
Title A Programmer Performance Model and its Measure-
ment Environment

Author(s) 松本, 健一

Citation 大阪大学, 1990, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3052207

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Programmer Performance Model

 its Measurement Environment

and

Ken-ichi MATSUMOTO

August 1990

A Programmer Performance Model

 its Measurement Environment

and

Ken-ichi MATSUMOTO

August 1990

Dissertation submitted to the Faculty of the Engineering Science of

 Osaka University in partial fulfillment of the requirements

 for the degree of Doctor of Engineering

Abstract

 This thesis proposes a programmer performance model in order to

evaluate the activities of a programmer in a quantitative and objective way. This

model is then extended to evaluate the activities of the programmers of a team.

Analysis of experimental evaluations shows the validity and the effectiveness of

the proposed model. In addition, this thesis describes a measurement

environment called GINGER which automatically collects and analyzes the data

from the activities of programmers during software development and shows the

obtained and analyzed data to the programmers as feedback information. By

providing these features, GINGER aims to control the software development

project in a meaningful and objective way.

 The programmer performance model and the team performance model

are defined based on a novel concept of error life span. The life span of an error

is defined as the time duration from when the error manifests itself in the

software to when the error is removed from the software. Results of

experimental evaluations show that the programmer performance model has a

high correlation with the "aptitude" of a student programmer. Additionally, the

team performance model, which is defined by regarding a team as a virtual

programmer, turns out to have a high correlation with the time a team spends

debugging.

 The proposed GINGER environment evaluates the activities of

programmers by concentrating its attention on programmer productivity.

i

Additionally, the concept of program modification is introduced as a metric to

estimate the activities of programmers and based on this metric, GINGER tries to

analyze the activities of programmers in detail and to improve programmer

productivity by using the analysis. A prototype system of GINGER is currently

being developed and the validity and usefulness of the prototype system are

shown by experimental evaluation in an academic environment.

 In Chapter 1, related progress and topics in software engineering are briefly

summarized for background and the outline of the thesis is described.

 Chapter 2 describes the software development process, product, and

software metrics. The software metrics include as objects of evaluation the

software development process as well as the software product.

 Chapter 3 introduces a new concept of error life span and proposes a

programmer performance model based on the concept. Then, the programmer

performance model is extended to a team performance model in order to

evaluate the activities of programmers on a team. The team model makes it

possible to devise an optimal team organization strategy based on the model.

 Chapter 4 describes the experimental evaluation of the proposed models

in both academic and industrial environments. The results of the experimental

evaluations prove that the models are valid and effective in evaluating the

activities of software development. Furthermore, a method is presented to

automatically collect the estimated values of the error life spans based on the

textual changes among successive versions of the program text made during the

coding and debugging processes.

ii

 Chapter 5 describes the major functions of project management during

software development. The chapter stresses that "controlling" is the most

important of these functions.

 Chapter 6 presents the system organization and functions of GINGER.

GINGER supports collecting and analyzing data during software development. It

supports information feedback to improve programmer productivity with

respect to measurement-based control of the software development project. The

first prototype system of GINGER is described.

 Chapter 7 shows some experimental results of the prototype system.

Results of experiments show that the prototype system provides the primitive

functions needed to measure and control the software development process and

product as well as to evaluate programmer productivity.

 Chapter 8 presents a summary of the ideas discussed in the thesis and

draws some conclusions. Finally, it summarizes future research work and

describes key points for designing future measurement environments.

iii

List of Major Publications

[I]

[2]

[31

[41

[51

[61

[71

K. Matsumoto, K. Inoue, H. Kudo, Y. Sugiyama and K. Torii, "Error life

span and programmer performance," Proceedings of the 11th International
Computer Software and Applications Conference, pp.259-265, Oct. 1987.
K. Matsumoto, K. Inoue, T. Kikuno and K. Torii, "Experimental
comparisons of software reliability growth models in academic

environment," Proceedings of Software Symposium '88, pp.161-170, June
1988 (in Japanese).
K. Matsumoto, K. Inoue, T. Kikuno and K. Torii, "Experimental
comparison of software reliability growth models," Proceedings of the 18th
International Symposium on Fault-Tolerant Computing, pp.148-153, June

1988.
K. Matsumoto, K. Inoue, T. Kikuno and K. Torii, "An experimental
evaluation of programmer performance based on error life span -For

program development in academic environment-," Transactions of IEICE
Japan, Vol.J71-D, No.10, pp.1959-1965, Oct. 1988 (in Japanese).
K. Matsumoto, T. Kikuno and K. Torii, "An experimental evaluation of S-
shaped software reliability growth models in academic environment -
Comparison between models and determination of inflection rate-,"
Transactions of IEICE Japan, Vol.J73-D-I, No.2, pp.175-182, Feb. 1990 (in

Japanese).
S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii, "Experimental

evaluation of metrics for review activities," Proceedings of the 10th
Software Symposium, pp.236-241, June 1990.
K. Matsumoto, S. Kusumoto, T. Kikuno and K. Torii, "An experimental
evaluation of team performance in program development based on model
-Extension of programmer performance model-," (Submitted to

Transactions of IPS of Japan) (in Japanese).

iv

Acknowledgments

 During the course of this work, I have been fortunate to have received

assistance from many individuals. I would especially like to thank my

supervisor Professor Koji Torii for his continuous support, encouragement and

guidance for this work.

 I am also very grateful to the members of my thesis review committee:

Professor Tadao Kasami, Professor Nobuki Tokura, Professor Ken'ichi

Taniguchi, and Professor Hideo Miyahara for their invaluable comments and

helpful criticism of this thesis.

 I also wish to thank Associate Professor Tohru Kikuno and Assistant

Professor Katsuro Inoue for their valuable suggestions and stimulating

discussions.

 Many of the courses that I have taken during my graduate career have

been helpful in preparing this thesis. I would especially like to acknowledge the

guidance of Professors Jun'ichi Toyoda, Tadahiro Kitahashi, Mamoru Fujii, and

Toshinobu Kashiwabara.

 I would like to express my thanks to Dr. Lloyd G. Williams of Software

Engineering Research for his insightful comments and valuable discussions on

the paper which formed the basis for Chapter 3 of this thesis. I would also like to

express my thanks to Mr. David F. Redmiles and Miss Kumiyo Nakakouji of

University of Colorado at Boulder for their careful reading of a draft of this

thesis. Their suggestions were very helpful.

v

 I would also like to acknowledge the valuable comments of Mr. Kouichi

Kishida of Software Research Associates, Inc. and Mr. Mitsuru Ohba of IBM

Japan, Ltd. on the work presented in this thesis. I also acknowledge the support

of Mr. Takahiro Jiro of Nihon Unisys, Ltd. for the industrial experimental

project described in Chapter 4.

 Finally, special thanks go to Mr. Satoshi Onishi of Sharp Corporation, Mr.

Shinji Kusumoto, and Miss Satomi Nishida for their help and cooperation. I

would also like to thank Mr. Satoshi Onishi and Mr. Shinji Kusumoto for their

assistance in developing the GINGER system and in performing some of the

academic experiments described in Chapters 4 and 7.

vi

Contents

Chapter 1: Introduction:...1

 1.1 Progress in software engineering ... 1

 1.2 Measurement in software development ...3

 1.3 Understanding software development activities4

 1.4 Controlling software development activities5

 1.5 Outlines of the thesis .. 8

Chapter 2: Software Development ..10

 2.1 Product and process ..10

 2.2 Software metrics ..12

 2.3 Programmer activities ..13

 2.4 Team activities ...14

Chapter 3: Programmer Performance Model ..17

 3.1 Error and fault ..17

 3.2 Error life span ... 20

 3.3 Programmer performance model ..22

 3.4 Team performance model ... 24

Chapter 4: Experimental Evaluation of Models ...27

 4.1 Overview .. 27

 4.2 Experiment 1 .. 28

 4.2.1 Experimental data ... 28

vii

 4.2.2 Evaluation .. 32

 4.3 Experiment 2 .. 34

 4.3.1 Experimental data ... 34

 4.3.2 Evaluation ...:.... 35

 4.4 Automatic estimation of error life span .. 37

 4.5 Experiment 3 .. 41

 4.5.1 Experimental data ... 41

 4.5.2 Evaluation .. 44

Chapter 5: Software Development Project Management 50

 5.1 Major functions of management ...50

 5.2 Project control .. 51

 5.3 Data for controlling ... 53

 5.3.1 Programming efforts .. 56

 5.3.2 Quality/Quantity of resulting program 58

 5.3.3 Program modifications .. 59

Chapter 6: Measurement Environment : GINGER ... 61

 6.1 Measurement-based control ... 61

 6.2 System organization ... 61

 6.3 Functionality .. 66

 6.4 Prototype system .. 69

 6.4.1 Characteristics of the prototype ... 69

 6.4.2 Collection of process/product data .. 70

 6.4.3 Management of project data ... 74

 6.4.4 Analysis of programmer productivity 79

viii

Chapter 7: Experimental Evaluation of the Environment 85

 7.1 Objective of the experiments ..85

 7.2 Outline of the experiments ...85

 7.3 Information feedback ... 87

 7.4 Result and interpretation ..90

 7.5 Possible applications ... 93

Chapter 8: Conclusion .. 96

 8.1 Summary of major results ..96

 8.2 Future work .. 99

References ...103

ix

Chapter 1: Introduction

1.1 Progress in software engineering

 Large software systems often provide incomplete functionality for what

customers want, take too long to construct, cost too much time, use too much

memory space or other resources to run, and rarely evolve to meet the changes

needed [Lamb 1988]. These problems associated with development of software ,

especially large-scale software, have emphasized the need for a more disciplined

and systematic approach. In the late 1960's, the term "software engineering" was

coined as a rubric for a variety of techniques and tools to allow the production of

cost-effective, reliable software within specified time constraints [Conte et al .

1986].

 In the IEEE standard [IEEE 1983], software engineering is defined as the

systematic approach to the development, operation , maintenance, and

retirement of software. Boehm, on the other hand, defines software engineering

as the application of science and mathematics by which the capabilities of a

computer equipment are made useful to man via computer programs ,

procedures, and associated documentation [Boehm 19811.

 In the intervening years, the practitioners and researchers have developed

many techniques for addressing these problems mentioned above . These

techniques are mainly for

 - coping with the complexities of large systems ,

 - managing cooperating groups of programmers
, and

1

 - measuring the quality of a software system [Lamb 19881.

In addition, a number of notable concepts, which are still useful as the

foundation for developing and maintaining the current software, have been

established. These concepts include:

 - software development and maintenance methods and models,

 - assessment methods,

 - software project management , and

 - software development environments.

 The DoD's STARS (Software Technology for Adaptable, Reliable System)

program is one of the typical trials to apply these concepts to a practical software

development [Druffel et al. 1983]. Actually, the STARS program intends to

improve productivity while achieving greater system reliability and adaptability

by using software engineering techniques in all phases of the software life cycle.

The driving need is to have the capabilities of producing more powerful,

reliable, and adaptable systems through software development, and in-service

support processes that are more responsive, predictable, and cost-effective.

 The major technological aspects within the STARS program are

summarized as the following four areas [Conte et al. 19861:

 - Measurement and Project Management Tasks Area ,

 - Human Resources and Human Engineering Tasks Area,

 - Application-Specific Task Area, and

 - Support Systems Task Area .

2

1.2 Measurement in software development

 The Measurement Task Area is considered to be the most important area

within the STARS program since the ability to measure objectively is a

foundation for all scientific and engineering disciplines [Dunham & Krusei

19831. In other words, software engineering can attain the status of a scientific

discipline only if it is built upon a solid foundation of objective measurement .

Thus, the maturity of software engineering as a discipline may be reflected in the

degree to which the use of metrics becomes normal and natural in the software

development and maintenance process [Conte et al. 1986].

 In general, activities for the measurement task area concern the

development of evaluation criteria and their associated measures and metrics ,

and the experimental evaluation of techniques, methods, and tools . The strategy

for progress needs, among other things, to establish success criteria for other task

areas, and execute cost/benefit analysis of various opportunities . It also needs to

collect baseline data against which to measure progress, instrument automated

supports environments, and develop techniques for experimentally testing

hypotheses related to software development and in-service support [Druffel et al .

1983].

 Practical benefits of measurement consist of the following capabilities , (1)

through (5) [Conte et al. 1986] [Dunham & Krusei 1983]:

 (1) Describing the current state of the world - the ability to describe

 quantitatively the current state of software parameters, such as software

 quality, resources expended, and productivity.

3

 (2) Monitoring progress and providing feedback - the ability to monitor

 progress, to anticipate problems, and to provide feedback to software

 personnel about potential problems.

 (3) Predicting project parameters such as cost, delivery time, functions, quality

 etc. - the ability to predict software parameters, such as system cost,

 delivery time, and reliability.

 (4) Expressing requirement and goals quantitatively - the ability to express

 requirements quantitatively both as goals and as acceptance criteria.

 (5) Analyzing costs and benefits - the ability to quantify trade-offs that can be

 used by management in allocating resources.

This thesis focuses on the first two, and proposes a concrete method to

implement them.

1.3 Understanding software development activities

 The most fundamental function of measurement is to describe the current

state of development. For complex software, this is extremely important because

it allows us to discern trends and pattern [Druffel et al. 1983].

 The measurement of resource expenditures is a good example of the

benefit of this type of description. The resources expended on a project,

particularly in terms of a human effort, are translated directly into costs. By

collecting and analyzing information about exactly where these resources are

being expended (for example, what phase of the life cycle, what types of activities,

what parts of the system), one can identify the major cost drivers within a

software organization. Then, one can answer questions such as "What types of

4

activities consume large portions of the available manpower?" and "Where is

the effort being wasted?" Therefore it can lead to the search for software tools or

development methods designed to reduce the cost drivers [Druffel et al. 1983].

 This thesis concerns the activities of programmers that contribute to

improved software productivity and quality during software development, and

proposes a programmer performance model to understand and evaluate these

activities. To this end, the concept of error life span has been introduced as one

metric to measure the negative effect of errors on software development

[Matsumoto et al. 1988c] [Matsumoto et al. 19871.

 In addition, we discuss the relation between programmer performance

and team performance [Scott & Simmons 1975] and devise a strategy to organize

reliable teams of programmers so that the activities of each team (thus, the

activities of programmers) may increase. Three models, M1, M2, and M3, are

presented to define the performance of a team based on the programer

performance model. M1 summarizes the performance of programmers. M2

takes an average of the performance of programmers. M3 evaluates the sum of

error life spans under the assumption that the team is regarded to be a virtual

programmer. These models are evaluated and compared by applying them to an

experimental software development project.

1.4 Controlling software development activities

 In the classic management model [Mackenzie 19691 [Thayer 19881,

management is partitioned into five distinct functions or components:

planning, organizing, staffing, directing, and controlling. These functions can be

5

classified into two types. The first type includes planning, organizing and

staffing, which are executed before constructing the activities of the software

project, in order to accomplish the objectives of the project effectively. In

contrast, the second type includes directing and controlling, which are executed

dynamically during the software construction phase of the project. These latter

are done to carry out the project if deviations from this prescribed plan occur.

Therefore, the second type of functions, directing and controlling, are more

important than the first type of functions. Since it is impossible to forecast all

phenomena in the project when it starts, we have to develop a mechanism to

correct deviations, and ensure the execution of the project in pursuance of the

prescribed plan.

 From a manager's perspective, monitoring progress, foreseeing problems

before they get out of control, and taking appropriate corrective actions are very

important to a project's successful completion. In other words, for controlling a

project, the manager has to know the actual state of the project, clarify the

difference between the prescribed plan and the actual state of the project, and

help the developers to accomplish the prescribed plan.

 Thus, measurement is one of the most powerful and effective

technologies for controlling software development activities in a quantitative

and objective way. Furthermore, measurement adds visibility to the software

project; tracking can be carried out in a meaningful and objective way [Druffel et

al. 1983]. DeMarco succinctly makes this point in stating, "You can't control what

you can't measure." [DeMarco 1982]

6

 In this thesis, we concentrate on programmer productivity as a metric to

control the software project. Then, we propose a system that automatically

collects and analyzes the data from the activities of programmers during

software development and shows the obtained and analyzed data to the

programmers as feedback information [Onishi et al. 1986]. This feedback allows

the programmers to recognize their weaknesses and improve their activities

[Basili & Rombach 19871. We expect that the overall productivity during

development and the quality of the resulting products can be controlled by using

this system.

 Other systems and environments for improving both programmer

productivity and the quality of products have been developed. One of them is

the TAME (Tailoring A Measurement Environment) project at the University of

Maryland [Basili & Rombach 1988] which provides a software engineering

process model. This software engineering process model is based upon various

kinds of improvement and goal/question/metric paradigms . The system will

ultimately run on a distributed system consisting of at least one mainframe

computer and a number of workstations. The mainframes are needed to host

the experience base, which can be assumed to be very large. Thus, we can say that

TAME will be a large-scale system.

 The proposed measurement environment, described in this thesis, is also

improvement-oriented and suitable for distributed environments . The

prototype system of the measurement environment uses the existing functions

7

of UNIX* in order to collect data from many workstations in software

development. Therefore, it is easy to apply the prototype system to various kinds

of projects if their software is developed on UNIX workstations.

1.5 Outlines of the thesis

 First, this thesis proposes a programmer performance model and a team

performance model based on the concept of error life span in order to

understand and evaluate the activities of the programmer and the programmers

of a team in a quantitative and objective way. Then, it describes a measurement

environment called GINGER which automatically collects and analyzes the data

from the activities of programmers during software development and shows the

obtained and analyzed data to the programmers as feedback information in order

to control (and manage) the software development project in a meaningful and

objective way.

 Chapters 2, 3, 4 outline a programmer performance model and a team

performance model. Chapter 2 describes the software development process and

product, and software metrics which evaluate the software development process

and product in a quantitative and objective way. Chapter 3 introduces a new

concept of error life span and proposes a programmer performance model based

on this concept. Then, the programmer performance model is extended to a

team performance model in order to evaluate the activities of programmers of a

team and devise an optimal team organization strategy based on the model.

 UNIX is a registered trademark of AT & T Bell Laboratories.

8

Chapter 4 describes the experimental evaluation of the proposed models in both

academic and industrial environments. The results of the experimental

evaluation show the validity and the effectiveness of the model. Furthermore, a

method is introduced for automatically collecting the estimated values of the

error life spans based on the textual changes among successive versions of the

program text during coding and debugging.

 Chapters 5, 6, 7 outline a measurement environment, GINGER. Chapter 5

describes the major functions in software development project management and

shows that controlling is the most important function among them. Chapter 6

presents the system organization and functions of GINGER that support

collecting and analyzing data from a software development process and support

information feedback to improve programmer productivity. Then, the first

prototype of GINGER is described. Chapter 7 shows some experimental results

using the prototype system.

 Chapter 8 presents a summary of the ideas discussed in the thesis, draws

some conclusions, and summarizes some areas for future research.

9

Chapter 2: Software Development

2.1 Product and process

 One of the purposes of software engineering is to improve software

productivity and quality. Various kinds of studies in this field have been

undertaken over the years. According to the results of these studies, the scope of

the targets to be analyzed and discussed can be classified into two groups: (1)

software products and (2) software development processes.

 In the IEEE standard [IEEE 1983], a software product is defined as a software

entity (computer programs, procedures rules, and possibly associated

documentation and data pertaining to the operation of a computer system)

designated for delivery to a user. A software development process is defined to

be the process by which user needs are translated into software requirements,

software requirements transformed into design, the design implemented in

code, and the code tested, documented, and certified for operational use.

 When we want to understand and control a software product and a

software development process in a specific way, the concept of a software life

cycle is useful. The software life cycle is defined as the period of time that starts

when a software product is conceived and that ends when the product is no

longer available for use [IEEE 1983]. The software life cycle typically includes a

requirements phase, a design phase, an implementation phase, a test phase, an

installation and checkout phase, an operation and maintenance phase, and

10

sometimes, a retirement phase. Each of the phases is defined as follows [IEEE

19831:

 (1) Requirements phase: the period of time during which the requirements

 for a software product, such as the functional and performance

 capabilities, are defined and documented.

 (2) Design phase: the period of time during which the designs for the

 architecture, software components, interface , and data are created,

 documented, and verified to satisfy requirements .

 (3) Implementation phase: the period of time during which a software

 product is created from design documentation and debugged.

 (4) Test phase: the period of time during which the components of a software

 product are evaluated and integrated and the software product is

 evaluated to determine whether or not the requirements have been

 satisfied.

 (5) Installation and checkout phase: the period of time during which a

 software product is integrated into its operational environment and tested

 in this environment to ensure that it performs as required .

 (6) Operation and maintenance phase: the period of time during which a

 software product is employed in its operational environment , monitored

 for satisfactory performance, and modified as necessary to correct problems

 or to respond to changing requirements.

 (7) Retirement phase: the period of time during which support for a software

 product is terminated.

11

2.2 Software metrics

 Measuring the software product and the development process throughout

the software life cycle, described in subsection 2.1, is essential for improving

software productivity and quality. Software metrics are often classified into

product metrics and process metrics, and are applied respectively to either the

software product or the development process [Conte et al. 1986].

 Product metrics are measures of the software product [Conte et al. 1986].

Product metrics include the size of the product (such as the number of lines of

code or some count of tokens in the program), the logic structure complexity

(such as . flow of control, depth of nesting, or recursion), the data structure

complexity (such as the number of variables used), the function (such as type of

software: business, scientific, systems, and so on), and combinations of these

[Conte et al. 1986].

 Among these product metrics, the complexity metric for a program is the

most well-known product metric. It is used for the implementation phase and

the test phase. The complexity metric is often a good indicator of whether a

product is well-designed, understandable, and easy to modify [Basili 1980].

Unfortunately, the complexity metric and most product metrics may reveal

nothing about how the software product has evolved into its current state [Conte

et al. 19861.

 Process metrics quantify attributes of the development process (including

product evolution) and of the development environment [Conte et al. 19861.

Process metrics can evaluate such various items as development techniques (the

use of top-down or bottom-up development techniques, structured

12

programming, and other software engineering techniques), developmental aids

(the use of design languages and systems, editors, interactive systems, and

version control systems), supervisory techniques (such as the type of team

organization and number of communication paths), and resources (human,

computer, time schedule, and so on) [Conte et al. 1986].

 The software reliability growth model is a well-known process metric

(model) used for both the test phase and the operation and maintenance phase

[Matsumoto et al. 1990] [Musa et al. 1987]. The software reliability growth model

can estimate the mean time to failure (MTTF), the number of residual faults in

product and so on.

 Most process metrics require greater efforts to collect and analyze data than

do product metrics. It is especially difficult to collect reliable data on human

activities. However, process metrics can provide more valuable information for

improving software productivity and quality than can the product metrics.

2.3 Programmer activities

 Among the attributes of the development process, mentioned in

subsection 2.2, the human resource is one of the most important to be evaluated.

The reason why we emphasize the human resource is that human activities are

strongly related to productivity and to the quality of software [Curtis 19851.

Moreover, there are very large individual differences in human activities with

respect to productivity and quality of software. For example, Sackman, Erikson

and Grant [Sackman et al. 1968] showed that for most performance variables,

there are very large individual differences in the programming performance.

13

Also in COCOMO (COnstructive COst MOdel)[Boehm 19811, the programmer

capability is one of the major attributes, having a range of 2.03 for software

productivity. The programmer capability is the highest cost driver among 14 cost

drivers in COCOMO.

 However, since there are no model-based approaches to evaluate

programmer activities, it has been believed that programmer activities cannot be

measured absolutely. Thus, very simple but insufficient measures have been

widely used in the practical applications. For example, the number of years that a

team has been using a programming language, the number of years that a

programmer has been with the organization, the number of years that a

programmer has been associated with a programming team, and the number of

years of experience constructing similar software or managers' intuitive

evaluations have been used.

2.4 Team activities

 Generally, large software systems are developed by teams that consists of

many analysts, designers, programmers and so on. Several ideas have already

been proposed to organize a software development team efficiently [Myers 1976].

 The chief programmer team concept was originated by Mills [Baker 1972].

The team is headed by a chief programmer (that is, a senior-level programmer

who is highly skilled and experienced). The chief programmer performs all of

the design tasks, writes the code for all critical modules, and performs the

integration and testing of the team's code. He or she is also the primary interface

to outside organizations such as other teams and the user organization and thus

14

reduces the number of lines of communication among project members. The

chief programmer is assisted by a back-up programmer and a programming

librarian [Myers 1976]. The remainder of the team varies on the particular stage

of the project [Myers 1976].

 The specialist team has been proposed by Brooks [Brooks 1975]. The major

differences between this team and the chief programmer team are that the team

members remain within the same team for the entire project and each member

of the team has a special assignment that takes advantage of his or her particular

talents [Myers 1976].

 Another proposal for programming teams is the democratic team

[Weinberg 19711. This team is different from other teams in that it has no

formally appointed leader or initial individual assignments. A particular team

member may become an informal leader when the team enters a stage for which

that team member is most qualified. The team makes its own work assignments

based on the talents of the members. One big difference between this team and

the chief programmer team is that the democratic team stays together from

project to project. When a project is completed, the team is not broken up but is

assigned as a whole to a new project. This means that the rapport, working

relationships, and group standards within the team are maintained from project

to project.

 These organizations are valuable because they recognize that

programming is largely a social activity rather than an individual activity [Myers

19761. However, programming teams do have a few disadvantages. The, work of

each individual programmer is less visible to the project manager, making

15

performance evaluations more difficult. In the teams with a formal leader, the

leader can become the sole interface between the manager and other team

members, leading to significant morale problems. Therefore, a quantitative and

objective method needs to be devised to evaluate the performance of team

member and team.

16

Chapter 3: Programmer Performance Model

3.1 Error and fault

 It is widely recognized that errors have a close relation to software

productivity and quality. Numerous studies have been conducted in the field of

so called "error analysis" in order to clarify the effect of each error on software

productivity and quality. For example, Weiss [Weiss 1979] used errors as a way of

evaluating the software development process. He investigated causes of errors

and efforts involved in fixing errors and proposed methods of error detection

and correction.

 According to Basili and Rombach [Basili & Rombach 19871, an "error" is a

defect in the human thought process made while trying to understand

 Problem understandine phase Tnol usage phase

Software

X Fault

X Fault

X Fault

Figure 3.1 Error and fault

17

information for solving a problem or while trying to use methods and tools. A

"fault" is the concrete manifestation of an error within the s
oftware. Figure 3.1

illustrates these definitions.

 In the IEEE standard [IEEE 19831, an error is defined as a human action that

results in software which contains a 'fault. Examples include omission or

misinterpretation of user requirements in a software specification and incorrect

translation or omission of a requirement in the design specification. And, a fault

is defined as a manifestation of an error in software. A fault, if encountered, may

cause a failure (synonymous with bug).

 Myers has said that an error is a mistake in translating information [Myers

1976]. Software production, then, is simply a number of translation processes ,

translating the initial problem into various intermediate solutions until a

detailed set of computer instructions is produced. Software errors (faults) are

introduced whenever one fails to completely and accurately translate one

representation or solution of the problem to another more detailed

representation [Myers 19761.

 Myers has also pointed out that a person has to perform the following

four steps in order to translate information [Myers 1976].

 Step 1: He (or she) receives the information using his read mechanism R.

 Step 2: He stores this information in his memory M.

 Step 3: He retrieves from his memory this information and other

 information describing the translation process, performs the

 translation, and sends the result to his writing mechanism W.

18

 Step 4: The information is physically depressed by writing, typing on a

 terminal, or speaking.

Myers has summarized the errors that may be generated in each step [Myers

19761:

 Step 1: Errors are introduced by misreading the input information, seeing

 what is expected as opposed to what is actually there, making

 assumptions about missing facts, or simply overlooking information.

 Step 2: Errors in this step result from misinterpreting or misunderstanding

 the input information. The reason may be that the information may

 be too complex, the person may not have the necessary education

 background, or the information may be ambiguous.

 Step 3: The largest source of errors in this step is the phenomenon of

 forgetting the input information or how to perform the translation

 properly. Weaknesses in other mental abilities, such as clarity of

 thought and retrieval of related knowledge, also contributes errors.

 Step 4: Many people do not write or express themselves clearly and that

 obscures their output. If there is a large amount of output

 information, the person takes shortcuts or assumes that facts will be

 "intuitively obvious" to his audience .

 The emphasis on error and fault in these past studies shows its

prominence in, and therefore the necessity of studying it in regards to, the

activities of programmers. Unfortunately, it is practically impossible to count

errors. We can however count faults which are manifestations of errors in

software, to evaluate the activities of programmer. "Error" in this thesis is

19

almost the same as "fault" in this subsection. However multiple faults which are

dearly caused by one defect are treated as one error.

3.2 Error life span

 In order to measure the negative effect of errors on the development

processes, one may want simply to count the total number of errors involved in

the program texts throughout the processes. We believe, however, that counting

the total number of errors is insufficient since each error has different effects on

the software productivity and quality. Thus, we introduce a weight into the

error, which could represent a particular rate of effect of each error. The weight

to be introduced in this thesis is called a life span (time duration) of the error.

 An error life span Te for an error e has been defined as time duration from

when the error e manifests in the software to when the error e is removed from

the software [Matsumoto et al. 1988c] [Matsumoto et al. 1987]. Figure 3.2 shows an

example of error life span Te. In Figure 3.2, x and 0 represent respectively the

times of error manifestation and error removal.

 For example, we consider a case in which an error causes some faults in a

program text. If the life span of an error is long, that is, the faults remain for a

long period of time in the program text, then the programmer would have a

hard time removing them. One cause of this difficulties is that the programmer

would forget the details of the old code relating to the faults. Also the erroneous

codes affect other codes appended to the program text afterward. Hence, we

naturally think that an error with a long life span has a high (negative) effect to

the project progress and the program reliability.

20

Software Development Process

Designing Coding Debugging t

el Tee

 e2 ~Te2
 e3 f-Tea ::~..

 X Error e; manifests

 O Error e, is removed

 Te i : Life Span of Error e

 Figure 3.2 Error life span

 Similar concepts to the error life span can be seen in several earlier papers

[Mills 19761 [Weiss & Basili 19851. Mills [Mills 1976] introduced the concept of

"error days" for estimating the quality of an acceptable system
. "Error days" is, for

each error removed, defined to be the sum of the days from its creation to its

detection. He has implied, though without empirical evidence, that this

measure is an indication of probable future errors and of the effectiveness of the

design and testing processes. Weiss and Basili [Weiss & Basili 1985] have used

changes as a way of evaluating the software development processes. They

mentioned that "the length of time each error remained in the system" would

be useful information for evaluating the software development processes.

However no collection and analysis of such data were made.

21

 We have actually collected data from student projects and studied the

relation between the value we obtained and the programmer performance. The

time used for measuring the life span in our experiments is actual terminal

access time rather than calendar days used for the error days.

3.3 Programmer performance model

 We believe that the error life span could indicate some aspects of

programmer performance, as well as the product quality as suggested by Mills

[Mills 1976]. The error life span closely relates to the performance of the

programmer in the following two ways:

 (1) the number of errors made in the software development processes, and

 (2) the rate of detection and removal of these errors.

 The value called a "score", is defined to indicate some aspects of

programmer performance. The score SI for each individual programmer is

formally defined by formula (3.1).

 SI -_ um of error life spans -1 ... (3.1) f(p)

 where f : Normalizing function,

 p : Complexity of given problem.

In this definition of SI, the following two assumptions are made.

 (1) The specification (of a problem) is not modified during software

 development.

 (2) Designing, coding, and debugging are completed by the same programmer.

 This definition of SI comes from the fact that programmer, who makes

less errors and removes these errors in shorter time, gets better performance.

22

 For the normalizing function f(p), the square of the final program size, i.e.,

L2 is used in this thesis. The explanation of why we chose L2 follows. IT, is

rewritten by

 ET, = avg x N ... (3.2)

 where avg : The average of the error life spans,

 N : The number of the total errors.

Since avg and N are considered to depend on the complexity p of the problem,

both avg and N should be normalized by p in such a way that,
 avg N

 P x p ...(3-3)
 where p : Complexity of the problem.

 In the experiments, to be described in Chapter 4, there is only a small

difference among the specifications. Thus, we think that the complexity p of the

problem is estimated by the final program size L (the number of the lines in the

final program text). As the result, L2 is employed as the normalizing function.

 Thus, the score SI in the formula (3.1) for each individual programmer is

rewritten by the formula (3.4).

 SI= E(Te)4 L2 (3.4)

 where Te : An error life span.

 L : The final program size.

23

3.4 Team performance model

 Let us consider a case that software is developed by a team, which consists

of n programmers. Based on the programmer performance model mentioned in

Section 3.3, three models M1, M2 and M3 are defined to measure the

performance of each team. In the following, let SIj denote the score of a

programmer j (1_< j<_ n). For the sake of simplicity, the following notation

 SIj = 1 L 1 ... (3.5)
 where Ej = ET,,

is used instead of the notation in (3.4).

 The first two models M1 and M2 are defined by using the scores SI1 's (j =

1, 2, ..., n) of the programmers of the team.

Model M1

 The score for a team (in short, called team score) ST1 is defined as follows;

n

 ST1 = I SIj ... (3.6)
 j=1

Model M2

 The score ST2 is defined as follows;

 1 n
 ST2= n jSI1 ...(3.7)

 j=1

The model M3 is defined by regarding a team as a virtual programmer.

Model M3

 The team score ST3 is defined as follows;

 24

ST3 = >E 2 1 ((ELj)) ... (3.8)

 Next, we discuss the strategies for team organization in order to maximize

the team score. In the following discussion, we consider an application of

models M1, M2 and M3 to a new project P. The following three assumptions are

made.

 (1) The scores SIj (j = 1, 2, ..., n) are known beforehand (for example, for the

 past project P similar to the project P).

 (2) For each programmer, the value of the score doesn't depend on the

 project. (Thus the score for projects P and P are the same.)

 (3) For the project P, it is possible to estimate the final program size L (= Y-Lj)

 [Boehm 1981].

Let SIP Lj and Ej denote the values for a new project P, and SIj', Lj' and Ej' denote

the values for an old similar project P'.

Strategy for model M1

 By assumption, the formula
 n n

 STI = I SIj = I SIj' ... (3.9)
 j =1 j=1

is obtained. Thus, if there is no limit on the total number of programmers in the

team, the best way to organize programmers is to collect as many as possible.

However this organization seems impractical. But when there is a limit on the

number, collecting only programmers with high score is the best way (which

seems to be a practical conclusion).

25

Strategy for model M2

 By assumptions, the formula

 1 n 1 n ST2 = n~ SIj = n Z SIj' ... (3.10)
 j=1 j=1

is obtained. Thus, the best approach is to collect only programmers with high

scores and to keep the value of n as small as possible. An exceptional case is that

a programmer with the highest score develops all modules of program.

 It is clear that in both models M1 and M2, collecting programmers is the

only key factor. How to distribute m modules (to be developed) among n

programmers in the team doesn't affect the optimality of the strategy.

Strategy for model M3

 By the definition, if the relation
 Ll L2 Ln (3

.11) S1
1'=SI2'=...=SIn'

holds, then the value of ST3 becomes maximum. At that time, the relation

n

 ST3 = I SIj' ...(3-12)
 j =1

is derived. Thus, the best way is that, in the new project P, each programmer j (j

= 1, 2, ..., n) develops program modules with size Lj, that is proportional SIj'.

26

Chapter 4: Experimental Evaluation of Models

4.1 Overview

 In order to evaluate the proposed models, three experimental software

development projects (Experiments 1, 2 and 3) have been executed in academic

and industrial environments. Experiments 1 and 2 have been done in an

academic environment [Matsumoto et al. 1988c] [Matsumoto et al. 1987]

[Matsumoto et al. 19861. The purpose of Experiment 1 is to show the validity and

the effectiveness of error life span Te and score SL In Experiment 1, project data

on nine students were collected. Each student developed a compiler for a subset

of PL/I, Pascal or C using Pascal or C. Final program sizes were about 1000-2500

lines.

 The purpose of Experiment 2 is to compare the scores SI 's of the same

students. In Experiment 2, project data on six students were collected. Each

student developed a compiler for a subset of Pascal using C and a kind of

inventory control program using Pascal. Final program sizes of compilers were

about 1000 lines and those of inventory control programs were about 300 lines.

 In both Experiments 1 and 2, to obtain error life span Te, we traced and

analyzed by hand all the files used in the projects. The time unit for Te was

terminal access time. In addition, we assumed the case that a programmer was

given a specification of the program to develop and that the same programmer

performed all the work, i.e., designing, coding and debugging. It was also

27

assumed that the programmer completed the development within a specific

time frame.

 Experiment 3 has been done in an industrial environment to show the

validity and the effectiveness of the team score ST. In Experiment 3, eight teams

of programmers developed the same system, a file processing program in a

business application, using COBOL. The system consisted of 18 program

modules. The final program sizes ware about 2000 lines. In Experiment 3, to

obtain error life span Te, we used an automatic estimation method for the sum

of error life span. The details of the automatic estimation method are described

in Section 4.4.

4.2 Experiment 1

4.2.1 Experimental data

 We collected project data on nine students. Each student developed a

compiler for a subset of PL/I, PASCAL, or C using PASCAL or C. They had

studied the theory of compiler construction in their classes; however, they had

no previous experience in constructing compilers.

 In this experiment, we did not measure actual error life spans, but we

collected a closely related value Te. Te is the life span of the faults in the

program text, caused by an error e. In other words, we started counting Te when

a fault caused by e was first embedded in the program text, and stopped counting

when all of the faults caused by e were removed. Thus errors removed before

coding were not counted here. This was because we had no appropriate method

to count all the errors.

28

 It might have been useful to investigate the details of errors which the

programmer made. However, such an investigation would have been another

task for the programmer, thus inhibiting the project's progress. Hence, we

decided not to inquire directly as to the details of the programmer's errors, but to

analyze the textual changes among successive versions of the program texts and

to estimate the number of the errors from the- faults found in the texts.

 Textual changes reflect the coding and debugging processes and we can

collect them automatically with less effort. For each textual change, we also

collected the reason for the textual changes as annotated by the programmer

himself using an on-line data collecting tool. From the textual changes and the

reasons, we determined e and its life span Te by hand. In this analysis, syntactic

errors were not counted as e. We assumed that most errors which affected the

coding and debugging processes were found as e by this analysis, and other errors

which never gave faults on the texts could have had only a limited effect. In the

following, we use the phrase, "error life span" in the sense of Te.

 We counted the successive time that each student accessed a terminal and

used it as a time unit for error life span Te. Although this did not precisely

correspond to the actual time devoted to the project, we used this time unit for

two reasons. One is that the terminal access time could be traced automatically.

The second reason, which is more substantial, is that employing the terminal

access time more sharply contrasted the difference of the computed values for

each programmer, as compared with employing the actual time consumed. That

is, the programmer who designed and debugged a large amount of his code on

29

Table 4.1 Data of Experiment 1

Student
Program

size

Total of
terminal access

time (min.)

Total

number of

errors

Sum of error
life spans

(min.)

Average of
error life

spans (min.)

Score
SI

Grade point
average in
C.S. courses

#1 2098 7955 77 93750 1218 46.9 69.6

#2 1685 6202 101 29715 294 95.5 71.5

#3 1530 5906 61 28620 469 81.8 74.0

#4 1789 8021 78 67020 859 47.8 65.8

#5 1094 4754 55 32145 584 37.2 72.9

#6 1661 3463 35 11550 330 238.9 82.8

#7 2111 5838 26 24045 923 185.3 71.6

#8 1084 8651 49 66765 1363 17.6 69.6

#9 2420 5139 33 49170 1490 119.1 73.4

the desk and who did not use the terminal extensively, had an advantage in the

computed values.

 Table 4.1 shows the program size (which is the number of lines in the

program text when the program completes), the total of the terminal access time,

the total number of errors, the sum of the error life spans, the average of the

error life spans, the score SI, and the grade point average in computer science

courses.

 For example, student #2 made 101 errors and student #7 made only 26

errors. As for the sum of the error life spans, I T& however, student #1, who

made 77 errors, had the highest value, 93750, and student #6, who made 35

30

errors, had the lowest value, 11550. It was not always true that a student who

made the most errors had the highest value of STe, and a student who made

the least errors had the lowest value of IT'. This was because each student had

a unique average value of his own error life spans, and there was not a high

correlation between the average and the total number of errors.

 Student #8 had the lowest score, 17.6, and student #6 had the highest

score, 238.9. The order of students with respect to the scores was the same as the

order with respect to our intuitive impression of student performance. Below,

we discuss the reasons why some students received high scores and low scores.

High Scores

(1) Student #6 (238.9)

 He spent a large amount of time in designing and coding on the desk

(without using terminal) and only used the terminal for a very short period.

(2) Student #7 (185.3) and Student #9 (119.1)

 They referred to text book that precisely describes how to construct a

PASCAL compiler using PASCAL. Since they could obtain basic algorithms and

data structures from that book, the number of errors was reduced and the

development period was shortened.

Low Scores

(1) Student #8 (17.6)

 He started coding using the terminal even though he did not have a good

grasp of compiler theory at the beginning. Furthermore, he did not clearly

understand the specification of the compiler , at the beginning; thus, he had to

modify the program text extensively.

31

(2) Student #5 (37.2)

 He made many errors caused by poor understanding of the

implementation language, C. He also incorrectly designed the parsing section of

the compiler and he had trouble determining the errors when he detected the

faults during the test phase.

4.2.2 Evaluation

(1) ETe vs. terminal access time

 In the definition of score SI, the life span Te of the errors is introduced as a

weight of the error. In order to prove the validity of this idea, ETe (the sum of

error life spans) is compared with the total terminal access time which seems to

directly correspond to the programmer performance.

 Figure 4.1 shows the scatter plots of ETe versus the total terminal access

time. A coefficient of correlation between them is 0.82. On the other hand, a

coefficient of correlation between the total number of errors and the total

terminal access time is 0.45.

 Thus it can be said that the sum of error life spans would very closely

relate to the performance of the programmer as compared with the total number

of errors.

(2) Score SI vs. grade point average

 In addition, we investigated the grade point average in computer science

courses for each programmer and compared them with the scores. Figure 4.2

shows the scatter plots of the scores versus the grade point averages in computer

science courses.

32

9000

(min.)

8000

7000

6000

5000

4000

3000

2000

1000

0

Total of terminal
access time(T)

2 x

 x7 3

 X 5

 X 6

X 9

X 8

X 4 xl

Regression line of Ton E

Sum of error
life spans(E)

 0 20000 40000 60000 80000 100000
 (min.)

 Figure 4.1 Sum of error life spans vs. total of terminal access time
 (Experiment 1)

 We found that a coefficient of correlation between them was 0.75. Moher

and Schneider [Moher & Schneider 1981] have found that "experience" (as

measured by the number of computer science or programming courses) and

"aptitude" (as measured by the grade point averages in computer science

courses) are the major predictors of performance for student programmers. In

our experiment, the experience of each student is almost the same. Hence, we

believe that the difference of our obtained values can be explained simply by

programmer performance. Of course, we do not think that the sum of the error

life spans indicates the complete extent of the programmer performance; rather,

 33

90-

80-

70-

60-

Grade point average(G)

 x5

8

x

1

4

X3

x2

9

x7

x6

Regression line of G on S

 Score(S)

0
 0 100 200 300

 Figure 4.2 Score vs. grade point averages

we think it indicates one important aspect of programmer performance related

to the productivity and quality of software.

4.3 Experiment 2

4.3.1 Experimental data

 We collected data on two different student projects, compiler construction

(Project 1) described in Experiment 1 and a so-called liquor wholesale problem

(Project 2) to be described now. Each had different types of difficulties. For the

liquor wholesale problem, students were given the program specification and

taught roughly how to design the program. We analyzed the data for six students

34

who participated in both projects. Methods of collecting and analyzing data were

the same as for Experiment 1; that is, the errors were determined by hand and

the sums of the error life spans were normalized by L2 (the square of the final

program size). In this experiment, we observed the difference between the scores

of each student for different projects.

4.3.2 Evaluation

 Table 4.2 shows the sizes of the programs, the sums of the error life spans,

and the scores in both projects. Figure 4.3 shows the scatter plots of the scores in

both projects. The order of students with respect to the scores are almost the

same between both projects except for one student. This student, #13, had

misunderstood the syntax of subset-PASCAL when he tried to develop the

subset-PASCAL compiler in Project 1. During this project, he had to change

numerous errors related to the syntax differences. Consequently, this worsened

his score from Project 1.

 The averages of the scores are 31.3 in Project 1 and 54.6 in Project 2. (If we

preclude student #13, the average will be 34.1 in Project 1 and 46.8 in Project 2.)

We think that the scores are stable enough and L2 is an appropriate normalizing

function for a measure of programmer performance in such small-scale projects,

even though the numerical values we have computed do not by themselves

show the absolute performance of the programmers (in the sense that if

programmer A took 20 and B took 40, then B can program twice as well as A).

We expect that if further data is collected, a suitable normalizing function would

be found which would give absolute meaning to the computed values.

35

Table 4.2 Data of Experiment 2

Student

Project 1: Compiler Construction Project 2: Liquor Wholesale Problem

Program size
Sum of error

life spans

(min.)

Score Program size

Sum of error
life spans

(min.)

Score

#11 1251 65205 24.0 322 3300 31.4

#12 963 24690 37.6 326 2430 43.7

#13 1366 107745 17.3 326 1140 93.2

#14 1260 35790 44.4 340 1800 64.2

#15 998 25830 38.6 298 2055 43.2

#16 1149 50940 25.9 296 1695 51.7

100

80

60

40

20

0

Score in Project 1

x11

15
 X12

x
16

14
x

 13
x

Score in Project 2

0 20

Figure 4.3

40 60

Score in two pro jects

80 100

36

4.4 Automatic estimation of error life span

 In Experiments 1 and 2, obtaining the error life spans was very expensive.

We had to trace and analyze all the files used in the development projects by

hand and keep a large amount of data concerning the processes. Hence,

obtaining the error life spans in various software development projects is in

practice prohibitive. Furthermore, it follows that it is difficult to show the

programmer the computed value of the error life span periodically during the

development processes (to improve the activity of the programmer).

 To find an equivalent value to the error life span, we investigated

correlations among the sum of the error life spans, the average of the error life

spans, and other collected data as shown in Table 4.3. If there were easily

collectable data which had a high correlation with the sum of the error life spans

or the average of the error life spans, we could compute the estimated value

 Table 4.3 Coefficient of correlation among data
 on Experiment 1

Sum of
error life spans

(min.)

Average of
error life spans

(min.)

Program size 0.15 0.29

Total of
terminal access

time(min.)
0.82 0.52

Number of
total errors 0.35 -0 .35

37

very easily. However, since we could not produce such data, we devised a way to

obtain an estimated value of the error life spans automatically.

 In order to do this, we had to determine the errors automatically in some

manner; but, in general, we had no satisfactory mechanical way to recognize the

errors. Dunsmore and Gannon [Dunsmore & Gannon 1980] demonstrated that

program changes (i.e. textual changes between successive version of the

program) were correlated with the total error occurrences in a program written

by 33 programmers. Therefore, we simply estimate that in the program text, each

line modified at each edit session corresponds to one error to be counted. If the

created and deleted times of each line are known, the estimated error life spans

can be collected easily.

 Here we assume that software development consists of a sequence of edit

sessions of the program text. For each line j in the program text, we define the

life span lij of j at an edit session i as follows:

 0 if line j is not modified at edit session i.
lij _

 ti -t'ij if line j is modified at edit session i. (4.1)

 where 1 5 j _< maxi, and

 maxi: Number of lines when edit session i begins.

 ti : Time when edit session i terminates.

 t'ij : Time of the latest modification of line j before ti.

As mentioned above, we estimate that each non-zero value lij corresponds to

the life span of an error. Therefore, the estimated value L for the sum of the

error life spans is given by

38

 M maxi

 L = El ij ... (4.2)
 i=1 j=1

 where M is the aggregate of the edit sessions.

 We computed L using the data of Experiment 1, and compared L with the

sum YTe of the actual error life span. A coefficient of correlation between them

is 0.86. Thus, we can conclude that the value L estimates the sum of the error life

span quite well.

 In the above definition of L, it seems that the number of errors is

overestimated in general. It may be more realistic to state that, instead of each

line, a set of lines which were created at an edit session and modified at another

edit session corresponds to one error. If a programmer modifies several lines of

text in an edit session, and if those modified lines were originally created in the

same edit session, we consider that he or she fixed only one error. But if those

modified lines were originally created in different edit sessions, we count the

number of those edit sessions and treat that count as the number of errors fixed.

Each edit session is distinguished from others by time stamp. We simply sum up

only the distinct lij for each j to find the total of the life spans of the sets at edit

session i.

 Now, we define another estimated value L' for the sum of the error life

spans as follows:
M

 L' _ Zl'i ... (4.3)
 :=1

 where Vi : the sum of distinct values of lij for 1 <_ j _< maxi

In this definition, the following two assumptions are made.

39

100000

 (min.)

80000

60000

40000

20000

0

Actual value(A)

X 5

7
x 6

7

X
9

x

2
X

3

 1X

 4X X 8

Regression line of A on E

Estimated value(E)

 0 200000 400000 600000 800000
 (min.)

 Figure 4.4 Estimated values vs. actual values En
 in Experiment 1.

 (1) The purpose of modifications of program text at each edit session is to

 remove errors.

 (2) A set of lines, which are created at one edit session and modified at

 another edit session, corresponds to one error.

 We computed L' again using the data of Experiment 1, and compared L'

with the sum I T e of the actual error life spans. Figure 4.4 shows the scatter

plots of L' versus ZTe. A coefficient of correlation between them is improved to
0.90. Thus, we can conclude that the estimated value L' is sufficiently equivalent

to the sum of the error life span.

40

4.5 Experiment 3

4.5.1 Experimental data

 Experiment 3 evaluated team activities in software development. The

programmers were newcomers of a certain computer company. The main

characteristics were summarized as follows.

 (1) Eight teams of programmers developed the file processing program in a

 business application using COBOL.

 (2) The system (file processing program) consisted of 18 program modules.

 This partition of program modules was given to each team. However,

 distribution of modules to members of team was freely determined by a

 leader of each team.

 (3) Each team consisted of 3 to 5 programmers. Teams were organized by an

 instructor so that the difference among team performances, in an

 intuitive sense, might be low.

 (4) Each team was assigned two terminals. Thus, the capability of accessing

 terminals seemed relatively to be limited, compared with Experiments 1

 and 2.

 In Experiment 3, the successive time of each programmer accessing a

terminal was counted and used as the time unit for evaluating Te. In addition,

each programmer had to fill in a form of individual effort time for designing,

coding, and unit debugging. On the other hand, each team leader also had to fill

in a form of team effort time, mainly covering integration of the individuals'

work.

41

t, t2 t3 t4 t5

t7 tg t9 do t11 t12

t, tg t3 t4 t11 t12 t5

is
.ap. t

t

t6
t

effort time on desk

effort time on terminal

effort time

 Figure 4.5 Explanation of effort time

 The effort time on a terminal was a time duration counting when a

programmer or team worked on terminal. Similarly, the effort time on a desk

was a time duration of when a programmer or team worked on a desk (not on a

terminal). The effort time on a desk was reported from forms. We used a new

effort time gotten by merging these two as shown in Figure 4.5.

 Only 9 modules out of 18 were studied for data based on the following

criteria.

 (1) The average of the module size is more than 100 lines. By this, too small

 modules are excluded from evaluation.

 (2) The average of the ratio of data division size over module size is less than

 0.5. Thus, the programs, which mainly consist of data definitions, are also

 excluded.

42

Table 4.4 Data of Experiment 3

Team Member
Program

size

Sum of error

life spans

Total effort

time(min.)
Score

#1

M1

m2

m3

m4

m5

289

263

385

137

95

1490
10608
7192
6109
6679

2009

5488

2652

3633

3523

56
7

21
3
1

#2

M1

m2

m3

m4

m5

365

278

249

155

107

7899

8510

6877

1855

101

3999

2706

2730

3766

2646

17

9

9

12

113

#3

m1

m2

m3

221

600

362

13329

37620

27689

3730

3409

4809

4

10

5

#4

ml

m2

m3

m4

333

230

364

319

22972

4896

3970

21612

4354

3039

4220

3214

5

11

33

5

#5

ml

m2

m3

m4

393
270
342
240

12035

1569

11907

15147

3681

4061

4173

3886

13

46

10

4

#6

M1

m2

rn3

569

375

155

22470

11789

1818

3429

3243

2874

14

12

13

#7

M1

m2

M3

m4

m5

387

328

264

126

172

17634

14194

4747

5092

208

3768

3407

2704

3627

2467

8

8

15

3

142

#8

M1

m2

m3

m4

583

203

233

169

14497

2268

14775

25621

4426

3211

4699

5366

23

18

4

1

 The experimental data are summarized in Table

sum of error life spans are calculated using formula (4.3)

shows the program size (which is the number of lines in

the sum of error life spans, the total effort time (time

4.4. The values for the

in Section 4.4. Table 4.4

the final program text),

estimated, as shown in

43

Figure 4.5, by effort time reported by programmer and terminal access time

traced automatically) and score SL As the time unit for error life span, we used

effort time.

4.5.2 Evaluation

(1) ETe vs. effort time of a programmer

 Figure 4.6 shows the scatter plots of ETe versus the total effort time of each

programmer. (In Section 4.2, we compared ETe with the total terminal access

6000

(min.)

5000

4000

3000

2000

1000

0

Total effort time(T)

X

x
x

 x
x'

x
x

X X X

X

x

x

x

x

x

x
X

X

X

I

X

X

x

X

Regression line of Ton S

Sum of error life spans(S)

0 10000 20000 30000

 Figure 4.6 Sum of error life spans vs. total effort time

 (Experiment 3)

40000

(min.)

44

Table 4.5 Coefficient of correlation between ETe and total effort time

Module 1 2 3 4 5 6 7 8 9

r -0.46 0.85 0.62 0.58 0.51 0.39 0.66 0.87 0.44

time.) A coefficient of correlation between them is 0.46. It is not high compared

with the result of Section 4.2. (In Section 4.2, a coefficient of correlation between

them is 0.82.)

(2) ETe vs. effort time of module

 In addition, we have investigated for the 9 modules the relation between

the sum of error life spans and the total effort time devoted to the module

development. Table 4.5 shows a coefficient of correlation between these two. It is

clear that there is much difference among these values (the highest value is 0.87

and the lowest value is 0.39 among positive values). The main reason for these

results is the difference in the degree of coupling among modules. For module 1,

it is unexpected that a coefficient becomes negative.

(3) Team performance

 Table 4.6 shows three scores (ST1, ST2 and ST3) and the team debugging

effort time of 8 teams (#1, #2, ..., #8). The team debugging effort time is the total

effort time for debugging after each unit test for each module has been

completed.

 From Table 4.6, the following aspects are observed as for team

performance.

 Team performance score ST1 (model M1)

 the highest score team #7 176

45

Table 4.6 Data of team scores

Team
ST1 ST2 ST3

Team debugging
effort time(min.)

#1 88 18 43 490

#2 160 32 53 460

#3 19 6 18 2200

#4 54 14 29 2170

#5 73 18 38 980

#6 39 13 33 650

#7 176 35 39 570

#8 46 12 25 1430

 the lowest score team #3 19

 Team performance score ST2 (model M2)

 the highest score team #7 35

 the lowest score team #3 6

 Team performance score ST3 (model M3)

 the highest score team #2 53

 the lowest score team #3 18

 We have evaluated the correlation among the three team performance

scores ST1, ST2 and ST3 (see Table 4.7). There are high correlations among ST1,

ST2 and ST3, especially between ST1 and ST2 (A coefficient of correlation is 0.99).

(4) Team performance vs. debugging effort time

 We have investigated team debugging effort time as shown in Table 4.6

and compared it with team performance scores (ST1, ST2 and ST3). Table 4.7

shows the coefficients of correlations between team scores and team debugging

46

Table 4.7 Coefficient of correlation among team scores
 and team debugging effort time

STI ST2 ST3

ST2 0.99

ST3 0.80 0.79

Team debugging
effort time

-0.69 -0.66 -0.83

effort time. Among the three team performance scores, ST3 has the highest

correlation with team debugging effort time (A coefficient of correlation is -0.83).

It might be said that the team performance score ST3 (thus, the model M3) is the

most appropriate one for evaluating team performance in software

development.

(5) Team score vs. load distribution

 The ratio, final program size to score of programmer j (represented by Kj),

is compared in Table 4.8. We also evaluate the difference between an optimal

ratio of final program size (Kopt) and actual ratio. The result shows the

maximum value of Kopt is 62.3, and the minimum value of Kopt is .7.2. It is

observed that the value of Kopt is apt to become larger as the number of

programmers becomes smaller (then the size of program, to be developed by one

programmer, becomes larger).

 To evaluate the difference between Kj and Kopt, we have calculated the

following value DK as shown in Table 4.8.

n

 I I Kj -Kopt
 DK = j=1 K

oPt ... (4.4)

47

L Table 4.8 Ratio of size over score (K i = SI i

Team

K, K2 K3 K, K5 K,,, Dx = DST = STI-ST3
Ko ST1 (%)

#1 5.2 37.6 18.3 45.7 95.0 13.3 11.4 51

#2 21.5 30.9 27.7 12.9 0.9 7.2 9.8 67

#3 55.3 60.0 72.4 62.3 0.3 5

#4 66.6 20.9 11.0 63.8 23.1 4.2 46

#5 30.2 5.9 34.2 60.0 17.1 4.9 48

#6 40.6 31.3 11.9 28.2 1.1 15

#7 48.4 41.0 17.6 42.0 1.2 7.3 17.3 78

#8 25.3 11.3 58.3 169.0 25.8 7.4 46

 If there exists no difference between Kj and Kopt then DK becomes 0. At

that time, the following relation holds:

n

 ST3 = I STj = ST1 ... (4.5)
 j=1

So, to evaluate the difference between ST3 and ST1, we have calculated the

following value DST as shown in Table 4.8.

 DST = STS T1 x 100 (%) ... (4.6)
Naturally, there is a high correlation between DK and DST.

 Consider teams #2 and #3 which take respectively the highest and the

lowest values of team performance score ST3 in Table 4.6. Table 4.8 shows that

for team #2 there are large differences among Kj for each programmer and Kopt.

As the result, the value of DK of team #2 is relatively large. On the other hand,

Table 4.8 shows that Kj for each programmer in team #3 are almost equal to Kopt.

48

(As for DK, team #3 takes the lowest value among these eight teams.) Therefore,

it is concluded that team #2 is superior to team #3 with respect to total team

performance. But in contrast to this, with respect to load distribution in a team,

team #3 is superior to team #2. This tendency is clearly observed: from the

values of DST in Table 4.8, team #2 decreases by 67% in their performance and

team #3 decreases by only 5% from their optimal (maximum) performance.

49

Chapter 5: Software Development Project Management

5.1 Major functions of management

 In the classic management model [Mackenzie 1969] [Thayer 19881,

management is partitioned into five separate functions or components:

planning, organizing, staffing, directing, and controlling. Definitions or

explanations for these five functions are shown in Table 5.1.

 These functions can be classified into two types. The first type includes

planning, organizing and staffing. These are executed before constructing the

activities of the software project. Their purpose is to enable the objectives of the

project to be accomplished effectively. The second type of functions includes

directing and controlling. These are executed dynamically during the software

 Table 5.1 Major functions of management [Thayer 1988]

Activity Definition or Explanation

Planning Predetermining a course of action for accomplishing organizational
objectives.

Organizing Arranging and relating work for accomplishment of objectives and the

granting of responsibility and authority to obtain those objectives.

Staffing Selecting and training people for positions in the organization.

Directing Creating an atmosphere that will assist and motivate people to achieve
desired end results.

Controlling Measuring and correcting performance of activities toward objectives
according to plan.

50

construction phase in the project , and are done to carry out the project in

pursuance of the prescribed plan if .deviation from the prescribed plan occurs.

 The second type of functions, directing and controlling, are more

important than the first type. Since it is impossible when a project starts to

predict exactly all phenomena that will affect it, we have to develop a

mechanism to correct deviations and ensure the execution of the project in

pursuance of the prescribed plan.

 Therefore, this thesis focuses on the second type of functions: directing

and controlling. We focus especially on controlling since we want to devise an

environment which can manage the software development project.

5.2 Project control

 Controlling a software development project is defined as all the

management activities that ensure that the actual work goes according to plan

[Thayer 19881. To control the project, a manager has to know the actual state of

the project, know the difference between the prescribed plan and the actual state,

and help the developers accomplish the prescribed plan.

 Figure 5.1 shows the data flow between the development environment

and the management environment for controlling a project. The manager

collects process/product data to assess the actual state of the project. After

analyzing the collected data, the manager provides feedback to a developer to

help him or her correct their activities and accomplish the prescribed plan.

Therefore, data collection and information feedback are essential activities for

controlling the software development project. The full support of a

51

Measurement Environment

Management Environment

Manager

r-9

I
Process/ Feedback
Product Information

Data I I

Developer

k

Development Environment -~

Figure 5.1 Controlling software development project

development environment and a management environment is necessary to

control the software development project.

 Based on these considerations, we propose a new environment,

measurement environment, which consists of a development environment

and a management environment. The measurement environment consists

mainly of four logical units: Data Collection, Data Management, Data Analysis

and Information Feedback (see Figure 5.2). Among these four units, Data

Collection is included in the development environment and the rest are

included in the management environment. The details of the measurement

environment will be described in Chapter 6.

52

Measurement Environment

Manager

Process/
Product

Data

Management Environment '

Data

Management

Unit

Data

Analysis

Unit

Information

Feedback

Unit

10,

1

Process/Pr
Data Bas

oduct

e

Developer

Feedback

Information

Data

Collection
Unit

Development Environment

Figure 5.2 Basic units of measurement environment

5.3 Data for controlling

 To control the software project effectively, we have to collect and analyze

objective and quantitative data which represent the activities of developers. In

this thesis, we concentrate on programmer productivity as the metric for

evaluating the activities of developers.

 Programmer productivity is well explained by using an input-process-

output scheme (see Figure 5.3) as follows [Chen 1978]: the programmer is a

processor, the input is a program specification, and the output is a set of

programs written in a good programming style. Then a measure of programmer

productivity can be defined as the number of valid source statements coded per

53

Program

Specification

Programmer's
Activity

Executab el
Program

Input

Figure 5.3

 Process

Input-process-output scheme

Output

Program
Specification

Programmer's
Activity

Intermediate
Program

(1st version).
Programmer's

Activity

r

10

Intermediate
Program

2nd version

Programmer's
Activity

Executab el
Program

n-th version

Input

 Figure 5.4

 Process Output

Extended input-process-output scheme

busy hours, where valid source statements are the source statements of an

executable computer source program.

 In several earlier papers [Chen 1978] [Walston & Felix 1977], the measure

of programmer productivity in software development was defined similarly as

the ratio of the quality/quantity of the resulting program to the programming

efforts necessary to arrive at a satisfactory program. For example, Walston and

54

Felix [Walston & Felix 1977] defined the measure of programming productivity

as the ratio of delivered source code tto the total effort (in man-months) required

to produce the code.

 In this thesis, we are interested in not only measuring programmer

productivity, but also in improving programmer productivity based on analysis

results from software developmental data. However, the input-process-output

scheme in Figure 5.3 is not sufficient to describe programmer activity since the

scheme cannot answer questions of why a programmer expends such a large (or

small) amount of effort. Therefore, we extend the input-process-output scheme

to the one shown in Figure 5.4. In practical software development, the first

version of a program usually does not satisfy a given specification since the

program may not fulfill all the functions required in the specification, or may

contain many errors. Then the programmer modifies or debugs the program a

number of times and finally gets a program satisfying the specification.

 Generally, it is very hard to follow and analyze programmer activity

directly during the software development process. Thus we try to estimate

programmer activity indirectly by analyzing the history of the program

modifications. By taking the programming efforts into consideration as well , a

more detailed analysis may be possible and more valuable information can be

collected from programmer. Programming efforts are divided into two

categories: (1) efforts to produce code that implements a given specification and

(2) efforts to modify the code, up through the completion of testing (see Figure

5.5). Out of these two types of efforts, the second may be a more appropriate focus

for the improvement of programmer productivity.

55

Process

(1) Efforts to produce code imple-
 menting a given specification.

(2) Efforts to modify the code,

 through completion of testing.

Product

1st Version

Program

2nd Version
 Program

n-th Version

_ Program

History of Program Modifications

Figure 5.5 Analytical viewpoint for programmer activity

 According to earlier studies [Walston & Felix 1977], we use the

programming efforts and the quality/quantity of the resulting program as two

typical primitive metrics of programmer productivity. In addition, in order to

trace and analyze the programmer's activities, we introduce a concept of

program modifications as the third metric. The following subsections

summarize these three metrics.

5.3.1 Programming efforts

 Programming efforts are usually defined as the time, cost or work

necessary to produce a satisfactory program during software development [Chen

19781 [Dunsmore & Gannon 1980] [Musa et al. 19871 [Walston & Felix 1977].

Typically, the programmer's computer usage or execution time is used as a

measure to evaluate programming efforts since it can be collected automatically

using, for example, functions of the operating system.

56

 The following four kinds of data (1) through (4) below, are potentially

useful for measuring programming efforts. Unfortunately, none of them

represents programmer working time precisely. Therefore, it is necessary to

select an appropriate measure or to use several measures at the same time,

when programming activities are evaluated under a particular project

environment.

(1) Calendar time

 Calendar time is the familiar time with which we are normally

acquainted [Musa et al. 1987]. Man-months or man-hours is a measure in this

category. This measure includes both working time at the desk and on the

computer (terminal), and can be collected very easily. Therefore, calendar time is

considered to be a basic measure of the programming efforts. However, the

following must be assumed to validate calendar time as a measure: (1) the

programmer's working time is relatively fixed for each day, (2) the range of

fluctuation of the working time for each day is negligibly small, and (3) the

working time is measurable.

(2) Terminal access (usage) time

 Terminal access time represents the elapsed time from the beginning of a

programmer's work on the computer terminal to the end. Working time at the

desk must be excluded. Thus terminal access time is effectively and precisely

used to evaluate effort time only when the programmer spends most of his or

her working time on the terminal or when it is a small-scale project [Matsumoto

et al. 19871.

(3) Number of command executions

57

 This number represents the frequency of computer operations (i.e.,

program edits, compilations, and program executions for testing and debugging)

on the computer terminal. The number of program testings and job-steps are

similar measures in this category [Basili 19801 [Basili & Reiter 1979]. A job-step is

a single programmer-oriented activity performed on the computer at the

operating system command level [Basili 19801 [Basili & Reiter 1979]. Basili and

Reiter [Basili & Reiter 1979] found that the job-step measure significantly

differentiates development environments and that good methodology leads to a

small number of job-steps. The number of command executions should be used

as a measure instead of physical time when idle time on the terminal is

relatively high and cannot be disregarded.

(4) CPU time for command execution

 CPU time represents the time that is actually spent by a processor in

executing each command. For a certain type of command (i.e., a command to

execute a program), the execution time depends strongly on the input data.

Thus, the CPU time spent by the processor can be regarded as the programmer's

working time. It is generally accepted that software reliability models based on

execution time are superior to ones based on calendar time [Musa et al. 19871.

5.3.2 Quality/Quantity of resulting program

 There have been many studies [Basili 1980] [Matsumoto et al. 1988a] [Musa

et al. 1987] evaluating the quality/quantity of programs. Out of these studies

have come several practical models of reliability [Matsumoto et al. 1988a] [Musa

et al. 1987]. The reliability of a resulting program is generally considered one of

58

the most important aspects of quality. Unfortunately, the evaluations based on

the models still include subjective decisions.

5.3.3 Program modifications

 In addition to the programming efforts and the quality/quantity of the

resulting program, the modifications of the program are taken into

consideration in evaluating programmer activity. The modifications of the

program may include valuable information for improving programmer

productivity.

 Dunsmore and Gannon [Dunsmore & Gannon 1980] defined a measure of

program modifications as a textual revision in the source code of a module. The

rule for counting program modifications is that one program modification is

concerned with a contiguous set of concrete statements that represent a single

abstract instruction. They showed that program modifications had a high

correlation with total error occurrences.

 In this thesis, program modifications are evaluated by counting the

changes for each line (statement) of the program. Program modifications are

classified into three patterns, according to the corresponding commands: 1)

append, which creates new program lines and adds new statements to the

program, 2) change, which replaces some existing statements with new

statements, and 3) delete, which removes some existing statements.

 In this thesis, the concept of error life span is also introduced to evaluate

programmer productivity [Matsumoto et al. 1988c] [Matsumoto et al. 1987]. As

mentioned in Section 3.2, the life span of error Te is defined as the length of

time from when error e is manifested itself in the software to the time when

59

error e is removed from the software. Concepts related to error life span can be

seen in several earlier papers [Mills 1976] [Weiss & Basili 19851. For example,

Mills [Mills 1976] introduced the concept of error days for estimating the quality

of an acceptable system. Next, Weiss and Basili [Weiss & Basili 1985] used

program modifications as a way of evaluating the software development

processes.

 The usefulness of error life span has already been verified by experimental

data analysis [Matsumoto et al. 1988c] [Matsumoto et al. 1987], as described in

Chapter 4. In the analysis, experimental data was collected from student projects.

It was shown that the error life span has a high correlation with programmer

productivity. The time used for counting error life span is actual terminal access

time (rather than calendar days used for the error days). A method to evaluate

automatically the number of errors based on the program modifications has

already been prepared for error life span [Matsumoto et al. 1988c] [Matsumoto et

al. 1987], as described in Section 4.4.

60

Chapter 6: Measurement Environment : GINGER

6.1 Measurement-based control

 We believe that the proper use of software metrics, measurement, and

models is essential to the successful management of software development and

maintenance. Generally, software metrics are used to characterize quantitatively

the essential features of software so that classification, comparison, and

mathematical analysis can be applied. After a number of useful metrics are

identified, the measurement is executed by applying the selected metrics to

software in an algorithmic and objective fashion. For the measurement, it is

required that the values of the selected metrics are consistent among different

software products and are independent of the measurer.

 In order to control the software development and maintenance processes,

it is important to model certain interesting factors (metrics) such as effort and

defects, based on other metrics that are available. Appropriate management

decisions can be made to influence these factors so that management goals can be

realized. In other words, the proper use of software metrics, measurement, and

models has the potential of allowing us to estimate accurately the cost of

producing software (or the cost in maintaining the same) [Conte et al. 19861.

6.2 System organization

 Figure 6.1 outlines the system architecture, which describes interactive

information processing between the development environment and the

61

Measurement Environment

Management Environment

Data Analysis Unit - Information Feedback Unit-Data Management Unit

Feedback
Managemeni

CMI I

User
Interface

CM12

Data
Compression

CM5

Data Base
Managemen

CM6

Data

Expansion

CM7

Programmer
Productivity

Evaluation

CM9

M

Statistical
Analysis

CM10

o

M
Preprocessing

CM8

N to

Process/
Product

Data

T Manager
process/Product

Data Base

Developer

(Programmer)

Process
Data

Process Data
Collection

0,43

4-

Process

Managemen

CMl

Development Environment

Feedback

Information
product

Data

Collection

MProductanagexnent

Data Collection Unit

Product

 Figure 6.1 System architecture of the measurement environment

management environment. The data flow is also explicitly given in Figure 6.1.

The system consists mainly of four logical units: Data Collection, Data

Management, Data Analysis and Information Feedback. The architectural

components of each of these four units are described in detail below and in [Torii

1990].

62

(A) Data Collection Unit

 The Data Collection Unit consists of four components, (CM1) through

(CM4):

 The (CM1) Process Management component supports and controls a

programmer's regular activities for software development. It allows the

interactive operations between the programmer and the computer to be executed

at the operating system command level.

 The (CM2) Product Management component maintains the product, i.e.,

the program text developed by programmer. It also maintains relevant

information for each product such as the date, time, and access rights. It also

controls access to the product.

 The (CM3) Process Data Collection component accumulates all data

concerned with the programming efforts, which are passed from the Process

Management component indirectly. (Note that the data are not taken directly

from the programmer. The details will be described in subsection 6.4.2.)

 The (CM4) Product Data Collection component accumulates a series of

intermediate programs (including the resulting programs) and collects historical

data about program modifications. Data collection also occurs indirectly through

the Product Management component. (Note that the data are not taken directly

from the programmer. The details will be described in subsection 6.4.2.)

 The functions mentioned in (CM1) and (CM2) are usually provided as

basic functions in an operating system. The data collection in (CM3) and (CM4)

should be executed completely automatically. In particular, the data should be

63

collected indirectly from the programmer's activities without obstructing his or

her regular activities.

(B) Data Management Unit

 The Data Management Unit consists of two components, (CM5) and

(CM6):

 The (CM5) Data Compression component implements a memory save by

storing as little data as possible. For a series of intermediate products, only the

difference between two successive data is stored. The details will be described in

subsection 6.4.2.

 The (CM6) Data Base Management component provides data storage and

information retrieval. The data from the Data Collection Unit and the

information from the Data Analysis Unit are stored in the Process/Product Data

Base. The relevant information, such as the date and the names of project, team,

programmer, file, module, and statement, is added to each original data. The

details will be described in subsection 6.4.3.

(C) Data Analysis Unit

 The Data Analysis Unit consists of four components, (CM7) through

(CM10):

 The (CM7) Data Expansion component restructures the data by inserting

the compressed parts which were deleted in the Data Compression component.

 The (CM8) Preprocessing component prepares the expanded data for

evaluation. Preprocessing includes transforming the data which was collected in

the physical unit (i.e., file) into data for the logical unit (i.e., module).

Additionally, the comments and the blank statements are deleted.

64

 The (CM9) Programmer Productivity Evaluation component calculates

several values according to the algorithms or guidelines for measurement. The

evaluations are assumed to be for purposes of programmer productivity (the

programming efforts, the quality/quantity of resulting programs, and the

program modifications discussed in Section 5.3). The details will be described in

subsection 6.4.4.

 The (CM10) Statistical Analysis component applies statistical analysis

methods to collected data (CM8) and to the results of the evaluation (CM9). In an

analysis, to compare results, the historical data of the programmer and the data

on similar prior projects may be used extensively. Predictions for the current

project based on such data are very important for managing the project

(including the programmers). If the project turns out to be unsuccessful, the

request for information about the results is passed to the Information Feedback

Unit.

(D) Information Feedback Unit

 The Information Feedback Unit consists of two components, (CM11) and

(CM12):

 The (CM11) Feedback Management component determines the timing of

feedback and the details of information to be returned. Information feedback is

also executed when the programmer requests it.

 The (CM12) User Interface component provides an effective presentation

of feedback information to the programmer.

65

6.3 Functionality

 This section elaborates on the functionality of the GINGER system. The

GINGER system provides ten functions which are classified into four groups; (A)

kernel, (B) metric-oriented, (C) education-oriented and (D) project-oriented. First,

the fundamental functions for the data collection and the analysis system are

described.

(A) Kernel functions

A-1: Automatic data collection (CM3 and CM4 in Figure 6.1)

 To assure the reliability of data from the software development process,

the data should be collected entirely automatically. In the GINGER system,

automatic data collection about the programmer's activity is achieved by

separating data collection (CM3 and CM4) from data management (CM1 and

CM2), as shown in Figure 6.1. Therefore, it is essential for the system that the

programming environment allow the programmer to do as much of his or her

task on the computer as possible.

A-2: Statistical analysis (CM10 in Figure 6.1)

 To increase the usefulness of the analysis results, the system supports

statistical analysis methods and provides interpretations. Predictions based on

the statistical analysis are especially important to improvement-oriented

systems.

A-3: Information feedback (CM11 and CM12 in Figure 6.1)

 For an improvement-oriented system, collecting and analyzing data on

the process and product are necessary, but they are not sufficient. The analyzed

results should be fed back into the software development process (especially to

66

the programmer). To realize effective improvement, the system should provide

a good form of presentation which makes it easy for programmers to understand

the feedback information.

A-4: Data base for experience (CM6 in Figure 6.1)

 To get good feedback information for improving programmer

productivity, the historical data (collected data and analysis results) on prior

projects should be utilized extensively. In the GINGER system, collected data and

the results of analysis can be stored in a data base and can be retrieved at any

time.

(B) Metric-oriented functions

 The following two items are required for evaluating programmer

productivity since no definite measures exist to evaluate programmer efforts or

the quality/quantity of the resulting program as mentioned in Section 5.3.

B-1: Management of large data (CM5, CM6 and CM7 in Figure 6.1)

 The data on program modifications are collected by comparing successive

versions of the program. To manage this large amount of data, the system uses

Data Compression (CM5). Thus effective storage and retrieval of the analysis

results are achieved.

B-2: Evaluation by multi-measures (CM8 and CM9 in Figure 6.1)

 A careful analysis evaluates several measures at the same time and then

selects the most appropriate one. The system provides such a mechanism by

collecting substantial elementary data in Data Collection (CM3 and CM4) and by

preparing all of the logical information needed for evaluation in Data Analysis.

67

(C) Education-oriented functions

 In the educational and training environments in universities,

programmers are novices. In addition, many trainees work on the same exercise

concurrently. Thus, the following three things are especially necessary in such

environments.

C-1: Unobtrusive data collection (CM3 and CM4 in Figure 6.1)

 In order to educate and train novice programmers, it is undesirable to

interrupt or restrict their programming activity. Therefore, the system (CM1 and

CM2) is embedded in a software development environment and the data is

collected from the programmers without their knowledge.

C-2: Advice to programmers (CM11 in Figure 6.1)

 Novice programmers generally do not know what they should do in order

to improve their productivity. The system should provide novice programmers

with not only the analysis results but also with helpful advice.

(D) Project-oriented functions

 In educational and training environments, small-scale projects are

executed concurrently. Here, small-scale implies that the program size is small,

the development period is short, and so on. The following two things are

required to apply the GINGER system to small-scale projects.

D-1: Data collection with low overload (CM3 and.CM4 in Figure 6.1)

 For small-scale projects, the computer system to be used for development

tends to be not so powerful. If data collection (and analysis) needs large amounts

of computation, it will interfere with program development. Then, the project

68

may not succeed and reliable data may not be collected. Therefore, the system is

designed to make the load for data collection (and analysis) as small as possible.

D-2: Real-time information feedback (CM11 and CM12 in Figure 6.1)

 In small-scale projects the development period may not be very long.

Therefore, data collection and data analysis can be executed quickly in the system.

Additionally, feedback information is returned to the programmers in real-time

as the projects proceed.

6.4 Prototype system

6.4.1 Characteristics of the prototype

 A prototype system is currently being developed on a UNIX environment

[Torii 1990]. In the prototype system, functions A-1 through A-4, B-1, B-2, C-1, C-

2, D-1, D-2 stated in Section 6.3 have been implemented. The main characteristics

of the prototype, with respect to implementation, are summarized as follows:

 (Il) The system has been implemented using C language since portability is an

 important issue in a data collection and analysis environment.

 (I2) Many of the functions and tools provided in UNIX have been integrated

 into it. In particular, in implementing the Data Collection, Data

 Management and Information Feedback Units, UNIX functions and tools

 are used as much as possible.

 (13) The environment is running on a local area network of workstations

 linked by an Ethernet. The Data Collection Unit is implemented on

 programmers' workstations, and all other units are implemented on

 manager's workstation, as shown in Figure 6.1.

69

Process Management

(Accounting system on UNIX) CM1

(Accounting da of f
terminal access

accounting data
mmmand execution

Process Data Collection CM3

Data Base Management CM6

1

Data of

terminal access

Data of

command execution

Process Data

Product Data

Analysis Results-

 Process/Product Data Base

 Figure 6.2 Computation of process data on UNIX

6.4.2 Collection of process/product data

(1) Process data (see Figures 6.2 and 6.3)

 The process data in the Process/Product Data Base consists of two kinds of

data: terminal access and command execution. They are accumulated by Process

Data Collection (CM3). Figure 6.2 shows a data flow in the computation of

process data. Accounting data (see Figure 6.3(a)) is transformed into the data of

70

Accounting data of terminal access

kusumoto console
kusumoto console

Wed
Tue

Nov 16 09:49 -
Nov 15 12:40 -

12 s41
14:3'7

(02:52)
(01:57)

kusumoto console
kusumoto console
kusumoto console

Fri
Fri
Thr

Oct 21 15:03 -
Oct 21 11:05 -
Oct 20 10:23 -

16:54
12:34
10:30

(03:51)
(01:29)
(00:07)

Accounting data of command execution -

 a.out kusumoto console
 is kusumoto console

he kusumoto console

0.39 secs Wed
0.09 secs Wed
0.06 secs Wed

Nov

Nov

Nov

16
16
16

12:35
12:35
12:35

vi
is
more

kusumoto

kusumoto

kusumoto

console
console
console

5.06 secs Wed
0.06 secs Wed
2.34 secs Wed

Oct

Oct
Oct

20
20
20

10:29
10:28
10:27

(a) Accounting data

Data of terminal access

 1988-10-20 10:23
 1988-10-21 11:05
 1988-10-21 15:03

10:30
12:34
16:54

Data of command execution

1988-10-20 10:29 vi
1988-10-21 11:25 vi
1988-10-21 11:26 cpp

5
4
0

06
07
30

secs

secs

secs

1988-11-15
1988-11-16

12:40 14:37
09:49 12:41

 Access date
(year-month-day)

1988-11-16 12:35 he
1988-11-16 12:35 a. out

0
0

.06

.39
secs

secs

Login time Logouttime

(hourminute) (ourminute)

Execution date Execution time
(year-month-day) (hour.minute)

Command

 name
 CPU tune

(1/100 seconds)

(b) Transformed data

Figure 6.3 Example of process data

terminal access and command execution (see Figure 6.3(b)) by

pieces of information and rearranging the order of the rest.

removing some

71

 Figure 6.3(a) shows an example of accounting data given by the accounting

system on UNIX. The accounting data of terminal access consists of (1) the name

of programmer who has accessed the terminal, (2) the identifier of the terminal,

(3) the access date, (4) the login time (in minutes) when the terminal session was

begun by the login command, (5) the logout time (in minutes) when the

terminal session was ended by the logout command, and (6) the time duration

from login to logout. A set of these six data items is recorded for each terminal

access.

 On the other hand, the accounting data of command execution consists of

(1) the command name, (2) the programmer name, (3) the identifier of the

terminal, (4) the amount of CPU time (in 1/100 seconds) necessary to execute the

command, (5) the date, and (6) the time when the command was executed. A set

of these six data items is recorded for each command execution (see Figure

6.3(a)).

 The details of the process data to be transformed are shown in Figure

6.3(b). The terminal access data consists of the access date, login time, and logout

time for each terminal access. The command execution data consists of the

execution date and time, the name of command, and the amount of CPU time.

 The accounting data for each programmer are obtained by using the

commands "last" and "lastcomm" prepared by the accounting system [UNIX

1986]. Usually, the accounting system is set to delete these data at specific

intervals (i.e., at each weekend or the end of each month). Therefore, a C

program was developed and inserted into Process Data Collection (CM3) to

collect these data just before the accounting system deletes them.

72

 The transformation from the accounting data (in Figure 6.3(a)) to the

process data (in Figure 6.3(b)) consists of three successive steps (CMI, CM3 and

CM6). These are briefly summarized as follows:

 Process Data Computation Procedure (see Figure 6.2)

 Step 1: Retrieve the accounting data by the commands "last" and

 "lastcomm" (Process Management) .

 Step 2: Sort these accounting data in chronological order, and extract the

 key information from them (Process Data Collection).

 Step 3: Store the data (see Figure 6.3(b)) in the Process/Product Data Base

 (Data Base Management).

(2) Product data (see Figures 6.4 and 6.5)

 The product data consists of the history of modifications and the latest

version of the file. These data are accumulated for each file by Product

Management (CM2) and Product Data Collection (CM4). Figure 6.4 shows the

data flow of the computation of product data, where several functions provided

by the UNIX file system [UNIX 19861 are utilized extensively. The program text

developed by the programmer is managed as files. For each file, relevant data

such as date, time and access rights are also maintained by the file system. The

product data are collected by applying the following procedure at five minute

intervals:

 Product Data Computation Procedure (see Figure 6.4)

 Step 1: Find the latest time to and a file Fu, such that the file Fu was updated

 at to and to is within the past five minutes (Product Management).

73

Step 2:

Step 3:

Step 4:

 The

modifications

 AS updated time

recorded in AS,

in Step 3, is

are five types

Table 6.1).

of a file. On One

giving AS t

calculated b AS

(Product Data Collection).

Compute a difference AF between the new version of the file Fu and

ased Make on a this pair (Fu, tu) for the file Fu and the time to obtained at Step 1 the latest version Fi in the Process/Product Data Base. This computation is realized by using the file comparator "diff" [UNIX 19861 in UNIX (Data Compression). Add the pair (AF, tu) to the history of modifications and replace the latest version of file F1 by file Fu (Data Base Management). details of the product data are shown in Figure 6.5. The history of includes a header and a series of pairs of (tu, AS), where to is an me and is a set of scripts (see Figure 6.5(a)). The updated time to is seconds. The set of scripts which corresponds to the difference AF generated by the file comparator command "diff" [UNIX 1986]. (There of scripts. The description of each script type is summarized in Generally, more than one script is generated to represent one updating can be assured that the original version of the file is reproduced by o the editor "ed"[UNIX 1986] in UNIX. The program modifications are script , as is discussed later.

6.4.3 Management of project data

 The data structure of the Process/Product Data Base (see Figure 6.1) is

briefly shown in Figure 6.6. The relevant data is managed for each project and all

project data is arranged for each programmer. The programmer's data consists of

74

Product Management
(File system on UNIX) CM2

Updated fileP

Product Data Collection CM4

(CYO tY)

Data Compression CM5

A

(4P, tu) J

1
Data Base Management CM6

Add Replace

History of
modifications J

Latest versionFi

File #k_

Product Data -

Process Data

Analysis Results

 Process/Product Data Base

 Figure 6.4 Computation of product data on UNIX

the process data and the product data from the Data Collection

analysis from the Data Analysis Unit.

Unit and the

75

 programmer : kusumoto
 file name : example.c

1988-10-20 10:29:00 ### f

Oa
main(argc,argv)
int argc;
char **argv;
{

 int i, j ;
 char name[10];

 strcpy(name,argv[1]);

Header

 Updated time t.

(year-month-day
hour:minute:second)

Script AS
(Append after line 0)

)

27,28c

14d
7a

1988-10-21 11:25:00 ###

 printf("name is %s\n",name);

 if (argc<2) {
 exit(1);

}

(Change lines 27 and 28)

(Delete line 14)

(Append after line 7)

(a) History of modifications

main
int
char
{

(argc,argv)
 argc;

 **argv;

 int i,j;
 char name[10];

 if (argc<2) {
 exit (1) ;

}
 strcpy(name,argv[1]);

}

(b) Latest version

 Figure 6.5 Example of product data

76

Table 6.1 Calculation of program modifications

Script types Values of measure

na

<text>

L. = the number of lines in <text>

nc

<text>

&=1

Lr = the number of lines in <text>

m,n c

<text>

Lc= n-m+1

L., = the number of lines in <text>

nd La=1

m,n d Id= n-m+1

77

Project #2

Project#3

Project#1
Programmer #m

" Programmer #2

Programmer #1
r-- Process Data

Data of

terminal access

Data of

command execution

Product Data
-File #n

I

-File #1 -

History of

modifications
J

-File #2-

History of

modifications

J

i
r 1

History of

modifications

J

i

I Latest
version

Latest

version

Latest

version
1

Analysis Results

Programming

efforts

Program
modifications of program

Figure 6.6 Process/Product DataBase

78

6.4.4 Analysis of programmer productivity

 The analysis results in information on programming efforts, the

quality/quantity of the resulting program, and program modifications. An

example analysis is shown in Figure 6.7.

 For programming efforts, the following four kinds of measures are

currently calculated: (1) calendar days, (2) total terminal access time (in minutes),

(3) total number of command executions, and (4) total CPU time (in 1/100

seconds) for command execution. The latter two are further classified four ways,

depending on the type of command: program editing, compilation, linking, and

execution. These values are calculated based on the data for terminal access and

command execution as taken from the process data (see Figure 6.2).

 The quality/quantity of the resulting program is calculated from the latest

version F1 of the file in product data (see Figure 6.5 (b)). Currently, for measuring

quantity, two concrete measures are adopted: the total number of lines and the

total number of modules (see Figure 6.7). As for quality, only the ratio of

successful tests to the total number of test cases is evaluated.

 An outline of an automatic test for evaluating quality is shown in Figure

6.8. In Figure 6.8, the program to be tested is taken from the product data in the

Process/Product Data Base. For each test case, a pair, consisting of an input to the

program and the correct output, must be prepared beforehand by the data analyst.

The program output, obtained by program execution, is compared with the

correct output. If there are differences between them, the test case is considered to

be unsuccessful. The results of the comparison are summarized as a test report.

Figure 6.9 shows an example of a test report, in which testl is unsuccessful and

79

Programming Efforts

 Calendar days

 Total terminal

 Total number
 - Program

 - Program
 - Program
 - Program

 Total CPU time
 - Program

 - Program
 - Program
 - Program

nal access time (min.)

 of command execution
editing
compilation
linking
execution

me for command execution
editing
compilation
linking
execution

(sec.)

 10

 1231

 115
 42

 30
 18
 25

323.90
251.03

 31.12
 26.13
 15.62

Quality/Quantity of resulting program

Total number of lines

The number of modules
Rate of successful test

326
 21

100%

Program Modifications

The number of

The number of
The number of
The number of
The number of

The number of

Total number

Sum of error

 lines of an initial program (Li)

 lines appended to program (La)
 lines deleted by change (Lc)

 lines appended by change (Lc')
 lines deleted from program (Ld)

 lines of a resulting program (Lr)

of errors (estimated value)
life span (estimated value)

285

 97
178
163
 41

326

127
3291

test2 is successful. In

reported back to the

shown in Figure 6.8.

 Figure 6.7 Example analysis

order to increase the value of the ratio, the test report

programmer through Feedback Management (CM11),

is

as

80

Process/Product Data Base

Program

-Test case #n

Test case #2
.

Test case #1

Input to Program Correct Output

.

Program Execution

Programmer
Productivity
Evaluation

Program
Output

Text Comparison

CM9

Feedback Management CM11

Test Report
--f -
Programmer

 Figure 6.8 Automatic testing and reporting

 Finally, program modifications are calculated based on the history of

modifications in the product data. For basic measures of program modifications,

the following six L's are currently adopted according to the type of modification

(see Figure 6.10):

 Li : the number of lines of an initial program

 La : the number of lines which are appended to the program

81

**

Tue Nov 15 20:10:40 GMT+9:00 1988
**

Test for TESTDATA/testl #####
*** program execution ***
*** incorrect answer ***

Correct output :

Reg.No. Power-On Power-Off
 01 1000 1200

 01 1300 1400

Program output :

Reg.No. Power-On Power-Off
 01 1000 1200

Test for TESTDATA/test2 #####
*** program execution ***
*** O .K. ***

Figure 6.9 Example of test report

 Lc : the number of lines which are the subject of change (that is, lines

deleted by change)

 Lc': the number of new lines which are inserted by change (that is, lines

appended by change)

 Ld : the number of lines which are deleted from the program

 Lr : the number of lines of a resulting program

Figure 6.10 shows a typical case of program modifications. The following

relation is clearly derived.

 Lr=Li+(La+Lc')-(Lc +Ld)

The value of Li is obtained from the history of modifications, and Lr is also

easily calculated from the latest version of the file in the product data. The

82

values of La, Lc, Lc' and Ld can be calculated based on the-script in the history of

modifications in the product data. (The relation between>the types of scripts and

the values of La, Lc, Lc- and Ld is shown in Table 6.2.)

 Additionally, the number of errors removed ::during the program

development process is estimated (see Figure 6.7). The sum of the error life span

[Matsumoto et al. 1987], which has been introduced as a measure of programmer

productivity, is also estimated. As mentioned in Section 4.4, the number of

errors and the error life span can be calculated automatically based on program

modifications.

83

Initial Program Resulting Program

Li

'Append

Change

Lc'

Delete

LrLc~-

L

Le

Figure 6.10 Basic measures for program modifications

Table 6.2 Illustration of script

Script types Function in editor "ed"

na

<text>

"a" stands for append command
, and "n" is a non negative

integer. This script implies to read <text> and append it
after the n-th line. .

nc

<text>

"c" stands for change command
, and "n" is a nonnegative

integer. This script implies to delete the n-th line, then
accept <text> which replaces the line.

m,n c

<text>

"c" stands for change command
, and "m", 'In", are

nonnegative integers. This script implies to delete the lines
between the m-th line and the n-th line, then accept <text>
which replaces these lines.

nd "d" stands for delete command
, and "n" is a nonnegative

integer. This script implies to delete the n-th line.

m,n d "d" stands for delete command
, "m", "n" are nonnegative

integers. This script implies to delete the lines between the
m-th line and the n-th line.

84

Chapter 7: Experimental Evaluation of the Environment

7.1 Objective of the experiments

 As mentioned in Section 5.1, data collection and information feedback are

essential activities to control the software development project. Therefore , in

order to show the usefulness of the measurement environment in the prototype

system GINGER, we have to observe and evaluate the activities needed for both

data collection and information feedback.

 During the experiments reported in Chapter 4, we observed that the

automatic data collection was unobtrusive. In addition, it is also observed that

the data collection activities of the prototype system may increase the load of the

computer system slightly. However, as for the information feedback of the

measurement environment, the usefulness has not been shown yet. Therefore ,

to show the usefulness of information feedback in the prototype system, an

experimental project described below has been carried out. The experiments are

for undergraduate students in the Department of Information and Computer

Sciences of the Osaka University [Matsumoto et al. 1988b].

7.2 Outline of the experiments

 The experimental project includes two kinds of experiments: Experiment

4, in which no feedback is given during software development and Experiment

5, in which information feedback is given by the prototype system. The results of

85

Management Environment

Manager

o ft -M

feedback

Compiler

Team 1

Interprete I

Compiler 1

Team 2

Interprete

Compiler

Team 3

Interprete

Gro

_Development Environment

upI

FManagement Environment .~Manager Workstation1
Terminal O

S(t) C(t)

Compiler Compiler

Team 4 Team 7

Group Group III

Interpret)

Compiler

Interprets

Compiler

Team 5 Team 8

Interprets

Compiler

Interprets

Team 6 Team 9

Compiler

Interprete I
II

Development Environment

Interprete

 (a) Experiment 4 (b) Experiment 5

 Figure 7.1 Outline of the experiments

these two experiments are compared to show the effectiveness

feedback.

 The main characteristics of both Experiments 4 and 5 are

follows (see Figure 7.1):

of information

summarized as

86

 (1) Eighteen programmers, who were undergraduate students in the

 Department of Information and Computer Sciences of the Osaka

 University, were divided into nine teams, each consisting of exactly two

 programmers. The nine teams were further divided'-into three groups

 (called Groups I, II and III), each consisting of three teams.

 (2) Each team developed programs for the same system using the C language.

 The system consisted of two programs: a compiler, which translates a

 Pascal program into an intermediate language, and an interpreter, which

 translates and executes each statement of the intermediate language. The

 resulting systems (compiler and interpreter) contained-.about 2000 lines.

 (3) One programmer of each team developed a program for the compiler; the

 other developed a program for the interpreter. Each team had for their use

 one workstation with two terminals.

 (4) All programs were tested by automatic testing, as shown in Figure 6.8,

 where 30 test cases were provided. The successful test rate had to be 100%

 for each program.

7.3 Information feedback

 In Experiment 4, the three teams in Group I developed programs for the

compiler and the interpreter. For Group I, the prototype system GINGER

monitored the activities of the programmers and collected some data, but no

feedback was given to the programmers.

 The following two kinds of data were collected in Experiment 4 (to be used

as the feedback information in Experiment 5):

 (1) Information on the quantity of the resulting program

87

 S(t): the number of lines in the resulting program at time t.

 S: the number of lines in the resulting program when the final

 program has been developed.

 (2) Information on program modifications

 C(t): the number of lines which have been changed or deleted up to

 time t.

 C: the number of lines which have been changed or deleted when

 the final program has been developed.

 Experiment 5 was executed about 2 months after Experiment 4 was over.

In Experiment 5, as mentioned before, the prototype system GINGER monitored

each team in Group II and Group III and collected data S(t), S, C(t) and C.

Additionally, the system gave feedback information to each team as follows.

Twice a week, the programmers of Group II were provided with their own S(t)

and the maximum and minimum values of S for Group I (see Figure 7.2(a)).

The programmers of Group III were provided their own C(t) and the maximum

and minimum values of C in Group I (see Figure 7.2(b)).

 In addition, the programmers in Group II were instructed to develop

programs as fast as possible with reference to the maximum and minimum

values of S for Group I. In other words, the value S(t) should exceed the

estimated value (according to the minimum value of S) for Group I. Similarly,

the programmers in Group III were instructed to develop programs cautiously,

with reference to the maximum and minimum values of C for Group I. That is,

the value C(t) should not go beyond the estimated value (according to the

maximum value of C) for Group I.

88

3000

2000

1000

0

S(t)
in Group
II

y

 r.

 r•.

0 1 2 3 4
 Time

 (a) Information S(t) for Group II

C(t)
in Group III

5

S
in Group I

Max.

Min.

3000

2000

1000

0
v'T S_ J

v ~.

0 2 3 5

C
in Group I
Max.

Min.

1 4

(b) Information C(t) for GROUP III

 Figure 7.2 Example of feedback information

(The current time is 3 (weeks), and the dotted line represen
the result obtained at 4.5 (weeks). The lines between origi:
and Max. (Min.) represent an estimation.)

89

7.4 Result and interpretation

 The experimental data are summarized in Table 7.1, which shows total

terminal access time T, total S, and total C for each team. In these experiments ,

Groups I, II and III were organized by the instructor to minimize the differences

among group performances. It is assumed that the productivity of a programmer

(and team) can be evaluated by total terminal access time T, which is one of the

measures of programming effort. The justification for this assumption is

explained as follows. (1) Each team developed the same system . (Each team was

given the same specification of the system to be developed.) Thus, the size of the

resulting program did not affect the productivity. (2) All programs were tested ,

and the successful test rate was 100% for the common test cases . Thus, the

qualities of all program are the same.

 Under these conditions, we find that the greater the programming effort,

the lower the productivity. Thus, the reciprocal value of total terminal access

time T (11T) is considered to represent the productivity of the team (and

programmers) in these experiments.

 To compare among the three groups, the averages of T, S and C for each

group are calculated and summarized in Table 7.2. From Table 7.2, the following

relation (7.1) is derived with respect to the averages of productivity:

 Group I < Group II = Group III ... (7.1)

Namely, the productivity of Group II and Group III, in which each programmer

had been given as feedback the information on his or her own program

development and the results of prior project, are higher than the productivity in

90

Table 7.1 Experimental data

Group Team
Total terminal
access time

T (min.)

Total number of lines
in resulting program

S (LOO

Total number of lines
changed or deleted

C (LOC)

I

1 5907 1796 3052

2 8955 1900 4407

3 7930 2826 1933

II

4 6760 2551 1808

5 6054 2771 4652

6 1696 2300 3431

III

7 8343 1943 2294

8 3879 1957 2176

9 2555 1538 1573

Group I, in which no information had been given as feedback . The following

conclusions may be reached:

 First, it is very important for programmers to have a clear goal (or target)

during program development. The programmers in Group II could develop the

programs fast by comparing their own activities to the prior project, since they

had been given the information on the prior project as feedback.

 Second, in preliminary experiments [Matsumoto et al. 1988b], it was found

that there is a high correlation between the value of C and programmer

productivity, which is the ratio of the number of lines in the resulting program

to the total amount of terminal access time. The programmers in Group III

91

Table 7.2 Comparative results among three groups

Group Average of T

(min.)
Average of S

(LOO
Average of C

(LOC)

I 7598 2174 3131

II 4837 2541 3297

III 4926 1813 2014

could develop the programs cautiously and efficiently by comparing their own

activities to the prior project.

 There is no difference between Group II and III with respect to

productivity, from the relation (7.1). But, the following relation (7.2) is derived

from Table 7.2, with respect to the number of lines in the final program .

 Group III < Group I < Group II ... (7.2)

In addition, the following relation (7.3) is derived from Table 7.2, with respect to

the number of lines which have been changed or deleted.

 Group III < Group I = Group II ... (7.3)

 As a result, it is observed that the programmers who are given

information on the quantity of the resulting program tend to develop larger

programs than the programmers who are not given information. It is also

observed that the programmers who are given information on program

modifications tend to develop smaller programs, more cautiously than the

programmers who are given no information.

92

7.5 Possible applications

 The general goal of a data collection and analysis system for improving

the productivity of software development is to provide feedback of important

information, not only to programmers but to analysts/designers as well.

Unfortunately, the data in the system analysis and designing phases cannot be

automatically collected since the documents in these two phases are not

computerized yet. Thus in the current state of GINGER, only some information

can be given as feedback to programmers during the implementation phase (see

Section 6.4).

 The effective feedback of information to designers is clearly an interesting

and important task. The values of strength/cohesiveness and coupling of

modules are typical examples of such information. But it is also well known that

they are not measurable at the design phase since each value depends on the

source code. In the future, if certain data can be collected from the design process

and stored in the database, the architecture of GINGER can be extended to

measure and analyze this phase as well.

 The current version of the GINGER system has been applied to improve

software development activities in the academic field according to two different

views.

(1) Teacher/Instructor

 The teacher/instructor would/should monitor the programming progress

of students directly from the coded source program rather than from off-line

student reports. With respect to coded source programs, analyzed data such as

93

the size and the number of modifications in the source code can be obtained

[Matsumoto et al. 1988b].

(2) Students

 Students can also monitor not only his or her own data , but also the

statistical data, such as the average number of modifications, in certain specific

experiments [Matsumoto et al. 1988b], of classmates and the previous students

from different years.

 From these two views, the following concrete applications can be

considered;

 • Teachers can use monitored data to instruct students in the

 technology/skill of coding/testing [Matsumoto et al. 1988b].

 • Off-line reports submitted by students can be validated [Matsumoto et al .

 1988b].

 • Causes of bugs may be analyzed statistically based on the debugging/testing

 progress [Matsumoto et al. 1988d].

 • The programming ability of each student or of a team may be evaluated
,

 assuming ability is strongly related to the number of modifications made

 during programming [Kusumoto et al. 1989].

 • If the programming ability of individual students is evaluated
, the teams

 or groups can be organized as desired [Kusumoto et al . 1989].

 • Residual bug counts [Matsumoto et al . 1988a] can be estimated according to

 the number of modifications.

 Wider applications outside of the classroom are expected in the future ,

since there may be many potential users. Feedback characterizes process/product

94

problems so that they can be improved. Thus we can apply the4:GINGER system

from different views to other roles: (1) managers, (2) developers, (3) quality

assurance personnel, (4) customers and (5) researchers. Most of,the issues may

turn out to be similar to those of the classroom, with some exceptions, such as

the estimation of the cost of the product.

95

Chapter 8: Conclusion

8.1 Summary of major results

 In this thesis, a new programmer performance model and team

performance model are proposed for evaluating the activities of the individual

programmer and the programmers of team in a quantitative and objective way.

These two models are defined based on the novel concept of error life span .

 The life span of an error is defined as the time duration from when the

error manifests itself in the software to when the error is removed from the

software. It can be considered to represent the degree of effect of the error on the

productivity and quality of the software development. Results of experimental

evaluation show that the sum of the error life span has higher correlation with

the total terminal access time than does the total number of errors. Thus, error

life span is concluded to be one good metric for evaluating the activities of

programmers. In addition, in order to reduce the effort of getting the values of

the metrics, an automatic estimation method for the sum of error life span is

devised. The method has been already used extensively in several experimental

projects and the validity and effectiveness of the proposed method has been

shown.

 Based on the concept of error life span, the programmer performance

model is defined. In defining of the model, the sum of the error life span is used

as a good indicator that closely links the performance of the programmer with

(1) the number of errors made in the software development process, and (2) the

96

rate of detection and removal of these errors. Additionally, in order to extend

the application fields of the programmer performance model, the programmer

performance model is defined to include a normalizing function for the

complexity of given problem. Results of experimental evaluations show that the

programmer performance model has high correlation with the "aptitude" of the

student programmer. Of course, we think that the programmer performance

model does not indicate the complete extent of the performance of the

programmer, but it shows and evaluates, in a quantitative and objective way, the

effect of one aspect of a programmer's activities on software development.

 The programmer performance model is extended to three kinds of team

performance models (M1, M2, and M3). Results of experimental evaluation

suggest that the model M1 (the total of performance of programmer in team)

and the model M2 (the average of performance of programmer in team) are not

good indicators for evaluating the performance of the team. The model M3

(defined by regarding a team as a virtual programmer) has the highest

correlation with the team debugging effort time (that is, the time spent for the

most important team activities on software development). In addition, we show

that the team performance becomes maximum only if each programmer on the

team develops program modules with a size that is proportional to their

performance. Thus, the team performance model M3 can be used for not only

the evaluation of the activities of the team, but also the construction of team

organization before the project starts.

 This thesis also describes a measurement environment GINGER, which

automatically collects and analyzes the data from the activities of programmers

97

during software development and shows the obtained and analyzed data to the

programmers as feedback information to control the software development

project in an objective way. In the proposed environment, special emphasis is

given to programmer productivity in evaluating the activities of programmers.

Additionally, to analyze the activities of programmers in detail and to improve

programmer productivity by using the results of analysis, the concept of

program modification is introduced as a metric to estimate the activities of

programmers.

 GINGER consists of a software development environment and a

management environment and it presents a mechanism for supporting

interactive information processing between these two environments. Data on

programmer activities are collected from the development environment and

sent to a manager in the management environment. In the management

environment, the collected data is analyzed with respect to the productivity and

quality of the software and then given as feedback to the developers in the

development environment. This two-way information flow is essential in

controlling a software development project.

 A prototype of GINGER has been developed in a UNIX environment and

has already been used in several empirical studies. An experimental evaluation

of information feedback from manager to programmers is described in Chapter

7. Results of the experiments show that information feedback can give the

programmers a clear goal or target with respect to productivity and quality of

software during its development process and thus help programmers

accomplish their goal effectively. The proposed measurement environment

98

provides some primitive functions to measure and control the software

development process and product, as well as the evaluation of the programmer

productivity.

8.2 Future work

 Currently in the proposed environment, the manager takes a leading role

in data collection and information feedback. Thus, these processes involving are

done from a manager's viewpoint. As a result, we conclude that such

environments can control the software development project, but possibly cannot

improve significantly the productivity and quality of software.

 There exist two problems in the current measurement environment for

improving the productivity and quality of software, especially in a large-scale

project. The essential difficulties in these problems is that the main objective and

concern of the manager is the success of the ongoing project.

 The first problem is that data, which may contribute to the improvement

of the productivity and quality of software in a future project, are not collected

and analyzed by a manager. For example, consider an error analysis (one of the

most well-known approaches to improving programmer performance). If we

have the data on the error distribution, tendencies of errors made by

programmers, and so on, we can suggest to each programmer the weak points in

their coding activity and thus improve his or her programmer performance.

 However, in general, error analysis is done at the end of the coding phase,

after the project completed. Thus it is hard to effectively utilize the results of

error analysis for an ongoing project. Therefore, a manager will neither do error

99

analysis with interest nor collect data, even if it may yield higher productivity

and software quality for a future project.

 The second problem is that almost all data and analysis results are

discarded by a manager. However, these data could be useful to future projects.

For example, in our experiments described in Chapter 7, the data of program size

and program modifications collected in Experiment 4 were used to present

programmers a clear goal in Experiment 5. If we should have the data collected

from both the successful and unsuccessful projects, projects similar to an

ongoing project, then we could present a more comprehensible goal to

developers of the ongoing project.

 Since collecting and storing the data on a project does not always

contribute to the success of the project, most managers do not expend the effort

to do it even after the end of the project. Of course, a manager may gain

experience in managing a software development project, but it is very difficult

for other managers to reuse this experience. Thus arises the need to establish a

systematic methodology for managing software development.

 The difficulties in the problems described above come from having data

collection and information feedback done only by the manager, especially

considering that the only major objective of the manager is the success of the

ongoing project. In order to resolve these difficulties, we should introduce a new

"analyst" the measurement environment .

 The analyst's objective is to improve the productivity and quality of the

software in ongoing and future projects. In other words, the analyst tries to

achieve high productivity and quality of software at an organization level rather

100

 Data

Collection

 Unit

 Data

Management

 Unit

 Data

Analysis

 Unit

Information

 Feedback

 Unit

O

Analyst

Organizationa

Data

Collection

Organizational

Data

Analysis

1 Organizations

Information
Feedback

Organizational
Data Base

400-
W I I

A

Manager I r
I

r ---1 p
Project
Data

Collection

Project
Data

Analysis

Project
Information

FeedbackI

A
Project

Data Base
A I

Developer
I

r

Personal

Data

Collection

Pmsonal
Data

Analysis
tioPersonal

Feedback
Personal PersonalData Base 7Data Base

ganizational
 level

Project
 level

Personal

 level

Figure 8.1 Conceptional drawing of a future measurement environment

than at an individual project level. Figure 8.1 shows a conceptional drawing of a

future measurement environment. In this environment, the developer,

manager, and analyst each bear the responsibility for improving the productivity

and quality of the software at three different levels: personal, project, and

organizational levels, respectively. Four logical units: Data Collection, Data

Management, Data Analysis, and Information Feedback are also partitioned into

three parts and three feedback loops are implemented according to these three

levels.

101

 In the environment in Figure 8.1, the manager does not have to collect

and manage a large amount of data from an ongoing project. Further, the

manager can use the data from previous, similar projects (even if he or she did

not directly manage these projects). Finally, the amount of feedback provided to

the developer increases and is expanded by analysis of several other projects as

well as by information from the manager.

102

References

[Brooks 1975]
F. P. Brooks, Jr., "The Mythical Man-Month: Essays on Software Engineering,"
Addison-Wesley Pub., 1975.

[Baker 19721
F. T. Baker, "Chief programmer team management of production

programming," IBM Systems Journal, Vol.11, No.1, pp.56-73, 1972.

[Basili 19801
V. R. Basili (Ed.), "Tutorial on models and metrics for software management and
engineering," IEEE Computer Society Press, 1980.

[Basili & Reiter 1979]
V. R. Basili and R. W. Reiter, Jr., "An investigation of human factors in software
development," IEEE Computer, Vol.12, No.12, pp.21-38, Dec. 1979.

[Basili & Rombach 19881
V. R. Basili and H. D. Rombach, "The TAME project : Towards improvement-
oriented software environments," IEEE Transactions on Software Engineering,
Vol.14, No.6, pp.758-773, June 1988.

[Basili & Rombach 1987]
V. R. Basili and H. D. Rombach, "Tailoring the Software Process to Project Goals
and Environments," Proceedings of the 9th International Conference of
Software Engineering, pp.345-357, March 1987.

[Boehm 19811
B. W. Boehm, "Software Engineering Economics," Prentice-Hall, 1981.

103

[Chen 19781
E. T. Chen, "Program complexity and programmer productivity ," IEEE
Transactions on Software Engineering, Vol.SE-4, No .3, pp.187-194, May 1978.

[Conte et al. 1986]
S. D. Conte, H.E. Dunsmore and V.Y. Shen, "Software Engineering Metrics and
Models," The Benjamin/Cummings Pub., 1986.

[Curtis 1985]
B. Curtis (Ed.), "Tutorial : Human factors in software development ," IEEE
Computer Society Press, 1985.

[DeMarco 1982]
T. DeMarco, "Controlling Projects: Management , and Estimation," Yourdon
Press, 1982.

[Druffel et al. 1983]
L. E. Druffel, S. T. Redwine, Jr. and W. E. Riddle , "The STARS program:
Overview and rationale", IEEE Computer, Vol.16, No.11, pp.21-29, Nov. 1983.

[Dunham & Krusei 1983]

J. R. Dunham and E. Krusei, "The measurement task area", IEEE Computer,
Vol.16, No.11, pp.47-54, 1983.

[Dunsmore & Cannon 1980]
H. E. Dunsmore and J. D. Gannon, "Analysis of the effects of programming
factors on programming effort," Journal of Systems and Software, Vol.1, No.2,
pp.141-153,1980.

[IEEE 1983]
"IEEE Standard Glossary of Software Engineering Terminology", IEEE, Rep. IEEE-
Std-729-1983, 1983.

[Kikuno et al. 1990]

104

T. Kikuno, K. Matsumoto and K. Torii, "Advanced Technologies for software
reliability -Survey and future trends-," Journal of IEICE Japan, Vol.73, No.5,

pp.454-460, May 1990 (in Japanese).

[Kusumoto et al. 1989]
S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii, "An experimental
evaluation of relationship between faults in functional design and number of
module modifications," National Convention Record of IEICE Japan, D-154, Sep.
1989 (in Japanese).

[Kusumoto et al. 1990]
S. Kusumoto, K. Matsumoto, T. Kikuno and K. Torii, "Experimental evaluation

of metrics for review activities," Proceedings of the 10th Software Symposium,

pp.236-241, June 1990.

[Lamb 1988]
D. A. Lamb, "Software Engineering: Planning for Change," Prentice Hall, 1988.

[Mackenzie 19691
R. A. Mackenzie, "The management process in 3-D," Harvard Business Review,
Vol.47, No.6, pp.80-87, Nov.-Dec. 1969.

[Matsumoto et al. 1988a]
K. Matsumoto, K. Inoue, T. Kikuno and K. Torii, "Experimental evaluation of

software reliability growth models," Proceedings of the 18th International
Symposium on Fault-Tolerant Computing, pp.148-153, June 1988.

[Matsumoto et al. 1988b]
K. Matsumoto, K. Inoue, T. Kikuno and K. Torii, "Analysis of programming

efforts based on program changes," National Convention Record of IEICE Japan,
D-176, Sept. 1988 (in Japanese).

[Matsumoto et al. 1988c]

105

K. Matsumoto, K. Inoue, T. Kikuno and K. Torii, "An experimental evaluation

of programmer performance based on error life span -For program
development in academic environment-," Transactionss of IEICE Japan,

Vol.J71-D, No.10, pp.1959-1965, Oct. 1988 (in Japanese).

[Matsumoto et al. 19871
K. Matsumoto, K. Inoue, H. Kudo, Y. Sugiyama and K. Torii, "Error life span and

programmer performance," Proceedings of the 11th International Computer
Software and Applications Conference, pp.259-265, Oct. 1987.

[Matsumoto et al. 19901
K. Matsumoto, T. Kikuno and K. Torii, "An experimental evaluation of S-
shaped software reliability growth models in academic environment -
Comparison between models and determination of inflection rate-,"
Transactions of IEICE Japan, Vol.J73-D-I, No.2, pp.175-182, Feb. 1990 (in Japanese).

[Matsumoto et al. 1986]
K. Matsumoto, S. Onishi, K. Inoue, H. Kudo, Y. Sugiyama and K.Torii, "A Note
on a Programmer's Capability and Its Collecting Tools," Papers of Technical
Group of IPS of Japan, No.SE50-6, 1986 (in Japanese).

[Mills 19761
H. Mills, "Software development," IEEE Transactions on Software Engineering,

Vol.SE-2, No.4, pp.265-273, Dec. 1976.

[Moher & Schneider 1981]
T. Moher and G. M. Schneider, "Methods for improving controlled

experimentation in software engineering", Proceedings of the 5th International
Conference of Software Engineering, pp.224-233, March 1981.

[Musa et al. 1987]

J. D. Musa, A. lannino and K. Okumoto, "Software Reliability : Measurement,
Prediction, Application," McGraw-Hill, 1987.

106

[Myers 19761
G. J. Myers, "Software Reliability -Principles and practices," John Wisley &
Sons, Inc., 1976.

[Onishi et al. 19861
S. Onishi, K. Matsumoto, Y. Sugiyama and K. Torii, "Metrics environment on

the software development", 33rd National Convention Record of IPS of Japan,
1G-1, pp.693-694, 1986 (in Japanese).

[Sackman et al. 1968]
H. Sackman, W. J. Erikson and E. E. "Grant, "Exploratory experimental studies
comparing online and offline programming performance," Communications of
ACM, Vol.11, No.1, pp.3-11, Jan. 1968.

[Scott & Simmons 1975]
R. F. Scott and D. B. Simmons, "Predicting programming group productivity - A
communications model", IEEE Transactions on Software Engineering, Vol.SE-1,

No.4, pp.411-414, 1975.

[Thayer 1988]
R. H. Thayer (Ed.), "Tutorial : Software engineering project management," IEEE

Computer Society Press, 1988.

[Torii 1990]
K. Torii, T Kikuno, K. Matsumoto and S. Kusumoto, "A measurement
environment and some results at class experiments," Proceedings of the 2nd
International Workshop on Software Quality Improvement, pp.88-91, Jan. 1990.

[UNIX 1986]
"UNIX User's Reference Manual -4 .3 Berkeley Software Distribution Virtual

VAX-11 Version-," Apr. 1986.

[Walston & Felix 1977]

107

C. E. Walston and C. P. Felix, "A method of programming measurement and
estimation," IBM Systems Journal, Vol.16, No.1, pp.54-73, 1977.

[Weinberg 19711
G. M. Weinberg, "The Psychology of Computer Programming," Van Nostrand
Reinhold, 1971.

[Weiss 1979]
D. Weiss, "Evaluating software development by error analysis: The data from
the architecture research facility," Journal of Systems and Software, Vol.1, No.1,

pp.57-70,1979.

[Weiss & Basili 1985]
D. M. Weiss and V. R. Basili, "Evaluating software development by analysis of
changes: Some data from the Software Engineering Laboratory," IEEE
Transactions on Software Engineering, Vol.SE-11, No.2, pp.157-168, Feb. 1985.

108

	124@00001.pdf
	124@00002.pdf
	124@00003.pdf
	124@00004.pdf
	124@00005.pdf
	124@00006.pdf
	124@00007.pdf
	124@00008.pdf
	124@00009.pdf
	124@00010.pdf
	124@00011.pdf
	124@00012.pdf
	124@00013.pdf
	124@00014.pdf
	124@00015.pdf
	124@00016.pdf
	124@00017.pdf
	124@00018.pdf
	124@00019.pdf
	124@00020.pdf
	124@00021.pdf
	124@00022.pdf
	124@00023.pdf
	124@00024.pdf
	124@00025.pdf
	124@00026.pdf
	124@00027.pdf
	124@00028.pdf
	124@00029.pdf
	124@00030.pdf
	124@00031.pdf
	124@00032.pdf
	124@00033.pdf
	124@00034.pdf
	124@00035.pdf
	124@00036.pdf
	124@00037.pdf
	124@00038.pdf
	124@00039.pdf
	124@00040.pdf
	124@00041.pdf
	124@00042.pdf
	124@00043.pdf
	124@00044.pdf
	124@00045.pdf
	124@00046.pdf
	124@00047.pdf
	124@00048.pdf
	124@00049.pdf
	124@00050.pdf
	124@00051.pdf
	124@00052.pdf
	124@00053.pdf
	124@00054.pdf
	124@00055.pdf
	124@00056.pdf
	124@00057.pdf
	124@00058.pdf
	124@00059.pdf
	124@00060.pdf
	124@00061.pdf
	124@00062.pdf
	124@00063.pdf
	124@00064.pdf
	124@00065.pdf
	124@00066.pdf
	124@00067.pdf
	124@00068.pdf
	124@00069.pdf
	124@00070.pdf
	124@00071.pdf
	124@00072.pdf
	124@00073.pdf
	124@00074.pdf
	124@00075.pdf
	124@00076.pdf
	124@00077.pdf
	124@00078.pdf
	124@00079.pdf
	124@00080.pdf
	124@00081.pdf
	124@00082.pdf
	124@00083.pdf
	124@00084.pdf
	124@00085.pdf
	124@00086.pdf
	124@00087.pdf
	124@00088.pdf
	124@00089.pdf
	124@00090.pdf
	124@00091.pdf
	124@00092.pdf
	124@00093.pdf
	124@00094.pdf
	124@00095.pdf
	124@00096.pdf
	124@00097.pdf
	124@00098.pdf
	124@00099.pdf
	124@00100.pdf
	124@00101.pdf
	124@00102.pdf
	124@00103.pdf
	124@00104.pdf
	124@00105.pdf
	124@00106.pdf
	124@00107.pdf
	124@00108.pdf
	124@00109.pdf
	124@00110.pdf
	124@00111.pdf
	124@00112.pdf
	124@00113.pdf
	124@00114.pdf
	124@00115.pdf
	124@00116.pdf
	124@00117.pdf
	124@00118.pdf
	124@00119.pdf
	124@00120.pdf

