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Introduction

Let X be a normal projective variety and let X be an ample and spanned
line bundle on X, i.e. assume that there is a finite to one holomorphic map ψ:
X->PC with X=ψ*OPo (1).

The study of KX®X* has been a powerful technique ([Sol], [VdV], [So2],
[S-VdV]) in understanding the original pair (Xy X) or equivalently {X, -ψ»), when
X is smooth and X is very ample (i.e. ψ is an embedding).

In the article [A-S] a detailed study was made of the spannedness proper-
ties of Kx®Xn~ι where w=dinLX" and Kx denotes the dualizing sheaf. This
article, building on these results, works out the very ampleness properties of
KX®X*, t^n=dimX on reg(X), the smooth points of X.

For simplicity of description we assume in the introduction codxSing(X)^3,
Sing(X) being the set of singular points.

Theorem. Ift^n+l, then KX®X* is very ample on reg(X) unless t=n+ί
X { n O { \ ) )

This result partially relies on the following

Theorem. Ifΐ>n, then T{KX®X<) spans KX®X< on reg(X) unless t=n
and{X>X)={P\0Pn{\)).

The above results are actually shown to be true in the stronger form with
JζXf the Grauert-Riemenschneider canonical sheaf, replacing Kx, the dualizing
sheaf. In [So4], [£>o3], the spannedness of KX®X* for t^n was shown on all
of X when X is Gorenstein with a finite set of non-rational singulartities. The
techniques used there and developed further in [A-S] are used to prove the
above results. These techniques plus Reider's theorem on KX®X ([Re], see
(0.6.2)) and the methods of [So5] lead to the next result. To state it, we need
to recall that in [So5] 3£2, a very special class of well understood varieties des-
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cribed in (0.3), is characterized by the condition h°(Kx®Xn~l)=z0.

Theorem. Let X be a Cofien-Macaulay normal protective variety of dimen-
sion n > 2 with coάx Sing(X)^ 3 and only a finite set of non-rational singularities.
Let X be an ample and spanned line bundle and assume that (X, X)$.3£2- If either
c1(X)n^5 or c1(X)n'^3 and T(X) gives a generically one ot to one map, then
Kx®Xn is very ample on reg(X).

The assertion is no longer true without the finiteness assumption. A
counterexample can be found in [So5], (0.2.4). We have to recall that in the
smooth case some aspects of our results can be deduced by Mori's theory [M].

The above results have various corollaries. Some of them are concerned
with the ramification divisor of branched covers of Pn and hyperquadrics by
a normal projective variety X with codx

Theorem. Letψ: X->Pn be a branched cover of Pn. If degψ>2, then
the ramification divisor ofψ is very ample on reg(X).

Theorem. Let ψ: X-*Qn be a branched cover of a hyper quadric. Assume
that X is Cohen-Macaulay with only a finite set of non-rational singularities. If
degψ>3, then the ramification divisor ofψ is very ample on reg{X).

To finish with, in the following applications X is an ample and spanned
line bundle on a smooth projective w-fold X.

Theorem. Assume that K^=OX for some N>\. If cι{X)n>S} then Xn

is very ample.

Theorem. //Kx®Xn~ ι is numrically effective and c^Xf^S, then {X, X)
admits a reduction (X', X') such that {Kx>®X'n~1)2 is very ample.

The three authors would like to thank the M.P.I, of the Italian Govern-
ment for making this collaboration possible, The third author would also like
to thank the National Science Foundation (DMS 8420315) and the Max Plank
Institut fϋr Mathematik in Bonn for their support.

0. Notation and background

(0.0) We work over the complex numbers. All spaces are complex analytic
and all maps are holomorphic. By variety we mean an irreducible and redu-
ced complex analytic space. If X is a complex analytic space, Ox stands for
its holomorphic structure sheaf. We denote by reg{X)y Sing(X), Irr(X) re-
spectively the set of smooth points, of singular points, of non-rational singulari-
ties. In other words, the irrational locus Irr(X) of X is the union of the
supports of the sheaves π^) (Ox) for z">0, where π: X->X is a desingularization
o f X
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(0.1) Let X be a normal variety. If 3) is a Cartier divisor, [3)] denotes the
associated invertible sheaf. Let now 3) be a Weil divisor on X. By [3f\ we
mean the reflexive divisorial sheaf associated to j2), i.e. [Φ]—i*[tD]reg(xh where
i: reg(X)-*X is the obvious inclusion. Note that [3)] is a reflexive rank-1 sheaf.

Given any reflexive rank-1 sheaf S on X and an integer t>0> S* will stand
for

(
t-times

and S'* for £*', where <S* is the dual of S. If <S* is invertible for some ί>0,
then cx{S)&IP(X, Q) is well defined as ^ (£')/*• Such an S is said to be big
if c1(S)dimX>0 and is said to be numerically effective (nef for short) if
ίί(*S)[C]X) for all effective curves C on X

Let S be a reflexive rank-1 sheaf on X. Let f / G Z b e a Zariski open set
on which S is invertible. By saying that S is spanned on U we mean that T(S)
spans <5 at every point # e C7; by saying that <S is very ample on U we mean
that <S is spanned on U and that the map associated to T(S) gives an embedding
on U. In particular, if 3) is a Weil divisor, since it is a Cartier divisor on reg(X),
we say that 5) or [3)] is very ample on a Zariski open set ! 7 c Z if Γ([iZ)]) spans
[5)] at every point x^U and the associated map is an embedding on f/.

The dualizing sheaf of the normal variety X is, by definition, Kx~i^Kreg^x)

where i: reg(X)-^X is the obvious inclusion and Kreg(x) is the canonical sheaf
of reg{X). Kx is a reflexive rank-1 sheaf on X. If X is a normal Cohen-
Macaulay variety of dimension n > 2 and 4̂ is an effective normal Cartier di-
visor on X, we have by [A-K], p. 7,

(0.1.1) (KX®[A])A = ^ .

(0.2) Let I b e a normal variety. Let π: X-+X be a desingularization. The
Grauert-Riemenschneider sheaf, which we denote by J(x, is defined as
π*KXf [G-R]. As is known, the sheaf JCX is independent of the desingulariza-
tion chosen. One of the fundamental facts is the Grauert-Riemenschneider
vanishing theorem, which says that 7r ( ί )(i^i)=0, i>0. In particular, given an
ideal sheaf gFy where F^reg(X), and any line bundle X, from the Leray spec-
tral sequence for π, we get

(0.2.1) H\Kx®

Note also that there is a canonical sequence

where S is supported on Irr(X). As a consequence, for any line bundle X and
any integer ty
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(0.2.2) if Γ(c#jr<g>-£0 spans JCX®X< at x(Ξreg(X)y then Γ(KX®X*) spans

(0.2.3) if JCX®X* is very ample on reg(X), then KX®X* is very ample on
reg{X).

Another useful consequence is the following corollary of the Grauert-
Riemenschneider [G-R] vanishing theorem and of the Kawamata [Ka] and
Viehweg [Vi] vanishing theorem (for a proof see [So5], Theorem (0.2.1))

Theorem. (0.2.4) Let X be a nef and big line bundle on a normal protective
variety X. Then

Hi(X,X~1) = 0 for i<min(dimX,2)

Hi(X,Kx®X) = 0 for i>max(0,dimIrr{X)).

(0.3) An important role will be played in the sequel by a special class 3£2 °f
pairs (X, X), where X is a normal Cohen-Macaulay projective variety of di-
mension w>2 and X is an ample and spanned line bundle on X. Class 3C2

consists of the following pairs:
a) (P\0pn(ί));
b) (Qn, <9Q.(1)), where QndPn+1 is a quadric hypersurface
c) scrolls over a smooth curve C, i.e. pairs (X, X) where X is a holomorphic
PΛ~1-bundle over C and the restriction Xf of X to a fibre/ is OP»-i(l);
d) possibly degenerated generalized cones on one of the following pairs:
a scroll over P\ (P 2, £V(2)), (P 1, £V(*))> e>3\ for the definition of generalized
cone see [So5], (3.4).
This class was characterized by the third author as follows.

Theorem. (0.3.1) Let X be an ample and spanned line bundle on a normal Cohen-
Macaulay projective variety X of dimension w>2. Assume that Irr{X) is finite.
Then {X} X)<=3C2 if and only if h\Kx®Xn~ι)=Q.

(0.4) Let X be a normal variety and X an ample and spanned line bundle on
X. By line we mean a curve / c X isomorphic to a smooth P 1 such that cx(X) \f\
= 1. The vertex set °{/(X) is defined as the set of those x^X such that
there is a non-empty variety Z^Sing(X) with c o d x Z = 2 and for each point
f G Z a line / containing x and f, ie. x is the vertex of a cone on Z. Note that if
codxSing(X)>3, then q^(JΓ)=0.

The main technical tool we need in section 2 is the following result

Theorem. (0.4.1) ([A-S], Theorem (2.1)). Let X be an ample and spanned
line bundle on a normal Cohen-Macaulay projective variety X of dimension ri^2
with Irr (X) finite. Assume that c^X)" > 5 or that X gives a generically one to
one map. Then the following facts are equivalent
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a) (X,X)$X2;
β) T^x^X"'1) spans Kx®Xn~ι at all Gorenstein points and at every point
xtΞreg{X)\cV(X).

(0.5) Let X be a normal projective variety. If X is a line bundle on X> \X\
will denote the corresponding complete linear system. We will often denote by
L a divisor associated to X. If xl9 -",xr are some smooth points on X and
ku •••, kr are positive integers, we will denote by

\X-k1x1 krxr\

the linear subsystem of \X\ consisting of the effective divisors vanishing of
order >£ t at Λ?, . Note that if X is ample and spanned, \X—x\ has a finite
base locus. This follows because the map associated to T(X) is finite to one.

Let π: X->X be a morphism between two normal projective varieties. We

will frequently use the following notation. If X is any line bundle on X, X

will stand for π*X and L will be any divisor associated to X.

(0.5.0) If π is a desingularization of X, note that X is nef if X is nef.
We will also need the following technical fact.

Lemma. (0.5.1) Let X be a nef line bundle on a normal projective variety X
of dimension w>2 and let dbe a linear system contained in \X\. If the base locus
of d is a finite set F, then

is nefy where π: X->X is the blow-up of X at F'= {xl9 •••, xr} c f with Frdreg(X)

and S'i—π^Xi). If furthermore each element of d is singular at x{ to the trth

order at least, i=l, m

 }r, then

is nef.

Proof. Let C c l be an irreducible reduced curve. If CczQi for an index

/, then a>,. C<0 and so (Z— Σ &>) C>0. Now assume that Cφπ~\F f). In

this case there exists a reduced D^d such that π(C)(tSupp(D) as d has a finite
base locus. Then

where D=π~1(reg(D)) and A, > 0 is the multiplicity of D at x{. We thus have
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The second part follows in the same way, when we consider that At->f, .

(0.6) In section 2 we shall study the behaviour of the map associated to
Kx®Xn. When c1(-Γ)n<2 the situation is very easy as the following lemma
shows

Lemma. (0.6.1) Let X be an ample and spanned line bundle on a normal
projective variety X of dimension n and let Φ be the map associated to Kx®Xn.
a) If c1(X)n= 1, then {X, X)=(P\ Op*(I)) and Φ is not defined.
b) Ifcx{X)n=2, then either (X, X)=(Q\ OQ»(1)) and Φ is trivial or p: X->Pn

is a double cover, X=p*Op»(l) and Φ factors through p. In particular X is
Gorenstein.

Proof. The assertion about the structure of (X, X) is obvious. In fact, if
φ\ X->PC is the morphism associated to \X\, then

It only remains to prove the assertion about Φ in the last case. If n= 1 this is
a standard fact about hyperelliptic curves. Therefore, without loss of generality,
we can assume that n>2. Let B&\Op»(2k)\ be the branch locus of p and
note that every irreducible component of B is reduced, X being normal. Since
Kx®X*=p*0p*{k—l)9 it is enough to show that

h%p*OP»(k-l)) = h°(OP»(k-l)).

Let B denote the ramification divisor of p. Since B^\p*OP«(k)\, we have
the following commutative diagram

0 ~* P*Op»{-\) -* P*OPn(k-\) '-I {P*Opn{k-\))-B -* 0

0 -> Op-(-k-l) - <V(Λ-1) 3. (Op»(k-l))B - 0.

Since p \ B is an isomorphism, β induces an isomorphism at the i/°-cohomology
level. The same fact happens for rx and r2 in view of the vanishing theorem
(0.2.4). Hence, this is true for a too and the assertion is proved.

A key role in the study of the map associated to Kx®Xn will be played in
section 2 by Reider's theorem, which we recall in the following form.

Theorem (0.6.2) [Re], see also [Be]). Let X be a smooth projective surface and
let X=OX(L) be a nef line bundle on X. If cι(X)2>9 and KX®X is not very
ample, then there exists an effective divisor D satisfying one of the following con-
ditions
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L D = O, D2= - 1 or - 2 ;

L-D=l, D2 = 0 or - 1 ;

Z) 2= 1 <zwd L is numerically equivalent to 3D.

1. Some general results on Jζx®Xt

Throughout this section X will be an ample and spanned line bundle on

a normal projective variety X of dimension n. Recall that the very ampleness

or the spannedness of Jζx®X* on reg{X) is stronger than the analogous state-

ment for Kx®X* (see (0.2.2), (0.2.3)).

Theorem. (1.1) // t>n3 T(<Kx®Xl) spans <Kx®Xt on reg(X) with the ex-

ception (X, X)=(Pn, Opn{\)) and t=n.

Proof. Clearly, by (0.6.1) we have (X, X) = (Pn, OP»(1)) if and only if

c1(X)"=l. We can thus assume that c^X)*^!. We can also assume t=n.

We shall show that <Kx®Xn is spanned at x€Ξreg(X) by proving that

(1.1.1) H\Jίx®Xn®3x)^Q,

Sx being the ideal sheaf of x. Let X be a desingularization of X and σ: X-^-X

the corresponding morphism. Let b: X*->X be the blowing-up of X at x.

If X stands for the fibre product of σ and b, we get the following commutative

diagram

X ί X

x> i x.
Note that X is a desingularization of X since JcGr^(X). Let 5>=7r~1(i"1(Λ:)),

X=π*(b*X) and X=σ*X. Since ^ = 5 * ^ * ® [5>]*-\ (0.2.1) yields

H\<Kx®Xn®#x) = H\Kx®Xn®3σ-Hx)) = H\K-x®Xn®[&]-»).

Therefore, in view of (0.2.4), (1.1.1) will be proved once we have shown that

TJS is nef and big. Since \X—x\ has a finite base locus, i*-/?®^" 1^)]" 1 is

nef in view of (0.5.1). On the other hand, π: X->X* is a desingularization

and so (0.5.0) says that X®^]'1 is nef too. The bigness follows from the

inequality

(L-&)Λ = cx(£γ-\ = Cι{X)n-\>\ .

The spannedness of Kx®Xn at every point of X (with the obvious ex-

ception of (PΛ, OPn(ί))) has already been proved by the third author under
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the additional assumption that X is Gorenstein and Irr(X) is finite ([So4],
Theorem (0.4)).

Theorem. (1.2) If t>n+l, then Jζx®X* is very ample on reg(X) with the
exception (X, X)=(Pn, OP»(1)) and t=n+l.

Proof. As before we can assume that c^JCf^l by (0.6.2). We can also
assume t=n-\-l.

First we prove that Γ(JCx®Xn+1) gives an immersion on reg(X). To see
this let x^reg(X). We shall show that

H\JCx®X»+1®g2

x) = 0,

£x being the ideal sheaf of x. To do this consider the same diagram (1.1.2)
as in the proof of (1.1). With the same notation as before, we have

Therefore, in view of (0.2.4) it is enough to show that Z—ίP is nef and big.
Both facts have already been proved in the proof of (1.1).

To see that Γ(JCx®Xn+1) separates x,y^reg(X), xΦy, note that if \X— x\
Φ \X—y\, then (JCx®Xn)®X separates x and y by (1.1). So we can assume
that IX— x I = I X—y \. We shall show that

Hχjcx®x»+ι®gx®sy) = o,

3x> 3y being the ideal sheaves of x, y. To this end, blow-up X at x and y
and get a diagram similar to (1.1.2)

IX

X*

->

J,
0

X

X

Let &=π-χb-\x)) and Q=π-\b-\y)). As before we have

Once again, it is enough to show that («+l) L—nS—nQ is nef and big. Since
I X—x—y I = IX— x I = I X—y \ has a finite base locus, the same argument using
(0.5.1) as in the proof of (1.1) shows that L-Q-Q is nef and so («+l) L—nS
—nQ=L-\-n(L—£E'—Q) is nef too. As to the bigness, we have

= c1(X)"+n"(c1(Xy-2)>0.
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REMARK (1.3). The above proofs can be modified so as to get a more general
statement.

Let Xv •••, Xt be ample and spanned line bundles on X and let X be a nef
line bundle on X.

(1.3.1) // t>ny then T(JCX® tl Xi®X) spans JCX® Π X>®X on reg(X)
ί = l i = l

with the exception t=n, X=Pn, Xi=0Pn(l)y i=ly • -, n and X=OX.

(1.3.2) // t>n+l, then <KX® Π Xi®Xis very ample on reg(X) with the except

tiont=n+l,X=P*9j;i=Op»(l),i=l, — , » + l andX=Ox.
The proof goes along the same lines as in (1.1) and (1.2). As to (1.3.1) we need
to show the vanishing of H\JCX® Π Xi®X®[&]~n). The nefness of Σ Zf +
L—n5? is obvious. Moreover,

( ±Li+L-tιS)u> £Lϊ+L"-nn>nH+Ln-n">0.
ί = l ί = l

If the last inequality is an equality, then c1(X)*=0. If, in addition, the last but
one inequality is an equality, then we also have cι(Xi)

n=l for any i=\y •••, ny

which proves (1.3.1). As to (1.3.2) the immersion part of the proof goes as usual
H + l

and the exception comes out when Σ £ , + £ — ( ^ + 1 ) 3* is not big. As for the
«+i i = ι

second part, JCX® Π -d®X=(JCx®X1® — ®XJ®—Xn+1®X)®XJ (where
» = 1

^ stands for suppression) separates x, y if \Xj—x\ Φ \Xj—y\ for one j at least
in view of (1.3.1) unless X=Pn

y X~0Pn(l)y iΦj, X=OX; but this yields
χ.=0Pn{\) too. Now assume that \X{—x\ = \X{—y\ for all i. We have to

prove the vanishing of H\JCX® U Xi®X®[3>]-n®\Q]-*). This happens
» + i < = 1

when Σ ί +ί—nSϊ—nQ is nef and big. Nefness is proved as usual. As to

the bigness,
n + 1 r n n + 1

1 = 1 1 = 1

2. The very ampleness of Kx®Xn

(2.0) In this section X is an ample and spanned line bundle on a Cohen-
Macaulay normal projective variety X of dimension n > 2 with Irr(X) finite.
We also assume that (X, X)Φ(P\ OP»(l)).

Let Φ: X->PC be the map associated to T(Kx®Xn). Then Φ is well
defined on reg{X) in view of (1.1).
(2.1) Notice that dimΦ(Z)<dimX implies T{Kx®Xn'ι)=0, and by (0.3.1)
this happens only if (X, X) is in the class 3£2 described in (0.3).
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REMARK (2.1.1). If (X, X)^3C2) then dimΦ(X)< 1. More precisely,

dimΦ(X) = 0 if and only if (X, X) = (Q\ OQ»(1)),

dimΦ(X) = 1 if and only if (X, X) is a scroll or a generalized cone.

REMARK (2.1.2). Let άmιΦ{X)=n. Then cλ(X)n^2, by (0.6.1), equality
holding if and only if p: X-+Pn is a double cover and X=p*Op»(\). In this
case Φ factors through p.

In view of the above results we shall assume that
(2.2) (X, X) is a pair as in (2.0), not in the class 3C2 and with c1(X)n>3.

Main Theorem. (2.3) Let (X} X) be as in (2.2). Assume that either c^
or T{X) gives a genericallv one to one map. Then Φ is an embedding on
reg(X)\<V(X).

Since C(7(X)=0 by definition if cod^ Sing (-SΓ)> 3, we get the following

Corollary. (2.3.1) Assume that (X,X) is as in (2.2) and that either c^
or T(X) gives a generically one to one map. If codx Sing (X)> 3, then Φ: reg{X)
->PC is an embedding.

We shall need the following

Lemma. (2.4) Let (X,X) be as in (2.0). Let x,y^reg(X), x+y and assume
that cx{X)*>Z.
(2.4.1) // I X-x I = I X—y I, then Γ(Kx®Xn) separates x and y.
(2.4.2) // IX— x I = I X—lx I, then T(Kx®Xn) gives an immersion at x.

Proof. We prove that T(Kx(g)Xn) separates x and y by showing that

H\Kx®Xn®3x®Sy) = 0,

Sx, Sy being the ideal sheaves of x and y. Let b: X-+X be the blowing-up of
X at x and y and put 2>=b~1(x), Q=b~1(y). We have

Therefore, in view of (0.2.4) it is enough to show that LS—Q is nef and big.
Since \X— x— y \ = \X—x\ = \X—y\ has a finite base locus, the nefness fol-
lows from (0.5.1). The bigness is immediate, as

(L-3>-Q)H = cι(X)n-2>0 .

Similarly, in order to show that T(Kx®Xn) gives an immersion at x we prove
that

= 0 .
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Let b: X-+X be the blowing-up of X at x. As

H\Kx®Xn®3l) = H\K

in view of (0.2.4) it is enough to show that nL—(ft+1) 3> is nef and big. Due
to the assumption and by (0.5.1), L—3> and L—23 are nef and then nL—(n+1)3
=(n—l) (L—3>)+L—23 is nef too. Moreover an easy check shows that

(nL-(n+l)3>)n = ff

since £!(-£)*> 3.

Proof of (2.3). Let xiy^reg(X)YV(X)y x+y. If T(X) separates x and
y, then, since Kx®Xn~ι is spanned on reg{X)\cV{X) by (0.4.1), we see that
Φ(Λ?)ΦΦ(J>). If T(X) does not separate x and j>, then \X—x\ — \X~y\ and
(2.4.1) implies Φ(#)ΦΦ(3>) again.

We now proceed by induction to prove that Φ is an immersion at Λ G
reg(X)\c[P{X). First assume that X has dimension 2 and let π: X->Xbe a des-
ingularization. Assume, by contradiction, that Φ is not an immersion at x.
Then KX®X2 does not give an immersion at π^1(x). Since ./Γis nef and c^X2)2

=4cι(X)2>9, this implies, by (0.6.2), that X contains an effective divisor D with
π~\x)^D satisfying either

2L D = 0, D-D= - 2 , - 1 ,

2L-D=l, D D = -l, 0, or

2L D = 2, D D = 0.

As 2 ί D is even, it can only happen that L D—0 or Z D = 1 . In the former
case π(D) is a finite set contained in Stng(X), but this gives a contradiction as
^ " ^ J E f l . Let L D=1. Then, iZ), the divisor part of π(D), is a line by the
projection formula and j3)(Zreg(X), otherwise x would be in ^V{X). We have
D—f)-\-J, where ί>=π"\3))=the proper transform of 3) and / is an effective
(possibly trivial) divisor contracted by π to a finite set in Sing(X). ΎhenJ D=
0,/ / < 0 and the equality D-D=0 shows that t=3)-3)=f)-0>0. If ί = 0 ,
then {X, X) is a scroll, but this contradicts the assumption (X, X)$3C2 Let
ί>0. Then (3)—tL)-3)=0 and the Hodge index theorem implies that (W—tL)2

=f (fL L—1)<0. Hence *=1 and L L = 1 . Thus (0.6.1) shows that (X, X)=
(P 2, (?p2(l)), which is again a contradiction.

Now assume that dimX>3. Since tferςg^Y), the general element of
\X—x\ is normal ([So5], (0.4.1) a)). If all the elements of \X—x\ were sin-
gular at x, then \X— x\ = \X— 2x\ and by (2.4.2) Φ would give an immersion
at x. So we can assume that there is a normal element A& \X—x\ smooth at
x. By (0.1.1) and (0.2.4) the cohomology sequence of

o -* κx®x»-1 -> κx®xn — κA®xτι -* o
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shows hat the restricted map Φ L is nothing else than the map defined by
T{KA®XA~

ι), which, by induction, is an immersion at x along A. We can
thus choose some sections sOf •• , V i G Γ ( ^ ® - f ) with λo(#)Φθ, s f(#)=0 for
*=t=0 and such that SJSQ, •••, sn_JsQ give local coordinates on A at x. Now since
x(=reg(X)YV(X), (0.4.1) says that there exists a section ί e Γ ^ ® - ^ " 1 )
with £(#)4=0. Let ^ G Γ ( i ' ) be the tautological section defining A. Then
sA®t^T(Kx®Xn) and

give local coordinates on X at x> as can immediately be seen. This proves
that Φ is an immersion at x.

REMARK (2.5). The above proof can be slightly modified in order to get the
following more general statement.

Let Xly •••>-£» be ample and spanned line bundles on X and assume that each
pair (X,Xi) is as in (2.2) and codx Sing(X)^3. Furthermore assume that
cx{Xi)n > 5 for some i. Then

κx®xλ®-®xn®x

is very ample on reg(X)for every nef line bundle X.

In view of (1.3.1) and [A-S], Theorem (2.5), the proof can run along the
same lines as the above one provided that Lemma (2.4) is replaced by the fol-
lowing assertions
(2.5.1) If \Xi—x\ = \Xi—y\ for all i, then Γ(Kx®Xι® — ®XΛ®X) separates

x and y.
(2.5.2) If |_£.-tf| = |-C—2*| for all i, then Γ(Kx®X1® — ®Xn®X) gives an

immersion at x.
Then, looking over the proof of (2.3) one realizes that the only possible troubles
are:
a) the two-dimensional step to prove that T(KX®X1®X2®X) gives an im-
mersion at x;

b) the bigness assertion for Σ Li—ng—nQ+L and Σ Z t—(n+ί)3?+L.
ί = l ί = l

As to a), with the same notation as before, we have

in view of the Hodge index theorem. Then, by Reider's theorem (0.6.2), there
is no additional case to consider and the proof runs exactly as before. As to
b) we recall the following fact
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Indeed

* =i ι/ι=»

where j—(jι, ••,/«) is a multiindex, \j\ its length and q(X*) ;': = Π cx{JC^κ AS

by the generalized Hodge inequality [B-B-S], Theorem (1.4), we have the
desired inequality. We thus get

( Σ Li-n&-nQ+L)">( Σ Z, )"-2n"+Z>Σ

Similarly

Σ £,-(»+1) 5>+ir>( Σ !,)"-(
ι = l » = 1

and then the bigness follows from an easy computation.

We conclude this section with a conjecture.

CONJECTURE (2.6). Let E be an ample and spanned rarik-n holomorphic vector
bundle on a smooth protective n-fold X. If c1(E)n>(n+l)n+l, then Kx®detE
is very ample apart from pairs (X, E) where (X, det E) is a conic bundle.

3. Applications

For simplicity we assume cod* Sing (X)^ 3 in this section.

Theorem. (3.1) Let ψ: X-*Pn be a finite to one cover of Pn by a normal
protective variety X. Assume that degi|r>2 and that codx Sing(X)^3. Then
the ramification divisor R of ψ is very ample on reg(X).

Proof. This is an easy consequence of (1.2) as i ? e \Kx®ty*Opn{nJ

r\)\.

Theorem (3.2) Let ψ: X-+Qn be a branched cover of a quadrίc by a normal
protective variety X and let R be the ramification divisor. Then Γ([R]) spans
[R] at every point xEΞreg(X). Furthermore, if τz>3, X is Cohen-Macaulay,
cod* Sing (X)^3, Irr(X) is finite and degψ>3, then [R] is very ample on reg(X).

Proof. As R^\Kx®ΛJr*ΘQ»(n)\y the former assertion follows from (1.1),
whereas the latter one is a consequence of (2.3) when we consider that
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The above corollaries provide a wide generalization of results contained
in [E], Theorem 1, [L-P], Theorem 3.2, [Io], Corollary 11.

Theorem. (3.3) Let X be a smooth projective n-fold, let Xls •••, Xn be ample and
spanned line bundles and X a nef line bundle on X. Assume that c^X^^S for at
least one ί and that X is not isomorphic to a Pn~1-bundle. Then KX®X1®^*®
Xn®X is very ample.

Proof. The assertion follows from (2.5) recalling (0.3).

REMARK. (3.3.1) Let X, Xh X be as in (3.3). For eaxmple, if K^=OX for
some iV>l, then (3.3) says that

N-lX1®-®Xn = Ά

is very ample. Here is another example. Let X be as in (3.3) and let X be an
ample and spanned line bundle on X with c1(X)*>5. If (Kx®Xn"2)N=Ox

for some iV>l (e.g. if (X, X) is a Mukai n-fold), then (3.3) says that

x2 = κx®xn®(κx®x»-2γ-1

is very ample.

(3.4) To state the last application we need to recall the concept of reduction.
Let X be an ample line bundle on a smooth projective n-fold X. A reduction
of (X9 X) is a pair {X\ X') consisting of an ample line bundle X' on a smooth
projective n-fold X' such that
a) there is a map π: X-*X' expressing X as X' blown-up at a finite set F;
b) Kx®X»-ι=π*{Kx,®X'»-1).
Note that the elements i4G \X\ are in a one to one correspondence with the
elements .4 'e \Xr\ passing through F. Apart from some well understood pairs
(see [So5], table with <r^2), Kx®X"~ι can be assumed nef and big. In this
case (Xy X) admits a reduction (X\ X') on which Kx/®X'n~ι is ample (e.g. see
[Io], (1.6)).

A general and useful fact is that

(3.4.1) The intersection of generic elements of \X'\ is smooth.

Proof. Use Bertini's theorem on X and the fact that the fibres of the
reduction are linear.

Theorem. (3.5) Let X be an ample and spanned line bundle on a smooth projectile
n-fold X and assume that Kx®Xn~ι is nef and big and that cx{Xf^S. Let
(X\ Xf) be the reduction of (X, X). Then (Kx,®X'n~1)2 is very ample.
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Proof. First note that this result is an immediate consequence of Reider's
theorem (0.6.2) if n—2. Indeed KX>®X' is ample; furthermore

((Kx,+L')+L'f = (Kx,+L')2+2(Kx,+L')-L'+L'2>l+2.3+5 == 12 y

where the cross term is estimated by the Hodge index theorem. Thus, if D
is the curve in (0.6.2) that exists if Kxs®(KX'®X')®X' is not very ample,
( i ^ , + L ' + L ' ) D < 2 . ThereforeL/ Z)=l=(V r /+//) Z). Thus, sinceKX,®X'
is ample and spanned by (0.4.1), D is a smooth rational curve and then its
selfintersection is —2. This settles the case n=2y by (0.6.2).

Now assume n^3. We would like to apply (2.5) with Xι—Kx/®X/n~1 and
X—X' for all i^2. At first sight we have the problem that X' is spanned off
a finite set. However looking over the proof of (2.3), replacing Kx®XH~ι with
KX'®(Kx,®X'n~ι)®X'n~2 and noting (3.4.1), we see that this is no problem if
we know that

(a) Kx,®(Kx,®X'n-ι)®Xf»-2 is spanned.
Now we shall prove (a). Of course we can assume that
(3.5.1) X' is not spanned.
We will need two lemmas. For simplicity we put Jί=Kx/®X'n~1. Note that,
under the assumption of (3.5), it follows from (0.4.1) that
(3.5.2) Si is spanned.

Lemma. (3.5.3) Either H2-L/n~2>5 or the theorem is true.

Proof. Note that cx{X')*X>, otherwise (X, X)=(X', X') and so X' would
be spanned, contradicting (3.5.1). Furthermore cx(Jl)n=(Kx,+(n— 1) L') n >3.
Actually if (Kx,+(n-l) Z/)n<2, then by (3.5.2) and (0.6.1) X' is either P\
a quadric, or a double cover of Pn and in all these cases X' would be spanned,
contradicting (3.5.1).

In view of the above inequalties we have

If n > 4 then H H L'n~2>A and we are done. Let n=3 and assume that the
lemma is not true. Then we must have

Let S be a general element of \X'\ then S is a smooth surface by (3.4.1) and
Jίs=Ks®Xs. Note that Ks®Jίs is nef, otherwise (S, Ms) would be either
(P 2, Oi*(e% £=1,2, or (O2, £V(1)) or a scroll. In the first two cases X' is
either P 3 or a quadric and X' is spanned, contradicting (3.5.1). In the last
case S is a P^bundle and Xf=ΘPi(3) for a general fiber/ of the ruling. But
this is impossible due to a result by Badescu [B], Thms 1 and 3. The nef ness of
KS®MS implies that
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0<c1(Ks®Jls)
2 = 4(Ks+L's)-Ks+L's-L's ,

hence

(*•) (Ks+L's)-Ks>-1.

On the other hand the Hodge index theorem and (*) give

{{Ks+L'syL>s)2>{Ks+L's)2L's
2 = cx{Ms)

2

 Cι{X's)
2 = 24,

which, by the even parity of (Ks-\-Ls) L's implies (Ks-{-Ls)'L's^6. Thus
we get from (Ks+L's)

2=4- that (Ks+L's)-Ks^— 2, contradicting (**). This
proves the Lemma.

Lemma. (3.5.4) (X',Jί)$3£2 except possibly if n=3 and (X',Jί) is a scroll
over a smooth curve. In this case (S, Ms) is not in class 3£2 for any irreducible
element S<Ξ\X'\.

Proof. Let (X\ Jί)^3£2. Looking over the list in (0.3) and recalling
(3.5.1) we see that the only possibility is that (X\ M) is a scroll over a smooth
curve. Let/ be a general fibre of the ruling. We have Kx/f=Op»-i(—ri) and
X} = OtP-i(k), with k>2 since (X\X')$3C2. Then Jίf=OP-ι(k(n-l)-n)
can be Opn-ι{\) only if n=3, k—2. In this case let S& \X'\ be an irreducible
element. Then the restriction to S of the scroll projection of (X', M) defines a
ruling of S. Note that S cannot be a P1-bundle by Badescu's result [B].
Therefore (5, Jίs) cannot belong to 3?2.

Now we are ready to prove (a).

Proof of (a). Let JCEX' and choose n—2 general elements of \X'—x\.
By the usual arguments their intersection S is an irreducible, normal, Gorenstein
surface and the restriction to 5 induces a surjection

T{KX,®M®X'"-2) -* T(Ks®Jίs) -> 0 .

So, if we show that KS®MS is spanned at x^S, then we will be done. Note
that (S, Ms) is not in class 3£2, by (3.5.4); moreover 3ίs is spanned by (3.5.2),
ample, and cx{Jίs)

2^5y by (3.5.3), so (0.4.1) applies. As a first thing, if x is a
singular point of S, then KS®MS is spanned at xy by (0.4.1), since S is Gorens-
tein. Next assume that x is a smooth point of S. If KS®JKS is not spanned at
x, then by (0.4.1) x is a vertex point of (5, Ms)' this means that there is an $ίs-
line /on S passing through x and meeting Sing(S). The singular points of S
are in the finite base locus B of \Xf—x\, by Bertini's theorem. Note that an
c#s-lύie i n *S is also an c^-line in X\ So, since Si is ample and spanned, any
such line must be the inverse image under the map Φ: X'-^-P associated to
T{M) of one of the finite number of lines in P connecting Φ(x) with Φ(B).
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Thus the Jίs'lme i must be one of a finite number of curves on X' that are
independent of S. Since \JΪ'—x\ has finite base locus, a surface obtained by
intersecting n—2 general members of \Jβ'—x\ cannot contain one of a preas-
signed finite set of curves. This shows that x cannot be a vertex point of (S, Jίs)

REMARK (3.6) The result in (3.5) holds true also for (Kx,®X'n-ι)2®3l where

<5H is nef.
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