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0. Introduction

The purpose of the present paper is to construct an isomorphism which
shows the following:

Theorem. A β-automorphίsm is isomorphίc to a mixing simple Markov
automorphism in such a way that their futures are mutually isomorphίc.

Though the state of this Markov automorphism is countable and not finite,
we obtain immediately from the proof of the theorem:

Corollary 1. The invariant probability measure of β-transformatίon is
unique under the condition that its metrical entropy coincides with topological
entropy log β.

An extention of Ornstein's isomorphism theorem for countable generating
partitions ([2]) shows the following known result (Smorodinsky [5], Ito-

Takahashi [3]):

Corollary 2. A β-automorphism is Bernoulli.

We now give the definition of /3-automorphism and auxiliary notions.

Let β be a real number >1.

DEFINITION. A β-transformation is a transformation Tβ of the unit interval
[0, 1] into itself defined by the relation

(1) Tβt = βt (modi) (0^f<l)

and by Tn

βl=\im Tn

βt.
/->!

This transformation has been studied by A. Renyi, W. Parry, Ito-Takahashi
et al. Parry [3] showed that there is an invariant probability measure for a
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/3-transformation which is absolutely continuous with respect to the ordinary

Lebesgue measure dt and whose density is given by

= Σ Vr^W/s— V

The measure preserving transformation ([0, 1]), Tβ>fβdt) will be called

β-endomorphism, and its natural extension /3-automorphism. But we will

give a concrete definition for the latter in terms of symbolic dynamics. Let s be

an integer such that s<β^s+l, and A={0, 1, •••,£}.

DEFINITION. A subsystem (Xβ, σ) of the (topological) shift transformation

(Az, σ) over symbol set A( where σ denotes the one-step shift transformation to

the left) is called β-shift if there exists an element ωβ of Xβ such that

( 2 ) Xβ = cl {ω<Ξ A*| σnω<ωβ(n<=ΞZ)}

and that the number β is the unique positive solution of equation

(3) Σωβ(«)rM-1=l.
»>0

Here cl. denotes the closure operation in the product space Az and the symbol

< denotes the partial order defined as follows: ω<η if there is an n such that

ω(k) = η(k) (0^k<n) and ω(ri)<η(ri) ,

where ω(ri) denotes the n-th coordinate of ω^Az. We note that ωβ(Q)=s.

This partial order plays an essential role when the /3-shifts are proved

in [3] to be realizations of /3-transformations : Let us define a map pβ of Xβ

into the unit interval [0, 1] by

(4) Pe(ω) = Σ «(«)/?-"-',
«>0

then the map pβ is continuous and defines a homomorphism (as endomorphism)

of subshift (Xβy σ) onto the Borel dynamical system ([0, 1], Tβ) which is inver-

tible except for a countable subset of Xβ. It is now obvious that the map pβ

induces from/βΛ an invariant probability measure μβ for (Xβ, σ), which can

be expressed in the symbolical form:

( 5 ) μβ({ω': ω'<ω}} = CPΣ β'^mm {pβ(ω), pβ(<r"ωp)}
«>0

where Cβ is normalizing constant.

DEFINITION. The invertible measure preserving transformation (Xβ, <τ, μβ)
will be called β- automorphism.

According to the result of W. Parry [4] for the /3-endomorρhisms, the
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metrical entropy h(μβ) of (Xβy σ, μβ) is equal to log /?, and it is proved in [3]
that the topological entropy e(Xβ, σ) is also log β.

DEFINITION. An invariant probability measure of a topological dynamics
will be called of maximal entropy, or simply, maximal if the metrical entropy
coincides with the topological entropy of the dynamics.

REMARK 1). The theorem does not assert the Markovian-ness of the
/3-endomorρhism, which is identified with the image of (Xβ, σ, μβ) under the
projection π+: π+(ω)(ri)=ω(ri), n^O. It seems that /3-endomorphisms are not
Markov except for those β's such that

P
\—β~p~l — 2 ̂ iβ~nll for some a,e A and p^Q,

»=o

which are proved in [3] to exhaust the Markovian cases with canonical generator.
2). What we will study essentially in the following is the dual β-endomor-

phism. The notion of the "dual" depends in general upon the choice of the
"present" and in our case it is defined as follows: Let π- be the projection
Az onto Az defined by the relation:

π-(ω)(ri) = ω(—n) (n^O).

Then the map τr_ induces a homomorphism of (Xβ, σ"1, μβ) (considered as
endomorphism) into (A^, σ, π-(μβ}). The dual /3-endomorphism is its image
(X*, <τ, μf) by the map π-. Then what we will show is the following:

Theorem. A dual β-endomorphism is isomorphic to a mixing simple Markov
endomorphism.

1. A class of Markov subshifts

Before studying /3-automorphisms we are concerned with a class of Markov
subshifts over a countable symbol set I={ —r, —(r—1), •••, 0, 1, •••, 00} (r^O).
Let M = ( M f j ) f j e I be a matrix with the following properties:

( i ) Mίy€={0, 1} for all ί,;e=I

(ii) Mij= 1 if i—y+l<°°, if ί^l and j'^0, or if i=j=oo

(iii) Mij=0 if l<i^oo and zφ +1, if i=l and

1 ̂  j^ oo or if ι= oo and j < oo

(iv) Mioo=\im sup MfJ if i^O

0

The undetermined entries are Mijy i^O, l^y<°°. We set M0=r+l=J£ M{j

(/^O) and Mf= Σ Mu for j^l. We will consider the class of Markov sub-
J i=*-r J

shifts (2Λ(M), σ) with structure matrices M whose entries are given by (i)-(iv)
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where

( 6 ) 2JΪ(M)= (η^V: M,wn+1,= l for any n

(The details of Markov subshift will be discussed in [3])

Let XΦO and

Xj = \xi ,

for some non-zero vectors x=(xί)i<=l and y=(yi)i<=l. Then it is easy to see that

xt = λ
(7)

up to scalar multiplication and that

(8) l^
y^o

Conversely if λ satisfies (8), then (7) gives right and left eigenvectors x and y

corresponding to the eigenvalue λ. It is obvious that (8) has a unique positive
solution p=ρ(M), which is of maximal modulus among the solutions of (8).
Let us define a transition matrix P—(Pij)iJ^l and π=(πί)i(ΞI by the relation:

(9) PiJ = MiJxJ/pxί and *, = Λ^ί

Then it is obvious that the metrical entropy of the Markov automorphism defined
by this pair P and π is equal to log p(M). We show that log p(M) is also the
topological entropy of the subshift.

Lemma 1. 1) The topological entropy e(yH(M)σ)y is equal to the value
log p(M), where p(M) is the unique positive solution of the equation (8).

2) There uniquely exist a transition matrix P*=P(M)= (P*j)i jεn and a row

probability vector π*=(πf)i<Ξι which maximize the function

(10) H(π,P) = -^πiPiίlogPiJ
i>j

subject to the conditions O^P/y^M. y, τrz ̂ 0, 2 ̂ »=1 ana πP=P. Furthermore
H(π*,P*)=logp(M).

Proof. In the case when ]F] M^co^O, the set I may be identified with the
ί^o

finite set {— r, — r+1, •••,()} and the proof is trivial. Thus we assume that
Let Mw be the "cut-off" matirx defined as follows (n>0):

v — '
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Mh. if —r<Zj<n,

1 if j=n and

or if i=j=n

0 otherwise

(11)

where i runs over the set {— r, •••, 0, ••-,#}. We note that ^(M*1*0) is the
factor space of 3Jl(M) with respect to the partition {{— r}, •••, {0}, •••, {n— 1},
{m: m^n}} which is also an open cover of I. It follows from an elementary
computation that each matrix Mcn) is irreducible and that its eigenvalue ρn

of maximal modulus is the unique positive solution of the algebraic equation

(12) 1 = ΣMyλ-'-
/=»0 J i=-r

Consequently from the definition of topological entropy we obtain

(13) em(M\ σ) = sup e(m(M™), σ) = sup log pn

»^0 »^0

(See [1], [3], for example). Moreover from (12) it follows that the sequence
(ρn)n^o converges as w-»°o to the unique positive solution of (8). Thus we
proved 1).

The maximizing problem in the statement 2) is equivalent to maximize the
value

(14) H(X) = -Σ M{JX{J log X,,+Σ(Σ MtJXti) log (Σ MtJXt/)
i > j i J J

among the matrices X=(Xίj)itJ ^l satisfying (a) JΓ, y^O,

(c) Σ-3Γίy = l In fact ίf MiJXiJ = πiPiJf then H(X)=H(πy P). In order to
«»;

solve this problem we appeal to the Lagrange's multiplier method. Let λ, and
K be the Lagrange constants corresponding to the conditions (b) and (c). Then
we obtain

(15) ΈfMvXΪ^^'-Xb for M,y=l

if H(X*)=ma\H(X). This equality implies that the vector χ = (χt)iel with
#, =£~λ|' is a right eigenvector of matrix M corresponding to the eigenevalue
λ— e~κ and that the vector y=(yi)i^l with y{= eλ| f Σ X*j ιs a ^ft eigenvector

y
corresponding to λ. Thus the local maximum of the original problem is given
by

P*} = Xfj/πf = M,jXjl\x,

and
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= Σ x*ί = ff^f/Σ #/:

and the value is

But we already know that the eignevalue of maximum modulus p(M) is simple.

Hence the statement 2) is proved.

REMARK. 1) All non-zero eigenvalues of the matrix M are solutions of

equation (8) and vice versa.

2) Any eigenvalue of the matrix P(M) is of the form \/p(M) where λ

is an eigenvalue of the matrix M; In particular, the eigenvalue 1 is simple. In
fact if P(M)z=κz, then Mu=ρ(M)/cu where #,•=

Corollary. There exists one and only one maximal invariant probability
measure μ for the Markov subshift (3JΪ(M), σ), which is necessarily Markovίan and

mixing.

Proof. We recall the Parry's result: an invariant probability measure μ
for a transformation σ is Markovian with respect to a countable partition α
if and only if H^ajσ'1 a)=h(μ). Let μ be a maximal invariant probability

measure for our system and a the partition whose atoms are {ω: ω(0)=/}, i

Then from 1) of Lemma 1 it follows that

But

h(μ) = Hμ.(a\V<r-n

»;>ι

and the last term minorizes log p(M) as we stated in 2) of Lemma 1 . Con-

sequently we have the equality

which asserts the Markov property of μ and the uniqueness according again to 2)
of Lemma 1.

Finally the mixing property follows from the ergodicity and the absence of
cyclic states.

2. Construction of isomorphism

We are now to construct an isomorphism φβ of /5-shift into a Markov
subshift in the class which is investigated in the previous paragraph. We begin
with the definition of a number r(ω) (^S°°) for
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(.6) «„)-,„ if

where

(17) B< = {ω(ΞXβ: (ω(-), -, ω(-l)) = (ωβ(0),

We note that τ(ω) is the first hitting time to the set Xβ\ (J Bi9 which will be

justified below by Lemma 2. Let

(18) C f =

where s<β<*s+l and let I = {—(s— 1), •••, 0, 1, 2, •••, oo}. Then the sets
C, , ίel\{oo} are closed in Xβ and form a partition of the set Xβ\Coo.

Let us define a map φβ of Xβ into the infinite product space Izby the relation:

(19) Φβ(ω)(») = i if

then it is easy to see that the map φβ is Borel, is injective on X^C^ and anti-
commutes with the shift transformation, i.e., φβoσ=σ~1oφβ. Furthermore the

inverse φβ

l of the map φβ coincides on the set φβ(Xβ\C)oo with the map ψβ of
Iz into Az:

( \η(n-V)\ if η(n-
(20) ψβ(<η)(-n)= V ; 'Vv v β v / n y 1 _ 1 if ^n-

Lemma 2. The image φβ(Xβ\C^) by the map φβ is contained in the set

where the matrix Mβ is determined by the conditions (i)-(iv) with r=s—l
and, for ίfg 0 and i^ j< oo,

nΛ\ vfβ - J l ίf ωβC/)>l ίl=-^
\ / i Ί — 1 f\ ι

[ 0 otherwise.

Proof. Assume first that there is an element ω^Xβ\Coo such that φβ(ω)(0)
=/^2 and φβ(ω)(l)—7, i.e. ωeC, ΓlcrCy. Then the condition ω^Q implies

that

(22) sup {k: (ω(-ft), -, ω(-l)) = (ωβ(0), -, ωβ(ft-l))} = ί

while σ-1ωeCy implies that

(23) sup {/: (ω(-/-l), »., ω(-2)) = (ωβ(0), -, ωβ(/-l))} =;

Consequently j^i— I. We must prove j=i— I. Suppose the contrary: j'^ί.

Then by (23) ω(—/+Λ)—ωβ(y—/+!+*) for Q^k^i— 2. Combining this with
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(22) it follows that ωβ(k)=ωβ(j—ί+l+k) for Q^k^i-2. Since σ'"- '+1ωβ^ωβ

by the definition of ωβ itself, we obtain ωβ(ί— l)^ωβ(j). On the other hand
from σj'+lω^ωβ and (23) we can deduce that ω(— l)<^ωβ(j). But ω(— 1)=
ωβ(i—l) by (22), so that φ(—l)=φβ(j). Thus we had ω(j+k)=ωβ(k) for

0<^k^j, which contradicts to (22).

In particular, if φβ(ω)(0)=ί and φβ(ω)(l)=j^Q, then /^ 1.
Finally if φβ(ω)(0) = i^0 and φβ(ω)(l)=j^l, then

(ω(-y-l), ..-, ω(-2)) = ωβ((0), .--, ωβ(/-l)) ,

(ω(-j-l), .", ω(-l) φ (ωβ(0), -, ωβ(j))

and

But, (ω(— j— 1), ••• , ω(— 1) ̂  (ωβ(0), ••• , ωβ(j)) (lexicographical order) since

ω e JSΓβ. Hence ω "̂ ) > | f | .

Thus we have proved that M|/3Cωχo)tψj3cωXι)=l if ω^Xβ. Now the Lemma 2
follows from the shift-invar iance of the set

Proof of Theorem. Let v be an arbitrary maximal ergodic measure for
the /3-shift. We note that ι/(CΌo)=0. In fact let ωeCc, and

nQ(ω) = 0 ,

1(ω): (ω(— n)9 — , ω(— 1)) = (ωβ(0), — , ωβ(n— 1))} ,

for Λ=l, 2, ••• . Then /^(ω), £^0 are well-defined and tend to infinity as
since ω e C .̂ Furthermore

where

/(m) = min {n>/w: ωβ(n— m-\-k)ωβ(k) ,

In particular the number wx(ω) determines the sequence (nk(ω)}k^u and so the
sequence (ω(ri))n^Q. But

Coo = U (ωeCoβlΛ^ω) = n} .

Thus μ{ω^C00 \nl(ω)=n}=0 since v is an ergodic measure with positive entropy
and therefore non-atomic.

Now we recall that the map φβ defined by (19) is a Borel injection of
CΌo into ^5ί(M β) and anti-commuting with the shift transformation and that

e(Xβ, σ)=log β. The topological entropy of the Markov subshift (3Jί(Mβ), σ) is

also log β\ Indeed M~*Σ MίJ=ωβ(j)ί and consequently the equations (3) and
(8) coincide.
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Let vf be the invariant probability measure of (3ϊl(Mβ), σ) induced by the

map φβ from v on Xβ, which is concentrated on the set X\Coo as we have seen

above. Since φβ is invertible z^-almost everywhere, the metrical entropy λ(z/) of

the measure v' is A(z>)=log/:?. But we already know the uniqueness of maximal
invariant measure for (3JΪ(Λf^), σ) in Corollary to Lemma 1. Consequently the
map φβ is an isomorphism (mod 0) of (Xβ, <τ, v) onto (^fft(Mβ), σ, λβ), \β being

the unique maximal invariant measure, and v=ψβ(\β) is unique. Thus we

completed the proof of Theorem and automatically the proof of Corollary.

REMARK. Let us denote by Pthe maximal invariant measure of (3Jl(Mβ), σ)
and the coordinate function by ξn.
Then (P, ξn) is a Markov chain. Let

TO = inf {k>0: ξk(Ξ {-(s -- 1), •", 0}}

TM= sup

It will be interesting that (P, (ξru, τn+1)) and (P, ξτn) are both Bernoulli the

former is in one-to-one correspondence with (P, ξn) and the latter is isomorphic

to the Bernoulli scheme B(x-s+ly •• ,^0) (See (7)). In particular the Markov
chain (P, ξn) can be obtained as an automorphism based upon the Bernoulli

scheme B(X-(:S-I^ * ,^0) under a random function/, which is independent of

B(x-(S-O, •• ,^o) under the conditioning by fTQ, where

M _ β~n

*, = ΣM ίpA/9-*-' and P(/= «|gTo = i) = ''"'*

On the other hand a Bernoulli automorphism B(p0, ply •• ,/>M) (̂ ), ̂

obtained as an automorphism based upon Bernoulli scheme B( — £5, •••, P" \
^ Pi ^—pJ

under a random function g which is independent of the basic automorphism

and such that

Acknowledgement. The author expresses sincere thanks to Professor H.

Totoki for his kind advices and H. Murata and Sh. Ito for the fruitful discussions.

HIROSHIMA UNIVERSITY



184 Y. TAKAHASHI

Bibliography

[1] R.L. Adler, A. Konheim and M.H. McAndrew: Topological entropy, Trans.

Amer. Math. Soc. 114 (1969), 309-319.

[2] Sh. I to, H. Murata and H. Totoki: Remarks on the isomorphism theorem for weak

Bernoulli transformations in general case, to appear in Publ. Res. Inst. Math. Sci. of

Kyoto University.

[3] Sh. Ito and Y. Takahashi: Markov subshifts and β-transformations, to appear.

[4] W. Parry: Intrinsic Markov chains, Trans. Amer. Math. Soc. 112 (1964), 55-66.

[5] Smorodinsky: β-automorphisms are weak Bernoulli, preprint.




