Osaka University Knowledge Archive

Title	On cyclic and iterated cyclic products of spheres
Author(s)	Ucci, Jack
Citation	Osaka Journal of Mathematics. 1971, 8(3), p. $393-404$
Version Type	VoR
URL	https://doi.org/10.18910/6865
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

ON CYCLIC AND ITERATED CYCLIC PRODUCTS OF SPHERES

Jack UCCI

(Received March 16, 1971)
(Revised May 18, 1971)

1. G-products

Let G be a subgroup of the full symmetric group $S(m)$ on m objects. Then a G-product on a based space (X, e) will mean a based map $f: X^{m}=X \times \cdots \times X \rightarrow X$ satisfying

$$
f\left(x_{1}, \cdots, x_{m}\right)=f\left(x_{\tau(1)}, \cdots, x_{\tau(m)}\right) \quad \text { for all } \tau \in G
$$

Let $i: X \rightarrow X^{m}$ denote the embedding $i(x)=(x, e, \cdots, e)$. Two G-products $f_{1}, f_{2}: X^{m} \rightarrow X$ are equivalent if the composites $f_{1} i$ and $f_{2} i$ are (based) homotopic.

We consider the particular case $X=S^{n}$, and here equivalence of G-products f is determined by the degree of $f i$. The latter is called the type of f and is an integer. On S^{n} we study (equivalence classes of) G-products for G any p-Sylow subgroup of $S\left(p^{r}\right)$ with p an odd prime. The following result gives a complete determination of such G-products on S^{n} :

Theorem 1.1. Let G be a p-Sylow subgroup of $S\left(p^{r}\right)$ with p an odd prime. For $n=2 t+1 S^{n}$ admits a G-product of type q if and only if q is a multiple of $p^{r t}$.

Note it is well known that even dimensional spheres do not admit G-products (for any subgroup G of $S\left(p^{r}\right)$). G-products on any space X are in 1-1 correspondence with maps $X^{m} / G \rightarrow X$ where X^{m} / G is the space of G-orbits with the quotient topology. Furthermore, if G_{1} and G_{2} are conjugate subgroups of $S(m), X^{m} / G_{1}$ and X^{m} / G_{2} are homeomorphic. Thus in the proof of Theorem 1.1 we may select G to be the r-fold Wreath product of the cyclic group of order $p Z_{p}$ with itself. The corresponding orbit space X^{m} / G is just the usual $r^{\text {th }}$ iterated p-fold cyclic product of X.

The proof of the 'only if' half of Theorem 1.1 given in paragraph 2 is a minor modification of Landweber's proof for $G=S(m)$. Sections 3-5 are devoted to the proof of remaining half of 1.1 and the procedure follows in outline that of [17]. Suspension-order considerations enter in a crucial way; in particular we require a result of Mimura, Nishida and Toda on the $\bmod p$ decomposability of $E L_{0}^{n}(p)$, the suspension of the lens space $L_{0}^{n}(p)$ [8].

2. Application of equivariant K-theory

Let G^{1} be the subgroup of the symmetric group $S(p)$ generated by the p-cycle $(1,2, \cdots, p) . \quad G^{1}$ is cyclic of order p and a p-Sylow subgroup of $S(p)$. Suppose inductively that the subgroup G^{r} of $S\left(p^{r}\right)$ has been defined. Partition the ordered set $\left\{1,2, \cdots, p^{r+1}\right\}$ into p ordered subsets $S_{1}=\left\{1, \cdots, p^{r}\right\}, \cdots, S_{p}=\left\{(p-1) p^{r}+\right.$ $\left.1, \cdots, p^{r+1}\right\}$ and let G_{k}^{r} be the subgroup of $S\left(p^{r+1}\right)$ isomorphic to G^{r} via the order-preserving identification of the sets $\left\{1,2, \cdots, p^{r}\right\}$ and $S_{k}=\left\{(k-1) p^{r}+1, \cdots\right.$, $\left.k p^{r}\right\}$. Finally let $\tau \in S\left(p^{r+1}\right)$ be the permutation of order p which permutes the subsets S_{1}, \cdots, S_{p} cyclically, sending the $i^{t h}$ element of S_{k} to the $i^{t h}$ element of S_{k+1} (or S_{1} if $k=p$). $\quad G^{r+1}$ is then defined to be the subgroup of $S\left(p^{r+1}\right)$ generated by all the subgroups $G_{k}^{r}, k=1,2, \cdots, p$, and the element τ.

By definition G^{r} is the r-fold Wreath product of $G^{1}\left(\cong Z_{p}\right)$ with itself. G^{r} satisfies a short exact sequence of groups

$$
\begin{equation*}
1 \rightarrow \prod_{k=1}^{p} G_{k}^{r-1} \rightarrow G^{r} \rightarrow Z_{p} \rightarrow 1 \tag{2.1}
\end{equation*}
$$

From an easy counting argument (see [10]) we have that the order $\left|G^{r}\right|$ of G^{r} is $p^{N(r)}$ where $N(r)=1+p+p^{2}+\cdots+p^{r-1}$ and so G^{r} is a p-Sylow subgroup of $S\left(p^{r}\right)$.

Lemma 2.1. The number of p^{r}-cycles in G^{r} is $(p-1)^{M(r)} p^{N(r)-r}$ where $M(r)=p^{r-1}$ and $N(r)=1+p+p^{2}+\cdots+p^{r-1}$.

Proof. For any p^{r}-cycle $\tau \in S\left(p^{r}\right) \tau^{p}=\tau \tau \cdots \tau$ is a product of p disjoint p^{r-1} cycles $\tau^{p}=\tau_{1} \tau_{2} \cdots \tau_{p}$. From the exactness of (2.1) it follows that such a p^{r}-cycle τ belongs to G^{r} exactly when τ_{i} in $\tau^{p}=\tau_{1} \tau_{2} \cdots \tau_{p}$ is a p^{r-1}-cycle in G_{i}^{r-1} (after possibly reordering the factors). So we can proceed by induction on r.

For $r=1$ there are obviously $(p-1) p$-cycles. Assume the number of p^{r-1} cycles in G^{r-1} is $(p-1)^{M(r-1)} \cdot p^{N(r-1)-(r-1)}$. By the above remark the number of p^{r}-cycles in G^{r} is the number of products of p disjoint p^{r-1}-cycles, one from each G_{i}^{r}, times the number of p^{r}-cycles whose $p^{t h}$ power gives such a product. This number is $\left((p-1)^{M(r-1)} \cdot p^{N(r-1)}\right)^{p} \cdot\left(p^{r-1}\right)^{p-1}$ where the last factor enters as follows: given such a product $\tau_{1} \tau_{2} \cdots \tau_{p}$ and any τ with $\tau^{p}=\tau_{1} \tau_{2} \cdots \tau_{p}$ we may write τ with initial entry 1 . We can also assume that τ_{i} consists of the $\left(k p^{r-1}+i\right)^{t h}$ entries of τ for $k=0,1, \cdots, p-1$ and so τ_{1} contains the entry 1 . With 1 as initial entry of τ, it follows that the $\left(k p^{r-1}+1\right)^{s t}$ entries of τ are uniquely determined. Further for $i \neq 1 \tau_{i}$ only determines the $\left(k p^{r-1}+i\right)^{t h}$ entries of τ module the p^{r-1} different possible initial entries. Thus the p^{r-1} different ways of describing each of $\tau_{2}, \tau_{3}, \cdots, \tau_{p}$ (via different initial entries) determine $\left(p^{r-1}\right)^{p-1}$ different $\tau \in G^{r}$ with $\tau^{p}=\tau_{1} \tau_{2} \cdots \tau_{p}$. As $\left((p-1)^{M(r-1)} \cdot p^{N(r-1)}\right)^{p} \cdot\left(p^{r-1}\right)^{p-1}=$ $(p-1)^{M^{(r)}} \cdot p^{N^{(r)}}$, the induction is complete.

Lemma 2.1 is all that is required to adapt Landweber's application of
equivariant K-theory to the study of G^{r}-maps. A brief resumé of his procedure follows. For any $G \subset S(m)$ let $P: G \subset S(m) \rightarrow R^{m}$ be the usual permutation representation of $G . \quad P$ splits as $Q \oplus \boldsymbol{R}$ where Q acts on the hyperplane $\left\{x \in R^{m} \mid \Sigma x_{i}=0\right\}$ and \boldsymbol{R} is the trivial 1-dimensional representation acting on the diagonal $\left\{x \in R^{m} \mid x_{i}=x_{j}\right.$ all $\left.i, j\right\}$. Via the generalized Hopf construction Landweber obtains from a G-map $f: S^{n} \times \cdots \times S^{n} \rightarrow S^{n}(n=2 t+1)$ an equivariant map

$$
g: \Sigma\left((n+1) Q_{c} \oplus \boldsymbol{C}^{t+1}\right) \rightarrow \Sigma\left(Q_{c} \oplus \boldsymbol{C}^{t+1}\right)
$$

where Q_{C} is the complexification of Q and ΣW is the one-point compactification of the G-representation W. Since g maps the fixed point set to the fixed point set, there is a commutative diagram of maps

An easy calculation shows that $\operatorname{deg}\left(g^{\prime}\right)=m \cdot \operatorname{type}(f)$. Hence to obtain the 'only if' part of 1.1. we must show that $p^{r(t+1)} \mid \operatorname{deg}\left(g^{\prime}\right)$ for $G=G^{r} \subset S\left(p^{r}\right)$.

For any finite group G let K_{G} denote the complex equivariant K-theory functor. Then K_{G} (point) $=R(G)$, the complex representation ring. Further for complex G-modules $W=W_{1} \oplus W_{2}$ there is an isomorphism

$$
K_{G} W_{1} \xrightarrow{\lambda_{W_{2}}} K_{G}\left(W_{1} \oplus W_{2}\right)
$$

defined by multiplication by a certain class $\lambda_{W_{2}} \in K_{G} W_{2}$ which restricts to $\lambda_{-1} W_{2}=$ $\Sigma(-1)^{i} \lambda^{i} W_{2} \in R(G)=K_{G}\{0\}$. In particular for $W_{1}=\{0\}$ we have that $K_{G} W$ is a free $R(G)$-module on the one generator λ_{W}. Applying this information to (2.2) we obtain the commutative diagram

giving the equation

$$
\begin{equation*}
g^{*}(1) \cdot \lambda_{Q_{c}}^{t+1}=\operatorname{deg}\left(g^{\prime}\right) \cdot \lambda_{Q_{G}} \tag{2.3}
\end{equation*}
$$

Statement (ii) below is needed in the application of this equation. Its proof depends on (i)—of which it is a converse.
(i) (Atiyah [1]) The $S(m)$ representation $\lambda_{-1} Q_{c}$ as a class function vanishes on composites (i.e., products of cycles) and assumes the value m on any m-cycle.
(ii) (Landweber [7]) If $\alpha \in R(S(m)$), as a class function, vanishes on composites, then α is a multiple of $\lambda_{-1} Q_{C}$.
Both statements extend easily with G^{r} in place of $S\left(p^{r}\right)$. In particular the G^{r} representation ' $\lambda_{-1} Q_{c}$ ' is just the composite $G^{r} \subset S\left(p^{r}\right) \rightarrow C$, i.e., inclusion followed by the $S\left(p^{r}\right)$ representation $\lambda_{-1} Q_{c}$. Hence ' $\lambda_{-1} Q_{c}$ ' also vanishes on composites (in G^{r}) and assumes the value p^{r} on any p^{r}-cycle, giving the desired extension of (i). Similarly using Lemma 2.1 we can prove: If $\alpha \in R\left(G^{r}\right)$ vanishes on composites and assumes the same value on p^{r}-cycles, then α is a multiple of $\lambda_{-1} Q_{c}$ and so $p^{r} \mid \lambda_{-1} Q_{c}(\sigma)$ for any p^{r}-cycle σ in G^{r}. In fact for 1 the principal character of G^{r}, we know that the inner product

$$
(\alpha, 1)=\frac{1}{\left|G^{r}\right|} \sum_{x \in G^{r}} \alpha(x) 1(x)
$$

is integral. The only nonzero terms occur for x a p^{r}-cycle and on each of these $\alpha(x)$ assumes the same value. $\left|G^{r}\right|=p^{N(r)}$ and there are $(p-1)^{M(r)} \cdot p^{N(r)-r}$ p^{r}-cycles in G^{r}, so for x any p^{r}-cycle $\alpha(x) \cdot(p-1)^{M^{(r)}} / p^{r}$ is an integer and so $p^{\gamma} \mid \alpha(x)$.

Now equation (2.3) evaluated on any p^{r}-cycle σ becomes $g^{*}(1)(\sigma) \cdot\left(p^{r}\right)^{t+1}=$ $\operatorname{deg}\left(g^{\prime}\right) p^{r}$ and so $g^{*}(1)(\sigma) \cdot p^{r t}=\operatorname{deg}\left(g^{\prime}\right)$, hence all that remains to show is that $g^{*}(1)$ vanishes on composites. Landweber proves this for $g^{*}(1)$ viewed as an $S(m)$ representation, making use of naturality and a calculation of the Adams operation ψ^{k}. His proof (namely Lemmas 4.4, 4.5 and the final paragraph of [7]) carries over without change for $g^{*}(1)$ considered as a G^{r}-representation.

Remarks. 1. For $r=1$ (i.e., the cyclic product $C P^{p} S^{n}$) a separate proof that p^{t} divides the type of any map $C P^{p} S^{n} \rightarrow S^{n}(n=2 t+1)$ can be given along the lines of [16] using Liao's computation of $H^{*}\left(C P^{p} S^{n} ; Z\right)$ [8]. Such a procedure should also work for all $r \geq 1$ (and for $p=2$ as well), given a strong will to evaluate the higher differentials in the coefficient K-theory spectral sequence for $C P_{r}^{p} S^{n}$.
2. If in fact one succeeds in the higher differentials approach of remark 1 , it then becomes reasonable to ask if these differentials are related to the representation theory of the groups G^{r}.
3. Of course the argument in this paragraph works equally well for the prime 2 and so proves that the type of any map $C P_{r}^{2} S^{n} \rightarrow S^{n}(n=2 t+1)$ must be a multiple of $2^{r t}$. Just as in the case $r=1$, however, we expect some improvement of this result using real K-theory instead of complex K-theory.

3. Geometry

The p-fold cyclic product $C P^{p} X$ of a based space (X, e) is the based quotient space ($C P^{p} X,[e, \cdots, e]$) where $C P^{p} X$ is the orbit space X^{p} / G^{1} under the action
of the cyclic subgroup $G^{1} \subset S(p)$ of order p. The $r^{t h}$ iterated p-fold cyclic product $C P_{r}^{p} X$ of X is defined inductively as $C P_{r}^{p} X=C P^{p}\left(C P_{r-1}^{p} X\right)$ for $r \geq 2$. One verifies easily that $C P_{r}^{p} X$ is homeomorphic to the orbit space $X^{p^{r}} / G^{r}$, where G^{r} is the r-fold Wreath product of G^{1} with itself (recall G^{r} is a p-Sylow subgroup of $S\left(p^{r}\right)$).

Here we develop the geometry of $C P^{p} S^{n}$ analogous to that of the m-fold symmetric product $S P^{m} S^{n}$ of $S^{n}[17]$ in order to construct maps $C P^{p} S^{n} \rightarrow S^{n}$. Via the cyclic product functor we obtain maps for each $i C P_{i}^{p} S^{n} \rightarrow C P_{i-1}^{p} S^{n}$ which under composition provide the desired map $C P_{r}^{p} S^{n} \rightarrow S^{n}$ meeting the requirements of Theorem 1.1.

Let D^{n} denote the n-disc in R^{n} and S^{n-1} its boundary ($n-1$)-sphere ∂D^{n}. For each $\tau \in G^{1}$ there is a permutation homeomorphism $h_{\tau}:\left(D^{n}\right)^{p} \rightarrow\left(D^{n}\right)^{p}$. Set $A_{p, l}^{n}=\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l}, 0 \leq l \leq p$. Then $\widetilde{X}_{p, l}^{n}=\bigcup_{\tau} h_{\tau} A_{p, l}^{n}, \tau$ running over G^{1}, is a G^{1}-invariant subspace of $A_{p, 0}^{n}=\left(D^{n}\right)^{p}$ and so the quotient $X_{p, l}^{n}=\widetilde{X}_{p, l}^{n} / G^{1}$ is defined. Similarly for $B_{p, 2}^{n}=\left(S^{n}\right)^{p-l} \times\{e\}^{l}, 0 \leq l \leq p, \tilde{Y}_{p, l}^{n}=\bigcup_{\tau} h_{\tau} B_{p, l}^{n}$ is a G^{1} invariant subspace of $B_{p, 0}^{n}=\left(S^{n}\right)^{p}$ and so the $Y_{p, l}^{n}=\tilde{Y}_{p, l}^{n} / G^{1}$ is also defined.

Lemma 3.1. $X_{p, 0}^{n}$ is homeomorphic to the cone $C X_{p, 1}^{n}=X_{p, 1}^{n} \times I / X_{p, 1}^{n} \times\{0\}$.
Proof. The map $X_{p, 1}^{n} \times I \rightarrow X_{p, 0}^{n}$ given by $\left(\left[x_{1}, \cdots, x_{p}\right], t\right) \rightarrow\left[t x_{1}, \cdots, t x_{p}\right]$ induces a topological map

$$
\begin{equation*}
\alpha: C X_{p, 1}^{n} \rightarrow X_{p, 0}^{n} \tag{3.1}
\end{equation*}
$$

sending $X_{p, 1}^{n} \times\{1\}$ onto the subspace $X_{p, 1}^{n} \subset X_{p, 0}^{n}$.
A relative homeomorphism $\tilde{h}:\left(D^{n}, S^{n-1}\right) \rightarrow\left(S^{n}, e\right)$ induces a relative hoemomorphism

$$
\begin{equation*}
h:\left(X_{p, 0}^{n}, X_{p, 1}^{n}\right) \rightarrow\left(Y_{p, 0}^{n}, Y_{p, 1}^{n}\right) . \tag{3.2}
\end{equation*}
$$

From Lemma 3.1 and (3.2) we obtain
Lemma 3.2. $Y_{p, 0}^{n}=C P^{p} S^{n}$ is homeomorphic to the adjunction space $Y_{p, 1}^{n} \cup C X_{p, 1}^{n}$ with attaching map given by $h \mid X_{p, 1}^{n}$.

Let $W_{l}^{n-1} \subset\left(S^{n-1}\right)^{l}$ be the subspace $\left\{x=\left(x_{1}, \cdots, x_{l}\right) \in\left(S^{n-1}\right)^{l} \mid x_{i}=e\right.$ for some $\left.i\right\}$ and set $\widetilde{Z}_{p, l}^{n}=\left(D^{n}\right)^{p-l} \times W_{l}^{n-1} \subset\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l}$ and $\widetilde{Z_{p, l}^{n}}$ the image of $\widetilde{Z}_{p, l}^{n}$ under the canonical the projection

$$
\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l} \rightarrow X_{p, l}^{n} .
$$

The surjective map $\left(D^{n}\right)^{p-l} \times\left(D^{n-1}\right)^{l} \rightarrow X_{p, l}^{n}, 1 \leq l \leq p$, given by the composite

$$
\left(D^{n}\right)^{p-l} \times\left(D^{n-1}\right)^{i d \times(\widehat{h})^{l}}\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l} \rightarrow X_{p, l}^{n}
$$

sends $\partial\left(\left(D^{n}\right)^{p-l}\right) \times\left(D^{n-1}\right)^{l}$ to $X_{p, l+1}^{n}$ and $\left(D^{n}\right)^{p-l} \times \partial\left(\left(D^{n-1}\right)^{l}\right)$ to $Z_{p, l}^{n}$ and defines a
relative homeomorphism between the pairs $\left.\left(\left(D^{n}\right)^{p-l} \times\left(D^{n-1}\right)^{l}, \partial\left(\left(D^{n}\right)^{p-l}\right) \times\left(D^{n-1}\right)^{l}\right)\right)$ and $\left(X_{p, l}^{n}, X_{p, l+1}^{n} \cup Z_{p, l}^{n}\right)$. Similarly the map $\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l} \rightarrow X_{p, l}^{n}$ is surjective and defines a relative homeomorphism between the pairs $\left(\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l}\right.$, $\left.\partial\left(\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l}\right)\right)$ and $\left(X_{p, l}^{n}, X_{p, l+1}^{n}\right)$. Thus we obtain

Lemma 3.3. Let $1 \leq l \leq p$. Then
(i) $X_{p, L}^{n}$ is homeomorphic to the adjunction space

$$
\left(X_{p, l+1}^{n} \cup Z_{p, l}^{n}\right) \cup\left(D^{n}\right)^{p-l} \times\left(D^{n-1}\right)^{l} ; \text { and }
$$

(ii) $X_{p, l}^{n}$ is also homeomorphic to the adjunction space

$$
X_{p, l+1}^{n} \cup\left(D^{n}\right)^{p-l} \times\left(S^{n-1}\right)^{l} .
$$

(The attaching maps are described above.)
Recall that the join $X * Y$ of X and Y is the subspace $X \times C Y \cup C X \times Y$ of the product $C X \times C Y$. The map of pairs

$$
c:(C(X * Y), X * Y) \rightarrow(C X \times C Y, X * Y)
$$

defined by

$$
\begin{array}{ll}
c[(x,[y, t]), u]=[[x, y],[y, t u]] & \text { for }(x,[y, t]) \in X \times C Y \\
c[([x, t], y), u]=[[x, t u],[y, u]] & \text { for }([x, t], y) \in C X \times Y
\end{array}
$$

is a homeomorphism whose restriction to $(X * Y) \times\{1\}$ is the identity map. As a consequence of Lemma 3.3 we have

Lemma 3.4. Let $1 \leq l \leq p$. Then
(i) $X_{p, l}^{n} /\left(X_{p, l+1}^{n} \cup Z_{p, l}^{n}\right) \cong E\left(S^{n(p-l)-1} * S^{(n-1) l-1}\right) \cong S^{n p-l}$
(ii) $X_{p, l}^{n} / X_{p, l+1}^{n} \sim E\left(S^{n(p-l)-1}\right) \vee E\left(S^{n(p-l)-1} \wedge S^{(n-1) l}\right) \cong S^{n(p-l)} \vee S^{n p-l}$

Proof. (i) is immediate from 3.3(i) and the homeomorphism c. The second homeomorphism of (i) is well known. Similarly (ii) follows from 3.3 (ii) and the following two facts: (1) $(C X \times Y, X \times Y)$ and $(E X \times Y, e \times Y)$ are relatively homeomorphic and (2) $E X \times Y / e \times Y$ and $E X \vee E(X \wedge Y)$ have the same homotopy type.

For $l=p-13.3$ (i) becomes $X_{p, p-1}^{n} \cong\left(X_{p, p}^{n} \cup Z_{p, p-1}^{n}\right) \cup e^{n p-l}$. As $X_{p, p}^{n} \cap Z_{n, p-1}^{n}$ $=Y_{p, 1}^{n-1}$, collapsing $Z_{p, p-1}^{n}$ in $X_{p, p-1}^{n}$ gives a relative homeomorphism $X_{p, p-1}^{n} / Z_{p, p-1}^{n}$ $\cong\left(X_{p, p}^{n} / Y_{p, 1}^{n-1}\right) \cup e^{n p-l}$. But $X_{p, p}^{n}=Y_{p, 0}^{n-1}$ and by Lemma 3.2 $Y_{p, 0}^{n-1} / Y_{p, 1}^{n-1} \cong E X_{p, 1}^{n-1}$, whence we obtain

$$
\begin{equation*}
X_{p, p-1}^{n} \mid Z_{p, p-1}^{n} \cong E X_{p, 1}^{n-1} \cup e^{n p-l} \tag{3.3}
\end{equation*}
$$

From this formula one can deduce the following result.
Proposition 3.5. $X_{p, p-1}^{n} \mid Z_{p, p-1}^{n}$ has the homotopy type of a $C W$ complex of the form $S^{n-1} * K$ for some finite $C W$ complex K. In particular, for $n \geq 2$ $X_{p, p-1}^{n} / Z_{p, p-1}^{n}$ twice desuspends up to homotopy type.

We give only the idea of the proof. First show that $X_{p, 1}^{n-1}$ is homeomorphic to a space of the form $S^{n-2} * K^{\prime}$ (essentially already done in Toda [15]). Then show that the attaching map of (3.3) factors as $f g, g$ a homotopy equivalence and f a map of the form $E\left(i d * f^{\prime}\right): E\left(S^{n-2} * L^{\prime}\right) \rightarrow E\left(S^{n-2} * K^{\prime}\right)$.

Recall that to construct a map g from an adjunction space $X \cup_{f} C A$ extending a given map $\varphi: X \rightarrow Y$ what is needed is a nullhomotopy $N_{t}: \in \sim \varphi f$ of the composite φf.

For then the extension g is defined by $g \mid X=\varphi$ and $g \mid C A=N_{t}$. This idea is already sufficient to construct maps $S P^{2} S^{n} \rightarrow S^{n}$ on the symmetric square of S^{n}, since by Theorem 2.3 of [4] we have $S P^{2} S^{n} \simeq S^{n} \cup_{f} C X$ and so a nullhomotopy $\varepsilon \sim \varphi f$ provides a map g as in (3.4). In particular type $(g)=\operatorname{degree}(\varphi)$ and so any map $\varphi: S^{n} \rightarrow S^{n}$ of degree q such that $\varepsilon \sim \varphi f$ produces a map $g: S P^{2} S^{n} \rightarrow S^{n}$ of type q.

A generalization of this procedure for the construction of maps $S P^{m} S^{n} \rightarrow S^{n}$ on the m-fold symmetric product of S^{n} is given in [17]. Almost without modification this generalization carries over to the case of cyclic products. We summarize the gist of this generalization for cyclic products, omitting the details which the reader can recover from [17]. By restriction the attaching map $h: X_{p, 1}^{n} \rightarrow Y_{p, 1}^{n}$ of (3.2) defines maps $h_{i}: X_{p, p-i}^{n} \rightarrow Y_{p, p-i}^{n}, \widehat{h}_{i}: X_{p, p-i}^{n} \cup Z_{p, p-i-1}^{n} \rightarrow$ $Y_{p, p-t-1}^{n}$ and a commutative diagram of maps.

where the vertical maps are the obvious inclusions. The procedure is now to find a map $\varphi_{1}: Y_{p, p-1}^{n}=S^{n} \rightarrow S^{n}$ of degree q such that φh_{1} is nullhomotopic, for then the geometry of this situation enables one to construct further maps $\varphi_{i}: Y_{p, p-i}^{n} \rightarrow S^{n}$ such that $\varphi_{i} h_{i}$ is nullhomotopic (and also the intermediate composites $\left.\varphi_{i} \hat{h}_{i-1} \sim \varepsilon\right)$ and so arrive at a map $C P^{p} S^{n} \rightarrow S^{n}$ of type q. This geometry is given below in statements (i)' and (ii)', which are analogues of statements (i) and (ii) on page 541 of [17]. Set $C_{i}=X_{p, p-i}^{n}$ and $D_{i}^{n}=X_{p, p-i}^{n} \cup Z_{p, p-i-1}^{n}$. Lemma 3.1 (i) for $l=p-i-1$ gives immediately

$$
\begin{equation*}
C_{i+1} \cong D_{i} \cup\left(D^{n}\right)^{p-l} \times\left(D^{n-1}\right)^{l} \cong D_{i} \cup C\left(S^{n(p-l)-1} * S^{(n-1) l-1}\right) \tag{i}
\end{equation*}
$$

Further $X_{p, p-i}^{n} \cap Z_{p, p-i+1}^{n}=Z_{p, p-i+2}^{n}$ so we need to express $Z_{p, p-i+1}^{n}$ as an adjunction space obtained from $Z_{p, p-i+2}^{n}$. The discussion preceding Lemma 3.3 is relevant here and shows that the obvious map $\left(D^{n}\right)^{i-1} \times\left(S^{n-1}\right)^{p-i} \rightarrow Z_{p, p-i+1}^{n}$ sends $\partial\left(\left(D^{n}\right)^{i-1} \times\left(S^{n-1}\right)^{p-i}\right)=\left(\partial\left(D^{n}\right)^{i-1}\right) \times\left(S^{n-1}\right)^{p-i}$ to $Z_{p, p-i+2}^{n}$ and induces a relative homeomorphism between pairs. Hence

$$
\begin{aligned}
Z_{p, p-i+1}^{n} & \cong Z_{p, p-i+2}^{n} \cup\left(D^{n}\right)^{i-2} \times\left(S^{n-1}\right)^{p-i} \\
& \cong Z_{p, p-i+2}^{n} \cup C\left(S^{n(i-1)-1}\right) \times\left(S^{n-1}\right)^{p-i}
\end{aligned}
$$

It then follows easily that

$$
\begin{equation*}
D_{i} \cong C_{i} \cup C\left(S^{n(i-1)-1}\right) \times\left(S^{n-1}\right)^{p-i} \tag{ii}
\end{equation*}
$$

(i)' and (ii)' provide the geometry needed to generalize the proof of Lemma 3.1 of [17] to the diagram (3.5) for $C P^{p} S^{n}$. Thus we obtain

Lemma 3.6. If $\varphi: S^{n} \rightarrow S^{n}$ is a map of degree q such that $f h_{1}: X_{p, p-1}^{n} \rightarrow S^{n}$ is nullhomotopic, then the above construction provides a map $g: C P^{p} S^{n} \rightarrow S^{n}$ of type q.

4. Lens spaces and suspension-order

Let X be a based $C W$ complex X. The order of the class $\iota_{E X} \in[E X, E X]$ of the identity map of $E X$ is called the suspension-order of X (Toda [14]) or the characteristic of X (Barratt [2]). It is a homotopy type invariant. The sus-pension-order of $E^{-1} X_{2,1}^{2 t+1} \sim E^{2 t} P^{2 t}$, the $(2 t-1)^{s t}$ suspension of real projective $2 t$-space, plays an essential role in the construction of maps $S P^{2} S^{n} \rightarrow S^{n}$ of least positive type $(n=2 t+1)$. Its computation is given in [14]. In [17] a similar computation is made for a related suspension complex for maps $S P^{3} S^{n} \rightarrow S^{n}$. In our case of maps $C P^{p} S^{n} \rightarrow S^{n}$ we require the suspension-order of $E^{2 t-1} L_{0}^{t(p-1)}(p)$, where $L_{0}^{n}(p)$ denotes the $2 n$-skeleton of the lens space $L^{n}(p)=S^{2 n+1} / Z_{p}$.

Recall $L^{n}(p)$ has a cell structure given by $L^{n}(p)=S^{1} \cup e^{2} \cup \cdots \cup e^{2 n+1}$ and integral cohomology

$$
H^{i}\left(L^{n}(p) ; Z\right) \cong \begin{cases}Z_{p} & i=2,4, \cdots, 2 n \\ Z & i=0,2 n+1 \\ 0 & \text { other } i\end{cases}
$$

and so the integral cohomology of $L_{0}^{n}(p)$ is given by

$$
H^{i}\left(L_{0}^{n}(p) ; Z\right) \cong \begin{cases}Z_{p} & i=2,4, \cdots, 2 n \\ Z & i=0 \\ 0 & \text { other } i\end{cases}
$$

Lemma 4.1. For each $l=1,2, \cdots,(p-1) / 2$ the pair of spaces $X_{p, 2 l}^{n}$ and $E^{n} L_{0}^{r}(p), r=(n(p-1) / 2)-l$, have the same homotopy type.

Proof. $E^{n} L_{0}^{r}(p)$ is the $n+2 r$ skeleton of $E^{n} L^{r}(p)$ and by Lemma 3.3 (ii) $X_{p, 2 l}^{n}$ is the $p n-2 l$ skeleton of $X_{p, 1}^{n}$. Thus to prove Lemma 4.1 it suffices to produce a cellular map $f: X_{p, 1}^{n} \rightarrow E^{n} L^{r}(p)$ such that the restriction of f to the $p n-2 l$ skeleton of $X_{p, 1}^{n}$ (as a map into $\left.E^{n} L_{0}^{r}(p)\right)$ is a homotopy equivalence for each $l=1,2, \cdots,(p-1) / 2$. As both $\left(X_{p, 1}^{n}\right)^{(p n-2 l)}=X_{p, 2 l}^{n}$ and $E^{n} L_{0}^{r}(p)$ are simply connected it is enough to require that f induce isomorphisms of all integral cohomology groups in dimensions $\leq p n-2 l$. From [15] or [18] we have that $X_{p, 1}^{n}$ is homeomorphic to a join $S^{n-1} * Y, Y$ a finite $C W$ complex for which there exists a cellular map $f^{\prime}: Y \rightarrow L^{s}(p)$ inducing isomorphisms of all $\bmod p$ cohomology groups. For $\left(X_{p, 1}^{n}\right)^{(p n-2 l)}$ and $L^{s}(p)^{(p n-2 l)}$ reduction from integral to $\bmod p$ cohomology is an isomorphism in all positive even dimensions. This implies that f^{\prime} also induces isomorphisms on integral cohomology groups. The result follows.

To calculate the suspension-order of $E^{2 t-1} L_{0}^{t(p-1)}(p)$ we follow a suggestion of Toda, making use of [9] as follows.

Proposition 4.2. The suspension-order of $L_{0}^{n}(p), n=s(p-1)+r, 0 \leqslant r<$ $p-1$, is p^{s} if $r=0$ and is p^{s+1} if $r>0$.

Proof. Proposition 9.6 of [9] asserts that $E L^{n}(p)$ is $\bmod p$ decomposable into a wedge of $p-1$ spaces. The same proof establishes a like result for $E L_{0}^{n}(p)$. Thus $E L_{0}^{p-1}(p)$ is $\bmod p$ decomposable into a $(p-1)$-fold wedge of Moore spaces $\bigvee_{i=1}^{p-1} M_{p}^{2 i}$. In fact, as reduction $\bmod p$ in the cohomology of $E L_{0}^{p-1}(p)$ is an isomorphism in positive even dimensions, any p-equivalence $E L_{0}^{p-1}(p) \rightarrow \bigvee_{i=1}^{p-1} M_{p}^{2 i}$ is a homotopy equivalence. Theorems 4.4 and 1.2 of [14] imply that the suspension-order of $L_{0}^{n}(p), 1 \leqslant n \leqslant p-1$, is a divisor of p. From Kambe [5] $K \widetilde{U}^{0}\left(L_{0}^{n}(p)\right)$ contains an element of order p, so by Theorem 1.1 of [14] the proposition is true for $s=0,1 \leqslant r<p-1$ and $s=1, r=0$.

Assume it is true for $s=k, 0 \leqslant r<p-1$ and $s=k+1, r=0$. Set $n=(k+1)$. $(p-1)+r$ and $m=k(p-1)+r, 1 \leqslant r \leqslant p-1$. Then the proof of Proposition 9.6 [9] provides a cellular map of pairs $\psi^{k}:\left(L_{0}^{n}(p), L_{0}^{m}(p)\right) \rightarrow\left(L_{0}^{n}(p), L_{0}^{m}(p)\right)$ satisfying condition D_{p} of paragraph 9 [9]. This map induces a map of quotient spaces $L_{0}^{n}(p) / L_{0}^{m}(p) \rightarrow L_{0}^{n}(p) / L_{0}^{m}(p)$ which also satisfies condition D_{p}, and so by Theorem 9.3 [9] $E\left(L_{0}^{n}(p) / L_{0}^{m}(p)\right)$ is p-equivalent (and hence homotopy equivalent) to a ($p-1$)-fold wedge of Moore spaces. Now repeating the argument, i.e. [14] and [5] plus the induction assumption for $E L_{0}^{m}(p)$, we obtain the result that the suspension order of $L_{0}^{n}(p)$ is p^{k+2} if $r>0$, or if $r=p-1$, i.e., $m=(k+2)(p-1)$. This completes the induction.

5. Proof of Theorem 1.1

Let $H_{p}:\left[E^{2} K, S^{2 m_{+1}} ; p\right] \rightarrow\left[E^{2} K, S^{2 p m_{+1}} ; p\right]$ be the $\bmod p$ Hopf invariant, where K is a finite $C W$ complex and $\left[E^{2} K, L ; p\right]$ denotes the p-primary component of the group of homotopy classes of maps $E^{2} K \rightarrow L$. For $f_{q}: S^{k} \rightarrow S^{k}$ a map of degree q there is a homorphism $\psi_{q}:\left[E K, S^{k}\right] \rightarrow\left[E K, S^{k}\right]$ defined by $\psi_{q}[g]=\left[f_{q} \circ g\right]$. In [17] the following generalizations of results in paragraph 4 of [4] were obtained:

Lemma 5.1. Suppose $H^{i}\left(E^{2} K ; Z\right)=0$ for all $i>p n-(p-1), n=2 t+1$ and $q H^{p n-(p-1)}\left(E^{2} K ; Z\right)=0$ for some integer q. Then Ker H_{p} contains the subgroups $q\left[E^{2} K, S^{2 t+1} ; p\right]$ and $\psi_{q}\left[E^{2} K, S^{2 t+1} ; p\right]$.

Lemma 5.2. Let $r=k q^{2}$ and assume $\left[E K, S^{2 p t-1} ; p\right]=0$ in addition to the hypotheses of 5.1. The ψ_{r} acts on $\left[E^{2} K, S^{2 t+1} ; p\right]$ as multiplication by r.

The proof of 1.1 is given in two steps.
Step 1: $r=1 . \quad S^{1}$ is an abelian topological group whose group multiplication $S^{1} \times \cdots \times S^{1} \rightarrow S^{1}$ defines a map $C P^{p} S^{1} \rightarrow S^{1}$ of type 1. For $n=3 X_{p, p-1}^{3}$ and $E^{3} L_{0}^{p-1}(p)$ have the same homotopy type and $E^{3} L_{0}^{p-1}(p)$ has the homotopy type of the wedge $X=\stackrel{p}{i=2} M_{p}^{2_{i}}$. Thus the attaching map $X_{p, p-1}^{3} \rightarrow S^{3}$ can be viewed, up to homotopy, as a map $X \rightarrow S^{3}$. To apply the construction of paragraph 3 we need only show that the composite $f_{p} \circ \varphi: X \rightarrow S^{3}\left(\operatorname{deg}\left(f_{p}\right)=p\right)$ is nullhomotopic. However, this is clearly the case for $f_{p} \circ \rho$ restricted to each $M_{p}^{2 i}$ if $i<p$. For $i=p$ the effect of ψ_{p} on $\left[S^{2 p}, S^{3} ; p\right] \cong Z_{p}$ is multiplication by p (see (13.13) of [13]) and so $f_{p} \circ \rho \mid M_{p}^{2 p}$ is also nullhomotopic. This implies the existence of a map $C P^{p} S^{3} \rightarrow S^{3}$ of type p.

If $n=2 t+1 \geq 5$, then $t \geq 2$ and so we may apply 5.2. Since $\operatorname{dim} X_{p, p-1}^{2 t+1}=$ $p(2 t+1)-(p-1)$, then for all $i>p(2 t+1)-(p-1) H^{i}\left(X_{p, p-1}^{n} ; Z\right)=0$. Also $p H^{j}\left(X_{p, p-1}^{n} ; Z\right)=p \cdot Z_{p}=0$ for $j=p(2 t+1)-(p-1)$. Finally $H^{2 p t}\left(E^{-1} X_{p, p-1}^{2 t+1} ; Z_{2}\right)$ $=0$ and $H^{2 p t-1}\left(E^{-1} X_{p, p-1}^{2 t+1} ; Z\right)=0$ so by the Steenrod Classification Theorem
$[4$, p. 460$]$ we have that $\left[E^{-1} X_{p, p-1}^{2 t+1}, S^{2 p t-1} ; p\right]=0$. So by $5.2 \psi_{t}[\varphi]=p^{t}[\varphi]$ which is zero in $\left[X_{p, p-1}^{2 t+1}, S^{2 t+1} ; p\right.$]- as p^{t} is also the suspension-order of $E^{-1} X_{p, p-1}^{2 t+1}$. So by paragraph 3 we obtain a map $C P^{p} S^{n} \rightarrow S^{n}(n=2 t+1)$ of type p^{t}.

Step 2: Let $f: C P^{p} S^{n} \rightarrow S^{n}$ be a map of type p^{t} where $n=2 t+1$. We claim that the composite $C P_{r-1}^{n} f \circ \cdots \circ C P^{p} f \circ f: C P_{r}^{n} S^{n} \rightarrow S^{n}$ has type $\left(p^{t}\right)^{r}=p^{r^{t}}$. Here $C P^{p} g$ is the map $C P^{p} X \rightarrow C P^{p} Y$ induced from $g: X \rightarrow Y$ via the covariant functor $C P^{p}$. The proof of this claim requires a closer look at a generator of $H^{n}\left(C P_{i}^{n} S^{n} ; Z\right)$ and its relation to $H^{n}\left(\left(C P_{i-1}^{p} S^{n}\right)^{p} ; Z\right)$.

Let $u \in H^{n}(K ; Z)$ be a generator of infinite order. If $u_{i}=\pi_{i}^{*} u$ where $\pi_{i}: K^{p} \rightarrow K$ is the $i^{t h}$ projection, then $\Sigma u_{i}=u_{1}+\cdots+u_{p} \in H^{n}\left(K^{p} ; Z\right)$ is $p^{*}[u]$ where $p: K^{p} \rightarrow C P^{p} K$ is the usual quotient map and $[u]$ is the class defined by Σu_{i}. For $K=S^{n}$ we take $u \in H^{n}\left(S^{n} ; Z\right)$ to be a generator and $[u]$ is then a generator of infinite order of $H^{n}\left(C P^{p} S^{n} ; Z\right)$. By induction the class $[u]_{s}=$ $[[\cdots[u] \cdots]]$ (s brackets) is a generator of infinite order of $H^{n}\left(C P_{s}^{p} S^{n} ; Z\right)$ satisfying $p_{s}^{*}[u]_{s}=\sum_{i=1}^{p}\left[u_{s-1}\right]_{i}$, where $p_{s}:\left(C P_{s-1}^{p} S^{n}\right)^{p} \rightarrow C P_{s}^{p} S^{n}$. For any map $g: C P^{p} S^{n} \rightarrow$ S^{n} the induced maps $C P_{i}^{n} g: C P_{i+1}^{n} S^{n} \rightarrow C P_{i}^{n} S^{n}$ satisfy the commutative diagram

Commutativity of this diagram and induction on s gives $\left(C P_{s}^{n} g\right)^{*}[u]_{s-1}=q[u]_{s}$ where $q=$ type of g. Thus the type of the composite $C P_{r-1}^{n} f \circ \cdots \circ C P^{p} f \circ f$ is $\left(p^{t}\right)^{r}=p^{r t}$ and the proof of Theorem 1.1 is complete.

Syracuse University

References

[1] M.F. Atiyah: Power operations in K-theory, Quart. J. Math. 17 (1966), 165-193.
[2] M.G. Barratt: Spaces of finite characteristic, Quart. J. Math. 11 (1960), 124-136.
[3] A.L. Blakers and W.S. Massey: The homotopy groups of a triad II, Ann. of Math. 55 (1952), 192-201.
[4] I.M. James, E. Thomas, H. Toda and G.W. Whitehead: On the symmetric square of a sphere, J. Math. Mech. 12 (1963), 771-776.
[5] T. Kambe: The structure of K_{Λ}-rings of the lens spaces and their applications, J. Math. Soc. Japan 18 (1966), 135-146.
[6] P.S. Landweber: On equivariant maps between spheres with involutions, Ann. of Math. 89 (1969), 125-137.
[7] P.S. Landweber: On symmetric maps between spheres and equivariant K-theory, Topology 9 (1970), 55-61.
[8] S.D. Liao: On the topology of cyclic products of spheres, Trans. Amer. Math. Soc. 77 (1954), 520-551.
[9] M. Mimura, G. Nishida and H. Toda: Localization of CW-complexes and its applications (to appear).
[10] D. Passman: Permutation Groups, Benjamin, 1968.
[11] E.H. Spanier: Algebraic Topology, McGraw-Hill, 1966.
[12] N.E. Steenrod and D.B.A. Epstein: Cohomology Operations, Ann. of Math. Studies, No. 50, Princeton, 1962.
[13] H. Toda: Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, No. 49, Princeton, 1962.
[14] H. Toda: Order of the identity class of a suspension space, Ann. of Math. 78 (1963), 300-325.
[15] H. Toda: On iterated suspensions II, J. Math. Kyoto Univ. 5 (1966), 209-250.
[16] J.J. Ucci: On symmetric maps of spheres, Invent. Math. 5 (1968), 8-18.
[17] J.J. Ucci: On the symmetric cube of a sphere, Trans. Amer. Math. Soc. 151 (1970), 527-549.
[18] V.P. Snaith and J.J. Ucci: (in preparation).

