterward. Hence, we 

naturally think that an error with a long life span has a high (negative) effect to 

the project progress and the program reliability.
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     Figure 3.2 Error life span

     Similar concepts to the error life span can be seen in several earlier papers 

[Mills 19761 [Weiss & Basili 19851. Mills [Mills 1976] introduced the concept of 

"error days" for estimating the quality of an acceptable system
. "Error days" is, for 

each error removed, defined to be the sum of the days from its creation to its 

detection. He has implied, though without empirical evidence, that this 

measure is an indication of probable future errors and of the effectiveness of the 

design and testing processes. Weiss and Basili [Weiss & Basili 1985] have used 

changes as a way of evaluating the software development processes. They 

mentioned that "the length of time each error remained in the system" would 

be useful information for evaluating the software development processes. 

However no collection and analysis of such data were made.
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    We have actually collected data from student projects and studied the 

relation between the value we obtained and the programmer performance. The 

time used for measuring the life span in our experiments is actual terminal 

access time rather than calendar days used for the error days.

3.3 Programmer performance model 

     We believe that the error life span could indicate some aspects of 

programmer performance, as well as the product quality as suggested by Mills 

[Mills 1976]. The error life span closely relates to the performance of the 

programmer in the following two ways: 

  (1) the number of errors made in the software development processes, and 

  (2) the rate of detection and removal of these errors. 

     The value called a "score", is defined to indicate some aspects of 

programmer performance. The score SI for each individual programmer is 

formally defined by formula (3.1). 

            SI -_ um of error life spans -1 ... (3.1)               f(p) 

     where f : Normalizing function, 

              p : Complexity of given problem. 

In this definition of SI, the following two assumptions are made. 

 (1) The specification (of a problem) is not modified during software 

     development. 

  (2) Designing, coding, and debugging are completed by the same programmer. 

    This definition of SI comes from the fact that programmer, who makes 

less errors and removes these errors in shorter time, gets better performance.
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    For the normalizing function f(p), the square of the final program size, i.e., 

L2 is used in this thesis. The explanation of why we chose L2 follows. IT, is 

rewritten by 

           ET, = avg x N ... (3.2) 

     where avg : The average of the error life spans, 

               N : The number of the total errors. 

Since avg and N are considered to depend on the complexity p of the problem, 

both avg and N should be normalized by p in such a way that, 
          avg N 

            P x p ...(3-3) 
     where p : Complexity of the problem. 

     In the experiments, to be described in Chapter 4, there is only a small 

difference among the specifications. Thus, we think that the complexity p of the 

problem is estimated by the final program size L (the number of the lines in the 

final program text). As the result, L2 is employed as the normalizing function. 

    Thus, the score SI in the formula (3.1) for each individual programmer is 

rewritten by the formula (3.4). 

      SI= E(Te)4                L2 (3.4) 

     where Te : An error life span. 

              L : The final program size.
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3.4 Team performance model 

     Let us consider a case that software is developed by a team, which consists 

of n programmers. Based on the programmer performance model mentioned in 

Section 3.3, three models M1, M2 and M3 are defined to measure the 

performance of each team. In the following, let SIj denote the score of a 

programmer j (1_< j<_ n). For the sake of simplicity, the following notation 

        SIj = 1 L 1 ... (3.5) 
   where Ej = ET,, 

is used instead of the notation in (3.4). 

    The first two models M1 and M2 are defined by using the scores SI1 's (j = 

1, 2, ..., n) of the programmers of the team. 

Model M1 

     The score for a team (in short, called team score) ST1 is defined as follows; 

n 

          ST1 = I SIj ... (3.6) 
                  j=1 

Model M2 

    The score ST2 is defined as follows; 

             1 n 
         ST2= n jSI1 ...(3.7) 

                    j=1 

The model M3 is defined by regarding a team as a virtual programmer. 

Model M3 

    The team score ST3 is defined as follows; 

                          24



ST3 = >E 2 1   ( (ELj) ) ... (3.8)

     Next, we discuss the strategies for team organization in order to maximize 

the team score. In the following discussion, we consider an application of 

models M1, M2 and M3 to a new project P. The following three assumptions are 

made. 

  (1) The scores SIj (j = 1, 2, ..., n) are known beforehand (for example, for the 

    past project P similar to the project P). 

  (2) For each programmer, the value of the score doesn't depend on the 

    project. (Thus the score for projects P and P are the same.) 

 (3) For the project P, it is possible to estimate the final program size L (= Y-Lj) 

    [Boehm 1981]. 

Let SIP Lj and Ej denote the values for a new project P, and SIj', Lj' and Ej' denote 

the values for an old similar project P'.

Strategy for model M1 

     By assumption, the formula 
                       n n 

         STI = I SIj = I SIj' ... (3.9) 
                 j =1 j=1 

is obtained. Thus, if there is no limit on the total number of programmers in the 

team, the best way to organize programmers is to collect as many as possible. 

However this organization seems impractical. But when there is a limit on the 

number, collecting only programmers with high score is the best way (which 

seems to be a practical conclusion).
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Strategy for model M2 

     By assumptions, the formula 

               1 n 1 n          ST2 = n~ SIj = n Z SIj' ... (3.10) 
                   j=1 j=1 

is obtained. Thus, the best approach is to collect only programmers with high 

scores and to keep the value of n as small as possible. An exceptional case is that 

a programmer with the highest score develops all modules of program. 

    It is clear that in both models M1 and M2, collecting programmers is the 

only key factor. How to distribute m modules (to be developed) among n 

programmers in the team doesn't affect the optimality of the strategy. 

Strategy for model M3 

    By the definition, if the relation 
          Ll L2 Ln (3

.11)             S1
1'=SI2'=...=SIn' 

holds, then the value of ST3 becomes maximum. At that time, the relation 

n 

          ST3 = I SIj' ...(3-12) 
              j =1 

is derived. Thus, the best way is that, in the new project P, each programmer j ( j 

= 1, 2, ..., n) develops program modules with size Lj, that is proportional SIj'.
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Chapter 4: Experimental Evaluation of Models

4.1 Overview 

     In order to evaluate the proposed models, three experimental software 

development projects (Experiments 1, 2 and 3) have been executed in academic 

and industrial environments. Experiments 1 and 2 have been done in an 

academic environment [Matsumoto et al. 1988c] [Matsumoto et al. 1987] 

[Matsumoto et al. 19861. The purpose of Experiment 1 is to show the validity and 

the effectiveness of error life span Te and score SL In Experiment 1, project data 

on nine students were collected. Each student developed a compiler for a subset 

of PL/I, Pascal or C using Pascal or C. Final program sizes were about 1000-2500 

lines. 

     The purpose of Experiment 2 is to compare the scores SI 's of the same 

students. In Experiment 2, project data on six students were collected. Each 

student developed a compiler for a subset of Pascal using C and a kind of 

inventory control program using Pascal. Final program sizes of compilers were 

about 1000 lines and those of inventory control programs were about 300 lines. 

     In both Experiments 1 and 2, to obtain error life span Te, we traced and 

analyzed by hand all the files used in the projects. The time unit for Te was 

terminal access time. In addition, we assumed the case that a programmer was 

given a specification of the program to develop and that the same programmer 

performed all the work, i.e., designing, coding and debugging. It was also
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assumed that the programmer completed the development within a specific 

time frame. 

     Experiment 3 has been done in an industrial environment to show the 

validity and the effectiveness of the team score ST. In Experiment 3, eight teams 

of programmers developed the same system, a file processing program in a 

business application, using COBOL. The system consisted of 18 program 

modules. The final program sizes ware about 2000 lines. In Experiment 3, to 

obtain error life span Te, we used an automatic estimation method for the sum 

of error life span. The details of the automatic estimation method are described 

in Section 4.4. 

4.2 Experiment 1 

4.2.1 Experimental data 

     We collected project data on nine students. Each student developed a 

compiler for a subset of PL/I, PASCAL, or C using PASCAL or C. They had 

studied the theory of compiler construction in their classes; however, they had 

no previous experience in constructing compilers. 

     In this experiment, we did not measure actual error life spans, but we 

collected a closely related value Te. Te is the life span of the faults in the 

program text, caused by an error e. In other words, we started counting Te when 

a fault caused by e was first embedded in the program text, and stopped counting 

when all of the faults caused by e were removed. Thus errors removed before 

coding were not counted here. This was because we had no appropriate method 

to count all the errors.
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     It might have been useful to investigate the details of errors which the 

programmer made. However, such an investigation would have been another 

task for the programmer, thus inhibiting the project's progress. Hence, we 

decided not to inquire directly as to the details of the programmer's errors, but to 

analyze the textual changes among successive versions of the program texts and 

to estimate the number of the errors from the- faults found in the texts. 

     Textual changes reflect the coding and debugging processes and we can 

collect them automatically with less effort. For each textual change, we also 

collected the reason for the textual changes as annotated by the programmer 

himself using an on-line data collecting tool. From the textual changes and the 

reasons, we determined e and its life span Te by hand. In this analysis, syntactic 

errors were not counted as e. We assumed that most errors which affected the 

coding and debugging processes were found as e by this analysis, and other errors 

which never gave faults on the texts could have had only a limited effect. In the 

following, we use the phrase, "error life span" in the sense of Te. 

     We counted the successive time that each student accessed a terminal and 

used it as a time unit for error life span Te. Although this did not precisely 

correspond to the actual time devoted to the project, we used this time unit for 

two reasons. One is that the terminal access time could be traced automatically. 

The second reason, which is more substantial, is that employing the terminal 

access time more sharply contrasted the difference of the computed values for 

each programmer, as compared with employing the actual time consumed. That 

is, the programmer who designed and debugged a large amount of his code on
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Table 4.1 Data of Experiment 1

Student
Program

size

Total of
terminal access

time (min.)

Total

number of

errors

Sum of error
life spans

(min.)

Average of
error life

spans (min.)

Score
SI

Grade point
average in
C.S. courses

#1 2098 7955 77 93750 1218 46.9 69.6

#2 1685 6202 101 29715 294 95.5 71.5

#3 1530 5906 61 28620 469 81.8 74.0

#4 1789 8021 78 67020 859 47.8 65.8

#5 1094 4754 55 32145 584 37.2 72.9

#6 1661 3463 35 11550 330 238.9 82.8

#7 2111 5838 26 24045 923 185.3 71.6

#8 1084 8651 49 66765 1363 17.6 69.6

#9 2420 5139 33 49170 1490 119.1 73.4

the desk and who did not use the terminal extensively, had an advantage in the 

computed values. 

     Table 4.1 shows the program size (which is the number of lines in the 

program text when the program completes), the total of the terminal access time, 

the total number of errors, the sum of the error life spans, the average of the 

error life spans, the score SI, and the grade point average in computer science 

courses. 

     For example, student #2 made 101 errors and student #7 made only 26 

errors. As for the sum of the error life spans, I T& however, student #1, who 

made 77 errors, had the highest value, 93750, and student #6, who made 35
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errors, had the lowest value, 11550. It was not always true that a student who 

made the most errors had the highest value of STe, and a student who made 

the least errors had the lowest value of IT'. This was because each student had 

a unique average value of his own error life spans, and there was not a high 

correlation between the average and the total number of errors. 

     Student #8 had the lowest score, 17.6, and student #6 had the highest 

score, 238.9. The order of students with respect to the scores was the same as the 

order with respect to our intuitive impression of student performance. Below, 

we discuss the reasons why some students received high scores and low scores. 

High Scores 

(1) Student #6 (238.9) 

     He spent a large amount of time in designing and coding on the desk 

(without using terminal) and only used the terminal for a very short period. 

(2) Student #7 ( 185.3) and Student #9 ( 119.1) 

    They referred to text book that precisely describes how to construct a 

PASCAL compiler using PASCAL. Since they could obtain basic algorithms and 

data structures from that book, the number of errors was reduced and the 

development period was shortened. 

Low Scores 

(1) Student #8 (17.6) 

     He started coding using the terminal even though he did not have a good 

grasp of compiler theory at the beginning. Furthermore, he did not clearly 

understand the specification of the compiler , at the beginning; thus, he had to 

modify the program text extensively.
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(2) Student #5 (37.2) 

    He made many errors caused by poor understanding of the 

implementation language, C. He also incorrectly designed the parsing section of 

the compiler and he had trouble determining the errors when he detected the 

faults during the test phase. 

4.2.2 Evaluation 

(1) ETe vs. terminal access time 

    In the definition of score SI, the life span Te of the errors is introduced as a 

weight of the error. In order to prove the validity of this idea, ETe (the sum of 

error life spans) is compared with the total terminal access time which seems to 

directly correspond to the programmer performance. 

     Figure 4.1 shows the scatter plots of ETe versus the total terminal access 

time. A coefficient of correlation between them is 0.82. On the other hand, a 

coefficient of correlation between the total number of errors and the total 

terminal access time is 0.45. 

    Thus it can be said that the sum of error life spans would very closely 

relate to the performance of the programmer as compared with the total number 

of errors. 

(2) Score SI vs. grade point average 

    In addition, we investigated the grade point average in computer science 

courses for each programmer and compared them with the scores. Figure 4.2 

shows the scatter plots of the scores versus the grade point averages in computer 

science courses.
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             Figure 4.1 Sum of error life spans vs. total of terminal access time 
                    (Experiment 1) 

     We found that a coefficient of correlation between them was 0.75. Moher 

and Schneider [Moher & Schneider 1981] have found that "experience" (as 

measured by the number of computer science or programming courses) and 

"aptitude" (as measured by the grade point averages in computer science 

courses) are the major predictors of performance for student programmers. In 

our experiment, the experience of each student is almost the same. Hence, we 

believe that the difference of our obtained values can be explained simply by 

programmer performance. Of course, we do not think that the sum of the error 

life spans indicates the complete extent of the programmer performance; rather, 
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we think it indicates one important aspect of programmer performance related 

to the productivity and quality of software. 

4.3 Experiment 2 

4.3.1 Experimental data 

     We collected data on two different student projects, compiler construction 

(Project 1) described in Experiment 1 and a so-called liquor wholesale problem 

(Project 2) to be described now. Each had different types of difficulties. For the 

liquor wholesale problem, students were given the program specification and 

taught roughly how to design the program. We analyzed the data for six students
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who participated in both projects. Methods of collecting and analyzing data were 

the same as for Experiment 1; that is, the errors were determined by hand and 

the sums of the error life spans were normalized by L2 (the square of the final 

program size). In this experiment, we observed the difference between the scores 

of each student for different projects. 

4.3.2 Evaluation 

     Table 4.2 shows the sizes of the programs, the sums of the error life spans, 

and the scores in both projects. Figure 4.3 shows the scatter plots of the scores in 

both projects. The order of students with respect to the scores are almost the 

same between both projects except for one student. This student, #13, had 

misunderstood the syntax of subset-PASCAL when he tried to develop the 

subset-PASCAL compiler in Project 1. During this project, he had to change 

numerous errors related to the syntax differences. Consequently, this worsened 

his score from Project 1. 

     The averages of the scores are 31.3 in Project 1 and 54.6 in Project 2. (If we 

preclude student #13, the average will be 34.1 in Project 1 and 46.8 in Project 2.) 

We think that the scores are stable enough and L2 is an appropriate normalizing 

function for a measure of programmer performance in such small-scale projects, 

even though the numerical values we have computed do not by themselves 

show the absolute performance of the programmers (in the sense that if 

programmer A took 20 and B took 40, then B can program twice as well as A). 

We expect that if further data is collected, a suitable normalizing function would 

be found which would give absolute meaning to the computed values.
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Table 4.2 Data of Experiment 2

Student

Project 1: Compiler Construction Project 2: Liquor Wholesale Problem

Program size
Sum of error

life spans

(min.)

Score Program size

Sum of error
life spans

(min.)

Score

#11 1251 65205 24.0 322 3300 31.4

#12 963 24690 37.6 326 2430 43.7

#13 1366 107745 17.3 326 1140 93.2

#14 1260 35790 44.4 340 1800 64.2

#15 998 25830 38.6 298 2055 43.2

#16 1149 50940 25.9 296 1695 51.7
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4.4 Automatic estimation of error life span 

     In Experiments 1 and 2, obtaining the error life spans was very expensive. 

We had to trace and analyze all the files used in the development projects by 

hand and keep a large amount of data concerning the processes. Hence, 

obtaining the error life spans in various software development projects is in 

practice prohibitive. Furthermore, it follows that it is difficult to show the 

programmer the computed value of the error life span periodically during the 

development processes (to improve the activity of the programmer). 

    To find an equivalent value to the error life span, we investigated 

correlations among the sum of the error life spans, the average of the error life 

spans, and other collected data as shown in Table 4.3. If there were easily 

collectable data which had a high correlation with the sum of the error life spans 

or the average of the error life spans, we could compute the estimated value 

                   Table 4.3 Coefficient of correlation among data 
                           on Experiment 1

Sum of
error life spans

(min.)

Average of
error life spans

(min.)

Program size 0.15 0.29

Total of
terminal access

time(min.)
0.82 0.52

Number of
total errors 0.35 -0 .35
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very easily. However, since we could not produce such data, we devised a way to 

obtain an estimated value of the error life spans automatically. 

     In order to do this, we had to determine the errors automatically in some 

manner; but, in general, we had no satisfactory mechanical way to recognize the 

errors. Dunsmore and Gannon [Dunsmore & Gannon 1980] demonstrated that 

program changes (i.e. textual changes between successive version of the 

program) were correlated with the total error occurrences in a program written 

by 33 programmers. Therefore, we simply estimate that in the program text, each 

line modified at each edit session corresponds to one error to be counted. If the 

created and deleted times of each line are known, the estimated error life spans 

can be collected easily. 

     Here we assume that software development consists of a sequence of edit 

sessions of the program text. For each line j in the program text, we define the 

life span lij of j at an edit session i as follows: 

        0 if line j is not modified at edit session i. 
lij _ 

      ti -t'ij if line j is modified at edit session i. (4.1) 

     where 1 5 j _< maxi, and 

          maxi: Number of lines when edit session i begins. 

           ti : Time when edit session i terminates. 

         t'ij : Time of the latest modification of line j before ti. 

As mentioned above, we estimate that each non-zero value lij corresponds to 

the life span of an error. Therefore, the estimated value L for the sum of the 

error life spans is given by
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          M maxi 

     L = El ij ... (4.2) 
           i=1 j=1 

     where M is the aggregate of the edit sessions. 

     We computed L using the data of Experiment 1, and compared L with the 

sum YTe of the actual error life span. A coefficient of correlation between them 

is 0.86. Thus, we can conclude that the value L estimates the sum of the error life 

span quite well. 

     In the above definition of L, it seems that the number of errors is 

overestimated in general. It may be more realistic to state that, instead of each 

line, a set of lines which were created at an edit session and modified at another 

edit session corresponds to one error. If a programmer modifies several lines of 

text in an edit session, and if those modified lines were originally created in the 

same edit session, we consider that he or she fixed only one error. But if those 

modified lines were originally created in different edit sessions, we count the 

number of those edit sessions and treat that count as the number of errors fixed. 

Each edit session is distinguished from others by time stamp. We simply sum up 

only the distinct lij for each j to find the total of the life spans of the sets at edit 

session i. 

     Now, we define another estimated value L' for the sum of the error life 

spans as follows: 
M 

     L' _ Zl'i ... (4.3) 
                 :=1 

    where Vi : the sum of distinct values of lij for 1 <_ j _< maxi 

In this definition, the following two assumptions are made.
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                    Figure 4.4 Estimated values vs. actual values En 
                           in Experiment 1. 

  (1) The purpose of modifications of program text at each edit session is to 

     remove errors. 

  (2) A set of lines, which are created at one edit session and modified at 

     another edit session, corresponds to one error. 

    We computed L' again using the data of Experiment 1, and compared L' 

with the sum I T e of the actual error life spans. Figure 4.4 shows the scatter 

plots of L' versus ZTe. A coefficient of correlation between them is improved to 
0.90. Thus, we can conclude that the estimated value L' is sufficiently equivalent 

to the sum of the error life span.
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4.5 Experiment 3 

4.5.1 Experimental data 

     Experiment 3 evaluated team activities in software development. The 

programmers were newcomers of a certain computer company. The main 

characteristics were summarized as follows. 

  (1) Eight teams of programmers developed the file processing program in a 

    business application using COBOL. 

  (2) The system (file processing program) consisted of 18 program modules. 

     This partition of program modules was given to each team. However, 

     distribution of modules to members of team was freely determined by a 

     leader of each team. 

  (3) Each team consisted of 3 to 5 programmers. Teams were organized by an 

     instructor so that the difference among team performances, in an 

     intuitive sense, might be low. 

  (4) Each team was assigned two terminals. Thus, the capability of accessing 

     terminals seemed relatively to be limited, compared with Experiments 1 

    and 2. 

     In Experiment 3, the successive time of each programmer accessing a 

terminal was counted and used as the time unit for evaluating Te. In addition, 

each programmer had to fill in a form of individual effort time for designing, 

coding, and unit debugging. On the other hand, each team leader also had to fill 

in a form of team effort time, mainly covering integration of the individuals' 

work.
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                       Figure 4.5 Explanation of effort time 

     The effort time on a terminal was a time duration counting when a 

programmer or team worked on terminal. Similarly, the effort time on a desk 

was a time duration of when a programmer or team worked on a desk (not on a 

terminal). The effort time on a desk was reported from forms. We used a new 

effort time gotten by merging these two as shown in Figure 4.5. 

    Only 9 modules out of 18 were studied for data based on the following 

criteria. 

 (1) The average of the module size is more than 100 lines. By this, too small 

     modules are excluded from evaluation. 

 (2) The average of the ratio of data division size over module size is less than 

    0.5. Thus, the programs, which mainly consist of data definitions, are also 

    excluded.
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Table 4.4 Data of Experiment 3

Team Member
Program

size

Sum of error

life spans

Total effort

time(min.)
Score

#1

M1

m2

m3

m4

m5

289

263

385

137

95

1490
10608
7192
6109
6679

2009

5488

2652

3633

3523

56
7

21
3
1

#2

M1

m2

m3

m4

m5

365

278

249

155

107

7899

8510

6877

1855

101

3999

2706

2730

3766

2646

17

9

9

12

113

#3

m1

m2

m3

221

600

362

13329

37620

27689

3730

3409

4809

4

10

5

#4

ml

m2

m3

m4

333

230

364

319

22972

4896

3970

21612

4354

3039

4220

3214

5

11

33

5

#5

ml

m2

m3

m4

393
270
342
240

12035

1569

11907

15147

3681

4061

4173

3886

13

46

10

4

#6

M1

m2

rn3

569

375

155

22470

11789

1818

3429

3243

2874

14

12

13

#7

M1

m2

M3

m4

m5

387

328

264

126

172

17634

14194

4747

5092

208

3768

3407

2704

3627

2467

8

8

15

3

142

#8

M1

m2

m3

m4

583

203

233

169

14497

2268

14775

25621

4426

3211

4699

5366

23

18

4

1

    The experimental data are summarized in Table 

sum of error life spans are calculated using formula (4.3) 

shows the program size (which is the number of lines in 

the sum of error life spans, the total effort time (time

4.4. The values for the 

in Section 4.4. Table 4.4 

the final program text), 

estimated, as shown in
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Figure 4.5, by effort time reported by programmer and terminal access time 

traced automatically) and score SL As the time unit for error life span, we used 

effort time. 

4.5.2 Evaluation 

(1) ETe vs. effort time of a programmer 

     Figure 4.6 shows the scatter plots of ETe versus the total effort time of each 

programmer. (In Section 4.2, we compared ETe with the total terminal access
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Table 4.5 Coefficient of correlation between ETe and total effort time

Module 1 2 3 4 5 6 7 8 9

r -0.46 0.85 0.62 0.58 0.51 0.39 0.66 0.87 0.44

time.) A coefficient of correlation between them is 0.46. It is not high compared 

with the result of Section 4.2. (In Section 4.2, a coefficient of correlation between 

them is 0.82.) 

(2) ETe vs. effort time of module 

     In addition, we have investigated for the 9 modules the relation between 

the sum of error life spans and the total effort time devoted to the module 

development. Table 4.5 shows a coefficient of correlation between these two. It is 

clear that there is much difference among these values (the highest value is 0.87 

and the lowest value is 0.39 among positive values). The main reason for these 

results is the difference in the degree of coupling among modules. For module 1, 

it is unexpected that a coefficient becomes negative. 

(3) Team performance 

    Table 4.6 shows three scores (ST1, ST2 and ST3) and the team debugging 

effort time of 8 teams (#1, #2, ..., #8). The team debugging effort time is the total 

effort time for debugging after each unit test for each module has been 

completed. 

    From Table 4.6, the following aspects are observed as for team 

performance. 

     Team performance score ST1 (model M1) 

         the highest score team #7 176
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Table 4.6 Data of team scores

Team
ST1 ST2 ST3

Team debugging
effort time(min.)

#1 88 18 43 490

#2 160 32 53 460

#3 19 6 18 2200

#4 54 14 29 2170

#5 73 18 38 980

#6 39 13 33 650

#7 176 35 39 570

#8 46 12 25 1430

          the lowest score team #3 19 

     Team performance score ST2 (model M2) 

         the highest score team #7 35 

          the lowest score team #3 6 

    Team performance score ST3 (model M3) 

         the highest score team #2 53 

          the lowest score team #3 18 

     We have evaluated the correlation among the three team performance 

scores ST1, ST2 and ST3 (see Table 4.7). There are high correlations among ST1, 

ST2 and ST3, especially between ST1 and ST2 (A coefficient of correlation is 0.99). 

(4) Team performance vs. debugging effort time 

    We have investigated team debugging effort time as shown in Table 4.6 

and compared it with team performance scores (ST1, ST2 and ST3). Table 4.7 

shows the coefficients of correlations between team scores and team debugging
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Table 4.7 Coefficient of correlation among team scores 
       and team debugging effort time

STI ST2 ST3

ST2 0.99

ST3 0.80 0.79

Team debugging
effort time

-0.69 -0.66 -0.83

effort time. Among the three team performance scores, ST3 has the highest 

correlation with team debugging effort time (A coefficient of correlation is -0.83). 

It might be said that the team performance score ST3 (thus, the model M3) is the 

most appropriate one for evaluating team performance in software 

development. 

(5) Team score vs. load distribution 

     The ratio, final program size to score of programmer j (represented by Kj), 

is compared in Table 4.8. We also evaluate the difference between an optimal 

ratio of final program size (Kopt) and actual ratio. The result shows the 

maximum value of Kopt is 62.3, and the minimum value of Kopt is .7.2. It is 

observed that the value of Kopt is apt to become larger as the number of 

programmers becomes smaller (then the size of program, to be developed by one 

programmer, becomes larger). 

    To evaluate the difference between Kj and Kopt, we have calculated the 

following value DK as shown in Table 4.8. 

n 

          I I Kj -Kopt 
            DK = j=1 K

oPt ... (4.4)
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L Table 4.8 Ratio of size over score (K i = SI i

Team

K, K2 K3 K, K5 K,,, Dx = DST = STI-ST3
Ko ST1 (%)

#1 5.2 37.6 18.3 45.7 95.0 13.3 11.4 51

#2 21.5 30.9 27.7 12.9 0.9 7.2 9.8 67

#3 55.3 60.0 72.4 62.3 0.3 5

#4 66.6 20.9 11.0 63.8 23.1 4.2 46

#5 30.2 5.9 34.2 60.0 17.1 4.9 48

#6 40.6 31.3 11.9 28.2 1.1 15

#7 48.4 41.0 17.6 42.0 1.2 7.3 17.3 78

#8 25.3 11.3 58.3 169.0 25.8 7.4 46

     If there exists no difference between Kj and Kopt then DK becomes 0. At 

that time, the following relation holds: 

n 

         ST3 = I STj = ST1 ... (4.5) 
                 j=1 

So, to evaluate the difference between ST3 and ST1, we have calculated the 

following value DST as shown in Table 4.8. 

        DST = STS T1 x 100 (%) ... (4.6) 
Naturally, there is a high correlation between DK and DST. 

    Consider teams #2 and #3 which take respectively the highest and the 

lowest values of team performance score ST3 in Table 4.6. Table 4.8 shows that 

for team #2 there are large differences among Kj for each programmer and Kopt. 

As the result, the value of DK of team #2 is relatively large. On the other hand, 

Table 4.8 shows that Kj for each programmer in team #3 are almost equal to Kopt.
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(As for DK, team #3 takes the lowest value among these eight teams.) Therefore, 

it is concluded that team #2 is superior to team #3 with respect to total team 

performance. But in contrast to this, with respect to load distribution in a team, 

team #3 is superior to team #2. This tendency is clearly observed: from the 

values of DST in Table 4.8, team #2 decreases by 67% in their performance and 

team #3 decreases by only 5% from their optimal (maximum) performance.
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Chapter 5: Software Development Project Management

5.1 Major functions of management 

    In the classic management model [Mackenzie 1969] [Thayer 19881, 

management is partitioned into five separate functions or components: 

planning, organizing, staffing, directing, and controlling. Definitions or 

explanations for these five functions are shown in Table 5.1. 

    These functions can be classified into two types. The first type includes 

planning, organizing and staffing. These are executed before constructing the 

activities of the software project. Their purpose is to enable the objectives of the 

project to be accomplished effectively. The second type of functions includes 

directing and controlling. These are executed dynamically during the software 

                Table 5.1 Major functions of management [Thayer 1988]

Activity Definition or Explanation

Planning Predetermining a course of action for accomplishing organizational
objectives.

Organizing Arranging and relating work for accomplishment of objectives and the

granting of responsibility and authority to obtain those objectives.

Staffing Selecting and training people for positions in the organization.

Directing Creating an atmosphere that will assist and motivate people to achieve
desired end results.

Controlling Measuring and correcting performance of activities toward objectives
according to plan.
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construction phase in the project , and are done to carry out the project in 

pursuance of the prescribed plan if .deviation from the prescribed plan occurs. 

     The second type of functions, directing and controlling, are more 

important than the first type. Since it is impossible when a project starts to 

predict exactly all phenomena that will affect it, we have to develop a 

mechanism to correct deviations and ensure the execution of the project in 

pursuance of the prescribed plan. 

     Therefore, this thesis focuses on the second type of functions: directing 

and controlling. We focus especially on controlling since we want to devise an 

environment which can manage the software development project. 

5.2 Project control 

     Controlling a software development project is defined as all the 

management activities that ensure that the actual work goes according to plan 

[Thayer 19881. To control the project, a manager has to know the actual state of 

the project, know the difference between the prescribed plan and the actual state, 

and help the developers accomplish the prescribed plan. 

     Figure 5.1 shows the data flow between the development environment 

and the management environment for controlling a project. The manager 

collects process/product data to assess the actual state of the project. After 

analyzing the collected data, the manager provides feedback to a developer to 

help him or her correct their activities and accomplish the prescribed plan. 

Therefore, data collection and information feedback are essential activities for 

controlling the software development project. The full support of a
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Figure 5.1 Controlling software development project

development environment and a management environment is necessary to 

control the software development project. 

     Based on these considerations, we propose a new environment, 

measurement environment, which consists of a development environment 

and a management environment. The measurement environment consists 

mainly of four logical units: Data Collection, Data Management, Data Analysis 

and Information Feedback (see Figure 5.2). Among these four units, Data 

Collection is included in the development environment and the rest are 

included in the management environment. The details of the measurement 

environment will be described in Chapter 6.
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Figure 5.2 Basic units of measurement environment

5.3 Data for controlling 

    To control the software project effectively, we have to collect and analyze 

objective and quantitative data which represent the activities of developers. In 

this thesis, we concentrate on programmer productivity as the metric for 

evaluating the activities of developers. 

    Programmer productivity is well explained by using an input-process-

output scheme (see Figure 5.3) as follows [Chen 1978]: the programmer is a 

processor, the input is a program specification, and the output is a set of 

programs written in a good programming style. Then a measure of programmer 

productivity can be defined as the number of valid source statements coded per
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Extended input-process-output scheme

busy hours, where valid source statements are the source statements of an 

executable computer source program. 

    In several earlier papers [Chen 1978] [Walston & Felix 1977], the measure 

of programmer productivity in software development was defined similarly as 

the ratio of the quality/quantity of the resulting program to the programming 

efforts necessary to arrive at a satisfactory program. For example, Walston and
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Felix [Walston & Felix 1977] defined the measure of programming productivity 

as the ratio of delivered source code tto the total effort (in man-months) required 

to produce the code. 

     In this thesis, we are interested in not only measuring programmer 

productivity, but also in improving programmer productivity based on analysis 

results from software developmental data. However, the input-process-output 

scheme in Figure 5.3 is not sufficient to describe programmer activity since the 

scheme cannot answer questions of why a programmer expends such a large (or 

small) amount of effort. Therefore, we extend the input-process-output scheme 

to the one shown in Figure 5.4. In practical software development, the first 

version of a program usually does not satisfy a given specification since the 

program may not fulfill all the functions required in the specification, or may 

contain many errors. Then the programmer modifies or debugs the program a 

number of times and finally gets a program satisfying the specification. 

     Generally, it is very hard to follow and analyze programmer activity 

directly during the software development process. Thus we try to estimate 

programmer activity indirectly by analyzing the history of the program 

modifications. By taking the programming efforts into consideration as well , a 

more detailed analysis may be possible and more valuable information can be 

collected from programmer. Programming efforts are divided into two 

categories: (1) efforts to produce code that implements a given specification and 

(2) efforts to modify the code, up through the completion of testing (see Figure 

5.5). Out of these two types of efforts, the second may be a more appropriate focus 

for the improvement of programmer productivity.
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    According to earlier studies [Walston & Felix 1977], we use the 

programming efforts and the quality/quantity of the resulting program as two 

typical primitive metrics of programmer productivity. In addition, in order to 

trace and analyze the programmer's activities, we introduce a concept of 

program modifications as the third metric. The following subsections 

summarize these three metrics.

5.3.1 Programming efforts 

     Programming efforts are usually defined as the time, cost or work 

necessary to produce a satisfactory program during software development [Chen 

19781 [Dunsmore & Gannon 1980] [Musa et al. 19871 [Walston & Felix 1977]. 

Typically, the programmer's computer usage or execution time is used as a 

measure to evaluate programming efforts since it can be collected automatically 

using, for example, functions of the operating system.
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    The following four kinds of data (1) through (4) below, are potentially 

useful for measuring programming efforts. Unfortunately, none of them 

represents programmer working time precisely. Therefore, it is necessary to 

select an appropriate measure or to use several measures at the same time, 

when programming activities are evaluated under a particular project 

environment. 

(1) Calendar time 

     Calendar time is the familiar time with which we are normally 

acquainted [Musa et al. 1987]. Man-months or man-hours is a measure in this 

category. This measure includes both working time at the desk and on the 

computer (terminal), and can be collected very easily. Therefore, calendar time is 

considered to be a basic measure of the programming efforts. However, the 

following must be assumed to validate calendar time as a measure: (1) the 

programmer's working time is relatively fixed for each day, (2) the range of 

fluctuation of the working time for each day is negligibly small, and (3) the 

working time is measurable. 

(2) Terminal access (usage) time 

    Terminal access time represents the elapsed time from the beginning of a 

programmer's work on the computer terminal to the end. Working time at the 

desk must be excluded. Thus terminal access time is effectively and precisely 

used to evaluate effort time only when the programmer spends most of his or 

her working time on the terminal or when it is a small-scale project [Matsumoto 

et al. 19871. 

(3) Number of command executions
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     This number represents the frequency of computer operations (i.e., 

program edits, compilations, and program executions for testing and debugging) 

on the computer terminal. The number of program testings and job-steps are 

similar measures in this category [Basili 19801 [Basili & Reiter 1979]. A job-step is 

a single programmer-oriented activity performed on the computer at the 

operating system command level [Basili 19801 [Basili & Reiter 1979]. Basili and 

Reiter [Basili & Reiter 1979] found that the job-step measure significantly 

differentiates development environments and that good methodology leads to a 

small number of job-steps. The number of command executions should be used 

as a measure instead of physical time when idle time on the terminal is 

relatively high and cannot be disregarded. 

(4) CPU time for command execution 

     CPU time represents the time that is actually spent by a processor in 

executing each command. For a certain type of command (i.e., a command to 

execute a program), the execution time depends strongly on the input data. 

Thus, the CPU time spent by the processor can be regarded as the programmer's 

working time. It is generally accepted that software reliability models based on 

execution time are superior to ones based on calendar time [Musa et al. 19871. 

5.3.2 Quality/Quantity of resulting program 

    There have been many studies [Basili 1980] [Matsumoto et al. 1988a] [Musa 

et al. 1987] evaluating the quality/quantity of programs. Out of these studies 

have come several practical models of reliability [Matsumoto et al. 1988a] [Musa 

et al. 1987]. The reliability of a resulting program is generally considered one of
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the most important aspects of quality. Unfortunately, the evaluations based on 

the models still include subjective decisions. 

5.3.3 Program modifications 

     In addition to the programming efforts and the quality/quantity of the 

resulting program, the modifications of the program are taken into 

consideration in evaluating programmer activity. The modifications of the 

program may include valuable information for improving programmer 

productivity. 

     Dunsmore and Gannon [Dunsmore & Gannon 1980] defined a measure of 

program modifications as a textual revision in the source code of a module. The 

rule for counting program modifications is that one program modification is 

concerned with a contiguous set of concrete statements that represent a single 

abstract instruction. They showed that program modifications had a high 

correlation with total error occurrences. 

     In this thesis, program modifications are evaluated by counting the 

changes for each line (statement) of the program. Program modifications are 

classified into three patterns, according to the corresponding commands: 1) 

append, which creates new program lines and adds new statements to the 

program, 2) change, which replaces some existing statements with new 

statements, and 3) delete, which removes some existing statements. 

     In this thesis, the concept of error life span is also introduced to evaluate 

programmer productivity [Matsumoto et al. 1988c] [Matsumoto et al. 1987]. As 

mentioned in Section 3.2, the life span of error Te is defined as the length of 

time from when error e is manifested itself in the software to the time when
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error e is removed from the software. Concepts related to error life span can be 

seen in several earlier papers [Mills 1976] [Weiss & Basili 19851. For example, 

Mills [Mills 1976] introduced the concept of error days for estimating the quality 

of an acceptable system. Next, Weiss and Basili [Weiss & Basili 1985] used 

program modifications as a way of evaluating the software development 

processes. 

     The usefulness of error life span has already been verified by experimental 

data analysis [Matsumoto et al. 1988c] [Matsumoto et al. 1987], as described in 

Chapter 4. In the analysis, experimental data was collected from student projects. 

It was shown that the error life span has a high correlation with programmer 

productivity. The time used for counting error life span is actual terminal access 

time (rather than calendar days used for the error days). A method to evaluate 

automatically the number of errors based on the program modifications has 

already been prepared for error life span [Matsumoto et al. 1988c] [Matsumoto et 

al. 1987], as described in Section 4.4.
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Chapter 6: Measurement Environment : GINGER

6.1 Measurement-based control 

     We believe that the proper use of software metrics, measurement, and 

models is essential to the successful management of software development and 

maintenance. Generally, software metrics are used to characterize quantitatively 

the essential features of software so that classification, comparison, and 

mathematical analysis can be applied. After a number of useful metrics are 

identified, the measurement is executed by applying the selected metrics to 

software in an algorithmic and objective fashion. For the measurement, it is 

required that the values of the selected metrics are consistent among different 

software products and are independent of the measurer. 

     In order to control the software development and maintenance processes, 

it is important to model certain interesting factors (metrics) such as effort and 

defects, based on other metrics that are available. Appropriate management 

decisions can be made to influence these factors so that management goals can be 

realized. In other words, the proper use of software metrics, measurement, and 

models has the potential of allowing us to estimate accurately the cost of 

producing software (or the cost in maintaining the same) [Conte et al. 19861. 

6.2 System organization 

    Figure 6.1 outlines the system architecture, which describes interactive 

information processing between the development environment and the
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             Figure 6.1 System architecture of the measurement environment 

management environment. The data flow is also explicitly given in Figure 6.1. 

The system consists mainly of four logical units: Data Collection, Data 

Management, Data Analysis and Information Feedback. The architectural 

components of each of these four units are described in detail below and in [Torii 

1990].
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(A) Data Collection Unit 

     The Data Collection Unit consists of four components, (CM1) through 

(CM4): 

     The (CM1) Process Management component supports and controls a 

programmer's regular activities for software development. It allows the 

interactive operations between the programmer and the computer to be executed 

at the operating system command level. 

     The (CM2) Product Management component maintains the product, i.e., 

the program text developed by programmer. It also maintains relevant 

information for each product such as the date, time, and access rights. It also 

controls access to the product. 

     The (CM3) Process Data Collection component accumulates all data 

concerned with the programming efforts, which are passed from the Process 

Management component indirectly. (Note that the data are not taken directly 

from the programmer. The details will be described in subsection 6.4.2.) 

     The (CM4) Product Data Collection component accumulates a series of 

intermediate programs (including the resulting programs) and collects historical 

data about program modifications. Data collection also occurs indirectly through 

the Product Management component. (Note that the data are not taken directly 

from the programmer. The details will be described in subsection 6.4.2.) 

    The functions mentioned in (CM1) and (CM2) are usually provided as 

basic functions in an operating system. The data collection in (CM3) and (CM4) 

should be executed completely automatically. In particular, the data should be
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collected indirectly from the programmer's activities without obstructing his or 

her regular activities. 

(B) Data Management Unit 

    The Data Management Unit consists of two components, (CM5) and 

(CM6): 

    The (CM5) Data Compression component implements a memory save by 

storing as little data as possible. For a series of intermediate products, only the 

difference between two successive data is stored. The details will be described in 

subsection 6.4.2. 

    The (CM6) Data Base Management component provides data storage and 

information retrieval. The data from the Data Collection Unit and the 

information from the Data Analysis Unit are stored in the Process/Product Data 

Base. The relevant information, such as the date and the names of project, team, 

programmer, file, module, and statement, is added to each original data. The 

details will be described in subsection 6.4.3. 

(C) Data Analysis Unit 

    The Data Analysis Unit consists of four components, (CM7) through 

(CM10): 

    The (CM7) Data Expansion component restructures the data by inserting 

the compressed parts which were deleted in the Data Compression component. 

    The (CM8) Preprocessing component prepares the expanded data for 

evaluation. Preprocessing includes transforming the data which was collected in 

the physical unit (i.e., file) into data for the logical unit (i.e., module). 

Additionally, the comments and the blank statements are deleted.
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     The (CM9) Programmer Productivity Evaluation component calculates 

several values according to the algorithms or guidelines for measurement. The 

evaluations are assumed to be for purposes of programmer productivity (the 

programming efforts, the quality/quantity of resulting programs, and the 

program modifications discussed in Section 5.3). The details will be described in 

subsection 6.4.4. 

     The (CM10) Statistical Analysis component applies statistical analysis 

methods to collected data (CM8) and to the results of the evaluation (CM9). In an 

analysis, to compare results, the historical data of the programmer and the data 

on similar prior projects may be used extensively. Predictions for the current 

project based on such data are very important for managing the project 

(including the programmers). If the project turns out to be unsuccessful, the 

request for information about the results is passed to the Information Feedback 

Unit. 

(D) Information Feedback Unit 

     The Information Feedback Unit consists of two components, (CM11) and 

(CM12): 

     The (CM11) Feedback Management component determines the timing of 

feedback and the details of information to be returned. Information feedback is 

also executed when the programmer requests it. 

     The (CM12) User Interface component provides an effective presentation 

of feedback information to the programmer.
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6.3 Functionality 

     This section elaborates on the functionality of the GINGER system. The 

GINGER system provides ten functions which are classified into four groups; (A) 

kernel, (B) metric-oriented, (C) education-oriented and (D) project-oriented. First, 

the fundamental functions for the data collection and the analysis system are 

described. 

(A) Kernel functions 

A-1: Automatic data collection (CM3 and CM4 in Figure 6.1) 

     To assure the reliability of data from the software development process, 

the data should be collected entirely automatically. In the GINGER system, 

automatic data collection about the programmer's activity is achieved by 

separating data collection (CM3 and CM4) from data management (CM1 and 

CM2), as shown in Figure 6.1. Therefore, it is essential for the system that the 

programming environment allow the programmer to do as much of his or her 

task on the computer as possible. 

A-2: Statistical analysis (CM10 in Figure 6.1) 

     To increase the usefulness of the analysis results, the system supports 

statistical analysis methods and provides interpretations. Predictions based on 

the statistical analysis are especially important to improvement-oriented 

systems. 

A-3: Information feedback (CM11 and CM12 in Figure 6.1) 

     For an improvement-oriented system, collecting and analyzing data on 

the process and product are necessary, but they are not sufficient. The analyzed 

results should be fed back into the software development process (especially to
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the programmer). To realize effective improvement, the system should provide 

a good form of presentation which makes it easy for programmers to understand 

the feedback information. 

A-4: Data base for experience (CM6 in Figure 6.1) 

     To get good feedback information for improving programmer 

productivity, the historical data (collected data and analysis results) on prior 

projects should be utilized extensively. In the GINGER system, collected data and 

the results of analysis can be stored in a data base and can be retrieved at any 

time. 

(B) Metric-oriented functions 

     The following two items are required for evaluating programmer 

productivity since no definite measures exist to evaluate programmer efforts or 

the quality/quantity of the resulting program as mentioned in Section 5.3. 

B-1: Management of large data (CM5, CM6 and CM7 in Figure 6.1) 

     The data on program modifications are collected by comparing successive 

versions of the program. To manage this large amount of data, the system uses 

Data Compression (CM5). Thus effective storage and retrieval of the analysis 

results are achieved. 

B-2: Evaluation by multi-measures (CM8 and CM9 in Figure 6.1) 

     A careful analysis evaluates several measures at the same time and then 

selects the most appropriate one. The system provides such a mechanism by 

collecting substantial elementary data in Data Collection (CM3 and CM4) and by 

preparing all of the logical information needed for evaluation in Data Analysis.
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(C) Education-oriented functions 

     In the educational and training environments in universities, 

programmers are novices. In addition, many trainees work on the same exercise 

concurrently. Thus, the following three things are especially necessary in such 

environments. 

C-1: Unobtrusive data collection (CM3 and CM4 in Figure 6.1) 

     In order to educate and train novice programmers, it is undesirable to 

interrupt or restrict their programming activity. Therefore, the system (CM1 and 

CM2) is embedded in a software development environment and the data is 

collected from the programmers without their knowledge. 

C-2: Advice to programmers (CM11 in Figure 6.1) 

     Novice programmers generally do not know what they should do in order 

to improve their productivity. The system should provide novice programmers 

with not only the analysis results but also with helpful advice. 

(D) Project-oriented functions 

     In educational and training environments, small-scale projects are 

executed concurrently. Here, small-scale implies that the program size is small, 

the development period is short, and so on. The following two things are 

required to apply the GINGER system to small-scale projects. 

D-1: Data collection with low overload (CM3 and.CM4 in Figure 6.1) 

     For small-scale projects, the computer system to be used for development 

tends to be not so powerful. If data collection (and analysis) needs large amounts 

of computation, it will interfere with program development. Then, the project
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may not succeed and reliable data may not be collected. Therefore, the system is 

designed to make the load for data collection (and analysis) as small as possible. 

D-2: Real-time information feedback (CM11 and CM12 in Figure 6.1) 

    In small-scale projects the development period may not be very long. 

Therefore, data collection and data analysis can be executed quickly in the system. 

Additionally, feedback information is returned to the programmers in real-time 

as the projects proceed.

6.4 Prototype system 

6.4.1 Characteristics of the prototype 

    A prototype system is currently being developed on a UNIX environment 

[Torii 1990]. In the prototype system, functions A-1 through A-4, B-1, B-2, C-1, C-

2, D-1, D-2 stated in Section 6.3 have been implemented. The main characteristics 

of the prototype, with respect to implementation, are summarized as follows: 

 (Il) The system has been implemented using C language since portability is an 

     important issue in a data collection and analysis environment. 

 (I2) Many of the functions and tools provided in UNIX have been integrated 

    into it. In particular, in implementing the Data Collection, Data 

    Management and Information Feedback Units, UNIX functions and tools 

     are used as much as possible. 

 (13) The environment is running on a local area network of workstations 

    linked by an Ethernet. The Data Collection Unit is implemented on 

    programmers' workstations, and all other units are implemented on 

     manager's workstation, as shown in Figure 6.1.
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(Accounting system on UNIX) CM1
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Process Data Collection CM3

Data Base Management CM6

1

Data of

terminal access

Data of

command execution

Process Data

Product Data

Analysis Results-

                            Process/Product Data Base 

                   Figure 6.2 Computation of process data on UNIX 

6.4.2 Collection of process/product data 

(1) Process data (see Figures 6.2 and 6.3) 

     The process data in the Process/Product Data Base consists of two kinds of 

data: terminal access and command execution. They are accumulated by Process 

Data Collection (CM3). Figure 6.2 shows a data flow in the computation of 

process data. Accounting data (see Figure 6.3(a)) is transformed into the data of
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Accounting data of terminal access

kusumoto console 
kusumoto console

Wed 
Tue

Nov 16 09:49 -
Nov 15 12:40 -

12 s41 
14:3'7

(02:52) 
(01:57)

kusumoto console 
kusumoto console 
kusumoto console

Fri 
Fri 
Thr

Oct 21 15:03 -
Oct 21 11:05 -
Oct 20 10:23 -

16:54 
12:34 
10:30

(03:51) 
(01:29) 
(00:07)

Accounting data of command execution -

 a.out kusumoto console 
 is kusumoto console 

he kusumoto console

0.39 secs Wed 
0.09 secs Wed 
0.06 secs Wed

Nov 

Nov 

Nov

16 
16 
16

12:35 
12:35 
12:35

vi 
is 
more

kusumoto 

kusumoto 

kusumoto

console 
console 
console

5.06 secs Wed 
0.06 secs Wed 
2.34 secs Wed

Oct 

Oct 
Oct

20 
20 
20

10:29 
10:28 
10:27

(a) Accounting data

Data of terminal access 

 1988-10-20 10:23 
 1988-10-21 11:05 
 1988-10-21 15:03

10:30 
12:34 
16:54

Data of command execution 

1988-10-20 10:29 vi 
1988-10-21 11:25 vi 
1988-10-21 11:26 cpp

5 
4 
0

06 
07 
30

secs 

secs 

secs

1988-11-15 
1988-11-16

12:40 14:37 
09:49 12:41

  Access date 
(year-month-day)

1988-11-16 12:35 he 
1988-11-16 12:35 a. out

0 
0

.06 

.39
secs 

secs

Login time Logouttime 

(hourminute) (ourminute)

Execution date Execution time 
(year-month-day) (hour.minute)

Command 

 name
 CPU tune 

(1/100 seconds)

(b) Transformed data

Figure 6.3 Example of process data

terminal access and command execution (see Figure 6.3(b)) by 

pieces of information and rearranging the order of the rest.

removing some
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     Figure 6.3(a) shows an example of accounting data given by the accounting 

system on UNIX. The accounting data of terminal access consists of (1) the name 

of programmer who has accessed the terminal, (2) the identifier of the terminal, 

(3) the access date, (4) the login time (in minutes) when the terminal session was 

begun by the login command, (5) the logout time (in minutes) when the 

terminal session was ended by the logout command, and (6) the time duration 

from login to logout. A set of these six data items is recorded for each terminal 

access. 

     On the other hand, the accounting data of command execution consists of 

(1) the command name, (2) the programmer name, (3) the identifier of the 

terminal, (4) the amount of CPU time (in 1/100 seconds) necessary to execute the 

command, (5) the date, and (6) the time when the command was executed. A set 

of these six data items is recorded for each command execution (see Figure 

6.3(a)). 

    The details of the process data to be transformed are shown in Figure 

6.3(b). The terminal access data consists of the access date, login time, and logout 

time for each terminal access. The command execution data consists of the 

execution date and time, the name of command, and the amount of CPU time. 

    The accounting data for each programmer are obtained by using the 

commands "last" and "lastcomm" prepared by the accounting system [UNIX 

1986]. Usually, the accounting system is set to delete these data at specific 

intervals (i.e., at each weekend or the end of each month). Therefore, a C 

program was developed and inserted into Process Data Collection (CM3) to 

collect these data just before the accounting system deletes them.
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    The transformation from the accounting data (in Figure 6.3(a)) to the 

process data (in Figure 6.3(b)) consists of three successive steps (CMI, CM3 and 

CM6). These are briefly summarized as follows: 

  Process Data Computation Procedure (see Figure 6.2) 

  Step 1: Retrieve the accounting data by the commands "last" and 

          "lastcomm" (Process Management) . 

  Step 2: Sort these accounting data in chronological order, and extract the 

         key information from them (Process Data Collection). 

  Step 3: Store the data (see Figure 6.3(b)) in the Process/Product Data Base 

         (Data Base Management). 

(2) Product data (see Figures 6.4 and 6.5) 

    The product data consists of the history of modifications and the latest 

version of the file. These data are accumulated for each file by Product 

Management (CM2) and Product Data Collection (CM4). Figure 6.4 shows the 

data flow of the computation of product data, where several functions provided 

by the UNIX file system [UNIX 19861 are utilized extensively. The program text 

developed by the programmer is managed as files. For each file, relevant data 

such as date, time and access rights are also maintained by the file system. The 

product data are collected by applying the following procedure at five minute 

intervals: 

 Product Data Computation Procedure (see Figure 6.4) 

  Step 1: Find the latest time to and a file Fu, such that the file Fu was updated 

          at to and to is within the past five minutes (Product Management).
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Step 2:

Step 3:

Step 4:

    The 

modifications 

            AS updated time 

recorded in                         AS, 

in Step 3, is 

are five types 

Table 6.1). 

of a file. On       One 

giving AS t 

calculated b                    AS

(Product Data Collection). 

Compute a difference AF between the new version of the file Fu and 

ased Make on a this pair (Fu, tu) for the file Fu and the time to obtained at Step 1 the latest version Fi in the Process/Product Data Base. This computation is realized by using the file comparator "diff" [UNIX 19861 in UNIX (Data Compression). Add the pair (AF, tu) to the history of modifications and replace the latest version of file F1 by file Fu (Data Base Management). details of the product data are shown in Figure 6.5. The history of   includes a header and a series of pairs of (tu, AS), where to is an me and        is a set of scripts (see Figure 6.5(a)). The updated time to is seconds. The set of scripts                        which corresponds to the difference AF generated by the file comparator command "diff" [UNIX 1986]. (There   of scripts. The description of each script type is summarized in Generally, more than one script is generated to represent one updating  can be assured that the original version of the file is reproduced by o the editor "ed"[UNIX 1986] in UNIX. The program modifications are          script                 , as is discussed later.

6.4.3 Management of project data 

    The data structure of the Process/Product Data Base (see Figure 6.1) is 

briefly shown in Figure 6.6. The relevant data is managed for each project and all 

project data is arranged for each programmer. The programmer's data consists of
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(File system on UNIX) CM2
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Product Data Collection CM4

(CYO tY)

Data Compression CM5

A
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1
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File #k_
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Analysis Results

                            Process/Product Data Base 

                  Figure 6.4 Computation of product data on UNIX 

the process data and the product data from the Data Collection 

analysis from the Data Analysis Unit.

Unit and the
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######################################## 

         programmer : kusumoto 
         file name : example.c 

######################################## 

##### 1988-10-20 10:29:00 ### f 

Oa 
main(argc,argv) 
int argc; 
char **argv; 
{ 

        int i, j ; 
        char name[10]; 

        strcpy(name,argv[1]);

Header 

 Updated time t.

(year-month-day 
hour:minute:second)

Script AS 
(Append after line 0)

) 

##### 

27,28c 

14d 
7a

1988-10-21 11:25:00 ### 

  printf("name is %s\n",name); 

 if (argc<2) { 
     exit(1); 

}

(Change lines 27 and 28) 

(Delete line 14) 

(Append after line 7)

(a) History of modifications

main 
int 
char 
{

(argc,argv) 
    argc; 

    **argv; 

   int i,j; 
   char name[10]; 

   if (argc<2) { 
       exit (1) ; 

} 
   strcpy(name,argv[1]);

}

(b) Latest version 

  Figure 6.5 Example of product data
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Table 6.1 Calculation of program modifications

Script types Values of measure

na

<text>

L. = the number of lines in <text>

nc

<text>

&=1

Lr = the number of lines in <text>

m,n c

<text>

Lc= n-m+1

L., = the number of lines in <text>

nd La=1

m,n d Id= n-m+1
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Figure 6.6 Process/Product DataBase
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6.4.4 Analysis of programmer productivity 

     The analysis results in information on programming efforts, the 

quality/quantity of the resulting program, and program modifications. An 

example analysis is shown in Figure 6.7. 

     For programming efforts, the following four kinds of measures are 

currently calculated: (1) calendar days, (2) total terminal access time (in minutes), 

(3) total number of command executions, and (4) total CPU time (in 1/100 

seconds) for command execution. The latter two are further classified four ways, 

depending on the type of command: program editing, compilation, linking, and 

execution. These values are calculated based on the data for terminal access and 

command execution as taken from the process data (see Figure 6.2). 

     The quality/quantity of the resulting program is calculated from the latest 

version F1 of the file in product data (see Figure 6.5 (b)). Currently, for measuring 

quantity, two concrete measures are adopted: the total number of lines and the 

total number of modules (see Figure 6.7). As for quality, only the ratio of 

successful tests to the total number of test cases is evaluated. 

    An outline of an automatic test for evaluating quality is shown in Figure 

6.8. In Figure 6.8, the program to be tested is taken from the product data in the 

Process/Product Data Base. For each test case, a pair, consisting of an input to the 

program and the correct output, must be prepared beforehand by the data analyst. 

The program output, obtained by program execution, is compared with the 

correct output. If there are differences between them, the test case is considered to 

be unsuccessful. The results of the comparison are summarized as a test report. 

Figure 6.9 shows an example of a test report, in which testl is unsuccessful and
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Programming Efforts 

 Calendar days 

 Total terminal 

 Total number 
   - Program 

   - Program 
   - Program 
   - Program 

 Total CPU time 
   - Program 

   - Program 
   - Program 
   - Program

nal access time (min.) 

 of command execution 
editing 
compilation 
linking 
execution 

me for command execution 
editing 
compilation 
linking 
execution

(sec.)

   10 

 1231 

  115 
   42 

   30 
   18 
   25 

323.90 
251.03 

 31.12 
 26.13 
 15.62

Quality/Quantity of resulting program

Total number of lines 

The number of modules 
Rate of successful test

326 
 21 

100%

Program Modifications

The number of 

The number of 
The number of 
The number of 
The number of 

The number of 

Total number 

Sum of error

 lines of an initial program (Li) 

 lines appended to program (La) 
 lines deleted by change (Lc) 

 lines appended by change (Lc') 
 lines deleted from program (Ld) 

 lines of a resulting program (Lr) 

of errors (estimated value) 
life span (estimated value)

285 

 97 
178 
163 
 41 

326 

127 
3291

test2 is successful. In 

reported back to the 

shown in Figure 6.8.

       Figure 6.7 Example analysis 

order to increase the value of the ratio, the test report 

programmer through Feedback Management (CM11),

is 

as
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Process/Product Data Base
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.
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Input to Program Correct Output

.

Program Execution

Programmer 
Productivity 
Evaluation

Program 
Output

Text Comparison

CM9

Feedback Management CM11

Test Report 
--f -
Programmer

                        Figure 6.8 Automatic testing and reporting 

    Finally, program modifications are calculated based on the history of 

modifications in the product data. For basic measures of program modifications, 

the following six L's are currently adopted according to the type of modification 

(see Figure 6.10): 

    Li : the number of lines of an initial program 

    La : the number of lines which are appended to the program
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**************************************** 

Tue Nov 15 20:10:40 GMT+9:00 1988 
**************************************** 

##### Test for TESTDATA/testl ##### 
*** program execution *** 
*** incorrect answer *** 

Correct output : 

Reg.No. Power-On Power-Off 
 01 1000 1200 

 01 1300 1400 

Program output : 

Reg.No. Power-On Power-Off 
 01 1000 1200 

##### Test for TESTDATA/test2 ##### 
*** program execution *** 
*** O .K. ***

Figure 6.9 Example of test report

     Lc : the number of lines which are the subject of change (that is, lines 

deleted by change) 

     Lc': the number of new lines which are inserted by change (that is, lines 

appended by change) 

     Ld : the number of lines which are deleted from the program 

    Lr : the number of lines of a resulting program 

Figure 6.10 shows a typical case of program modifications. The following 

relation is clearly derived. 

     Lr=Li+(La+Lc')-(Lc +Ld) 

The value of Li is obtained from the history of modifications, and Lr is also 

easily calculated from the latest version of the file in the product data. The
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values of La, Lc, Lc' and Ld can be calculated based on the-script in the history of 

modifications in the product data. (The relation between>the types of scripts and 

the values of La, Lc, Lc- and Ld is shown in Table 6.2.) 

     Additionally, the number of errors removed ::during the program 

development process is estimated (see Figure 6.7). The sum of the error life span 

[Matsumoto et al. 1987], which has been introduced as a measure of programmer 

productivity, is also estimated. As mentioned in Section 4.4, the number of 

errors and the error life span can be calculated automatically based on program 

modifications.
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Li

'Append

Change

Lc'

Delete

LrLc~-

L

Le

Figure 6.10 Basic measures for program modifications

Table 6.2 Illustration of script

Script types Function in editor "ed"

na

<text>

"a" stands for append command
, and "n" is a non negative

integer. This script implies to read <text> and append it
after the n-th line. .

nc

<text>

"c" stands for change command
, and "n" is a nonnegative

integer. This script implies to delete the n-th line, then
accept <text> which replaces the line.

m,n c

<text>

"c" stands for change command
, and "m", 'In", are

nonnegative integers. This script implies to delete the lines
between the m-th line and the n-th line, then accept <text>
which replaces these lines.

nd "d" stands for delete command
, and "n" is a nonnegative

integer. This script implies to delete the n-th line.

m,n d "d" stands for delete command
, "m", "n" are nonnegative

integers. This script implies to delete the lines between the
m-th line and the n-th line.
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Chapter 7: Experimental Evaluation of the Environment

7.1 Objective of the experiments 

     As mentioned in Section 5.1, data collection and information feedback are 

essential activities to control the software development project. Therefore , in 

order to show the usefulness of the measurement environment in the prototype 

system GINGER, we have to observe and evaluate the activities needed for both 

data collection and information feedback. 

     During the experiments reported in Chapter 4, we observed that the 

automatic data collection was unobtrusive. In addition, it is also observed that 

the data collection activities of the prototype system may increase the load of the 

computer system slightly. However, as for the information feedback of the 

measurement environment, the usefulness has not been shown yet. Therefore , 

to show the usefulness of information feedback in the prototype system, an 

experimental project described below has been carried out. The experiments are 

for undergraduate students in the Department of Information and Computer 

Sciences of the Osaka University [Matsumoto et al. 1988b]. 

7.2 Outline of the experiments 

    The experimental project includes two kinds of experiments: Experiment 

4, in which no feedback is given during software development and Experiment 

5, in which information feedback is given by the prototype system. The results of
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                   Figure 7.1 Outline of the experiments 

these two experiments are compared to show the effectiveness 

feedback. 

    The main characteristics of both Experiments 4 and 5 are 

follows (see Figure 7.1):

of information 

summarized as
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  (1) Eighteen programmers, who were undergraduate students in the 

     Department of Information and Computer Sciences of the Osaka 

     University, were divided into nine teams, each consisting of exactly two 

     programmers. The nine teams were further divided'-into three groups 

     (called Groups I, II and III), each consisting of three teams. 

  (2) Each team developed programs for the same system using the C language. 

     The system consisted of two programs: a compiler, which translates a 

     Pascal program into an intermediate language, and an interpreter, which 

     translates and executes each statement of the intermediate language. The 

     resulting systems (compiler and interpreter) contained-.about 2000 lines. 

  (3) One programmer of each team developed a program for the compiler; the 

     other developed a program for the interpreter. Each team had for their use 

     one workstation with two terminals. 

  (4) All programs were tested by automatic testing, as shown in Figure 6.8, 

     where 30 test cases were provided. The successful test rate had to be 100% 

     for each program. 

7.3 Information feedback 

    In Experiment 4, the three teams in Group I developed programs for the 

compiler and the interpreter. For Group I, the prototype system GINGER 

monitored the activities of the programmers and collected some data, but no 

feedback was given to the programmers. 

    The following two kinds of data were collected in Experiment 4 (to be used 

as the feedback information in Experiment 5): 

 (1) Information on the quantity of the resulting program
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        S(t): the number of lines in the resulting program at time t. 

        S: the number of lines in the resulting program when the final 

           program has been developed. 

  (2) Information on program modifications 

       C(t): the number of lines which have been changed or deleted up to 

           time t. 

        C: the number of lines which have been changed or deleted when 

           the final program has been developed. 

     Experiment 5 was executed about 2 months after Experiment 4 was over. 

In Experiment 5, as mentioned before, the prototype system GINGER monitored 

each team in Group II and Group III and collected data S(t), S, C(t) and C. 

Additionally, the system gave feedback information to each team as follows. 

Twice a week, the programmers of Group II were provided with their own S(t) 

and the maximum and minimum values of S for Group I (see Figure 7.2(a)). 

The programmers of Group III were provided their own C(t) and the maximum 

and minimum values of C in Group I (see Figure 7.2(b)). 

     In addition, the programmers in Group II were instructed to develop 

programs as fast as possible with reference to the maximum and minimum 

values of S for Group I. In other words, the value S(t) should exceed the 

estimated value (according to the minimum value of S) for Group I. Similarly, 

the programmers in Group III were instructed to develop programs cautiously, 

with reference to the maximum and minimum values of C for Group I. That is, 

the value C(t) should not go beyond the estimated value (according to the 

maximum value of C) for Group I.
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    Figure 7.2 Example of feedback information 

(The current time is 3 (weeks), and the dotted line represen 
the result obtained at 4.5 (weeks). The lines between origi: 
and Max. (Min.) represent an estimation.)
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7.4 Result and interpretation 

     The experimental data are summarized in Table 7.1, which shows total 

terminal access time T, total S, and total C for each team. In these experiments , 

Groups I, II and III were organized by the instructor to minimize the differences 

among group performances. It is assumed that the productivity of a programmer 

(and team) can be evaluated by total terminal access time T, which is one of the 

measures of programming effort. The justification for this assumption is 

explained as follows. (1) Each team developed the same system . (Each team was 

given the same specification of the system to be developed.) Thus, the size of the 

resulting program did not affect the productivity. (2) All programs were tested , 

and the successful test rate was 100% for the common test cases . Thus, the 

qualities of all program are the same. 

     Under these conditions, we find that the greater the programming effort, 

the lower the productivity. Thus, the reciprocal value of total terminal access 

time T (11T) is considered to represent the productivity of the team (and 

programmers) in these experiments. 

     To compare among the three groups, the averages of T, S and C for each 

group are calculated and summarized in Table 7.2. From Table 7.2, the following 

relation (7.1) is derived with respect to the averages of productivity: 

          Group I < Group II = Group III ... (7.1) 

Namely, the productivity of Group II and Group III, in which each programmer 

had been given as feedback the information on his or her own program 

development and the results of prior project, are higher than the productivity in
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Table 7.1 Experimental data

Group Team
Total terminal
access time

T (min.)

Total number of lines
in resulting program

S (LOO

Total number of lines
changed or deleted

C (LOC)

I

1 5907 1796 3052

2 8955 1900 4407

3 7930 2826 1933

II

4 6760 2551 1808

5 6054 2771 4652

6 1696 2300 3431

III

7 8343 1943 2294

8 3879 1957 2176

9 2555 1538 1573

Group I, in which no information had been given as feedback . The following 

conclusions may be reached: 

     First, it is very important for programmers to have a clear goal (or target) 

during program development. The programmers in Group II could develop the 

programs fast by comparing their own activities to the prior project, since they 

had been given the information on the prior project as feedback. 

     Second, in preliminary experiments [Matsumoto et al. 1988b], it was found 

that there is a high correlation between the value of C and programmer 

productivity, which is the ratio of the number of lines in the resulting program 

to the total amount of terminal access time. The programmers in Group III
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Table 7.2 Comparative results among three groups

Group Average of T

(min.)
Average of S

(LOO
Average of C

(LOC)

I 7598 2174 3131

II 4837 2541 3297

III 4926 1813 2014

could develop the programs cautiously and efficiently by comparing their own 

activities to the prior project. 

     There is no difference between Group II and III with respect to 

productivity, from the relation (7.1). But, the following relation (7.2) is derived 

from Table 7.2, with respect to the number of lines in the final program . 

          Group III < Group I < Group II ... (7.2) 

In addition, the following relation (7.3) is derived from Table 7.2, with respect to 

the number of lines which have been changed or deleted. 

          Group III < Group I = Group II ... (7.3) 

     As a result, it is observed that the programmers who are given 

information on the quantity of the resulting program tend to develop larger 

programs than the programmers who are not given information. It is also 

observed that the programmers who are given information on program 

modifications tend to develop smaller programs, more cautiously than the 

programmers who are given no information.
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7.5 Possible applications 

     The general goal of a data collection and analysis system for improving 

the productivity of software development is to provide feedback of important 

information, not only to programmers but to analysts/designers as well. 

Unfortunately, the data in the system analysis and designing phases cannot be 

automatically collected since the documents in these two phases are not 

computerized yet. Thus in the current state of GINGER, only some information 

can be given as feedback to programmers during the implementation phase (see 

Section 6.4). 

     The effective feedback of information to designers is clearly an interesting 

and important task. The values of strength/cohesiveness and coupling of 

modules are typical examples of such information. But it is also well known that 

they are not measurable at the design phase since each value depends on the 

source code. In the future, if certain data can be collected from the design process 

and stored in the database, the architecture of GINGER can be extended to 

measure and analyze this phase as well. 

     The current version of the GINGER system has been applied to improve 

software development activities in the academic field according to two different 

views. 

(1) Teacher/Instructor 

    The teacher/instructor would/should monitor the programming progress 

of students directly from the coded source program rather than from off-line 

student reports. With respect to coded source programs, analyzed data such as
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the size and the number of modifications in the source code can be obtained 

[Matsumoto et al. 1988b]. 

(2) Students 

     Students can also monitor not only his or her own data , but also the 

statistical data, such as the average number of modifications, in certain specific 

experiments [Matsumoto et al. 1988b], of classmates and the previous students 

from different years. 

     From these two views, the following concrete applications can be 

considered; 

   • Teachers can use monitored data to instruct students in the 

     technology/skill of coding/testing [Matsumoto et al. 1988b]. 

   • Off-line reports submitted by students can be validated [Matsumoto et al . 

    1988b]. 

   • Causes of bugs may be analyzed statistically based on the debugging/testing 

     progress [Matsumoto et al. 1988d]. 

   • The programming ability of each student or of a team may be evaluated
, 

     assuming ability is strongly related to the number of modifications made 

    during programming [Kusumoto et al. 1989]. 

   • If the programming ability of individual students is evaluated
, the teams 

     or groups can be organized as desired [Kusumoto et al . 1989]. 

   • Residual bug counts [Matsumoto et al . 1988a] can be estimated according to 

     the number of modifications. 

    Wider applications outside of the classroom are expected in the future , 

since there may be many potential users. Feedback characterizes process/product

94



problems so that they can be improved. Thus we can apply the4:GINGER system 

from different views to other roles: (1) managers, (2) developers, (3) quality 

assurance personnel, (4) customers and (5) researchers. Most of,the issues may 

turn out to be similar to those of the classroom, with some exceptions, such as 

the estimation of the cost of the product.
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Chapter 8: Conclusion

8.1 Summary of major results 

     In this thesis, a new programmer performance model and team 

performance model are proposed for evaluating the activities of the individual 

programmer and the programmers of team in a quantitative and objective way. 

These two models are defined based on the novel concept of error life span . 

     The life span of an error is defined as the time duration from when the 

error manifests itself in the software to when the error is removed from the 

software. It can be considered to represent the degree of effect of the error on the 

productivity and quality of the software development. Results of experimental 

evaluation show that the sum of the error life span has higher correlation with 

the total terminal access time than does the total number of errors. Thus, error 

life span is concluded to be one good metric for evaluating the activities of 

programmers. In addition, in order to reduce the effort of getting the values of 

the metrics, an automatic estimation method for the sum of error life span is 

devised. The method has been already used extensively in several experimental 

projects and the validity and effectiveness of the proposed method has been 

shown. 

     Based on the concept of error life span, the programmer performance 

model is defined. In defining of the model, the sum of the error life span is used 

as a good indicator that closely links the performance of the programmer with 

(1) the number of errors made in the software development process, and (2) the
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rate of detection and removal of these errors. Additionally, in order to extend 

the application fields of the programmer performance model, the programmer 

performance model is defined to include a normalizing function for the 

complexity of given problem. Results of experimental evaluations show that the 

programmer performance model has high correlation with the "aptitude" of the 

student programmer. Of course, we think that the programmer performance 

model does not indicate the complete extent of the performance of the 

programmer, but it shows and evaluates, in a quantitative and objective way, the 

effect of one aspect of a programmer's activities on software development. 

     The programmer performance model is extended to three kinds of team 

performance models (M1, M2, and M3). Results of experimental evaluation 

suggest that the model M1 (the total of performance of programmer in team) 

and the model M2 (the average of performance of programmer in team) are not 

good indicators for evaluating the performance of the team. The model M3 

(defined by regarding a team as a virtual programmer) has the highest 

correlation with the team debugging effort time (that is, the time spent for the 

most important team activities on software development). In addition, we show 

that the team performance becomes maximum only if each programmer on the 

team develops program modules with a size that is proportional to their 

performance. Thus, the team performance model M3 can be used for not only 

the evaluation of the activities of the team, but also the construction of team 

organization before the project starts. 

     This thesis also describes a measurement environment GINGER, which 

automatically collects and analyzes the data from the activities of programmers
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during software development and shows the obtained and analyzed data to the 

programmers as feedback information to control the software development 

project in an objective way. In the proposed environment, special emphasis is 

given to programmer productivity in evaluating the activities of programmers. 

Additionally, to analyze the activities of programmers in detail and to improve 

programmer productivity by using the results of analysis, the concept of 

program modification is introduced as a metric to estimate the activities of 

programmers. 

     GINGER consists of a software development environment and a 

management environment and it presents a mechanism for supporting 

interactive information processing between these two environments. Data on 

programmer activities are collected from the development environment and 

sent to a manager in the management environment. In the management 

environment, the collected data is analyzed with respect to the productivity and 

quality of the software and then given as feedback to the developers in the 

development environment. This two-way information flow is essential in 

controlling a software development project. 

    A prototype of GINGER has been developed in a UNIX environment and 

has already been used in several empirical studies. An experimental evaluation 

of information feedback from manager to programmers is described in Chapter 

7. Results of the experiments show that information feedback can give the 

programmers a clear goal or target with respect to productivity and quality of 

software during its development process and thus help programmers 

accomplish their goal effectively. The proposed measurement environment
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provides some primitive functions to measure and control the software 

development process and product, as well as the evaluation of the programmer 

productivity. 

8.2 Future work 

    Currently in the proposed environment, the manager takes a leading role 

in data collection and information feedback. Thus, these processes involving are 

done from a manager's viewpoint. As a result, we conclude that such 

environments can control the software development project, but possibly cannot 

improve significantly the productivity and quality of software. 

     There exist two problems in the current measurement environment for 

improving the productivity and quality of software, especially in a large-scale 

project. The essential difficulties in these problems is that the main objective and 

concern of the manager is the success of the ongoing project. 

    The first problem is that data, which may contribute to the improvement 

of the productivity and quality of software in a future project, are not collected 

and analyzed by a manager. For example, consider an error analysis (one of the 

most well-known approaches to improving programmer performance). If we 

have the data on the error distribution, tendencies of errors made by 

programmers, and so on, we can suggest to each programmer the weak points in 

their coding activity and thus improve his or her programmer performance. 

    However, in general, error analysis is done at the end of the coding phase, 

after the project completed. Thus it is hard to effectively utilize the results of 

error analysis for an ongoing project. Therefore, a manager will neither do error
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analysis with interest nor collect data, even if it may yield higher productivity 

and software quality for a future project. 

     The second problem is that almost all data and analysis results are 

discarded by a manager. However, these data could be useful to future projects. 

For example, in our experiments described in Chapter 7, the data of program size 

and program modifications collected in Experiment 4 were used to present 

programmers a clear goal in Experiment 5. If we should have the data collected 

from both the successful and unsuccessful projects, projects similar to an 

ongoing project, then we could present a more comprehensible goal to 

developers of the ongoing project. 

     Since collecting and storing the data on a project does not always 

contribute to the success of the project, most managers do not expend the effort 

to do it even after the end of the project. Of course, a manager may gain 

experience in managing a software development project, but it is very difficult 

for other managers to reuse this experience. Thus arises the need to establish a 

systematic methodology for managing software development. 

     The difficulties in the problems described above come from having data 

collection and information feedback done only by the manager, especially 

considering that the only major objective of the manager is the success of the 

ongoing project. In order to resolve these difficulties, we should introduce a new 

"analyst" the measurement environment . 

    The analyst's objective is to improve the productivity and quality of the 

software in ongoing and future projects. In other words, the analyst tries to 

achieve high productivity and quality of software at an organization level rather
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Figure 8.1 Conceptional drawing of a future measurement environment

than at an individual project level. Figure 8.1 shows a conceptional drawing of a 

future measurement environment. In this environment, the developer, 

manager, and analyst each bear the responsibility for improving the productivity 

and quality of the software at three different levels: personal, project, and 

organizational levels, respectively. Four logical units: Data Collection, Data 

Management, Data Analysis, and Information Feedback are also partitioned into 

three parts and three feedback loops are implemented according to these three 

levels.
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     In the environment in Figure 8.1, the manager does not have to collect 

and manage a large amount of data from an ongoing project. Further, the 

manager can use the data from previous, similar projects (even if he or she did 

not directly manage these projects). Finally, the amount of feedback provided to 

the developer increases and is expanded by analysis of several other projects as 

well as by information from the manager.
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