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0. Introduction

The purpose of the present paper is to construct an isomorphism which
shows the following:

Theorem. A B-automorphism is isomorphic to a mixing simple Markov
automorphism in such a way that their futures are mutually isomorphic.

Though the state of this Markov automorphism is countable and not finite,
we obtain immediately from the proof of the theorem:

Corollary 1. The invariant probability measure of B-transformation is
unique under the condition that its metrical entropy coincides with topological

entropy log .

An extention of Ornstein’s isomorphism theorem for countable generating
partitions ([2]) shows the following known result (Smorodinsky [5], Ito-
Takahashi [3]):

Corollary 2. A B-automorphism is Bernoulli.

We now give the definition of B-automorphism and auxiliary notions.
Let B be a real number >1.

DEFINITION. A B-transformationis a transformation T of the unit interval
[0, 1] into itself defined by the relation

1) Tet=Bt  (mod1) (0=<t<1)
and by T31=lim T%t.

This transformation has been studied by A. Renyi, W. Parry, Ito-Takahashi
et al. Parry [3] showed that there is an invariant probability measure for a
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(B-transformation which is absolutely continuous with respect to the ordinary
Lebesgue measure dt and whose density is given by

fo(t) = § 1[0,T§1)(t)ﬁ—”—1/'§ Tp1-B7"1.

The measure preserving transformation ([0, 1]), T, fedt) will be called
(3-endomorphism, and its natural extension G-automorphism. But we will
give a concrete definition for the latter in terms of symbolic dynamics. Let s be
an integer such that s<B=<s+1, and 4={0, 1, ---, s}.

DEFINITION. A subsystem (X, o) of the (topological) shift transformation
(A%, o) over symbol set A(where o denotes the one-step shift transformation to
the left) is called B-shift if there exists an element wg of X such that

(2) Xp = cl. {oEA%|c"0<wp(nEZ)}
and that the number @3 is the unique positive solution of equation

(3) S wp(n)t = 1.

n>0

Here cl. denotes the closure operation in the product space AZ and the symbol
< denotes the partial order defined as follows: w<(% if there is an 7 such that

(k) = n(k) (0<k<mn) and o(n)<n(n),
where w(n) denotes the n-th coordinate of w=AZ We note that wp(0)=s.

This partial order plays an essential role when the @-shifts are proved
in [3] to be realizations of B-transformations: Let us define a map pg of X
into the unit interval [0, 1] by

(4) pe(w) = 23 0(m)B7"",

n>0

then the map pg is continuous and defines a homomorphism (as endomorphism)
of subshift (Xp, o) onto the Borel dynamical system ([0, 1], T%s) which is inver-
tible except for a countable subset of X,. It is now obvious that the map pg
induces from fgdt an invariant probability measure ug for (Xp, o), which can
be expressed in the symbolical form:

(5) ne{o’: o' <w}) = Cp 23 87" 'min {pe(®), pa(o"wp)}
where Cp is normalizing constant.

DEeFINITION.  The invertible measure preserving transformation (Xpg, o, ug)
will be called B-automorphism.

According to the result of W. Parry [4] for the B-endomorphisms, the
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metrical entropy A(ug) of (Xg, o, ug) is equal to log B, and it is proved in [3]
that the topological entropy e(Xp, o) is also log 5.

DEerFINITION. An invariant probability measure of a topological dynamics
will be called of maximal entropy, or simply, maximal if the metrical entropy
coincides with the topological entropy of the dynamics.

ReMark 1). The theorem does not assert the Markovian-ness of the
B-endomorphism, which is identified with the image of (Xp, o, ug) under the
projection z,: 7, (w)(n)=w(n), n=0. It seems that B-endomorphisms are not
Markov except for those 8’s such that

?
1—8?-1 = ”‘V‘:o a; 3~ " for some a;EA and p=0,

which are proved in [3] to exhaust the Markovian cases with canonical generator.

2). What we will study essentially in the following is the dual B-endomor-
phism. 'The notion of the “dual” depends in general upon the choice of the
“present” and in our case it is defined as follows: Let z_ be the projcetion
AZ onto AZ defined by the relation:

7 (0)n) = o(—n)  (n20).

Then the map z_ induces a homomorphism of (Xg, o=, ug) (considered as
endomorphism) into (A¥, o, z_(ug)). The dual B-endomorphism is its image
(X%, o, uf) by the map =_. Then what we will show is the following:

Theorem. A dual B-endomorphism is isomorphic to a mixing simple Markov
endomorphism.

1. A class of Markov subshifts

Before studying B-automorphisms we are concerned with a class of Markov
subshifts over a countable symbol set I={—r, —(r—1), ---, 0, 1, --+, 0o} (r=0).
Let M=(M,;); ;; be a matrix with the following properties:

(i) M;,;=1{0, 1} for all 7, jel
(i) M,;;=1 if i=j+1<oo, if {<1 and j=<O0, or if i=j=o0
(i) M;;=0 if 1<i<oo and i4j41, if i=1 and
1<j< oo or if i=o0 and j<oo
(iv) M;.=limsup M;; if <0

jre

0
The undetermined entries are M,;, i<0, 1< j<co. We set My=r+ 1=>M,;

i=-~r

(j=0)and M jziﬁrM,- ; for j=1. We will consider the class of Markov sub-

shifts (MY(M), o) with structure matrices M whose entries are given by (i)—(iv)
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where

(6) MM) = {n€12: M,ciminsn=1 forany neZ}.
(The details of Markov subshift will be discussed in [3])

Let A0 and

IZMijxj = A¥;, A’_V_‘inMij =NY;

for some non-zero vectors x=(x;);c; and y=(;);e;- Then it is easy to see that

X =N (1=21), =2 Mt (i£0)
(7)
3= W T M (j21), =1 (S0

iz

up to scalar multiplication and that
(8) 1=3Mx 7.
iz
Conversely if \ satisfies (8), then (7) gives right and left eigenvectors x and y
corresponding to the eigenvalue A. It is obvious that (8) has a unique positive

solution p=p(M), which is of maximal modulus among the solutions of (8).
Let us define a transition matrix P=(P;;); ;1 and #=(,);c; by the relation:

(9) P;j=M;;x;/px; and =;= x;y,-/E]] X;Yj+

Then it is obvious that the metrical entropy of the Markov automorphism defined
by this pair P and = is equal to log p(M). We show that log p(M) is also the
topological entropy of the subshift.

Lemma 1. 1) The topological entropy e(WM(M)o), is equal to the value
log p(M), where p(M) is the unique positive solution of the equation (8).

2) There uniquely exist a transition matrix P*=P(M)=(P%¥); ;e and a row
probability vector n*=(n¥);e; which maximize the function

(10) H(r, P):——%} 7;P;; log P;;

subject to the conditions 0= P;;<M,;, m; =0, 3>} n;=1 and xP=P. Furthermore
H(n*, P¥)=log p(M).

Proof. In the case when >} M;.=0, the set I may be identified with the
i<0
finite set {—7, —7r+1, ---, 0} and the proof is trivial. Thus we assume that
2IM;.>0. Let M be the “cut-off” matirx defined as follows (n=0):
iSO
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Mij if —f§j<n,
1 if j=n and 3)M;>0,
k=
or if i=j=n

(11) 5=

0 otherwise

where 7 runs over the set {—7, :--,0,:--,n}. We note that MM (M) is the
factor space of M(M) with respect to the partition {{—7}, ---, {0}, -, {n—1},
{m: m=n}} which is also an open cover of I. It follows from an elementary
computation that each matrix M ™ is irreducible and that its eigenvalue p,
of maximal modulus is the unique positive solution of the algebraic equation

(12) 1= S M- STM@ A" (1),

j=0
Consequently from the definition of topological entropy we obtain
(13) e(MY(M), o) = sup (MM ™), o) = sup log p,
20 20

(See [1], [3], for example). Moreover from (12) it follows that the sequence
(Pn)nzo converges as m—>oo to the unique positive solution of (8). Thus we
proved 1).

The maximizing problem in the statement 2) is equivalent to maximize the
value

(14) H(X)= —g M;; X;; log X,-].—i—‘Z(]Z M,;X;;) log (? M;; X,;)

)i, ;e satisfying (a) X;; =0, (b) ;Xij_—;; X;; and
() 2 X;;=1. In fact if M;; X;;=n;P;;, then H(X)=H(=, P). In order to
i

among the matrices X=(Xj;

solve this problem we appeal to the Lagrange’s multiplier method. Let \; and
« be the Lagrange constants corresponding to the conditions (b) and (c). Then
we obtain

(15) DM Xh =N XY for M =1
k

if H(X*)=max H(X). This equality implies that the vector x= (x;);c; with

x;=e% is a right eigenvector of matrix M corresponding to the eigenevalue

A=e"" and that the vector y=(¥,);e; With y,=e" > X¥ is a left eigenvector
7

corresponding to A. 'Thus the local maximum of the original problem is given
by

and
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nF = 2 XY = xiyi/sz; X;V;
and the value is
H(X*) = H(z*, P*) = log .

But we already know that the eignevalue of maximum modulus p(M) is simple.
Hence the statement 2) is proved.

RemArk. 1) All non-zero eigenvalues of the matrix M are solutions of
equation (8) and vice versa. '

2) Any eigenvalue of the matrix P(M) is of the form \/p(M) where A
is an eigenvalue of the matrix M; In particular, the eigenvalue 1 is simple. In
fact if P(M)z=«z, then Mu=p(M)ru where u;=x;z2;.

Corollary. There exists one and only ome maximal invariant probability
measure . for the Markov subshift (W(M), o), which is necessarily Markovian and
mixing.

Proof. We recall the Parry’s result: an invariant probability measure p
for a transformation o is Markovian with respect to a countable partition o
if and only if Hu(a/o'a)=h(u). Let p be a maximal invariant probability
measure for our system and « the partition whose atoms are {w: o(0)=i}, i€l
Then from 1) of Lemma 1 it follows that

log p(M) = h(n)
But
h(p) = Hu(a| Vo~ "a)=Hu(a|o™ @)

and the last term minorizes log p(M) as we stated in 2) of Lemma 1. Con-
sequently we have the equality

h(u) = Hu(at| o~ @) = log p(M)

which asserts the Markov property of u and the uniqueness according again to 2)
of Lemma 1.

Finally the mixing property follows from the ergodicity and the absence of
cyclic states.

2. Construction of isomorphism

We are now to construct an isomorphism ¢s of G-shift into a Markov
subshift in the class which is investigated in the previous paragraph. We begin
with the definition of a number 7(o) (< ) for v € Xp:
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(16) () ( sup {i: 121, wEB;}
T(w) =
“7= 1o if weX,\UB;

where
(17)  B; = {o€Xp: (o(—), =+, o(—1)) = (0p(0), -+, wp(i—1)),}  (E=1).

We note that 7() is the first hitting time to the set Xg\ U B;, which will be
justified below by Lemma 2. Let =

C,-={ {wEXﬂ:T(co)=i} (lé_]éoo)

(18) {oeXs: 7(0) =0, w(—1) = —1i} (—s<i=0)

where s<B<s+1 and let I={—(s—1),:,0,1,2, -+, 0}. Then the sets
C;, ieI\{oo} are closed in X and form a partition of the set Xp\Cl..

Let us define a map ¢4 of Xp into the infinite product space 1Zby the relation:
(19) Pe(w)n) =1 if weo"C; (neZ,icl),

then it is easy to see that the map ¢ is Borel, is injective on X,\C.. and anti-
commutes with the shift transformation, i.e., ¢gooc=0"'o¢pg. Furthermore the
inverse ¢z' of the map ¢ coincides on the set ¢pg(Xp\C).. with the map yrg of
12 into AZ:

[7(n—1)| if 7(n—1)<0

(20) \lfﬁ(n)(—n)={ wp(a(n—1)—1)  if 7(n—1)=1 (e Z, 1€1%).

Lemma 2. The image $ps(Xe\C<) by the map ¢pg is contained in the set
MM(MP) where the matrix MP is determined by the conditions (i)—(iv) with r=s—1
and, for i<0 and i< j<<oo,

1 if  wp(f)>|i|=—1,

21 M8 . =
1) { 0 otherwise.

t,7

Proof. Assume first that there is an element w& Xg\C.. such that ¢g(w)(0)
=i2>2 and ¢g(w)(1)=j, i.e. «=C;NaC;. Then the condition weC; implies
that

(22) sup {k: (@(—k), =+, o(—1)) = (06(0), -+, wp(k—1))} =i
while s-'we C; implies that
(23) sup {I: (o(—1—1), -+, o(—2)) = (p(0), -+, wp(I—1))} =

Consequently j =i—1. We must prove j=¢—1. Suppose the contrary: j=>1.
Then by (23) o(—i+k)=ws(j—i+1+k) for 0<k<i—2. Combining this with
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(22) it follows that wg(k)=ws(j—i+14k) for 0<k=<i—2. Since o/ " wp=Zwp
by the definition of wg itself, we obtain wg(i—1)=wg(j). On the other hand
from o/*"'w=<wg and (23) we can deduce that w(—1)<wg(j). But o(—1)=
wp(i—1) by (22), so that @(—1)=g¢g(j). Thus we had o(j+k)=wg(k) for
0=<k=j, which contradicts to (22).

In particular, if ¢g(w)(0)=7 and ¢p(w)(1)=j=0, then i< 1.
Finally if ¢g(w)(0)=7=<0 and ¢p(w)(1)=j=1, then

(o(—j—1), =+ &(—2)) = wh((0), -+, walj—1)),
(o(—j—1), =+, &@(—1) =% (2p(0), -+, wp(7))

and
o(—1)=|7| .

But, (o(—j—1), =+, o(—1) = (wp(0), -, wp(j)) (lexicographical order) since
weXg. Hence wg(j)>|1].

Thus we have proved that M§, .0, égw@=11if ®& Xpz. Now the Lemma 2
follows from the shift-invariance of the set ¢g(X\C-).

Proof of Theorem. Let v be an arbitrary maximal ergodic measure for
the B-shift. We note that »(C.)=0. In factlet vC. and

nfw) =0,

nw) = min (n>ms-(0): (o(—), -+, o(—1)) = (@5(0), -+, wpln—1)} ,

for k=1, 2, :--. Then nyw), k=0 are well-defined and tend to infinity as & — oo
since w&€ C... Furthermore

M s(0) = fne(())

where
f(m) = min {n>m: wp(n—m+k)ws(k), 0=<k<m}.

In particular the number 7,(w) determines the sequence (7,(w))ez,, and so the
sequence (o(7)),<,- But

C. =”L2J0{coECw|n1(w) =n}.

Thus p{weC..|n,(0)=n}=0 since » is an ergodic measure with positive entropy
and therefore non-atomic.

Now we recall that the map ¢ defined by (19) is a Borel injection of
Xp\C.. into M(MP) and anti-commuting with the shift transformation and that
e(Xp, 0)=Ilog B. The topological entropy of the Markov subshift ((MPF), o) is
also log B; Indeed M ;=33 M;,=wg(j), and consequently the equations (3) and
(8) coincide. =0
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Let »” be the invariant probability measure of (M(MF), o) induced by the
map ¢ from » on Xp, which is concentrated on the set X\C.. as we have seen
above. Since ¢ is invertible v-almost everywhere, the metrical entropy k(") of
the measure v’ is k(v)=log 3. But we already know the uniqueness of maximal
invariant measure for (MR(M®), o) in Corollary to Lemma 1. Consequently the
map ¢ is an isomorphism (mod 0) of (Xp, o, v) onto (M(MP), o, Ng), Ap being
the unique maximal invariant measure, and v=1rg(Ag) is unique. Thus we
completed the proof of Theorem and automatically the proof of Corollary.

REMARK. Let us denote by P the maximal invariant measure of (M(M?), o)
and the coordinate function by &,.
Then (P, £,) is a Markov chain. Let

7, = inf {k>0: £, {—(s——1), -+, 0}}
Ty inf {E>T, ;B {—(—1), 0} (n21)
T,= sup k<7, ,: Exe{—(s—1),---,0}} (r=-1)

It will be interesting that (P, (¢,,, T,+,)) and (P, £,,) are both Bernoulli; the
former is in one-to-one correspondence with (P, £,) and the latter is isomorphic
to the Bernoulli scheme B(x_g,,, *--, %,) (See (7)). In particular the Markov
chain (P, £,) can be obtained as an automorphism based upon the Bernoulli
scheme B(x_¢;-p, ***, %,) under a random function f, which is independent of
B(x_¢s-p, **, %,) under the conditioning by &., where
5= D MuB " and P(f=nlt, = i) = B
k=0 ’ 0 X;

On the other hand a Bernoulli automorphism B(p,, p,, =, pn) (£:=0, ”Z pi=1)is

obtained as an automorphism based upon Bernoulli scheme B(l_;&, ey %)

1 —Po
under a random function g which is independent of the basic automorphism
and such that

Plg=m=2""  (z1)
1—'Po
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