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ABSTRACT

Koushi, Ando. Ph.D., Osaka University, March 1977.
Study of Resonant Brillouin scattering by Amplified Acoustic-

Phonons in CdS and‘ZnSe. : Major Professor: Chihiro, Hamaguchi.

Presemt work is concerned with study of resonant Brillouin
scattering in semiconductive CdS and semi-insulating ZnSe.
Acoustic injection method is also presented and theoretical treat-
ment is given mainly in the case of CdS-ZnSe system where acousto-
electric domains amplified in CdS are transmitted into ZnSe. The
method is shown to have a versatile to such study reported here.
Most of the present work were carried out by making use of intense
acoustic phonons amplif ied through the acoustoelectric effect
instead of thermal phonons, which enabled us to investigate Brillouin
scattering cross sections in the region near the band gap. The
Cds crystal belonging to wurtzite type semiconductor has not only
large piezoelectricity but also strong optical anisotropy and
therefore it is very interesting to examine the resonance effect
of Brillouin scattering cross section in the photon energy region
close to the fundamental absorption edge. Acoustic pulse injection
developed in the present work enabled us to study the resonant
Brillouin scattering in semi-insulating ZnSe belonging to zinc-
blende and thus we can discuss the physical mechanism of resonant
light scattering in both types of crystals.
In Chapter I, historical background of resonant light scattering
is reviewed and the significance of the present work is explained.
In Chapter II. basic formulations of resonant and nonresonant light
scattering are presented by using the microscopic and macroscopic

treatments. Resonant behaviors of scattering efficiency near the



critical point are interpreted by the microscopic theory of light
scattering, where electronic excitation plays an important role.
From the selection rule of deformation potentital scattering of
virtual states by acoustic phonons 2- ans 3-Band models of tran-
sition process of virtual states are proposed to explain the
present observations. Advance theory of resonant light scattering
is also introduced by making use of the treatment of non-linear
susceptibility to examine the resonant behaviors arising from

higher energy 3-dimensional critical points(Ml,M and M3).

27
In Chapter III, experimental procedure and detailed explanation

of the sample construction used in the present work are presented.
In order to estimate the dispersion of intrinsic scattering effi-
ciency resolution of acoustic frequency is discussed mainly in
connection with the present experimental conditions.

Chapter IV deals with the experimental results and discussions

on the resonant Brillouln scattering in CdS and ZnSe. In the
observed dispersion spectra one can find a sharp resonant enhance-
ment and antiresonance structure in the dispersion curves of
Brillouin scattering cross section by pure TA-mode phonons in Cds
and ZnSe. Resonant feature of scattering efficiency by pure LA-
mode phonon is found to be quite different from that of TA-mode,
where only a sharp resonant increase(no resonant cancellation is
observed). Those dispersions obtained in the present work are
compared with the theory and it is found that the expression of
resonant Brillouin scattering taking into account of the exciton
contributions has well explained the experimental data.

In Chapter V, dispersion spectra of optical modulation induced

by the acoustic domain in CdS are presented. Optical modulation

signals are observed in the photon energy region not only close



to the fundamental absorption edge but also in the transparent
region. A comparison of dispersion spectra of the optical modu-
lation with resonant Brillouin scattering cross sections is

carried out and one can find that the dispersion curves of optical
modulation signals agree well with those of resonant Brillouin
scattering in Cds.

In Chapter VI, the experimental results and discussions on Break-
down of selection rule in Brillouin scattering in CdS are presented.
It is found that the Brillouin scattering efficiency observed

under the forbidden-condition shows a resonant enhancement near the
intrinsic band edge. By means of the analysis based upon the
deformation potential scattering of virtual electronic states by

TA phonons the physical mechanism of breadkdown of selection rule is
discussed and the 3-Band model of transition process for forbidden-
resonant light scattering is found to explain the present
observations.

In Chapter VII an application of acoustic pulse injection technique
is presented with theoretical treatments of acoustic matching
theory. By making use of the injected acoustic packets into ZnSe
and ZnTe the sound velocities of quasi-transverse mode propagating
in several directions are measured and important elastic parameters
suech as; elastic stiffness constants and propagation loss are
determined.

In Chapter VIII, the conclusions obtained in the present study

are summarized.



Chapter I. Introduction

Since the development ©f the transistors the investigation
of solid state physics has made a remarkable progress. It never
seems to be an exaggerated expression that the present prosperity
of the electronic industries is largely attributed to the reseach
of physical properties of semiconductors. The research-field so
called 'Solid State Physics' has made a great advance especially
in semiconductors with strong help of Quantum theory, which was
extensively studied in those days. The study of light scattering
( including Brillouin and Raman scatterings ) was one of the impor-
tant part of such investigation field and fundamental treatment
of light scattering were established considerably long ago.

The first prediction of light scattering by long-wavelength

D in 1922, sub-

elastic sound waves was presented by Brillouin
sequently Smekalz) developed in 1923 the theory of light scattering
by a system with two quantized esnergy levels; this theory contained
the essential characteristics of the phenomena discovered by Raman?)
In the initial stage the experiments of the light scattering
were performed as anexcellent tool to study the excitation of mole-
cules and molecular-structures. In 19240's emphasis has been shifted
to the systematic investigation of single crystals to obtain the
informations of the lattice dynamics. However, the experiments
seemed to be difficult because of poor light source and small scat-
tering intensity. The appearance of laser in 1960 was to change
this situation rather drastically. The monochromaticity, coherence
and power were also to change the character of light scattering.
Ever since the discovery of the laser one could easily obtain the

detailed experimental data enough to be compared with detailed

theory.



In the early days of light scattering experimental work was
only possible with materials transparent to the scattering‘radia—
tion . This is due to the fact that the scattering volume,limitted
by the absorption length, was too small in opaque samples to make
observation possible. in order to make the study of light scatter-
ing in the opaque.photon energy region possible the measurements
were performed in the back-scattering configuration which has become
later the standard technique for the investigation of resonance
effect. As the progress of the experimental technique one became
to be able to obtain the high qualitative data from the light scat-
tering even in the case where the incident photons create the
electronic excitations in the crystals. This is also applied to
some of the features ( critical points ) in the second-order spectra
and made the resonant Raman scattering an ideal technique to study
the effect of perturbations on the phonon spectra.

Generally, in the opaque photdn energy region the scattering
by phonons occurs mainly through the intermediate virtual electronic
excitations. Thus, for incident and scattered photons near the
energy of interband transitions such band struétures must be
appeared in the dispersion spectra of Raman and Brillouin scattering.
This structure can be uéed for studying the electronic transitions
in a way similar to that used in modulation spectroscopy?)

The first measurement of resonant Raman scattering in semicon-
ductors was performed in Cds using the discrete lines of the A;-
laser?) Later, measurement for CdS by Ralston et al§) confirmed
the resonant enhancement of Raman scattering cross section close
to the critical point and established the existence of an antireso-

nance structure in the dispersion spectra. For recent years a lot

of experiments of first~ and second-order resonant Raman effect



in variable II-VI and III-V compound semiconductors ' 13)

were
performed.

On the other hand the resonant Brillouin scattering in CdSs,
which is main object of the present work was first performed by

Pinel4)

using the high-resolution confocal spherical Fabry-Perot.
In the case of Brillouin scattering by acoustic phonons such a high
resolution-interferometer is essential because of small Brillouin
shift. In this measurement ,however, one could find only the slight
resonance feature of scattering cross section near the intrinsic
absorption edge of Cds.

The new experimental technique of resonant Brillouin scattering
by using the strongly amplified acoustic domain through the acousto-

electric effect in piezoelectric semiconductors32_37)

15)

was proposed
by Garrod and Bray and they actually demonstrated the possibility
of measurement in resonant Brillouin scattering by using the acous-
tic domain generated in n-GaAs. In the dispersions of Brillouin
scattering cross section observed by them one could clearly con-
firmed the existence of resonant enhancement near the edge and reso-
nant cancellation at the photon energy just below the fundamental
absoption edge of GaAs%S) This measurement is the starting point

of the investigation in resonant Brillouin scattering by using the
high density acoustic flux. It should be noted that initial stage
of Brillouin scattering experiments in opaque photon energy region
has just corresponded to the age, where the study of acoustic insta-
bility32_37) has been studied vigorously and the excellent technique
of acoustic-amplification was constructed. After the experiments

15)

by Garrod and Bray the observations of resonant Brillouin scatter-

ing by using the acoustic domains were performed in semiconductive

16,18;19)

Ccds by the present author independently by Gelbart and



17)

in which the resonant enhancement and cancellation were

0)

Many

well explained by using the Loudon's theory2
1)

taking into account
of the exciton contributions2 . In those measurementéthe conti-
nuous light source dispersed by conventional monochromator instead
of laser is used because the intense acoustic phonon beams provide
the strongscattering signals.

Subsequently the several kinds of piezoelectric-semiconductors

such as CdSZ?’23)CdSe%4) 23)

and ZnO were used in the experiments
of resonant Brillouin scattering and similar features of resonant
enhancement and cancellation structures were confirmed.

In those days, however, experimental method of resonant Brill-
ouin effect was restricted to only crystals having strong piezo-
electricity, but such disadvantage was successfully overcome by
the development of acoustic pulse injection25_27) by the present
author. It was found that the technique of acoustic injection made
us possible to investigate the resonant Brillouin scattering even
in the non-piezoelectric crystals where one cannot directly generate
the acoustic domains.29'3o)

The present work is concerned with the study of resonant Brill-
ouin scattering in semiconductive CdS and semi-insulating ZnSe.

The characteristic feature of the present work is that a strongly
amplified acoustic domains instead of thermal phonons are used in
CdsS and that injected acoustic waves are used in the case of ZnSe
which means that one can perform the experiment without tunable
dye-laser. The CdS crystalbelonging to the wurtzite typesemicon-
ductors has a strong optical anisotropy and therefore it is interes-
ting to study the resonant behavior of Brillouin scattering effici-

ency near the fundamental edge taking into account of such an opti-

cal anisotropy. The acoustic pulse injection developed in the



present work enabled us to investigate the resonant Brillouin
effect also in semi-insulating semiconductor ZnSe belohging to
the zincblende and we can discuss the physical mechanism of reso-
nance effect for both types of crystals.

Chapter II of this paper is devoted to describe the basic-treat-
ment of light scattering by using the phenomenological expression
and guantum theory. Brillouin scattering cross section for each
acoustic mode in CdS are presented and the detailed microscopic
treatments of resonant Brillouin scattering near the fundamental
edge are reviewed. From the analyses of deformation potential
scattering of intermediate virtual states by acoustic phonons it

is found that the 3-Band model has an important role to understand
18,19)

the essential resonance effect. The expressions of excitonic-
resonant Brillouin scattering are also reviewed?l) In this sec-

tion general expression of theoretical treatment in resonant Brill-
ouin effect by using the Green function method is derived, which
is very useful to discuss the light scattering in the higher pho-
ton energy region. By using this theory the correspondence of reso-
nant Brillouin scattering with the modulation spectroscopy is ob-
tained.

In Chapter III, the experimental procedure of the present
work and sample construction are reviewed. 1In order to estimate the
correct scattering efficiency in the experiment the resolution of
acoustic frequency is discussed.

Chapter IV deals with the experimental results of resonant
Brillouin scattering in CdS and ZnSe%S'lg’zg) It is foundin compari-

.son with the theory that Briupunyscattering cross section due

to the piezo-active acoustic phonons are well explained by the



theory of excitonic resonant scattering taking into account of 3-
Band model. The resonant cancellation ( anti-resonance ) is also
found in the dispersion curve of piezo-active phonons. The reso-
nant enhancement of Brillouin scattering cross section for mode-

converted phonons in CdSlg)

are presented and discussed by using
the modified Loudon's theory. In this Chapter the experimental
results and discussions of resonant Brillouin scattering for two
kinds of transverse acoustic mode in 2ZnSe are givenz?) By taking
into account cf the band structure at TI'-point of the specimen 3-
Band model 1is constructed.

In Chapter V, dispersion spectra of the optical modulation
due to the propagating domain of CdS are presented?6-102) I.t is
known that the acoustoelectricC domains can significantly modulate
the intensity of light transmitted through the region of such
domains. Several models have been proposed to explain the physical
mechanism of this effect?2—97) We have performed the comparison
between the optical modulation and resonant Brillouin scattering.
It is found that the dispersion curves of modulation signals are
found to well agree with the dispersions of resonant Brillouin
scattering. It can be concluded that the acoustic domain induced-
Optical modulation of CdS is mainly caused by the light scattering
from high density-acoustic phonons inside the domain%oo'loz)

In Chapter VI, the experimental results and discussions of
the Break—-down of symmetry induced selection rule in Brillouin
scattering in CdS are reviewed. As it is well known the Brillouin
tensor is determined by the tensor representation of photoelastic
constant. The polarization relations of incident and radiated

photons have been decided based upon the such tensor expressions.

In the present work it is observed that the Brillouin scattering



cross section for forbidden configuration shows a resonant enhace-
ment near the fundamental edge of CdS. Such a resonant enhancement
in forbidden scattering is also found for the mode converted
phonons. The present experimental results suggest that the crystal
symmetry induced Brillouin tensor must be reconsidered in the resc-
nant region.

Application of acoustic pulse injection technique is presented
in Chapter VII with the theoretical treatments of acoustic matching
theory?g) By using the injected acoustic waves into ZnSe and ZnTe
the sound velocities for mixed acoustic modes propagating in several
directions are measured and three independent elastic stiffness-
and C of ZnSe and ZnTe are determined by best-

1112 44
fitting the data to the theoretical expressions?6’78) Attenuation

constants C

coefficients of propagating acoustic waves are also determined in
the acoustic frequency range from 0.2 to 1.5 GHz.

In Chapter VIII the conclusions obtained in the present work
are summarized.

In Appendix I the detailed discussion of 3-Band model is
presented

In Appendix II the correction of strong absorption and deple-
tion of incident and scattered lights for the case of anisotropic
crystals is discussed.

In Appendix III the expressionsof tensor formulation of elas-
tic constant [C"] for arbitrary cpoardinate system in cubic crystals

are presented.



Chapter II. Theoretical Background

2.1. Introduction
Brillouin scattering has many advantages to study the proper-

ties of acoustic phonons in both iso- and anisotropic crystals.
The macroscopic theory of Brillouin scattering was first derived
by Benedek and Fritsch?l) It ié very useful to investigate the
Brillouin scattering due to both the thermal phonons and amplified
phonons in cubic crystals. Original formulation of Brillouin
scattering cross section is, generally, obtained from the relation
of momentum conservation between the incident and scattered pho-
tons and phonons in the crystals. It is not important in the con-
struction of momentum-triangle to take into account the optical
anisotropy in the case of cubic crystals such as ZnSe. However,
one finds that the consideration of birefringence character in
anisotropic crystals has an important role in the estimation of
Brillouin scatterig cross sections?o) It is well known that the
Brillouin scattering technique is very available to observe the
features of amplification in the propagating acoustic domains in
piezoelectric semiconductors§4_37) In the case of CdS the expres-

sion of Benedek and Fritsch cannot be applied to the analyses of
scattering cross section because of strong optical anisotropy.

Hope?B) Nelson et al.39)

and Hamaguchi40) have calculated
the Brillouin scattering cross section of anisotropic crystals by
taking into account of the strong birefringence and internal re -
flection. At the present work the expressions of Brillouin scatter-
ing cross section derived by Benedk et al. is used in the case of
ZnSe and that of Hamaguchi is applied to the case of CdS because

their formulations are very advatageous to the present configura-

tions.



Here it should be noted that the formulations mentioned
above are useful only in the transparent optical frequéncy range,
where the incident photons never excite the electronic excitations
in the crystals. In the photon energy region close to the critical
points of the band structure the macroscopic treatments of Brill-
ouin scattering are not valid since such treatments never take into
account the electronic contributions. The microscopic expression
including the effect of electronic excitations was first derived by
Loudon ?0) He predicted that the scattering efficiency should
increase drastically when the excitation energy approaches to the
band gap energy in semiconductors?o) After his prediction many
investigators were devoted to the study of resonance effect in semi-
conductors and a lot of theoretical formulatiors were
presented?‘21’4l—49)

It is also found that the deformation potential scattering
of intermediate virtual states ( electronic-excitations ) by
phonons plays a very important role in the discussion of resonance-
effect}a) Based upon the selection rule of deformation potential
scattering 2- and 3-Band models of transition process of virtual
states are constructed. This Chapter is devoted to show the expla-
nation of macroscopic treatment in the Brillouin scattering and
scattering cross sections for each acoustic mode in iso- and aniso-
tropic crystals are derived. In the latter part of this Chapter,

microscopic treatments are discussed,based on the Loudon's original

formulation where the exciton-contributionsare taken into account.

2.2.1 Basic Theory of Brillouin Scattering( Macroscopic-Treatment )

Macroscopic treatments of Brillouin scattering from isotropic
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1)

crystals has been derived by Benedek and Fritsch? in which the

integral equations are solved. In the case of anisotropic crystals
such as CdSs it is essential for analyzing the scattering cross sec-
tion to take into account the strong birefringence of the crystals.
The following discussion is based upon the treatment of Hamaguch§0)
wheo extends the‘theory of Benedk and Fritsch to the case of aniso-

tropic crystals. When fieid of light,

E = expi i (ki-r—m;t)J (2.2-1)

is incident on a crystai, the scattered light tield amplitude at
an arbitrary position R is given by

W, 1
B' (R, t) =~ () =g expli (K'-R-u;t)]

. 3 —-— ' L] —
XIkx[Ikx Lde(r,t)Eo exp[l(Ki k')>r jJdr (2.2-2)
where Wy and ¢ are the angular frequency and the velocity of the

incident light in the free space, respectively. The wave vectors

K. and k' are defined by the following relations;

i
n. n.w,
- 1 v d7i _
ki- T;Milko , k S Ik (2.2-3)

where n, and n4 are the refractive indices for the incident and

scattered lights, and I and I, are the unit vectors in the direc-

ko k

tions of the incident and scattered lightswave vectors. The fluctu-
ation in the dielectric constant can be originated from the
existence of acoustic waves, in whichthere exist three possible
process; (a) direct photoelastic effect (b) indirect photoelastic
effect through the electro-optic effect and (c) body rotation of

the atomic displacement. The effect of (a) is so called usual
Brillouin scattering,(b) is indirect Brillouin scattering and (c)

39)

is the rotational contribution , which is shown schematically
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in Fig. 2.1. Elastic-Waves
Sk]:strain

‘\\\iziezoelectricity

Photoelastic- Rotation Polarizati
: ion-
Effect Efffct Field: E
:Electro-Optic
N A€ . Effect
A€1J ?:J + ec
1 \' 4
\LL i Asij
(Direct-Effect) ' (Indirect-Effect)
]
;
)
Y

Light-Scattering

Fig. 2.1. Schematic explanation of direct, indirect
. and rotational Brillouin scattering.

As shown in Fig. 2.1 the indirect Brillouin scattering originates
from the electro-optic effect, and thus this effect strongly dpends
on the magnitudes of existing fluctuating field and electro~-optic
constant of the crystals. Indirect effect was pointed out by Nelson
et al?s) and by San'va et al?l) in CdSs crystals, however, in the
present experiment of resonant Brillouin scattering it is found to

be unimportant event for the piezo-active acoustic phonons in CdS%B’Zz)

Rotational contribution is also found to be negligible effect%e)

Therefore we discuss only the direct photoelastic effect in this
section. The fluctuation in the dielectrc constant 8¢ due to the
strain in the crystals can be expressed in terms of Fourier compo-
nents;

1
se¥ (2, ) = (52)>/25, (|ag|se” (@) exp li(q-ren (@t']  (2.2-4)
] H

where 21/|q| is the wavelength of the dielectric fluctuation.
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The index y denotes the possibility of a number of acoustic branches

and wu(q) is the angular frequency of acoustic mode p. By substi-

tuting eq. (2.2-4) into eq.(2.2-2) one obtains the magnitude of
scattered light field E'(R,t) at the point R,

W, 3/2
B (R,t) =~ (Z2)2 20" Dexp [0 kR - (w*0, (@)t ]
A

XL x[ T x (8e¥(q) -Ey) ] (2.2-5)

where acoustic wave vector g is represented by the scattered light

wave vector ks(==nd[witwu(q)]lk/c) as;

q=ks-ki (2.2-6)

Equation(2.2-6) means the momentum conservation between the incident

and scattered photons and acoustic phonons. The term witwu(q)=w

s
refers to the angular frequency of scattered light, which corres-

ponds to the energy conservation-law for stokes(+) and antistokes

(-) scattering. First we estimate the incident and scattered light

angles (6i and ed) in the Brillouin scattering of iso- and aniso-

tropic crystals by considering the triangles of the momentum conser-

vation( Fig.2.2).

LD

@D

® e o
1
D

(a) anisotropic (b) isotropic
crystal crystal
Fig. 2.2. Manentum conservation between the
incident and scattered photons and phonons
for aniso-~ and isotropic crystals.
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In Fig.2.2 the vectors ki,kS and  are waves vectors of incident
and scattered lights and acoustic phonons, respectively. Generally
the incident and scattered light angles(ei and ed) are not same

in the anisotropic crystals, while ei is equal to 6, in the case of

d
isotropic crystals( Fig.2.2.(b)). From eq.(2.2-3) and Fig.2.2
one can obtain the following relations for the angles (ei and ed)

to the case of anisotropic crystals;

A ve
. _ il 2 _ 2 _
Slnei_'Zn.v [fq-+ 5 (n] nd) ] (2.2-7)
i’y £ N
g9
| ) v/ 2
Slned=m [f - 3 (ni —nd) ] (2.2—8)

d’up 4 £ A

where the subscripts'i' and 'd' denote'incident'and'scattered'
respectively, A is the incident light wavelength in the free space,
vu the sound velocity of acoustic mode u and fq the frequency of
the acoustic waves. On the other hand one can obtainthe following

simple equation of Gi and 0. by using the relation; n, =ng=n

d
for the isotropic crystal;

Af

q -
) (2.2-9)

1

6i=6d=31n

It should be noted here that the expressions of eqgs. (2.2-7),(2.2-8)
and (.2-9) are valid for the case, where the acoustic wave vector
g is parallel to the surface of crystals( off axis angle § =0)?0)
How we evaluate the Brillouin scattering cross sectin for
iso~- and anisotropic crystals. The total power dI'(q,R) in all

frequenciesvscattered into a solid angle dQ'at the field point R

is proportional to the mean square field strength,

¢ 2.2
ar' =& |<E' (g, t)> ] “R°aq (2.2-10)
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The fluctuation Ge“(q,t) produces a corresponding flucuation in
the electric displacement vector §D(q,t) (=6€u(q,t)-E0) .

As mentioned before in the direct Brillouin scattering mechanism
the fluctuation of dielectric constant 6€ originates from that of

the strain e, Here the strain component e is written in a

k1l

convenient form by using the spacial Fourier-transformation as;

1 lar| du, du,
3/2

e ,(q,t) = (5= +=7)
kl (27) 2 axl Bxk
i
=3 [uk(q,t)ql+ul(q,t)qk] (2.2-11)

where u, refers to the oa-component of displacement vector U and
qB to the B-componemnt of acoustic wave vector g. One can express
the fluctuation in dielectric tensor component 6€ij(q,t) as a

linear function of the elastic strain component ekl(q,t),

_6€ij(q,t)

< (2.2-12)
€1i%53

Piik1 Sy (4. t)

where €53 is the diagonal component of the dielectric constant ten-

sor in the absence of strains;

€ 0O O
11 2 5
[€0]= 0 €4 0 with €,,=0, and €330y (2.2-13)
0O O 833
and Pijkl is the component of the photoelastic tensor [P]. The

formulation of tensor [P] is very important to determine the com-
plicated connection of Geij with existing strain components.

One finds that the symmetry induced selection rule of Brillouin
scattering is mainly determined by using the formulation of photo-
elastic constant tensor [P]. The tensor [P] is represented for the

crystal with symmetry 6mm{( CdS belongs to this symmetry ) as,
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’

P11 P12 P13

P12 P11 P13
Py P33 P33 0

0 0 0P
‘0 0 O0 0 P
| 0 0 0 o0

with P66=(Pll—P12)/2 (2. 2-14)

o O O O O

P

66

7
where the contracted notation is used in which pairs of indices are
reduced to a single subscript running from 1 to 6. The one can

write eq.(2.2-13) by using the above formulation of [P],

“8e; 5 (Qrt) = 2Py e 584540557 2P 0540530557 B P 1E13871%5

P117P12

2
2 S T Pag)€1183500319427652051) (2.2-15)

and thus the fluctuation in the electric displacement vector in

the crystals $D is written,

2
£
8D(q,t) = 8c¥(q,t) -E_ = — E_u"(q,t) ¥ (2.2-16)
1
P 2P
u_ 44 . ) _ 44 _ 2 , s
where, [ —~;§—[eo ﬂ(eOIq-IE)+(eoﬂ IE)soIq] -Zf_%eri(ﬂ)f(lq)l(IE)iIl
11 11
P..-P
2 2 11 " 12 .
+Il % me(emm/ell)(“)f](IE)mIm +( Y Pyl

[ (M) (T) 5 (Tp) Ty + (M) (I 1 (T ,T)

(M) (T ) 1 (TR) Ty (M) (L) H(Ip) T, ] (2.2-17)

In eq.(2.2~17) the subscription q=Iq|q| , and EO=IE|E0| habe been
introduced and m is the unit polarization vector in the direction
of displacement vector U(gq,t). The vector Il(l=l,2 and 3) is unit

vector along the cube axis Oxl,o'X2 and OX3 defined in the text of

e§0) where OX3 is parallel to the c-axis of the crystals. It

should be noted that one can observe not ¢Mbut the component of gH

Ny

in the plan perpendicular to the scattered wave vector ks’ which
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is given by
g = 1 x (1 x ¥ (2.2-18)

The wvector g“ therefore determine explicitly the polarization direc-
tion of the scattered light from each acoustic mode u. From
egs.(2.2-5),(2.2-10) and (2.2-16) we obtain the power 4dI' of sca-
ttered light under the condition ; hwu(q)«:kBT,

2
W, v |Eul
2
U

hw_ (q) [<n_(g)>#1+<n_(q)> 14Q' (2.2-19)
(am) 25 20v2  H u M

where nu(q) is theoccupation number of acoustic phonons for mode u
Finally the intensity of light scattered into the solid angle dQ'

during the optical path length b is given by,

ﬂzng kBT liulz
ar' = 1_—°2), 5 bdg' (2.2-20)
At ok 2 oV,

where I, is the intensity of incident light. It is found that the
solid angle dQ' is the internal solid angle in the specimen, there-
fore the internal solid angle dQ' should be replaced by external
solid angle(ﬂ%)using the following relation?o)dﬂ‘=cosed.d90/ (ndx
JEETEIEYBA )?0) The term of AQ' is found to slightly depend upon

d
the wavelength of the incident light. 1In the present study the

amplified accustic phonons of the order oflOG/\»lO8 above the thermal

phonons were mainly used and therefore the factor kBT is eq.(2.2-20)

c
By considering those facts one can finally find the Brillouin

should be also replaced by the acoustic flux energy ¢
a

scattering cross section o

B as,
2.8
™ n ) M2
_ o ac |§
op= — > ._ac - an’ (2.2-21)

AT M 2
| PYL
The expression of eq.(2.2-21) is useful for both iso- and aniso-
tropic crystals and is found just to correspond to that of Nelson

39 . .
et al.? ) Now as mentioned above, it should be kept in mined that



17

eq.(2.2-21) is valid only for the transparent photon energy region,
where there exist no electronic excitations( no interband excitations
of electrons ), and scattering cross section Og is described by the
form: oBax_4.; However, the expressions of Oy derived in this
section never predict the resonance-structure near the intrisic

band edge of crystals. In the case of cubic crystals such as ZnSe,
those discussion stated above are essentially valid. The photo-

elastic constant tensor of ZnSe belonging to the class 43m is

represented as,

11 P12 P12 o 0 1
P12 P11 P12 0 0
12 P12 P11 o 0 (2.2-22)
0 0 0 P, 0 O
0 0o 0 0 Py, 0
| 0o 0 0o 0 o P,

/

As shown from eq.(2.2-22) the independent photoelastic components

are only Pll’ P12 and P44 hence one can obtain the more simple

formulation of vector M for the cubic crystals?l)

uoo
L7 = Py,l (ﬁ)-(Iq.IE)-+(n-IE)Iq]+plz(ﬂ.Iq)IE
F(Py1=Py372P ) § (M) p (T ) y(Ig) pTy (2.2-23)

where the notation are the same as the case of anisotropic crystals
and errors in ref. 31 are corrected( see ref.40 ). In order to
estimate the intensity of Brillouin scattering one has to evaluate
the factor |£|2/pv2 for each experimental condition. 1In the next
section we summarized the complete expressions of Brillouin sca-
ttering cross section according to each acoustic mode u (T1,T2 and

PL modes).
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2.2.2 Brillouin Scattering Cross Sections for each Acoustic Mode

The following discussions are intended to estimate the Brillouin
scattering cross section by acoustic waves propagating along a
particular crystallographic direction. The acoustic modes used in
the present work of CdS and ZnSe are two kinds of transverse acous-
tic waves (Tl and T2 ) and pure longitudinal mode (PL). The experi-
mental configurations of Brillouin scattering by each acoustic mode
are summarized in Table 2.I. for CdS and ZnSe.

Table 2.I. Experimental configuration for each
acoustic mode in CdS and ZnSe.

T2-mode IqJ»c—axis Ty c~axis IEI/c~axis

[CAS] Tl-mode Iq dlc-axis 14 c-axis IE..L c-axis

PI~mode Iq_L c-axis Tmlc-axis IE !/ c—-axis

T2-mode 1_// [001] m ¢ [110] I [110]
[ZnSe] d _
T1-mode Iq 1 [110] w ¢ [110] I/ [110]

Case (a): T2-mode.
This acoustic mode wave: is piezoelectrically active and
propagates in the c-plane with polarization vector parallel to the

c-axis. Form Table 2.I one can easily find,

Iq= [1,0,0], m=[0,0,1] and IE= [0,0,1] (2.2-24)
In this case eq. (2.2-18) reduces to,
|
T2 44
"= —5— [ (e m)-I_le -I (2.2-25)
Eil o E o q

and electric-scattering vector £T2is given by,

T2

£ ==P44(€33/811)EW fq,X)IL (2.2-26)
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where the notation F(fq,k)=]Ikqu} is introduced and I, is the

unit vector perpendicular to the incident light polarization which
determines the polarization direction of scattered light. The facttor
FTZ(fq,A ) is determined so as to correspond to the experimental

condition in the T2-mode Brillouin scattering in CdS as,

2
: 1 2 v
T2 A 2 T2 2 2 .2 ,1/2
F° (£ AN2{l1- — —5—— [f2+ —== (n2-n } (2.2-27)
E A 4n® v2 g2 @ > o™ e ]
o ‘T2 q

and finally one can find the expression of 15(2/pv2 for T2-mode

acoustic waves,

72,2 2
e~ Pga Do 4 12
= -y - FT2(f ) (2.2-28)
)
v, Caa Mo q

Equation (2.2-28) is also valid in the case of ZnSe, when we use

the condition; n,=ng.

Case (b) : Tl-mode.
This acoustic mode is piezoelectrically inactive, which can be
generated by mode conversion at the end of the specimens.

From the Table 2.I one finds,

Iq==[l,0,0] and w = [0,1,0] 42.2-29)
and IE is in the OX2—0X3 plane. In this case one obtains,
P,.-P P_._.-P
CTI= ll2 12 and ng= 11 "12 FTl(fq'A);” (2.2-30)

where I, is the unit vector lying in the OX,-0X, plane, which
means that the scattered light polarization is also perpendicular
to that of incident light. By an analogy to the case of T2-

mode one obtains the factor]&‘Tllz/pv2 for Tl-mode of Cds,

2 2
g7 (P, .-P..)
- 11 12 °FT1(fq,A) (2.2-31)

3
PVry 2(Cy1-Cp))
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2

1l A \Y
. 2, 2
with F'1 (£ )= {1- — L2+ (— 1) (n2-n2)1?11/2 (2.2-32)
q 4ané v°f g A ° :
d T19gq
where ng is the refractive index of scattered light and n is the

ordinary refractive index of CdS. It is also found that eq.(2.2-32)

is valid for the case of isotropic crystal ZnSe using the condition

Case (c¢) : PL-mode.

The pure longitudinal acoustic mode(PL) used in the preseﬁt
study propagates in the c-plane with displacement vector parallel
to the propagation direction. In this case the incident lights
with polarization vector parallel to the c—-axis are used in the
experiment and therefore one obtains;

Iq==[0,—l,0], m = [0,~1,0] and IE = [0,0,1] (2.2-33)

By using the result listed in Table 2.I. the following equation

is found for the case of PL-mode,

2
€ P €
tFh= E£)2P3113 and &Ff= -C_:i]_. ( ELB )ZI// (2.2-34)
11 11 11
Finally we obtain,
PL,2 2

e 1" Py
5= = —= (2.2-35)

PVpr Cll

where I, is the unit vector parallel to the polarization of inci-
dent light and the relation; n;=ng4 is taken into account. It is
found in the case of PL-mode Brillouin scattering that the polari-
zation direction of scattered light is not rotated from that of
incident light. The results of Brillouin scattering cross sections
and polarization relations between the incident and scattered
light by the acoustic modes used in the present work are summarized

in Table 2.II.
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Table 2.1II. Relevant photoelastic constants and polari-

zation relations in the Brillouin scattering. »
relevant photo- polarization-

elastic constants relations

T2-mode: P44 IEJ.IA

[CdS] Tl-mode: Pll—P12 IE.LIA
PL-mode: P3l IE ﬂIA

(ZnSe] TZ—mode: P44 IE.LIA
Tl-mode: Pll-P12 IE.LIA

2.3. Basic Theory of Resonant Brillouin Scattering( Microscopic
Treatment )

In the previous section we considered the scattering effi-
ciency for each acoustic mode phonon in a perfect transparent
region. In such conditions the basic treatment of scattering
mechanism is considered to originate from the momentum and energy
conservation laws between the photons and the relevant phonons.
It is found from the macroscopic treatment that the Brillouin
scattering cross section(h has Xﬂgdependence for the incident
light wavelength. Then the theoretical expression of Brillouin
scattering derived in section 2.2 can not explain the resonance
( or antiresonance ) structure in the dispersion spectra. We
observed in this section a basic treatment of resonant Brillouin
scattering in the photon energy region of fundamental absorption

edge based upon Loudon's theoryzo)

are presented.

The resonant Brillouin ( or Raman ) effect originatesfrom the
mutual interaction between the incident and scattered photons and
acoustic ( optical ) phonons including the electronic excitations

as a intermediate virtual states. This physical explanation is,

in general ., treated by using the time-dependent perturbation theory.
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In the first order resonant Brillouin effect, a beam of photons
with frequency w5 is incident and radiation with frequenéy Wy emitted
from the crystals,lws-wil being the frequency of a long wavelength
lattice vibration. In the present discussion all quantities
refering to the incident photons have a subscript 'i' and those
refering to the‘radiated photons have a subscript 's'. 1In the
crystals used in the present workthere is one simple process by
which the resonant sscattering can occur. The process involves
three virtual electronic transitions accompanied by the following
photon and phonon transitions; (1) a photon Wy is absorbed, (2)

an acoustic phonon mq is created or destructed (3) photon ws(=mitwq)

is radiated. The three transition process can occur in any time-
order, giving six types of process. Now we write the total Hamil-

tonian H, correspponding to the mixing system of photons,phonons

and electrons,

O
T o T Hy (2.3-1)

. O (o] O o]
it =
with HT thoton thonon electron’

(2.3-2)

and HI = HEL + HER

where Hg corresponds to the Hamiltonian for the unperturbed state

including the photon phonon and electron, and HI is interaction

Hamiltonian, which is formally divided into two parts HEL and HER
corresponding to the interactions between the electrons and phonons
and between the electrons and photons, respectively. Suppose

that at time zero the crystal is in its electronic ground state

and the photons w, are incident. The probability that at time T

one photon w., is destroyed and one photon w_ and one phonon w_ are
. i s q

created, is given by,



23

-1 .T
P(T) = | <rﬁfl,ns+l,nq+l:o e 18T /h\ni,ns,nq=0:7|2 (2.3-3)

The transition probability P(T) of eq.(2.3-3) corresponds to the
process of anti-stokes Brillouin effect and this is derived under
the condition that the initial and final electronic states are the
same. By the theory of time-dependent perturbation the transition

51)

rate P(T) is represented in the following way;

2 1 <f|H_|m;><m. |H_|u>
P(T) = — | <flHglu+ —0 i1 1
m -
ol 1 (w, wml)
. <ElHplm p--c-<m[Hp|u> |2
cheees 5T mh S
h n-1 (w ~wp )- (w wml)
m1
x § (wu-wf). (2.3-4)
In the above equation, |m,>,|m,>-.-|m_>are the intermediate

virtual states of electronic excitations, |u> and |f> are the
initial and final states, respectively. The part of delta-function
means the energy conservation of the system.

For the direct gap-semiconductors such as CdS and ZnSe,
third order term in eq. (2.3-4) plays an important role in the
effect of fundamental resonant Brillouin scattering ( first-order
Brillouin scattering ), which is given by using two intermediate

virtual states,

27 <f|H_|m_><m_|H_|m ><m_|H_|u>
P (T) = o~ x T | v A Sy M L ¢ 2
(w =w ) (0 ~w )
u m2 u ml
x § (wu-wf) (2.3-5)

This expression is a basic formulation to analyze the first order
resonant Brillouin scattering of direct gap materials, while we

should use the fifth order term in eq.(2.3-4) to discuss the
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resonance effect in the case of indirect gap materials such as
GaP?z) Now we consider the complete expression of each iﬁteraction
Hamiltonian HEL and HER in order to perform the caluculation of

eq. (2.3-5). In the present analyses we will adopt the vector poten-
tial representation for the interaction Hamiltonian HER which is
written by using the creation a+ and destruction a  operators,

- ikers. 4+ -ik.r. A .
[ a, e J+ake J1] (€k-Pj) (2.3-6)

wher Pj and rj are the momentum and position vectors of electron j,
n is the optical dielectric constant, V the crystal volume, and

%k is the unit polarization vector of the photon k. Here it is
found that the matrix element of Hop between pair states |a>and

| 8> can be non-vanishing only where |a> and |B> differ either in
the states of a single hole or electron.

The electron-lattice interaction was derived by taking into
account the deformation potential interaction between the electrons
( or holes ) and acoustic phonons. For a long wavelength acoustic
vibration of crystals including two atoms in the unit cell, the

displacement vector U(R) at position R is given by,

h

( 1/2
2(M1+M2)NwS

ik°R +
- € ( bs--k

U(R) = )

k

gsk + bsk) (2.3-7)

where Ml and M2 are the masses of the atoms in the two sublattice,

N is a number of unit cells and Esk is a unit polarization vector,
and b; and b; are the creation and destruction operators of phonons,
in the branch s, respectively. It is intuitively obvious that a
uniform displacement of the whole crystal can produce no electron

( or hole )-lattice interaction. One can obtain the most important

term of Hp by using the following strain component Sij?3’54)
U, h .
i_ . 1/2 ik*R, + -
S,.= —==1i( ) £ . k.e (b__,+b_.) (2.3-8)
ij aRj 2(M1+M2)NwSk sk™j s-k “sk
+ -
= S.. + S

ij ij
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The matrix element of HEL is represented by using eq.(2.3-8),

= :ij." -
(o HELI B) = 5y 54 (2.3-9)

where the repeated indices 'i' and 'j' refer to the coordinates
axis ( x, y and z ) and gij is the same as Sij in eq.(2.3-8) but
with the exponential removed. Since HEL is one electron pertur-
bation Hamiltonian, |o> and|B> can differ either in the hole state
or in the electron state, but not in both states. It is noticeable
that if we assume that all the intermediate virtual states are
free electrons in the conduction band, all the matrix elements of
HEL are zero because of s-like wave functions in semiconductor

in which we are interested. However if we assume that the virtual
states are holes or excitons it is found that the matrix elements
can be non zero which means that the resonant Brillouin effects
can be originated through the transitions of intermediate virtual

18) The detailed discussions of deformation

holes ( or excitons ).
potential scattering of holes ( or excitons ) will be stated in
the next section.

Here we consider the formulation of Brillouin ( or Raman )
tensor by taking into account of possible transition process in
ed. (2.3-5). The Brillouin tensou:Ris for the first order resonance

is represented by using the six types of transition process;

POBZBdPao

1 PoBEsaPao
Ris(—wi,wq,ws)= -—i%{ +
V% (w8+wq+ws)(wa+wq) (wB+wq+ws)(wa+wq)

P P

OBEBQ (Yo ' POBEBuPuO
(m8+wq—wi)(wa—wi) (w8+wq+ws)(wa+ms)

EoBPBaPuo EOBPBaPuo
(wB+ws—mi7(wq-mi) Tw8+w —wi)(wa+ws)

} (2.3-10)
S .
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The six terms of eq.(2.3-10) arise from the six types of scattering
process and it is important to choose the term which mainly contri-
butes to the resonant Brillouin effect observed in the present work.
It is found that the third term in Brillouin tensor plays the most
important role in the resonant scattering. The physical inter-
pretation of this term is represented as the following ; (1) incident
photons w, are firstly absorbed and some kinds of electronic-exci-
taions can be generated in the crystals (2) one virtual state of
electronic excitation interacts with the acoustic phonons and makes
a transition to another virtual state, and (3) the virtual state

is destroyed . and scattered photon W is radiated from the crystal.
The signs attached to the angular frequencies in R: of eq.(2.3-10)
are chosen so that a negative ( positive ) frequency corresponds

to the destruction ( creation ) of the appropriate photons or phonons.
We define the microscopic scattering cross section Og by the follow-

ing equation;

ZIZ
n

1
0, = in (2.3-11)

BN
where N.l and Ns are the numbers of incident and scattered particles,
L is the optical path length in the crystals and @ is the solid
angle determined by the detector-system. The ratio Ns/Ni is
connected to the transition probability P(T) defined in eq.(2.3-4)

by the relation;

NS P(T)L :
ﬁ; = TETﬁI (2.3-12)

where ¢' is the velocity of light in the crystal. After a simple
calculation one obtains the expression of scattering cross section

OB for the case of thermal acoustic phonons,

e k., T w
4 "B S 2
= S IR, (~w,,0_,
8" Emc) o7 o IRyg oy r0grug)| (2.3-13)
3 i
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p_ = p
Bo”Ba a0 (2.3-13)
(w +wq—wi)(wa-wi) :

8

where R, = r—&%

In eq.(2.3-13)‘hwa and hw are energies of intermediate virtual

B
states of electronic excitations |a>and|B>, respectively, By
using the parabolic( band ) approximation one can find the expres-

sion of microscopic scattering efficiency Ris as;

ik 2 4nk2dk
8.2, gs q ©i Zu i i 2y

where’hwgi and'hwgs are the energy gaps for incident and scattered
lights and u the effective masses of two intermediate virtual holes.
Equation (2.3-14) has an important role in discussing the resonance

effect near the intrinsic edge of crystals. After performance of

integration in this equation, following expression is derlvedlg)
Ik _ (Y 1372, PogZga’ 0o
is™ 28 _
(2m) = <A Bgp~Ygatiq
/2 1, Bwg 172 172, -1, By 1,2
X[ (v ,-w_) tan " ( ) (w_. =-w.) tan ~( )
-W “gao -
g8 s ga i
....... (2.3-15)

where'hAwa and hAwB denote the combined width of energy for [a> and
|B> band, respectively. In the calculation of eq.(2.3-15) we assumed
that the types of the critical point is Mo-type and that the effec-
tive masses of the two different pair bands are the same. Equation
(2.3-15) may be approximated in the photon energy region close to

the critical point of band structur,

_ 2y, 3/2 =
Ris( Wy r u)q’w )~ Z;zg = oB“BaPao
1
1/2 _ _ 1/2 _
X E; [ (wgB—wS) (mga wi) ] (2.3-16)



(arb.units)

Riglwgrwgrog)

28

By using the egs. (2.3-15) and (2.3-16) one can estimate the resonant

contribution Ris near the direct-edge of semiconductos which is shown

in Fig. 2.3. where two band model (wga=wgs) is used.

1.0 GHz

£
i

rs0.02

— o eE s L A s S WD n GEe A G G Ey n e S U e AR W

— W,
l/w

g

Fig. 2.3. Calculated dispersions of resonant Brillouin tensor Ris(wi,wq,ws)

for acoustic frequency 1.0 GHz. In the calculation three kindsof broadening
parameters(F/wg=0,F/wg=o.ol and F/wg;0.0Z)are used.
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It is found in Fig.2.3. that the resonant contribution Ris rapidly
increases in the photon energy close to the intrinsic band edge of

semiconductors. The total scattering efficiency ¢ which is pro-

BT
portional to the observed dispersion curves in the present work

is written by taking into account of the resonant and nonresonant
contribution (Ro) by?

oom= | R, -R_|?

BT is = To (2.3-17)

Such a theoretical treatment was first proposed byRalston et al§)

in order to explain the structure of resonant cancellation in the
Raman spectra of CdS. Provided that the treatment of eq.(2.3-16)
stands for the resonance mechanism in Brillouin scattering it is
found fromegs.(2.3-15) and (2.3~-16) that one can observe the anti-
resonance-structure in the dispersion spectra of Brillouin scat-
tering cross section. From the present experimental results one
can find that eq.(2.3-16) is very useful to analyze experimental
data for the case of Brillouin scattering by the transverse phonons.
In the case of Brillouin scattering by pure longitudinal
phonons ( PL-mode )} we do not find the antiresonance in the dis-
persion spectra, which is due to the fact that the sign of main
resonant contribution Ris is the same as that of non-resonant con-
tribution arising from the higher energy bands in the PL-mode phonon
Brillouin scattering. Such analyses about the signs of resonant
and non-resonant contributions are important and discussed in the
latter section in connection with the analyses of deformation

potential scattering.
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2.4. Excitonic Resonant Brillouin Scattering

In this section we discuss a formulation of resonant Brillouin
scattering, where the intermediate virtual states are the discreate
and continuum excitons. The treatment of excitonic resonant-

1)

Brillouin scattering were derived by Gungly and Birman2 by
solving the third order perturbation problem in the second quanti-
zed formulation. It is also possible to show that the expression

of resonant Brillouin scattering effect including the exciton
contributions can be derived by using the Loudon's original formu-
lation. First we consider the Wannier-type exciton contributionsss)
to the resonant enhancement. 1In ﬁhe parabolic band model, the

energy of the exciton concerning to the conduction band (c¢) and

valence band (v) is given by using the exciton's wave vector K,

= 2%2 /2 (m +m” . 2.4-1
qhkwnn-Eg+h / m%mm)—gé (2.4-1)

for discrete exciton states with n=1,2,3..-. , and

Eg (¢, V) =Eg+'f12 K2 /20 €2.4-2)

for the continuum states, where R is the exciton binding energy

and y is the reduced exciton mass (1A = l/m;+l/m§). We already
found that the density of states of excitons in direct-edge materials
is represented by l/(nagn3) for n~th discreate exciton and

ma.exp(ma) /sinhmo for the continuum exciton states, where a, is

Bohr radius and ais written |R/(h2K2/2u)|l/?

Here we introduce
the 3-Band model as the case where |o> ¥|B8> and thus three different
bands take part in the electronic excitations. Taking into account

of the 3-Band model one can obtain the excitonic scattering effi-

ciency Rig based upon the Loudon's formulation of eq. (2.3-14),
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ex _ 1 1
Ris “gﬁ POBZBaPao{ g rasns (wg _R*/nz-wq_wi)(wg _R*/nz_wi)
1 ma € 1
' (2m) 3 SdK. sinhma (wgs-wq—wi¥ﬁK2/2u)(wga_wi+hK2/2u) (2.4-3)

*
where R f=R/h is introduced. 1In eq.(2.4-3) the first term corres-
ponds to the contribution from discrete . levels and the second
term from the continuum electron-hole pair states. Generally,

the values of wga is different fromthat of w in the 3-Band model,

af
but in the case where the intraband transition of virtual excitations

occurs through the interaction with acoustic phonons, mgais equal

to wgB . In such a case edq. (2.4-3) reduces to the same expression
as that of Gungly and Birman (wga=wgs= wg). Integrating eq. (2.4-3)
one findsg‘,' 7é)
ox POB:BaPaO 1 1 1
Rig %azs : {—ZI R*/ 5 - 2 ]
Wgq wgB Wy Ta Wgg n wq CH wga n"-w,
) 1 1 »
* .
4m 41“R 1/2 TR :
l-exp[-(- )71 l-expl-(- ¥
wgB_ws Yga i

In eq. (2.4-4) the virtual states |a>and|B> are excitons and the
summation must be performed for all the possible transition process.
In the case of cubic crystals two valence bands but for the spin-
orbit split off band are degenerated at the top of valence band

(I'-point), then the relation; w__-~ =0 exists. In this case

w
goa g8
we can obtain more simplified formulation of excitonic resonant

Brillouin scattering than the case of wurtzite materials.

o

- We found typographycal erros in the equation derived by
Gangly and Birman(ref.21) and our paper(ref.l18). Correct
form is given »n the above equation.
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2.5. Matrix Elements of Deformation Potential Scatter1ng
by Long Wavelength Acoustic Phonons.

This section is mainly devoted to determine the non-vanishing
matrix elements of deformation potential scattering of holes ( or
excitons ) in the wurtzite type crystals. In the present analyses
three unperturbed wavefunctions corresponding to the three A, B
and C valence bands and strain orbital Hamiltonian HxV are used.

The strain orbital Hamiltonian for p-like valence bands of wurtzite

material at T-point is given bY57 >9)

H = (C.+C.L%)e  + (C.+C

2 2 2
XV 1tesh e, . 9 4Lz)(exx+eyy) +cg(Le, +Lie )

+

+ CellL, Ly de_, +[L L le, (2.5-1)

and for the electrons in the conduction band by

ch== dlezz+ dZ(exx + eyy) (2.5=-2)

where the coefficients Ci and d' are deformation potentials, the

el]s are components of strain tensor with e sy e vy 21exy and
eiz=exzt1eyz, Li,Li are the standard orbital angular momentum
operators, and [L L ]=(L.L.+L.L. )/2 In the case of Tl- and T2-

i73° 77
mode acoustic waves, it is obvious that deformation potential

scattering of electrons in conduction band by such acoustic phonons
disappears (ch=0). Non-vanishing strain components for the three
different acoustic modes used in the present work are summarized

in Table 2.III.

Table 2.III. Nonzero strain camponents for the
three different acoustic modes in Cds.

T1-mode €’ eyy’ exy ey = Ziexy
T2-mode e, © t e, =e tie

yz' Txz tz Tyz X2

Pl~mode exx'eyy'fay




33

From eq. (2.5-1) and Table 2.III one can find the following expres-

sions of strain Hamiltonian using the matrix representation,

2 2 000 00 2
H, (T1) =C5[L_ e, + L e ] = CS[ 000}e+}(000}e 1 (2.5-3)
200 000
Ce
H ,(T2) = — [ (L,L+L.L)e_ + (L L_+L_L)e | |
Ce {o 10 000
= —=[]0oo0-1le_ _+ (100} e, ] (2.5~4)
2 loooj ™2 lo-10)] **
H V(PL) = (Tl) + (C +C4L )(exx yy)
[10 o} {10 0
= H (T1) + [ c, 1010 000| 1(e__+e_ ) (2.5-5)
v 2 00 1 4 00 1 XX VY.

where we used,

[eNeoNo]

1
0
0

oOHO

-+

L =X??
0 0-1

000 100
, L_=[2|100]| and L,={0 00 (2.5-6)
010

The matrix notations of wave functions corresponding to the three

60)

valence bands are described as,

A st SRR rg 5 {1}
with S =-(S_+iS_)A2 = |0
B : J“a S ? +a S ¢ + X Y 0

0
C : J‘aCS_T -aBsoi eees T 5,8, = [é] (2.5-7)

=(sx—isy)/75 = [

where ‘Tand.Lrepresent spin up and down, and S, S_ and So are
defined by using the p-like basic functions Sx, Sy and S,- The

coefficients ag and as aredetermined from the parameters of the

quasi-cubic model; i.e., the spin orbit splitting energy Aso and

crystal field parameter Ac§8)
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_ _ 2.,-1/2 _
aB-[ l+-;-( 2 - — Exa )] (2.5 8)
so
1 ‘ 3 _
a. =[l+- (2- — &, )2 171/2 (2.5-9)
C 2 A CA
SO
where EBA and ECA are the energy difference between the A and B-

, and between the A and C valence bands, respectively, and the

coefficients a_, and a, are normalized according to the relation;

B C
2 2 _ . .
ag + as =1]. By using the values of EAB and EAC derived by Cardona
in the electro-reflectance measurement?l’sz) aB=o.74 and ac=0.67

are found. Next we define the matrix elements of deformation

potential scattering by using the matrix representation,

1] ¢, > = E, * [e,.] (2.5-10)

< ¢v8|[H va Ba 1j

XV

In the above equation,l@va> and |¢VB> denote the state vectors
corresponding to the wave functions; ®vuand QVB , and the subscripts
o and B indicate the A, B, and C valence bands ( or excitons ) and
[eij] means the expression of appropriate non-zero strain.
Substituting egs.(2.5-3) (2.5-7) into eq.(2.5-10) one can find

the following results of matrix elements by using the parameters

aB, aC and Ci'
Eap(T1) =-2{ZayC., E, . (T1) =-2f2a,Cg, Ep,(T1) =0
(2.5-11)
:aa(Tl) =0
for the case of Tl-mode and
EByp(T2) = aCCG/ﬁ v Epo(T2) =-agC A2, . (T2) =-C¢
(2.5-12)
:aa(TZ) =0
for the case of T2-mode and
:AB(PL)==—2aBC5, :AC(PL)==—2aCC5, EBC(PL)==aBaCC4 (2.5-13)
= = - = 2 I3 = 2 o
"‘AA(PL) CytCy Egp (PL) apC,tCyy ~CC(PL) agC,+C,
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for the case of PL-mode.

From the above results, it is found that the intraband transitions
( two band model ) are only possible in the case of PL-mode, and
this is due to the fact that thereexist the longitudinal strain
components in the crystals. Based upon the present results of
matrix elements 2- and 3-Band models in the transition process of
electronic virtual excitations are constructed. With the use of
deformation potential constants Cz, C4, C5 and C6 obtained by

63)

Rowe et al. one can evaluate the matrix elements, which are

listed in Table 2.IV. with the results of cubic crystals(ZnSe).

Table 2.IV. Matrix elements of deformation potential scat-
“tering in CdS and ZnSe.

EAB = ~1.28 (eV) :AC = =1.07 Eac = 0
Tl-mode: . _ = - = -
“ap = 0 “BB 0 fcc =0
= =0.36 s =-0.44 = =-0.8
[cas] T2-mode: " 2O, o0
“AA “BB “cc
= =2.29 =z =1.29 =z =1.34
PL-mode: ;" =-1.60 e =-2.80 2oC =-3.29
“AA : “BB : Tce T
= =2.07 =z =2.94 = =0
Tl—mode::AB =0 :AC = 0 :BC =0
“AA “BB “cc T
[ZnSe]
=z =-3,81 = =-4.66 = ==-2,27
T2—mode::AB =0 :AC - 0 :BC =0
“AA “AC ~cc

In the anlyses of deformation potential interaction in ZnSe

the calculation of matrix elements for the two kinds of trans-
verse acoustic mode (Tl and T2 ) are performed by the analogical
treatment with the case of CdS. It is clear that there exists no

essential difference in the deformation potential scattering
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between the wurtzite and zinclende-crystals for the case of trans-
verse acoustic phonons, where we can find that the interband tran-

sition is possible.

2.6. Construction of 2- and 3-Band Models in Resonant Brillouin
Scattering '

In this section we discuss the possible transition process
of intermediate virtual states ( holes or excitons ) and determine
the dominant contribution process with the help of the results
in the matrix elements of deformation potential scattering derived
in the previous section. First we consider the selection rules
of dipole transtion in the appropriate pair bands ( between the
conduction and valence bands ) of CdS. The selection rules of
optical transition at I' -point of CdS are given by Thomas and
Hopfield§4) Schematic representation of the selection rules in
optical transition between the appropriate pair bands is shown

in Fig.2.4.

As well known, the conduction band

Conduction-
\\\\7 Band has T,-symmetry and A, B and C

T Y
7
valence bands at 'point have Fg,
i
[, and I', symmetry respectively.
s L 7 7
L e ( in the case of excitons these
symmetries are the same ). The
r A-Valence- ) L L
9 Band optical transitions of incident and
r B- scattered photons with polarization
7
Y vectors perpendicular to the c-axis
F7 /' C- are all possible, while in the case
Fig. 2.4. Schematic diagram of of photons with polarization vector
selection rule in optical tran- parallel to the c-axis the optical

sition atT point
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transition between the conduction and A valence band is forbidden.
In the present experiment the light beam polarized parailel to
the c-axis is incident to the CdS sample in the case of T2-mode
Brillouin scattering, and thus the optical gap energy for the
incident light is given by EgB or Egc where EgB ( ox Egc) is the
energy gaps between the B( or C ) valence band and conduction
band. This means that the initial intermediate virtual states

( initial electronic excitations ) are holes ( or excitons ) with
F7—symmetry. Such a condition appears in the case of PL-mode
Brillouin scattering experiment, because of the experimental
configuration of parallel polarization direction. On the other
hand in the case of Tl-mode the polarization vector of incident

light is perpendicular to the c-axis and therefore the energy

. In this case the initial

gap for incident light is given by EgA

electronic excitations have Fg—symmety. The analysis stated above
is very important to determine another virtual state. In the
determination of possible transition process of the virtual states
we have to use the results of matrix elements in the deformation
potential scattering discussed in the previous section. By using
the selection rules of the deformation potential scattering we

are able to find the dominant transition process for the corres-
ponding acoustic mode-Brillouin scattering with help of the selec-

tion rules of the interband transitions?

[Tl-mode] : (wi)——~>|A—exciton> ——EA?IB—exciton> ————— (ws)

[T2-mode] : (wi)--4>[B—exciton> ——égle—exciton> ----- (ws)
Rt

[PL-mode] : (wi)-~<>lB-exciton> ——EE*IBLexciton> ————— (ws)

In the above transition process we assume that the electronic
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excitations are all exciton states and | D means the virtual states
and —> denotes the transition of virtual state by the reievant
acoustic phonons. 1In Fig.2.5 the transition process for the
acoustic mode-scattering, which has the dominant contribution

to the Brillouin scattering efficiency are shown schematically.

\%onductl on

Band

; A-Valence-
Bard

/fgéft\‘\? Valenc- ™ B-

C-Valence- /,—-\\ C-

(T1-made) (T2-mode) (P.L.-mode)

Fig. 2.5. Schematic diagram of daminant tran-
sition process for each acoustic mode in Cds.

It is fond from Fig.2.5 that 3-Band model of transition process
in the virtual states is responsible for the dominant contribution
to the resonant Brillouin effect for the transverse acoustic mode
( T1 and T2 ) and 2-Band model is important for the case of PL-mode
acoustic phonons. As shown in Chapter IV, these models explain the
resonant behavior of scattering efficiency near the intrinsic band
edge of Cds.

In the zincblende type crystals analsis is simpler because the

two valence bands but for the spin orbit splitt off band { C-valence
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band ) are perfectly degenerate at theTl-point in the Brillouin
zone. Such a selection rule of the dipole transition és found in
the case of CdS does not exist in the case of zincblende crystals.
The most important factor in the determination of dominant transi-
tion process in the selection rule of deformation potential scat-
tering derived in section 2.5.

We have already shown that the possible transition of virtual
states are ; |A> «>IB> and |A><«—> |C> for the case of Tl-mode
acoustic phonons, and |A> <« |B> , |A> ¢« |C> and |B><— |C> for
the case of T2-mode acoustic phonons. Other diagonal matrix
elements ( corresponding to the intraband transitions ) are all
zero. If we assumed that the reduced masses of A and B excitons
( or holes ) are the same and the spin orbit splitting energy(Aso)
is considerably large we are able to predict that the important
virtual exciton states are only |A> and |{B> . Such a feature is
guite similar to the case of CdS for the Brillouin scattering

by transverse acoustic phonons.

2.7. Advance Theory of Resonant Brillouin Scattering

The treatment of resonant nonlinear optical susceptibility
was first applied to the analyses of electro-reflectance (ER)
effect by AspnessGs) by taking into account of the fact that ER
theory and spectra have been analyzed with the analogy of the
theory of nonlinear optical coefficients. He developed the
perturbation theory of ER and established thoretically a connection

66,67) to that of nonlinear optics?a)

of the Franz-Keldysh theory
In this section we present the dominant resonant term in the third
order nonlinear optical susceptibility caused by existing acoustic

phonons and derive the micoscopic expression of photoelastic
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constant Pijkl of which dispersion have an important rolg in the
resonant Brillouin scattering. The theory was first proposed by
Hamaguchi and later extended by the present author. We use one-
electron approximation, where the Bloch function @nk(r) describing
electron states in the crystal satisfies a time-dependent schrodinger
equation;

—ignpt d
HO e Ynk® = jh— ¢

K _iu)nkt
on 3t n

e (2.7-1)

where HO is the unperturbed Hamiltonian and Enk=ﬁw is the energy

nk

of state an' Interaction Hamiltonian HI is the same as introduced
in section 2.4 but for the scalr gage-representation of electron-

radiation mutual interaction, given by
i +
H = eE (e + + e - = H + H 2.7-2)
( ) p p (

where hw, =hw*il' ; T is the broadening energy and a small positive
value in the case that the field E is real. Then the total

interaction Hamiltonian HI is written,

+ - + - , * _ =%
= =E =S5.. 2.7-3
Hp = Hp + Hy + Ho + H with (aIHqIB) 0855 ( )

where Hé corresponds to the electron-phonon interaction Hamiltonian
which includes the creation and destruction operators of phonon,
and Sij is the same representation as defined in eq.( 2.3-8)

but with the exponetial term removed. The wave function wnk
corresponding to the perturbed state can be evaluated as a power

series in the perturbation by using the Green operator?g)

= n -
Yo (xet) = [1+ (G H[)"] |¢nk(r,t)> (2.7-4)

where énk is unperturbed state and Go is Green operator.

Here the schrdédinger equation to be solved is,
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3
HT\ynk(r,t) = Ih e wnk(r’t) ' (2.7—5)

ot
By substituting eq.(2.7-4) into eq.(2.7-5) one can findfﬁnk, and
from which the polarization and dielectic constant can be calculated.

The dielectric tensor € .. of the crystal can be calculated from the
ij y

polarization P according to

D. = ¢,.E. =4 .E. + 41P, (2.7~6)
i i373  i3T3 i
e
where P = - ;v%'» <Y (rh)] X |¥ y (xs8)> (2.7-7)

and Tvk(r,t) is given by eqg.(2.7-4). The subscript v for the band
index denotes a filled valence band. The acoustic phonon induced
correction to the polarization P will have the explicit form within

the limit of secondorder approximation,

e
P = — I<vk|X]|vk>
v
e
- —I<vk|X|G (qipi)HtG (pi)Hilvk>exp[-i(w tw ) t]
v o q o P o q

e
- — I<vk|X|G (a*q'*p*)H_,G,(a*p)H G _(p)H [vk>exp[~i(w_ *w _*w 4) t]
v o q'o q o P +7V g d

e o8 5 00 00 s s (2.7_8)
where Go(ij---) is Green function indicated as following,
1
Go(ij....) =
€k +Si+sj+--- -HO (2.7-9)

where i, j--. represent a particular combination of symbols(qg ,p,°*)

and if q+ then [‘ﬁwq
) a Jﬁwq

i= p+ Si = 'ﬁw+ (2.7-10)
P [‘ﬁw_




42

In eq.(2.7-8) first term corresponds to the unperturbed term having
nb contribution to the AP. The second term is found to change
with time in the form exp[i(wiwq)] and thus one can find that

this term just corresponds to the first order resonant Brillouin

( or Raman ) effect caused by one acoustic phonon. From this
consideration it is easily understood that the third term is

an expression of second order Brillouin ( or Raman ) effect where
two phonons are involved. By using the above relation one can
evaluate the change in the complex dielectric constant Ae® induced

by the acoustic phonons,

. 2 ank? ak
Ae (w wq)==Al- 3 S - (2.7-11)
r - . - .
(2m) thwfhwq ecv.(k)+1F)(ﬁw ecv(k)+1F)
4ne
. - _ P ~ _]_- 1 :kl
with, Al- mzwz (es-Pcv)(ei-Pcv)(nq+ zii)“vv' Skl'

fa
where éi and @s are the polarization vectors for incident and

scattered lights, Pcv,(Pcv) is the matrix element of dipole tran-

sitions between the valence band v(v') and conduction band(c),

ecv(k) (ecv.(k) ) is the energy difference between the valence band

v (v') and conduction band (c). Using the following relation,
1 1
Lim = P[E] -imdé(x) (2.7-12)
rt0 x+ir

with P is the Caucy Principal value; the complex dielectric constant

Ae* can be divided into real and imaginary parts,
* 3
Ae (w,wq)==A€l(w,wq)-+1A82(w,wq) (2.7-13)

2
. 2 41k dk
with by (wrug) =B, 3S (2.7-14)
(‘ﬁwi‘ﬁmq-ecv; (k)) (Mw-e (k)

(2m)
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and with 2 P
» 2 41k“dk-§ (Aw-e __(k)) 41k “dkS (hwrhw -€ (k)
Ae (w,w ) =A, ——— cv + q ¢V .
27 q 1 3
(2m)

(ﬁwian—ecvxk)) (ﬁw;ecv(k))

ceeeees  (2,7-15)
In eqgs. (2.7-14) and (2.7-15) it should be noted that the formulation
of4561 is valid for the incident phonon energy‘hw<Eg,and A€2 is
valid for hw>Eg. It is very interesting to point out that the

expression of real part €. in the dielectric constant perfectly

1
corresponds to that of resonant Brillouin efficiency (Ris)(eq.2.3—l4).
From these considerations we find that resonant light scattering
is closely related to the resonant enhancement of €l near the
critical point. The change in imaginary parté2 is found to
correspond to the change in the absorption coefficient induced
by acoustic phonons. Such an interpretation is very helpful
to discuss the resonant features of Brillouin scattering in the
higher photon energy regions ( El or E2—edge ) which is given in
detail in Appendix I.

Now we derive the dispersion of appropriate photoelastic

constant by using the 2-Band model in the case of Mo-critical

point. Photoelastic constant Pi' is defined by the following

jk1l
equation according to the definition of Pockel,

(Ae, ). .
171ij - -

. Pijklskl (2.7~16)

im mj
Using the following relation ( see Appendix I )
1
ey (w-1] = - — (n_+1/2£1/2)s  5°F 9°1
fe 9 dow (2.7~17)
de; -1/2 ~1/2 (2.7-18)
with — (wg-w) 4—(wg+w) )

dw
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We can find the dispersion of Pi near the Mo-critical point,

ikl
k1

[1]

1/2 -1/2

- 1 (2.7-19)

ii 33

(w,Mo)o((nq+l/2il/2) [(wg—w)_ +(wg+m)

Pijk1
Equation (2.7-19) shows that the photoelastic constant Pijkl(w’Mo)
increases drastically at the photon energy close to the fundamental
absorption edge of semiconductors. It should be noted here that
the photoelastic constant Pijkl(w,Mo) derived in the present
analyses is not the total photoelastic constant Pijkl(T) which
corresponds to the total Brillouin tensor RiS(T)._It is evaluated
by taking into account of the nondispersive contributions with

different sign by,

Pijkl(T)==Pijkl(w,Mo)-Pijkl(NR) (2.7-20)

where the non-resonant photelastic constant Pijkl
to arise from other critical points higher than the fundamental

(NR) is considered

energy gap. From eq.(2.7-20) one can find that the total photo-
elastic constant Pijkl(T) passes through zero point while undergoing
a reversal in sign as the incident photon energy comes near to

the band gap. Such physical interpretation seems to correspond to

a existence of resonant cancellation in the observed dispersion

curves of Brillouin scattering cross section.

2.8. Summary

Basic treatment of light scattering is presented by using the
phenomenological expression and quantum theory. By using the tensor
formulation of photoelastic constant the expressions of Brillouin
scattering cross section for the three different acoustic phonon

modes are determined and the possibility of resonant enhancement
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of Brillouin scattering cross section near the intrinsic band

edge of semiconductors is presented based upon the time-dependent

perturbation theory. From the analyses of deformation potential
scattering of intermediate virtual states by acoustic phonons,

it is found that the observed resonant effect is interpreted in
terms of the 3-Band model. It is also found that the dispersion of
Ael( real part of the chang in the complex dielectric constant )
induced by the acoustic phonons corresponds to that of Brillouin

tensorand from this fact one can obtain the appropriate photo-

elastic constant.
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Chapter III Experimental Procedure
3.1. Introduction
The intense phonon beams amplified by acoustoelectric

34-38) .o very useful to investigate the dispersion

instabilities
spectra of the resonant enhancement and cancellation near the
fundamental absorption edge of semiconductors. This advantage
will be readily understood by the following fact. An application
of drift velocity greater than the sound velocity in piezoelectric
semiconductors results in selective acoustoelectric amplification
of phonon beams travelling in a narrow frequency range near the

frequency of maximum gain?7)

The phonon beams usually form so
called'acoustic domain ' 1 mm wide traveling from the cathode to the
anode. Amplified acoustic phonons have a intensity of the order
109 above the thermal equilibrium value, which is easily achieved
in the frequency range 0.1 to 4 GHz. Such a frequency range of
acoustic phonons is found to be most suitable for the present study

0)

of Brillouin scattering? One of the advantages of the present
experimental technique is that one can easily detect the optical
signals ( scattered light or modulated light by acoustic phonons )
without using the high power tunable dye laser because of strong
acoustic power. It should be noted that the high-power laser beam
is important light source in the measurement of resonant light
scattering by thermal phonons, where the high resolution Fabry-Perot
interferometer is requiredl?’74) On the other hand in the present

experiment some complicated problems come out as follows, which

originate from the fact that we use high density phonon flux of
piezoelectriC gepiconductors. First we have to consider effects of

alternative piezoelectric field (~105 V/cm ) existing in the domain

on the scattering intensity. One must take into account the effect
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75,85,91) induced by such strong

of indirect Brillouin scattering
electric fields in the piezoelectric semiconductors such as CdS.
Second problem is an existence of large strain inside the domains.
The strain is faund to perturb the band structure, especially in
the case of longitudinal acoustic phonons where linear strain
components exist. A discussion concerning this effect will be
given in connection with piezobirefringence effect. In the case
of semi-insulating ZnSe, acoustelectric . instability cannot be
achieved due to the two facts; weak electromechanical coupling

constant ( K=0.049 %21)

and small carrier concentrations.
Therefore the technique of acoustic pulse injection is essential
in the present investigation. It is confirmed experimentally

that twd kinds of transverse acoustic phonon modes ( slow(Tl) and
fast(T2)~-transverse sound waves ) can be excited in the end -
bonded ZnSe . samples, which are mainly used to study the resonance

effect of Brillouin scattering?g)

3.2. Experimental Procedure and Sample Construction

The experimental arrangement used in the present work is
shown in Fig.3.l1. The arrangement was used in the measurements of
resonant Brillouin scattering, transmission modulation, and
Brillouin scattering with small change. A high intensity light
source of a continuous spectrum is obtained from a Xe-flash tube
(Ushio Type 626 Xe-flash lamp or Sunpak Strobo GTPRO 4011 )
and dispersed by conventional monochromator ( JASCO CT-50 ).
The resolution is about 5-10 A in the range of present experiment.
The output beams from the monochromator are focussed by a lens on
the specimen with incident angle Gi after passing a polarizer

( Gran-Thomson Prism ). Incident and scattered angles (ei and ed)
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| |Xe—flash

G-—l lamp
Monochro- “~Photo-diode
mator

SR S R —-—--0 —————— Vi
9

L ) "‘Lens_) ;'t'
Polarizer .
Trigger Pulse
generator generator
{

Fig. 3.1. Schematic diagram of the experimental apparatus. The specimen
is mounted on the rotatable table and incident angle ei and scattered-
angle © g &re set to detect light scattered by phonons with a specific
frequency.

(a)

Photo- Delay-

Xe- Detector Trigger

flash light LIGHT BEAM
C-AXIS
| U
Light i L ;
| ’ o R i1 |
N < A= Pulse- \“5 :-l'r CdS-SAMPLE
Sample (C)U Generator i ;
300 . | LCURRENT
. et
OPTICAL
S (b) SIGNAL
j 4u______ Fig. 3.3. Current waveform and typical
te) optical signals.

Fig. 3.2. Block diagram of trigger—system
in experimental apparatus.
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are so determined as to be able to detect the light scattered by
acoustic phonons with a particular frequency. The size of light
is about 0.5 mm in diameter which is comparable with the width of
acoustic domain. High voltage pulses are applied between both
ends of the CdS in order to generate the acoustic domains. Such
high voltage pulses are synchronized with the flash light so as
to traverse the acoustoelectric domains at the illuminated part
of the specimens. In order to obtain the strong optiéal signals,
the travelling acoustoelectric domain is synchronized to traverse
the illuminated position at the instance of the peak intensity of
the light pulse. For this purpose the delayed trigger system shown
in Fig.3.2 is used. The half width of the light pulse is about
400 ysec. and the delayed trigger is generated after 100 usec
from the out put pulse of photodetector. The pulse width of the
high voltage generated by the Pulse Generator ( Velonex Model-
350 ) is about 4 usec. Analyzer (iPolavoid ) is mounted in
front of the photomultiplier. In the experiments of resonant
Brillouin scattering where one has to change the incident light
wavelength, the incident and scattered light angles for a given
acoustic frequency were calculated as a function of light wave-
length. In Fig.3.3. sample configuration, current wave form
and optical signals are schematically shown. Current oscillation
shows the generation of propagating acoustic domain in the
specimen. Usually we can find two optical signals corresponding
to the acoustic packet propagating to the anode and to the
reflected acoustic packet. The CdS samples are cut in bar shapes
(from Eagle Pitcher Co., and Teikoku Tsushin ) and mechanically

polished. 1In order to obtain chmic-contacts, indium is deposited
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by evaporation on the both ends of the samples at '\:lxl()‘—5 Torr,
and copper wires are soldered on them. The carrier concentra-
tion and mobility of CdS are determined by the acoustoelectric

77)

currents which are listed in Table 3.I. with sample dimensions.

Table 3.I. Characteristics of CdS and ZnSe Samples used in the present work.

Sample No. Dimensions n u

UHP.R.1 8.0%0.8x1.9 (mm) 2.9x101°(cm™3) 330 (cm?/Vsec.)

UHP.R.5  10.1x0.9x1.5 2.8x10%° 270
(cds] UHP-R.6 9.5%x0.3x1.0 . 2.8x10%° 300

UHP.R.11  7.5%X0.4X1.2 cecee- - cenn

UHP. 1 5.5%0.3X0.8  eeeee- . e

UHP.2 | 5.1%0.5%1.0  +eee- .. .

ZR. 1 5.5x0.3%x0.9 semi~insulating
(znse] ZR- 2 6.1%0.5%0.9 |

ZR. 5 4.7%0.5%0.8

25 7.4%0.5%0.8

The measurements of resonant Brillouin scattering in ZnSe are
made also by using the experimental set up of Fig.3.1l.. The
high intensity phonon flux is achieved by the technique of acous+
tic injection?8'79) The typical dimensions of the semi-insulating
ZnSe samples are summarized in Table 3.I. The acoustic pulse

injections are carried out by the end -bonded configuration of

Cds and ZnSe, which is shown in Fig.3.4 schematically.

DIFFRACTED
LIGHT

anooe+  &f Fig. 3.4. Schematic Brillouin-
cds scattering by an acoustic-
T e coms ZnSe SAMPLE packet introduced from semicon-

\%ﬁ&fj_// ductive CdS into insulating ZnSe.
acousTic / B§

PACKET  \nciDeNT

LIGHT



51

- 3.3. Resolution of Acoustic Frequency

The spatial resolution of Brillouin scattering is determined
by the area of the incident light spot. A typical width of acous-
tic domains is about 0.5 mm in semiconductive CdS. In the present
experiment the light beams are focussed by a conventional lens
on the surface of the sample in a diameter of 0.5 mm, and therefore
the spatial resolutions are mainly determined by the cross sectional
area of the light spot. The resolution of the acoustic frequency
is determined by the collection cone angles of incident and scat-
tered lights. 1In the present works the focussed light beams pene-
trate into the sample with a finite solid angle Qi and scattered
light is collected by a cone with solid angle Qs. In such a case
as the measurement of dispersion of scattering efficiency it is
very important to find a relation of resolution, in other words,
AS vs Amq curve with respect to the incident light wavelength,
where 6 is off axis angle of propagating domains and Awq is the
deviation of acoustic frequency from the observed acoustic fre-
quency wq. The resolution of acoustic frequency is derived by
solving the equation of momentum conservation between the incident,
scattered photons and phonons. Complicated treatment of resolu-
tion in spatial and acoustic frequency is studied by Yamadasg)
At present time we will examine the wavelength dependence of AS§
and Awq in the experimental region in CdS. From the calculation
of resolution we find that A§ and Awq are proportional to the
quantities of collection angle of the incident light;Aéj_ and
that of the scattered light;AGs, which are determined by the ex-
perimental condition. The collection cone angles of incident

and scattered lights are shown in Fig. 3.5.
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After simple calculation one obtains,

1 sing
d 2
5 = [nd cos6

X
: oot res
ni+nd--2nind.cos(ei ed) n4 cos ed

A =

dcosai

s1n6i

("Zocos2s
ni—cos ei

2 2 2 :
- (nd—cos ed)(ni-cosei) ]XAGS+

2 2 2 2 2
X[ni—coseiCOSGd— \ﬁnd cos ed)(ni cos ei) ]XA%} (3.3~1)

Aw 1
g9

2, 2
q ni+nd—2nindcos(6i—6d)

2 2
nd cos ed

2

x{ sin6b .[cosH.-cosb
‘ d 1 d ni-cos 6i

]XAGS

S——

2

nd-cos ed
+ sin6.[cos6 ,-cosH —————— |XAS . } (3.3-2)
i d i 2 2 i
ni-cos“e,

where n; and ng are the refractive indeces for the incident and
scattered lights, Bi and ed are the angles of the incident and
scattered lights out side the crystals,respectively. It is found

in those equations that Aw_and A§ depend upon the incident lihgt

q
wavelength, since n,, nd' ei , and 6d are the functions of the
wavelength. In Fig.3.6 AS and Awq/@q are plotted as a function
of incident light wavelength. The angle of A§ is found to change
from Zf to l§ in the experimental wavelength region (5200 Z 5800 R).
From the fact that the half-width of propagating angle of acoustic
domains in mloi one finds that it is not required to perform a
correction in the observed scattering intensity due to the change

of off-axis angle. It is also found in Fig.3.6 that the ratio

of Awq to wq is nearly equal to 0.3%#0.01 in the wavelength region
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from 5200t05800ﬁ. For example, in the case of 1GHz acoustic
frequency, the change oflmh is smaller than 10 MHiz and negligibly
small in the wavelength range of the present experiment. These
features are understood by taking into account of the fact that
the present measurements of Brillouin scattering are limited to

a low frequency region of acoustic waves 0.1 ~2 GHz. In the ex-
periment of higher acoustic frequencies it is important to take

inti account of the such resolution.

i [ e e

Detector Cone Y, St S
: ...-0'“ .“" . .

haadol LT SINNR

Sample Lens

Fig. 3.5. Schematic diagram of focussed light beam

and detector cone used in the present work.

RESOLUTION
Aw
w
0.3} 1,z
@ J 22 |43
{20
02t
8i=gs=5°
. 117’
5200 5400 5600 5800

WAVELENGTH (A)

Fig. 3.6. The estimated values of AS and Awq/mq
versus incident light wavelength.
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3.4, Summary

Experimental arrangement and sample construction used in the
present workare presented. It is pointed out that in order to
obtain the strong optical signals of Brillouin scattering and
optical modulation, the travelling acoustoelectric domain is
perfectly synchronized to traverse the illuminated position at
the instance of the peak intensity'of the light pulse. Resolution
of acoustic frequency Awq and of the change in the off axis angle
AS§ in the present measurements of resonant Brillouin scattering
are discussed. One can find that it is not significant to correct
the observed scattering intensities because of small changesof

Awq and Ad inthe present experimental wavelength regions.
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Chapter IV. Resonant Brillouin Scattering in CdS and ZnSe
4.1. Introduction

Chapter IV deals with the experimental results and discussion
of resonant Brillouin scattering in CdS and ZnSe. Present measure-
ments are mainly performed in the 'Allowed-Polarization Condition'

1)

of Brillouin scattering8 at room temperature by using the ampli-
fied or mode converted acoustic phonons. The main features of
present results are following. Steep increases in scattering cross
sections for the acoustic modes investigated in the present work
(T2-, Tl1l-, and PL-modes in CdS and T2-, and Tl-modes in ZnSe) are
observed in the photon energy regions close to the fundamental
absorption edge%5’l8’19) The structures of resonant cancellations
are found at the photon energies just below the fundamental absorp-
tion edges of CdS and ZnSe in the dispersions of Brillouin scat-
tering for the transverse acoustic waves. It is found in com-
parison with the theory that the structures of resonant enhance-
ment and cancellation are well explained by the theoretical treat-

ment of resonant scatteringl8)

derived in Chap.Il. where 3-Band
model 1in transition process of intermediate virtual excitons is
properly taken into account so as to satisfy the experimental

polarization conditions. Resonant cancellations are interpreted

like the treatment proposed by Ralston et al.é)

where the total
scattering amplitude is given by a sum of the resonant and non-
resonant terms of opposite sign. The physical mechanisms of non-
resonant contribution arising from the higher energy bands are
discussed by using the theory derived from the nonlinear suscepti-
bility (Chap. II). In the latter part of this chapter dispersion

29)

curves of photoelastic constants are analyzed by using the
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theory of stress induced piezobirefringence§8’82) From-this

analysis we are able to understand the antiresonance-structure

in the dispersion curves of scattering cross sections.

4.2. 1. Resonant Brillouin Scattering by Piezoelectrically
Active Mode Phonons in CdS.

The Brillouin scattering intensities were measured at room
temperature as a function of incident light wavelength ( incident
photon energy ). The results for piezoelectrically active shear
waves (T2-mode) of 0.5, 1.0 and 2.0 GHz are shown in Fig.4.1,
where the ratios of the scattered light intensity IS to the inci-
dent light intensity IO is used. The general features are similar

to the résults of n—GaAslS)

if we take into account the strong
absorption of the incident and scattered lights near the fundamen-
tal absorption edge. The scattering efficiency has narrow and

deep minimum at 5620 A (2.22 eV). The decrease of the scattering
intensity near the edge is caused by the strong absorption of the
incident and scattered lights due to the sharp increase in the
absorption coefficients. 1In order to deduce the intrinsic-Brillouin
scattering efficiency from the present data of IS/IO, one has to
take into account not only the absorption of incident and scattered
light but also the depletion of the light from wvarious Brillouin
components. In the case of isotropic crystals; GaAs, the correc-

15)

tion of such strong absorption is made by using the relation}
= ' -
Is/It cBb an (4.2-1)

where It is transmitted light intensity, b' is the optical path

length, and dQ is the solid angle in which the light is scattered.

Equation (4.2-1) is valid in an estimation of the scattering
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Fig. 4.1. Brillouin scattering signals for T2-mode phonons in CdS.
The ratios of Brillouin scattered light intensity Is to the incident
light intensity Io are plotted as a function of incident light

wavelength.
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efficiency of mSe, which is shown in the nextsection. In the

case of CdS, however, one must take into account the optical
anisotropy to obtain the intrinsic Brillouin scattering dispersion.
A simple analysis which includes the effect of the difference

in the absorption coefficients ( see APPendix II ) gives the follow-

ing relation,

o.b
Is _ oBdQs d
— T /i exp (- )
Io ai_ad'ﬁz cosed
nd b
X {l-exp[—(ai—ud —_— ) —] (4.2-2)
ni cosed

where oy and ay are the absorption coefficients for the incident
and scattered lights, and b is the width of the sample in the

scattering plane. The refractive indices n; and n., refer to the

d

incident and scattered lights, and the angle ei and 6, are

a
determined by the momentum conservation at the fixed point of the

photon energy. At longer wavelength far from the band edge the
values of oy and 04 are so small that we can approximate eq.(4.2-2)

by,
ad+oT

cosb

—

GBb exp (-

)dQs (4.2-3)
a

s.

IO cosei
where Op is the total scattering coefficient defined in the Appen-
dix II. It is evident that eq. (4.2-1) can be derived by assuming
equal optical path lengths for the scattered and unscattered lights;
b/cosei==b/cosed==b'. Near the band edge however, the condition;
(ai—adnd/ni)b«:l is not satisfied and thus we have to use the
expression of eqg.(4.2-2) in order to compute the Brillouin scat-
tering cross section from Fig.4.1l. By making use of the absorption

83)

coefficient data of Dutton and the refractive index data of
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Bienieski and Czyzak84) we calculated the dispersions of the scat-

tering cross section, which are shown in Fig.4.2.

The magnitude of the scattering cross

fe \2@? section is proportional to the energy
L o] -} _
- \6 §ﬁ’° ° density of the amplified phonons and
\ [}
[s0] o 0o h
e \ o thus depends on the applied electric
o
2
E,OL e, l 7/ field. Therefore we plot the results in
ot °
S 3
o T % l o€ f=0.5GH; arbitrary units in Fig.4.2. The
W 1
0 [\ \ \ ¢ _
g [\ \ o/ Jpeet general features of the three dispersion
R "\! T e o
° EO o/ IGHz curves for 0.5, 1.0 and 2.0 GHz phonons
b Idz- \:x \.v o e
g i \0{7' P are quite similar but for the absolute
< I xx ol o x
o [ \l/ /// scattering intensity. We find that in
xy ©oe x/<-2GHz
L ® x
\ \/ // the long wavelength region the scat+
10k x *‘
b \ / J tering cross sections approach to the
h 5500 6000 €500 nonresonant Brillouin scattering, namelly

WAVELENGTH  (A)
Brillouin scattering predicted from the

Fig. 4.2. Brillouin scattering cross photoelastic effect of macroscopic theo-

section plotted as a function of
incident light wavelength in CdS. ry. The usual wavelength dependence

A 4 is not found in the present result
because of narrow wavelength range of the incident photons. We find
a deep and narrow minimum at 2.22 eV and a steep increase in the
higher photon energy region beyond the minimum. These data indicate
an existence of the resonant enhancement and cancellation near the
fundamental absorption edge in Cds.

We estimate here the dispersion spectra of the Brillouin scat-
tering by using the microscopic theory derived in Chap. II. First
we use Loudon 's formulation without exciton effects. As stated in

Chapter II. the scattering cross section in the microscopic treat-

ment have the form,
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(4.2-4)

N

Amc 2pvj Wy

where the most dominant term of Brillouin tensor R. o is givn by,
1l P

=, P
R, = — 5 —OB7Ba a0 with w_=w,*w (2.4-5)
5 v (wymwl) (wo—w,) st g
B s o i

where the notations are same as those introduced in eq.(2.3-13)
of Chapter II. From the analyses of deformation potential scat-
tering of virtual state by acoustic phonons we have found that the
3-Band model of transition process including the virtual holes

of B- and A valence bands is significant to estimate the disper-
sion of resonant light scattering by T2-mode phonons in CdS.

In the present case , therefore, we should use the deformation

potential matrix element = B'instead.of= in eq.(2.15). Taking

A B
into account the difference in the optical band gaps for the two
different light polarizations in CdS, one can obtain the expres-

sion of Ris for T2-mode,

2 20 372 Ponfanfmo
R. (T2)= (-
is 2m? & B =0t
gA "gB g
1/2, -1 Aupy 172 1/2, -1 Aug 172
X[ (w_,-w_) tan ~( ———— ) - (w_.~w.) tan ( ———) ]
gA S m - gB 1 w bl 1V
gA s gB i
ceeeeee (4.2-6)

where y is the reduced mass, which is assumed to be equal for the

|B> and |A> pair-states for simplicity, hw_, and hw are the

gB gA

optical band gaps for the pair-states |B> and |A> corresponding
to the incident and scattered light, respectively, and hAwB( or
ﬁAwA ) is the combined width of the conduction and B-( or A-)

valence band. Equations (4.2-5) and (4.2-6) indicate that the



61

scattering cross sections increase as the incident photon energy

approaches the band gap hw or hw This results in a resonant

gB gA®
Brillouin scattering. The cancellation is explained in terms that
the resonant contribution (Ris) to the scattering efficiency is
opposite in sign to the nonresonant contribution (-RO). In other
words the scattering cross section is given by,
|2

o_"Vv |R. -R

B is o (4.2-7)

Here we will consider the term of nonresonant contribution, which
has the non-dispersive A—4 dependence. Ro is usually considered
as the contributions from other far-off critical points in the
band structure. It is obviously evident that the resonant contri-

bution R. originates from Mo—type critical point. However,the

6]

i

type of critical point resulting in the non resonant term cannot be
easily determined, although it is important to discuss the mechanism
of Break—-down of selection rule in Brillouin scattering stated in

Chap. VI. We have studied the behaviorsof resonant effect in the

higher photon energy regions for the three dimensional Ml’ M2’
and M3- critical points in semiconductors, which is shown in Appen-
dix I. It is found that the scattering efficiencies arising from

the Ml and M3-critical points change drastically when the incident
photon energies pass through the energy region corresponding to the
critical point and never show the exponential tail in the low photon
energy regions{ see Fig.AI). On the other hand the resonant fea-

ture of Brillouin efficiency arising from the M,-critical point is

2
found to behave similar in form to Mo-critical point except the
sign, where the scattering efficiency has the slowly changing ex-

ponential tail-structure in the photon energy regions lower than

the critical points. It means that the non resonant contribution
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observed in transparent regions is closely related to the contri-
bution from Mz—critical point. One can explain qualitatively the
antiresonance structure observed at photon energy 2.22 eV in Cds,
by assuming that the energy gap of Mz—critical point is~nv 1 eV

larger than Mo—gap and that the factor of matrix element; P __Z_ P

oB:Ba 0o

is about three times larger than the factor Poezsapao in Mo—crltlcal

point. Using egs.(4.2-6) and (4.2-7) we calculated the total
scattering cross section for the T2-mode phonons. In present calcu-
lation we used values of ﬁAwB( or"ﬁAwA ) in the range of 0.1 eV

to 10 eV and we fond that the results are weakly dependent on.the
values. We adjusted the value RO and energy gaps to fit the ex-
perimental curve. We found that the calculated curve is fitted to the
experimental data when we used hwgB=2.4O eV and hng=2.38 eV.

The results are shown in Fig.4.3 by the dotted curve. Similar

17)

analysis was made by Gelbart anf Many , who found that the best

fit to the data was obtained by using the energy gap"nwg =2.41 eV,
which is in good agreement with the present result. It should be
noted that they plotted IS/It as a function of incident photon

energy and that such plot does not give correct values ofoB near

the band edge due to the reason stated earlier. The energy gap

obtained in the above analyses is much smaller than the value 2.53

eV deduced from reflectance measurements by Cardona and Harbeke.sl)

The values 0f energy gaps are also estimated from electro-reflec-

tance data made by Cardona et al.622 who found peaks in the electro-

reflectance spectra at 2.452 eV, 2.466 eV and 2.525 evV. If we take

into account the exciton effects by using the theory of Blossey86)

have higher energy gaps by exciton binding energy (28 meV) than

62)

the peak values obtained by Cardona et al. ( see Fig.8 of ref.62 )
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Fig. 4.3. Dispersion curves of Brillouin scattering cross section
for 0.5 amd 1.0 GHz phonons. Solid curves are calculated by
taking into account the exciton effects with optical band gap:
i=2+494 &V for the incident light and optical band gap;
Egs=2.480 eV for the scattered light. Dotted and dashed curves
are estimated by Loudon's theory with Bnad gaps; Egi=2.40 ev,

and Egs=2.38 eV, and with Egi=2'494 ev, Egs=2.480 eV,respectively.
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; .therefore, we obtain hng=2.480 ev, hwgB=2,494 and‘hwgc=2.553 ev.
Absorption coefficients at hwga=2.4 eV anf hwgs=2.38 are estimated
from Dutton's data to be about 102 cm_l. Such large values at lower
photon energies than the band gaps can be explained by the exciton
effect. As we mentioned in Chapter II, the Coulomb interaction

is always present between the excited electrons and holes, and thus
it seems to be reasonablie to assume that the virtual intermediate
electronic excitations are the exciton states. As it is well known,
the three valence bands labeled A, B and C in conjunction with the
F7—conduction band gives rise to A, B and C series of exciton states,
respectively. The selection rule for the momentaum matrix element is
is the same as that of band to band transition. In this case we
take into account the A and B exciton states for the virtual inter-
mediate states because the dominant contribution Ris to the reso-
nant enhancement comes from the bands with the band gap close to
the incident or scattered photon energy. In the present calculation
of R, we use the representation of excitonic resonant Brillouin

scattering derived in Chap. II.( eq.(2.4-4) ), where we use the

values; hw  =hw _=2.494 eV and hw__.=hw _=2.48 eV . The exciton
go, gB gA

86)

gB
binding energy is reported to be 28 meV in Cds

and we used this
value for the both states. Only the adjustable parameter is Ro
which is determined to give a minimum of the scattering cross
section at 2.22 eV in the dispersion spectra. The calculated result
is shown by the solid curve in Fig.4.3, where we find a better and
excellent agreement with the experimental results in the whole
range of the present investigation.

It should be noted here that there exist d.c, electric field

3

( 5%10° V/cm ) and a.c, field (ﬁ104/cm ) associated with the piezo-

electric potential in the acoustic domain. When the electric fields
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are capable of ionizing the exciton, the analysis made is not
correct. However, we find that the ionization field of the exciton

in C€ds is about l.4><lO5 V/cmGl)

which is much higher than the d.c
or a.c field associated with the domain. Thus we can conclude
that the electric fields do not dominate the Coulomb potential

and that the present treatment is adequate.

4.2.2. Resonant Brillouin scattering by Mode-Converted Phonons
in CdS.

In this chapter we present dispersion curves of resonant
Brillouin scattering for the two kinds of mode~converted phonons
(Tl- and PL-modes). The mode conversion was achieved by reflection
of the intense phonon beams at the end of the specimen and thus
piezoelectrically inactive transverse mode (Tl-mode) and pure longi-
tudinalmode (PL-mode) were generated effectively. Tl-mode phonons
are also excited by using the acoustic injection into an end-
bonded specimen with proper crystal orientation. In Fig.4.4. the
observed dispersion curves of Brillouin scattering for 0.8 GHz
and 1.0 GHz Tl-mode phonons are shown. The dispersion curves
plotted by (0) and (®) are obtained by using the mode converted
phonon beams by reflection and the curves of solid dispersions are
obtained by using the injected phonon beams. The experimental
results obtained by both methods agree well with each other in
the experimental region and show a resonant behavior in the scat-
tering efficiency near the fundamental absorption edge. In the

case of Tl-mode one finds from the phenomenological analyses that

2
11"F12)

@ll and P,, are the photoelastic constants). Piezobirefringence

58)
measurement by Yu and Cardona predicted that the absolute value

the scattering efficiency is proportional to the factor (P
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of passes through zero at 2.22 eV while undergoing

P117P12
reversal in sign. This experimental result means that the reso-
nant cancellation can be also observed in the dispersion curves

of Brillouin scattering cross section for Tl-mode phonons.

However, one cannot find the structure of resonant cancellation
around 2.22 eV in the present work because of weak optical signals.
The decrease in scattering intensity is due to the strong
absorption and depletion of incident and scattered light. Using
eq. (4.2-2) we estimated the scattering cross sections which are
shown in Fig.4.5 along with theoretical dispersion. Dispersion
of Brillouin scattering efficiency by pure longitudinal phonons
(1.2 GHz) is plotted in Fig.4.6 . 1In this figure the observed
scattering efficiency IS is normalized by the transmitted light
intensity. Such a normalization is valid in the case of PL-mode

phonons because the incident light polarization vector(IE) is
parallel to that of the scattered light and thus optical aniso-
tropy does not exist. PL-mode phonons used in the present meas-
urement are generated by reflection of acoustic domain at the
end of the specimen and propagates in the c-plane with acoustic
displacement vector parallel to the propagating direction.

Based upon the above condition it is easily found that the scat-

2
31°

It 1is interesting to point out that the dispersion spectra of

tering efficiency by PL-mode phonons is proprtional to P

PL-mode Brillouin scattering is quitely different from the reso-
nant feature for the transverse acoustic phonons (T2- and Tl-
modes). In Fig.4.5 one cannot find a resonant cancellation around
2.22 eV, while in this photon energy region the scattering effi-

ciency changes monotonically. Such experimental results are
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interpreted as follows. The sign of resonant contribution in
Brillouin scattering efficiency by PL-mode phonons arising from
the Mo-critical point is equal to the sign of non-resonant contri-
bution from the far off critical point(Mz—critical point) .

A comparison of observed dispersion curve of scattering effi-
ciency for mode-converted phonons with theoretical dispersion is
performed by using the formulation of resonant Brillouin scat-
tering derived in Chap.II. In ordef to fit the theoretical dis-
persion with that of experimental curves in Fig.4.5(Tl-mode) we
assumed the total scattering efficiency OBT(Tl) for Tli-mode as

given by,
0 gp(T1) = |R; (T1) - R_(T1) |2 (4.2-9)

Here RO(Tl) (non-resonant term) is an adjustable parapeter which
is determine by using the results of Berkowicz et al.?B) We esti-
mate the total scattering efficiency GBT(Tl) by using the dip
energy 2.20 (the dip energy is also derived by extrapolating the
present data to the low photon energy region), which is shown in
Fig.4.5 by solid line, where the intermediate A- and B-excitons
are taken into account. In the calculation we used the values
oscillator strengths reported by Thomas and Hopfield§4) Band

parameters used in the present analyses are summarized in Table 4.I.

Table 4.I. Parameters used in the calculation of resonant enhancement of
the Brillouin scattering cross sections for the mode-converted phonons in CdS.

[n

hw hw hw EAB(Tl) EBC(PL)

gA gB gc sp (FL) Eqc (PL)

2.480 (ev) 2.494 2.553 -1.28 (ev) 1.34 -2.80 -3.29
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We find in this figure a good agreement between the experimental
and theoretical dispersions.

In the case of PL-mode, it is found from the analyses of
Chap. II. that all the interband and intraband transitions of
intermediate electronic excitations are allowed and several kinds
of resonant contributions from allowed transition process should
be considered. However, it should be noted that the intermediate
A-excitons ( or holes in A-valence band) does not take part in
the present effect because of the forbidden dipole transitions.
Calculated dispersion curves by taking into account of the B-
exciton(dash dotted line), C-exciton(broken line) and the sum of
all the possible excitations(two dash dotted line) are shown in

Fig.4.7. 1In this estimation we used the following relation;

2
Ogp (PL) = | R, . (PL)| (4.2-10)

assuming that the non-resonant tefm Ro is zero. 1In Fig.4.7 we
do not obtain an excellent agreement between the experimental
and theoretical curves for the case of PL-mode Brillouin scat-
tering,which seems to be due to the following two reasons.

First reason is that one cannot estimate the adjustable param-
eter Ro(non—resonant term) because of a lack of cancellation point
in the dispersion spectra. Second reason is attributed to the
fact that we use the unperturbed band parameters shown in Table-
4.I. although there exists a considerably strong perturbation by
longitudinal strain components in the crystal in the case of PL-
mode. In the present case it is very difficult to obtain the
correct band parameters ( such as band gaps or dipole matrix-

elements ) because ag¢curate value Qf strains cannot be evaluated.
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4.3.1. Resonant Brillouin Scattering by Injected P honons in ZnSe
In this section we present a study of resonant Brillouin
scattering in semi-insulating ZnSe by making use of injected

9)

acoustic waves? Acoustoelectric instability cannot be achieved
in ZnSe sample used in the present work because of weak piezo-
electricity and small carrier concentration. Therefore the
thechnique of acoustic injecﬁion is very profitable in the present
investigation. From the analyseé based upon the‘'acoustic
matching theory78’87)d15cussed in Chap.VII one can expect that
three kinds of acoustic mode excited in an end-bonded specimen;
quasi-longitudinal (QL), quasi-transverse(QT) and pure-transverse
(PT) modes. We confirmed by Brillouin scattering experiment

that two kind of transverse acoustic modes are excited in ZnSe.
Our experimental results of sound velocities are VS(Tl)=1670 m/s,
for slow TA mode and VS(T2)=2710 m/s for fast TA mode, which are
in good agreement with those of pulse echo method?g) Schematic

arrangement of injected acoustic packet in ZnSe for studying the

resonant Brillouin scattering is shown in Fig.4.8.

X2

Injected
/acoustic packet

Ik

R

.

02mm le

Fig. 4.8. Schematic arrangement for studying
resonant Brillouin scattering in ZnSe.
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We show the experimental dispersions of Brillouin scattering
cross sections for anti-stokes scattering process of Tl-mode
acoustic phonons in Fig.4.9, in which experimental results are
plotted by taking into account the depletion of the incident and

15,18) Appropriate phonon frequencies are 0.2

scattered light.
and 0.3 GHz.
Features of such dispersions are almost independent of these
acoustic frequencies. This can be understood from the fact that
the relative intensity of the scattering efficiency dependsupon
the frequency spectrum in the acoustic packet and upon the factor
cosei( this factor depends on the relevant acoustic frequency
due to the momentum conservation ). The general shape of the ex-

15)

perimental dispersion is similar to the results of GaAs and

cas. 18

In the case of ZnSe the scattering cross section has
narrow minimum at about 2.5 eV and shows a sharp increase in the
region close to the band edge. Figure 4.10 shows the disper-
sions of scattering efficiency due to the T2-mode phonons at room
temperature. Relevant phonon frequencies are 0.2 and 0.8 GHz
and the main feature is almost the same as the results of Tl-mode
except for the dispersions in the cancellation region. Such a
difference in the dispersions comes from the variation on the posi-
tions of the minima for the scattering by Tl and T2-mode phonons.
We are able to estimate the position of the minimum, corre-
sponding to the photon energy where the scattering efficiency is
just zero, with the help of the following interpretation; (a)rele-
for T2-mode

vant photoelastic constant,P for Tl-mode and P

117P12 44

undergo reversal in sign at the corresponding cancellation points,

(b) Brillouin scattering intensities for Tl and T2-modes are
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2

accurately proportional to the factor of (Pll—Plz) ’ P4z, respec-

tively.

We plotted the square root of Is(Tl)/It(Tl) and .

IS(TZ)/It(TZ) by taking into account the reversal in sign in

Fig.4.11 where Is(Tl) and IS(TZ) are Brillouin scattering inten-

sity.

2.50 eV for T2-mode acoustic phonons by extraporation.

From Fig.4.11 one finds sign reversal at 2.48 eV for Tl and

Such a

phenomenological treatment that the relevant photoelastic constant

undergoes a reversal in sign will be discussed in latter section

in connection with the piezobirefringence theory.

From the analyses of deformation potential scattering described

in the previous Chapter, we find that the transitions between the
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Fig. 4.11. The plots off¢, versus
incident light wavelength for Tl-
and T2-mode phonons.

virtual states associated
with the A and B valence bands
and between the B and C va-
lence bands are allowed
through the interaction of
holes and Tl-mode phonons

and that in the case of T2-
mode phonon scattering all
the interband transitions
between the virtual states
assocjated with the A, B and
C valence bands are possible.
From eqg.(4.2-6) we find that
the main contribution comes
from the excitation corres-
ponding to the smallest band
gap, and thus from the tran-

sition between the wvirtual
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states associated with the A and B valence bands. Since the A and
B valence bands are degenerate atthe I'-point of Brillouin zone, we
can put ng—mgB=O in eq. (4.2-6).

As pointed out in the previous section the exciton effect plays
an important role in the resonant enhancement. The effect is taken
into account by using the formula of eq.(2.4-4) presented in Chap.II.

Now we calculate the Brillouin scattering cross section OB
by assuming that the resonant contribution RiS to the scattering
efficiency is opposite in sign to the non-resonant contribution
Ro. With this assumption we obtain the total resonant scattering

cross section in the form OBTleiS—R 2, where R, is the adjust-

ol

able parameters and determined to fit the calculated curve with

the experimental. The calculation of OnT is performed by using
the parameters given in Table 4.II. 1In the estimation we assumed
Pog=Puo for the momentum matrix elements. The calculated curves

for Tl and T2-modes acoustic phonons are shown in Fig.4.12 and 4.13,
respectively along with the experimental data. In Fig.4.12 and
4.13 the solid curves are calculated from eq.(4.2-6) neglecting the
exciton effect, whereas the dashed curves are obtained by taking
into account the exciton effect. We find that the general shapes
of both dispersions are quite similar except the cancellation and

resonant regions. As shown in Fig.4.12 and 4.13, the cross sections
Table 4.II. Values of parameters used in the calculation of total scattering

cross section for Tl and T2-mode phonons. Superscripts(l) and (2) correspond
to the strongand weak contribution to the scattering croSs section, respectively.

(1) (2) (1) (2) = (L) 5 (1)
ﬁwgl 'ﬁwgi ‘hwgs hwgs ﬁAwaB B ZaB f

Tl-mode: 2.68 (eV) 2.68 2.68 3.11 5.0 2.07 2.94 0.2GHz

T2-mode: 2.68 (ev) 2.68 2.68 3.11 5.0 ~3.81 -2.70 0.2GHz
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estimated from the Loudon's formulation are smaller than those of
experimental data near the fundamental edge for both T1 and T2-

mode phonons. On the other hand the dispersion curves calculated
from eq.(2.4~-4) show a reasonable agreement with the experimental
results for both Tl and T2-mode phonons in the whole energy regions.
We can easily find that non-zero strain components exist in the spe-
cimen in the presence of Tl and T2-mode acoustic phonons, however,
such strains do not effectively perturb the band structure. There-
fore one can just estimate the total scattering cross section
(including the exciton effect) by using the zero order unperturbed
wave functions. These physical features are important in discussion
of hole ( or exciton )-acoustic phonon interaction. Same inter-~
pretation as mentioned above is also possible in the case of

wurtzite materials such as CdS and CdSe.

4.3.2. Derivation of Relevant Photoelastic Constants from Static
Birefringence Theory.

In this section we derive the dispersions of relevant phot-
elastic constants near the fundamental edge of ZnSe from the stress-—
induced birefringence theory?s’ 82) In the piezobirefringence
experiments static stress is applied to produce a change in the
dielectric constant, whereas in the Brillouin scattering experiments
stress associated with a strain of injected acoustic wave, induces

a change in the dielectric constant. Therefore two phenomena are

equivalent and analyzed with the use of the same photoelastic

constant Pijkl' In the presence of stress component Xkl in the
crystal change in the dielectric constant tensor eij is given by,
Aei.
- 1) = (4.3-1)

e Pijklsklmnxmn
ii73)
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where Eij’ Pijkl and Sklmn are the dielectric constant( in the

absence of the stress) photoelastic and elastic compliance constants,
respectively. In the case of isotropic crystal all the diagonal
elements of dielectric constant tensor are equal (ell=€22=€33)

and other off-diagonal components are zero. The photoelastic

constant tensor has the following form,

rPll P ,P, 0 0 0 )
Pip Pp3 P2 0 0 O
P1p P1p P31 0 0 0 (4.3-2)
0 0 0P, 0 0
0 0 0 0P, 0
L 0 0 0 0 0,

and the elastic compliance constant tensor [S] has also the same
form as eq.(4.3-2). When the stress X is applied in the [100]
direction of the crystal, we obtain piezobirefringence coeffi-
cient a(Tl) from eqgs. (43 -1) and (4.3-2),

Ae, - Ae 2
Tt =f PP By

S (4.3-3)

o (T1) = 12)

X
where Ag, and Ae; are the changes in the dielectric constants,
defined with respect to the stress direction: that is, the light
polarization parallel to the[1l00] and [010] directions, respec-
tively. Comparing eq.(4.3-3) with eq.(2.2-31) we find that this
configuration corresponds to the Brillouin scattering by Tl-mode
phonons. In the case of stress applied to the [110] direction,

nonvanishing stress components are XX = =X_.=

=X X =x/2, where X
XYY Xy ¥yX

is the stress magnitude. Therefore the birefringence coefficient

@ (T2) 1is Ag, —Agg 2p g
a(T2) = —— =—€ll 44744
X

(4.3-4)

In eq.(4.3-4), Ae”and Ag, are the changes in the dielectric con-

stants for the light polarization parallel to the [110] and [110]
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directions, respectively. We find that this configuration corres-
ponds to the Brillouin scattering by T2-mode acoustic phonons.
Microscopic treatments of intrinsic piezobirefringence have

2)

been carried out by Higginbotham et al.8 using an interband one
electron model for the optical constants, which include the effects
of the dispersions of the Eo’ EO+AO, El’ El+Al and E2 gaps. Taking
the types of critical points into account we obtain the real part

of the dielectric constant €. from the Kramers-Kronig transformation.

1
The contribution to el can be written as
_ 2 =3/2 -
[sl(w)/]/,J_—l—AllillLl wo Tl TE (%) (4.3-5)
*
where A=(2e2hl/2/m2)(2m /h2)3/2, f(x)=[2-(l+X)l/2-(l-X)l/2]/X2-

In eq.(4.3-5) x=w/wo (hwo=EO), m* is the combined density of state
mass and B,; is the matrix element of the component of momentum
polarized either parallel or perpendicular to the stress accord-
ing to the subindex. The change in al(w) with stress-application

v,, valence bands as

can be written including two degenerate Var Vg

o€ o€

pej(w) =2 [ — aMm+ —L A ] (4.3-6)
VAAE oM Bwo
The change in energy gaps to first order in stress are given89)by
-b(5,,~-8.,)X +«+++« for Tl-mode
A(E_-E_,) ={ 1L iz (4.3-7)
-d/4-S44x .-.. for T2-mode
b(S.,.-S,,)X +..-. for Tl-mode
ME_-E_5) 11 712 (4.3-8)
d/4-S44X «+«.. for T2-mode
A(E -E_) = 0 e+++ for Tl and T2-mode(4.3-9)
c vC

where we neglected the term due to the hydrostatic deformation

potential, since we are concerned with a comparison with the
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Brillouin scattering and the hydrostatic term disappears due to
the fact that exx+eyy+ezz=0 for both Tl and T2-mode phonons.
Substituting the relations of egs.(4.3-7) (4.3-9) and values of

AM estimated by Pollak and Cardonasg)

into the eq. (4.3-6), one
obtains expressions of Birefringence-coefficients a(Tl), and o (T2).
In a similar fashion we can include the contribution to a(Tl) and

0 (T2) from other energy gaps. 1In the following analysis, however,
we include only the contribution of Eo and E0+A5 gaps and take into

account of the exciton effect ( discrete exciton contribution, n=1l).

After simple manipulation dispersion of the relevant photoelastic

_ . . 26)
constants Pll P12 is given by
P, -, = C(TL) (=g (/o) 44 -2 [£00/u )= (w/o_) 32 (w/w )1}
11 " 12 g o) A W/, Wisg Yos
5 o)
3~-x E 1 E 1
ex ex ex 3
(T1){ s— + ( 5 = ) 3} +D(T1) (4.3-10)
(=% ) B 1-Xox Bex™o 17¥oxs
with g (x)=[2- (L+x) ~/?- (1-x) "2/?} /%2
c(Tl)=-(3m" /2)3/%p?py 052 (s -5 ye2.)
11 127711
2
(Tl)—-3(4an )b/(E ll 2)ell)
where Ao is spin orbit splitting energy,'ﬁwos=Eo+Ab, xex=w/Eex,
xexs=w/(Eex+Ao), EeX exciton energy, N the number of molecules

per unit volume and f. is the oscillator strength. In eq.(4.3-10)

1
the first term corresponds to the contribution of E0 and E0+Ao

gaps. In a similar manner we can calculate the dispersion of P44,
which is given by replacing C(T1l), Cex(Tl), and D(T1l) ineq.(4.3-10)

with C(T2), C_,(T2), and D(T2) where C(T2)=-(3 3m” /2) -

(8s 44 ll) and C (T2)——3(4ﬂNf )d/(BE S44 11)
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Dispersions of the appropriate photoelastic constants were
calculated in the energy region near the fundamental absorption
edge by using the parameters shown in Table 4.III. 1In this table
the values of minimum positions in OB ( or cross over points of

the photoelastic constants ) for Tl and T2-mode are estimated from
experimental data and the adjustable parameters D(T1l) and D(T2)

are determined so that these minimum positions agree with the

cross over point of the relevant photoelastic constants. Taking
into account the exciton contribution we calculated the dispersions

of P )2) and P44((P44)2) which are shown in .

117 P12 (P117Py 5
Fig.4.14 and 4.15 by dashed ( dash-dotted ) curves, along with the
experimental points. These experimental points for Tl and T2-
mode phonons in Fig.4.14 and 4.15 are estimated from Fig.4.11] and
plotted to fit the calculated curves at a fixed point with an
arbitrary scaling factor. We find that the photoelastic constants

undergo a reversal in sign and that the calculated curves are in

good agreement with the experimental dispersions.

Table 4.III. Values of parameters used in the calculation of
dispersions of photoelastic constant fram static piezobire—

fringence theory.

Tl—mode(Pll—Plz) T2—mode(P44)
C(T1)=5.7x10'3(a) C(T2)=2.24X103(a)
L (T1)=3.1x10 -5(a) . (T2)=1.72x10 -5(a)
D(T1)=-3.6x10"2(P) D (T2)=-1.72¢102(®)
(b) (b)

Dip(T1)=2.50 eV Dip(T2)=2.52 eV

(a) P. Y. Yu and M. Cardona : in ref.58.

(b) Estimated fram the present experimental data, 'Dip'
stands:&n:the;tptaneamxgy amxespmtung-uathermuumun
in the Brillouin scattering cross sections.
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4.4, Summary

We have investigated the dispersion spectra of the Brillouin
scattering cross sections by making use of intense acoustic phonons
amplified through acoustoelectric effect in CdS. A deep and
narrow minimum at the incident photon energy 2.22 eV and a steep
increase in the higher photon energy region beyond the minimum
are observed in the dispersion spectra . It is found that the
observed dispersion curve of Brillouin scattering cross section
for the PL-mode phonons is quite different from that for the trans-
verse mode phonons and antiresonance structure around 2.22 eV
does not exist. "~ The dispersion spectra are well explained if we
take into account of the transition of intermediate virtual states
associated with the p-~like valence bands and of exciton effects.
It has been shown that the matrix elements for the transition of
the virtual states between the B and A valence bands(interband-~
transition) are nonvanishing and has a dominant contribution to
the resonant enhancement of transverse mode phonons, while the
intraband transitions of virtual states are important for the
resonant Brillouin effect of PL-mode phonons. The experimental
dispersion curves of resonant Brillouin scattering due to the two
kinds of injected acoustic phonons (Tl and T2-modes)into ZnSe are
also presented where we found a resonant enhancement and cancel-
lation similar to the case in semiconductive CdS. Dispersions
estimated from the static P.B.-theory shows a fairly good agree-
ment with present experimental results of ZnSe. From the present
analyses we find that relevant photoelastic constant shows a sign
reversal and that the cross-over point coinsides with the minimum

position in the Brillouin scattering cross sections.
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Chapter V. Optical Modulation and Resonant Brillouin scattering
in CdS |

5.1. Introduction

The large modulation of the optical transmission near the
intrinsic absorption edge by acoustic doamins has been observed
in GaSb?z) GaAs93—95) and Cds?S—lOZ) This chapter is devoted to
show the excess optical modulation induced by acoustoelectric
domains. Until now many theoretical interpretations of domain
induced optical modulation ( O.M. ) are presented. For example

in the case of n-GaAs, Spears et a1.22:%%)

predicted that optical
modulation observed near the intrinsic absorption edge are closely
connected to the edge-modulation effect by piezoelectric field

inside the domain through so called Franz-Keldysh effect%04’105)

In fact there exists a large longitudinal electric field (3><104
V/cm in GaAs and mlO5 V/cm in CdS) associated with the amplified
acoustic flux, which induces Franz-Keldysh effect resulting in

optical modulation. In the semiconductive CAS measurements of
0.M, have been performed in detail by many investigators?s—lol)
It should be noted, however, that the experimental results of
optical modulation in CdS revealed several different features.

97) proposed that optical modulation signals are

Yamamoto et al.
still increasing after the magnitude of electric d.c-field
existing inside the acoustic domain saturated (It is shown in
Fig. 5.1.), They examined the relation between the 0O.M, signal and
d.crelectric field, and found that 0.M. signals do not depend
upon the magnitude of d.c, field. This means that the

domain induced O.M,1is not related to the existing d.c., electric
102)

field inside the domain. On the other hand Hata et al-

pointed out that the peak values of 0.M,signal are observed at a
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Fig. 5.1. Field dependence of 0.M in CdS.

O.M. -signals are obtained by using the two experimental results
light with wavelength: 5200, 5250 and are inconsistent with
5300 A.
the interpretation of
0.M. in GaAs proposed by Kohr918)and Spears?3) Our experimental results

presented in this chapter claim the explanation of domain induced-
optical modulation in terms of the Franz-Kedysh effect due to the
high electric fields. We observed a strong modulation signal not
only in the region near the fundamental edge but also in the trans-

101,103)

parent region far from the edge. It is found that the

dispersion of optical modulation ;AIt/It (A It is the domain

induced change in the transmitted light intensity and It is the
transmitted light intensity in the absence of domain )has a deep
minimum at a photon energy below the intrinsic edge of Cds.

The magnitude of the modulationincreases as the incident photon
energy shifts to the low photon energy region. It is very inter-

esting to point out that the photon energy giving the minimum

point in the dispersion of 0O.M,corresponds to the dip energy in
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the dispersion spectrum of resonant Brillouin scattering presented
in the previous chapter. From this result we speculate that the
optical modulation induced by the propagating acoustic domain
in CAdS is not originated from the effect of d.c. or a.c.-electric
fields. We performed a comparison of dispersion spectra of 0.M.
with that of resonant Brillouin scattering and found that both
the dispersion spectra are quite similar in the shape in the
whole experimental region as shown in this chapter. In addition
we found that optical modulation is induced by piezoelectrically
inactive Tl-mode phonons. From these facts we would like to point
out a possibility that the observed optical modulation
induced by propagating acoustic domains in CdS may be explained

in terms of the effect of resonant light scattering.

5.2. Experimental Results and Discussions.
Figure 5.2 shows a schematic diagram of the light polarization
configurations for two kinds of acoustic domains( piezoelectrically

y y active and inactive phonons).
t t

. In Fig.5.2 . I _ is the incident
c-axis active- O

\\\ / domin
{0

inactive-
domain

light intensity and Ié is

the transmitted light inten-

L sity in the presence of
0 lighi-polarizatin

optical- acoustic domain. The normal-

" ) signal
! Mt\/ ized optical modulation is
Al 4

{ (6)

(a) as the ratio of the change
Fig. 5.2. Schematic diagram of Polarization-

conditions and optical signals in the measure-
ment of O.M in CdS. Optical signal(a) origi- sity AI ¢ to the unperturbed
nates fram the active domain and (b) originates
fram the inactive(reflected-) damain.

defined, as mentioned before,
in transmitted light inten-

light intensity It;AIt/It,
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where the relation It=It': +AIt exists. In the measurement of
0.M.by using the piezoelectrically active domains two polari-

zation conditions are used ; that is , (a) incident and scattered
light polarizations(IE and ItA) are parallel to the c-axis and

(b) incident and transmitted light polarizations(IE and ItA)

are both perpendicular to the c-axis of CdS. 1In the case of inactive phonons
the polarization condition of (a) is used. Fig. 5.3 shows disper-

sion spectra of normalized-optical modulation observed under the

t . . o . s s
wo polarization conditions; (a) (IE”ItA”C axis) and (b) (IEllittA).Lc axis
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Fig. 5.3.Dispersion spectra of 0.M observed under the two polari-

zation conditions: (a) IEI/ITA//c—ast and (b) (IE//I,m)l-c—axis near
the fundamental absorption edge of CdS. The data points of (®)
and (@) are dbtained by using the active damains and (@) and (@)
are obtained by using the inactive (reflected-)damain.
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near the intrinsic absorption edge of CdS at room temperature.
Experimental data obtained by using the piezoelectrically active
domains are shown by (@) and (w), those obtained by using the
piezoelectrically inactive(reflected) domains are shown by (O)
and (&). As shown in Fig.5.3 maximum optical modulation observed
under the polarization condition(a) is ~+70 % and drastically
decrease as incident light wavelength passes through the photon
energy region of 5600 A. It is found that the 0.M, signals can
be also observed in the measurement using the reflected domain
(consisting piezoelectrically inactive phonons) and that the
maximum modulation reaches~50 % near the intrinsic edge of the
specimen. The dispersion spectra of O0.M.observed in the lihgt
wavelength region from 5200 R to 6500 A are shown in Fig. 5.4
along with the dispersions of resonant Brillouin scattering by
1.0 GHz acoustic phonons. The plots of (0) refer to the polari-
zation condition (a) and (®) to the polarization condition (b).
One can find in Fig.5.4 two interesting features ; (1) there
exist a considerably strong optical modulation signals in the
wavelength region far from the edge and (2) a deep and narrow
minimum in the O.Mjdispersion appears at the phonon enerqgy
corresponding to the position of the dip in the Brillouin scat-
tering cross section. We find that the dispersion spectra of 0.M,
for both (a) and (b) polarization conditions are quite similar

to that of resonant Brillouin scattering in the experimental
photon energy region. As mentioned before the physical inter-
pretation of present O.M,spectra by using th Franz-Keldysh effect
(F.K.effect) through the piezoelectric field is not valid,

because the effective edge-modulation by F.K,effect can be
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phonons are Plotted.

expected only in the photon energy region close to the intrinsic
edge. We obtain the O.M.signals of several tenths near the edge
when we assume that the change Aa in absorption coefficient o is
induced by the electric field(m104V/cm). However, it is well
known that the optical modulation induced by the electric field
decreasesremarkably when the incident light wavelength becomes

longer and that a structure of deep minimum is not observed far
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from the edge. Moreover, in the case of 0.M, induced by inactive
acoustic domains we cannot expect any possibility of electric
field-modulation because of the absence of piezoelectric field
in the domains. Therefore we conclude that the present results
of O.M.effect in CdS cannot be fully understood in terms of

such a field modulation effect. We present a tentative expla-
nation of acoustic domain induced optical modulation by making
use of the resonant light scattering. In order to carry out

the comparison between the optical modulation and resonant
Brillouin scattering we calculate a change in the transmitted
light intensity caused by the depletion due to the light scat-
tering. The change in the transmitted light intensity AIt due

to the Brillouin scattering is represented by,

AIt(”,L)==Ioexp[—u(”,i)—loexp[(a(y,L)+o )bl (5.2-1)

BT

where IO is the incident light intensity, O is total Brillouin

scattering cross section and a(#) and o(l) are the intrinsic
absorption coefficients for the light with polarization vectors

parallel and perpendicular to the c-axis, respectively.

Equation (5.2-1) can be rewritten in more convenient form,
AIt
It

= 1- exp(-0,,,b) (5.2~2)

BT

where It is transmitted light intensity in the absence of acous-
tic domain and the ratio AIt/It corresponds to the normalized
modulation defined before. It is found from eq. (5.2-2) that
the dispersion spectra of the modulation show a feature similar

to that of Brillouin scattering. We have already shown that the

general feature of the resonant Brillouin scattering is independent
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of acoustic phonon frequency. Therefore total Brillouin scattering

cross sections © arising from various acoustic frequencies seems

BT
to show a similar shape of the resonant Brillouin spectrum arising
from a particular acoustic frequency. Taking these factsinto

account we estimate optical modulation, AIt/I for both (a) and

tl
(b)~polarization conditions and the results are shown in Fig.5.5.
In this figure the broken lines are estimated by using eq. (5.2-2)
in which the dispersion curves of resonant Brillouin scattering

by 1.0 GHz acoustic phonons are used instead of o We adjust

BT*
the value .Opqp to fit the dispersion estimated from eq. (5.2-2)

to the experimental dispersion of 0.M, at the longer wavelength
region, since the optical modulation is undoubtedly caused only
by light scattering in the long wavelength region. It is found
in Fig.5.5 that the estimated dispersion by using eq. (5.2-2)

for the case of polarization vector parallel to the c-axis agrees
well with observed dispersion of O.M.in the whole experimental
region, while a slight difference exists between the two dis-
persion curves for the case of Polarization condition (a); (the
polarization vectors of incident and transmitted light are both
perpendicular to the c-axis). However, general feature of the
modulation is well explained in terms that the depletion of light
due to the resonant Brillouin scattering results in the optical-
modulation. Similar analysis was carried out for the case of
0.M. induced by the piezoelectrically inactive domains which are
shown in Fig.5.6, where we find a good agreement between the
observed modulation spectra and estimated dispersion spectra by
using the Brillouin scattering. In this case modulation effect
is considered to originated only from the light scattering effect.

The slight difference between the dispersion of 0.M,and
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estimated curves in the polarization condition(b) in Fig.5.4 is
interpreted by taking into account of the electric field modulation
mentioned above. By using the data of electric field induced
changes in appropriate band gaps reported by Williamle6) we
estimate an approximate change in absorption coefficients Aq (//)

and Ao (L), where (/) and (!) refer to the light polarization vector
parallel and perpendicular to the c-axis. Assuming the electric
field 'blO5 V/cm one find that Ao (/) is 4.0(cm_l)and Ao (L) is

16.8 (cm_l) at the light wavelength 5200 A. By substituting

these values into the following relation;

AIt
—— | = 1- exp(-Ax-+b) (5.2-3)

It field

The modulation caused by the electric field is fond to be
(AIt/It)(:field)3;80 % for the polarization condition(b) and
(AIt/It)(:field)?;ZO % for the polarization condition(a). For the
light wavelength longer than 5300 A these values of (AIt/It\
rapidly decrease to few percent. It is found from a simple calcu-
lation described above that the contribution of field-modulation
effect in the case of (b) is larger than that ot Polarization
condition(a) . Such a feature of field modulation effect seems
toexplain the difference in the optical modulation between the two
condition(a) and (b), where we find the modulation for (b) is
larger than for(a) ( This feature is shown in Fig.5.2 and 5.4).

If we take into account of the contribution of field modulation
effect to the present analysis we can explain qualitatively such
a polarization dependence of modulation. It is obvious that the
slight difference between the observed dispersion spectra of
optical modulation and dispersion curves estimated from eq. (5.2-2)

in the polarization condition (b) arises from an existence of
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polarization dependence of modulation. We can conclude that the
polarization dependence of O.M.near the intrinsic edge is due to
effect of field modulation. The contribution of field-modulation
through the F.K, effect is significant only in the photon energy
region close to the edge. However there remains a problem that
estimated modulation (%80 %) by using the F.K-type modulation is
very larger than that of expected values. (10720 %) The difference
seems to be caused by a wrong estimation of magnitude of existing
electric field inside the domain. The value of piezoelectric
field %lOSV/cm used in above discussion is estimated by using the

relation between the strain107)

and piezoelectric constant.
In the present time we must consider that the effective piezo-
electric coefficient can be considerably smaller because of

screening effect by free carriers. Taking into account such
3

screening effect, the effective electric field about~5x107V/cm
wasderived by Berkowicz}og) which gives a reasonable value of

electric field induced modulation for the polarization condition
(b), while few contribution of electric field to the total

optical modulation are found in the polarization condition(a).

5.3. Summary

The dispersion spectra of optical modulation AIt/It are
observed under the two polarization conditions; (a) IE”ItAyc-axis
and (b)(IEUItA)Lc—axis in C4dS. The general feature of the
observed dispersion spectra is considerably different from that
of n-GaAs. ﬁe find a deep and narrow minimum around 5600 2 in the
dispersion curves of O0.M,by using the piezoelectrically active

acoustic domain. Observed structure cannot be explained in terms
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of the Franz-Keldysh type optical modulation. A compérison of
observed 0.M, spectra with dispersion of resonant Brillouin scat-
tering is carried out and it is confirmed that the 0.M,signals
observed in the present work are mainly caused by the depletion of
incident light through the resonant light scattering. The polari-
zation dependence of optical modulation is explained by taking
into account of the contribution of electric field-modulation,
which is significant in the photon energy region close to the

intrinsic band edge of Cds.
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Chapter VI Break Down of Selection Rule in Resonant Brillouin
Scattering in CdS.

6.1. Introduction

We have studied in previous section the resonance effects of
Brillouin scattering cross section near the Mo—critical points
in CdS and ZnSe. Those measurements are mainly performed under
the condition of allowed transitions by setting proper polarization
direction, where the polarization vector of the scattered light IA
is rotated by 90° from the direction of incident light polarization
(IE) in the transverse mode phonon scattering( see chapter II ).
The selection rule in light scattering is generally determined by
the crystal symmetry, which predicts the polarization relation
between the incident and scattered lights. In this chapter we
present experimental results and discussion on the break down of
the selection rule of Brillouin scattering in the region near the
band edge. In the present measurement we observed a strong resonance
enhancement of scattering efficiency near the intrinsic band edge
of CdS under a configuration of the polarization where the Brillouin
tensor is expected to be zero. In the experiments of Raman scat-
tering, the resonance enhancements of forbidden-Raman scattering
by LO phonons were measured in several semiconductors. The for-
bidden scattering in resonant Raman effect was studied intensively

110-113)

at the E,—edge of Cds and also at the E,-critical point of

0 1
. . . 114,115)
a group of III-V semiconductor compounds including InpSb;

InAs}lG) and GaSb}lS) It was found that the intensities of forbidden
scattering by LO phonons result in much larger resonance enhancement
than those of allowed scattering near the band edge. Above experi-

mental results on the resonance enhancement of forbidden Raman scat-

tering by 1-LO phonon are dgenerally interpreted by taking into
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account of the electron ( or exciton )-phonon coupling via the
intraband Fr8lich interactionlt?’118) 1, the case of Cu,O the
resonant enhancement of forbidden Raman scattering which was
observed at the dipole forbidden 1ls yellow exciton series of

this material has been explained in terms of the electric quadra-
pole and magnetic dipole terms. On the other hand it was proposed
by Klein et al}z) that impurity states modify the selection rule
in Raman ( or Brillouin ) scattering because they break the trans-
lational and point symmetry of crystals. It is also pointed out
in the impurity effects that the impurity-induced scattering is
independent of scattering angle and should lead to dispersive
broadening of the one phonon line since the phonon momentum is not
fixed. In the present work we have observed an abnormal resonant
enhancement of Brillouin scattering cross section by using the
high intensity phonons of piezoelectrically active TA mode and
inactive TA mode in the forbidden configuraﬁons of following;

(a) the incident and scattered light polarization vectors(I_ and IA)

E
are both parallel to the c—axis and (b) both perpendicular to the
c~axis. As mentioned before those polarization conditions are
perfectly forbidden from the classical analyses (Chap.II) because
corresponding photoelastic constants are all zero. We can find a
sharp resonant enhancement near the intrinsic band edge for both

(a) and (b)-polarization conditions. In the analysis of interaction
between the excitations of the electronic intermediate states

and acoustic phonons we found that the deformation potential scat-
tering of virtual excitons ( or holes )plays an important role in
determining the selection rule of the Brillouin scattering cross

section. From such an analysis we find a possibility of resonant

enhancement of Brillouin scattering which is forbidden from the
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symmetry induced selection rule.

6.2. Experimental Results and Discussions
Present measurementS are performed by using the similar

arrangement in Chap. III. Because of parallel polarization condi-
tion we need not to take into account the optical anisotropy of
Ccds, and thus incident and scattered light angles (ei,ed) are
determined by using a relation derived in the case of isotropic
crystals. In Fig.6.1 we plot Brillouin scattering signals
measured with 1 GHz piezoelectrically active transverse acoustic
phonons propagating in the c-plane as a function of polarization
angle 6 for a fixed light wavelength, where 6 is an angle between

the incident and scattered light polarization directions.
Three kinds of light wavelengths 5300, 5620, and 5900 % are chosen
so as to investigate the polarization dependence in the resonant
region (5300 R), in the antiresonance region(5620 %) and in the |,
nonresonant region (5900 i). In the case of transparent region
(5900 &) O-dependence of Brillouin scattering intensity is found
to reflect the selection rule arising from the crystal symmetry.
We find a strong scattering signal in the case of 6=O(IELIA)
and the scattering signal decreases with decreasing of 9 to zero.
(IENIA). In the case of 5620 3’one cannot find any optical signal
under the perpendicular polarization condition(6=95) because of
the resonant cancellation. However, it is found in the figure that
the scattering intensity drastically increases as the angle g changes
from 90 to 0. The 6 -dependence of the scattering intensity at
5300 R is quite abnormal, where the most largest optical signal
is detected when we set the parallel polarization condition(IEHIA)
which is perfectly forbidden configuration in Brillouin scattering

by TA phonons. Those experimental data mean that there exists
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Fig. 6.1. Brillouin scattering signals versus polari-
zation angle 9 for each incident light wavelength. The
angle 6=0 refers to the polarization condition IE”IA

o
and 6=90 to that of IELIA.
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abnormal feature in the resonant region, which cannot be predicted
from the phenomenological treatment in the light scattering. The
resonant dispersion of Brillouin scattering cross section observed
under the forbidden configuration(IEUIAyc—axis) by the piezo-
electrically active Tp phonons at 300 K are shown in Fig.6.2, where
normal resonant curves observed under the allowed polarization
condition(IELIA) are also plotted for comparison. In the measure-
ments the incident and scattered light angles(6i and ed) are set

to detect the Brillouin scattering signals due to a appropriate
acoustic frequency (0.5 GHz). It is found in Fig.6.2 that the
observed dispersion spectrum under the forbidden configuration
never shows an antiresonance structure around the phonon energy 2.2
eV but shows a steep resonant enhancement near the critical point.
Decrease in scattering intensity at higher energy region is caused
by stnmx;absorption of the incident and scattered lights. Correction
of the effect can be made by normalizing the scattered light inten-

sity IS with the transmitted light intensity I Dispersion spectra

£
of scattering cross sections are shown in Fig.6.3, where the corres-
ponding acoustic frequencies ére 0.5(@0) and 0.8 GHz(®). As seen

in Fig.6.3 the dispersion curves of Brillouin scattering cross
section for the normal configuration RiS(L)(plotted by (O) for

0.5 and (®) for 0.8 GHz) show a characteristic feature of resonant
cancellation and enhancement, where the resonant enhancement occurs
in a convex upward manner as the incident photon energy increases

to the energy of fundamental absorption edge. On the other hand

the dispersion curves for the configuration of forbidden Brillouin

scattering shows a quite different feature from the dispersion

curves of the normal configuration. As mentioned above the
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Brillouin scattering by the piezoelectrically active TA phonons
under the forbidden configuration is expected to vanish. Such
expectation is satisfied only at long wavelength regions. Near

the intrinsic band edge of CdS, however, a strong resonance enhance-
ment is observed on the contrary to the expectation of the classical
treatment.

The experimental dispersions observed under the forbidden
polarization conditions at 77 K are shown in Fig.6.4, where the
dispersion curves observed at 300 K are plotted for comparison
with the present experimental results at 77 K. We find in Fig.6.4
that a steep resonant enhancement occurs under the forbidden scat-
tering condition for 0.5(®) and 0.6(Q) GHz TA phonons. Stronger
resonant enhancement observed at77 K than that at room temperature
is due to a smaller brodening energy at 77 K. Total dispersion
spectra at 77 K are found to shift to high energy region from those
at 300 K, which is interpreted in terms of temperature dependence
of the energy gap(“.l eV larger at 77 K ). Next we discuss reso-
nance effect of forbidden Brillouin scattering by piezoelectrically
inactive TA phonons. Measurements were made by using two kinds of
inactive TA phonons; the one is so called Tl-mode phonons propagting
in the c-plane with displacement vector perpendicular to the c-axis
and the other propagates in the direction 45 off the c-axis. Such
inactive phonon packets can be obtained making use of mode conversion
in the reflection of acoustic domains. A weak resonance enhancement
of Brillouin scattering by the inactive TA phonons are observed
under the forbidden configuration(IEHIALc—axis) at 300 K which is
shown in Fig.6.5, where dispersion curve of the allowed Brillouin
scattering by the inactive TA phonons is also shown for comparison.

The observed dispersions in the forbidden Brillouin scattering
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show no structure of antiresonance around the 2.2 eV, while the
Brillouin scattering intensity observed under the allowed polari-
zation condition drastically decreases in this photon energy region.
The two kinds of inactive phonon packets have a similar character,
and are not acompanied with d.c.or a.c, electric feilds. Therefore
the present observation of the resonant enhancement in forbidden
scattering by inactive phonons in CdS suggests that the Break down

of selection rule in Brillouin scattering is not associated with

an existence of high electric field. Similar resonant enhancements

are also reported in Raman scattering by inactive 1-1L0O phonon}lg)

3-Band Model

We have already shown that the present results obtained under
the condition of forbidden polarization conditions cannot be ex-
plained by an existing phenomenological theory derived from the
crystal symmetry. Therefore we consider here a possible interpre-
tation of resonance enhancement of forbidden scattering efficiency
by taking into account of the deformation potential scattering of
intermediate virtual excitons, based upon the analysis which was
first made by Ando and Hamaguchi for the case of allowed Brillouin
scattering. In the previous chapter we pointed out that the selec-
tion rule of deformation potential scattering of virtual electronic
excitations by phonons plays an important role in the resonance
enhancement. We briefly describe a procedure to construct 3-Band
model of possible transition process. First we consider a polari-
zation-relation of incident and scattered lights from the phenome-
nological treatment. of Brillouin scattering, where the crystal
symmetry is introduced in the formulation of photoelastic tensor.
It is possible to conclude that the derived photoelastic constant

corresponds to the nonresonant term Ris(nonresonant) in the micro-
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scopic theory. Second we consider the resonant term of_Ris, which

is given by

R = 3 POB:B(XP(XO

is (6.2-1)

(wB—mS)(wa—uﬁ)

where the notations are the same used in the Chap.II. The Brillouin

tensor R, is interpreted as resonant contribution arsing fromthe

electronic transition process ;|0>—|a>—|B>—|0>, where |0> refers
to the electronic ground states,|a> and |B> to the virtual states.
In the treatment possible state of electronic excitation |o> is
determined from the optical selection rule of dipole transitions.
Here the matrix elements EBa plays an important role in constructing
intra- or inter-band transition of the virtual states(2- and 3-Band
transition process). 1In Fig.6.6 the schematic diagram of optical
transition and acoustic transitions of intermediate virtual excita-
tions at T-point in CAS is shown. One consider the forbidden scat-
tering by active TA phonons, where the incident and scattered

light polarization Vectors(IE and IA) are both parallel to the
c—axis. In this case the corresponding photoelastic constants

in the longer wavelength region are P and then we obtain;

347 P35
=0 from the analysis based upon the crystal symmetry( see

P347P35
eqg. (2.2-14). Therefore the nonresonant term Ro(nonresonant) is
zero. The result is consistent with the present observation that the
Brillouin scattering signal under the above condition disappears in
the long wavelength region(far from the band edge). On the other hand
the scattering signals appear at wavelengths near the band edge and
increase as the wavelength approaches to the band edge. It is easily

found that the electronic virtual state associated with A valence

band( or A excitons) does not contribute to the light scattering
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in this configuration. In the following we consider the virtual
states as excitons. From the experimental conditions the symmetry
of initial intermediate electronic excitations are found to corres-
pond to that of B excitons( or holes in B valence band) having F7—
symmetry. By making use of selection rule of acoustic transition
shown in the right hand of Fig.6.6 we find that the electronic

virtual state with the TI'._-symmetry can transit to another F9-symmetry

7
virtual states corresponding to the C excitons( or holes in C valence
band). The electrons and holes of C excitons recombine to radiate
the phonons with polarization vector parallel to the c-axis because
of F7-symmetry. Consequently we obtain the following transition
process in the resonant region;* [0> —|T4> -—|F7>——|0> in the case of
forbidden scattering by the active TA phonons. In the above analysis
we find that 3-Band transition process results in a dominant resonant
contribution to the total Brillouin scattering cross section, which
is shown schematically in Fig.6.7. Here the notations —> and %
refer to the optical and acoustic transitions of virtual states.

Next we consider the case of forbidden Brillouin scattering by piezo-
electrically inactive TA mode phonons (Tl-mode). From the present
experimental condition we easily find that the corresponding photo-
elastic constants are P and P

16 26
region (long wavelength region). Therefore we conclude that the non-

which are zero in the transparent

resonant term vanished at long wavelength region. The result is
consistent with the present observation and also with the phenome-
nological (macroscopic) theory derived from the analysis of crystal
symmetry. From the analysis of the macroscopic theory we find that
the following transition of 3-Band process contribute to the resonant
term in the photon energy region close to the band edge;

|0>—|Tg>—|T,>—]0>.
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Such a dominant 3-Band process is shown in Fig.6.7. We estimate
Brillouin scattering cross sections in the forbidden conditions by
using the above results. The total scattering cross section OB

is written as,

GBT(forbidden)«|Ris(resonant)+Ro(nonresonant)|2 (6.2-2)
with Ro(nonresonant)=0 because of the reason stated above. We are
able to predict from eq. (6.2-2) that antiresonance structure does
not appear in the dispersion spectra of forbidden scattering cross
section,which is consistent with the present experimental results
shown in Figs. (6.2)-(6.5). In Fig.6.8 we show the estimated dis-
persion curve of Brillouin scattering efficiency for 0.5 GHz active
TA phonons>in the forbidden condition(IENlec—axis), by broken line,
where the virtual states of |B>- and |C>-excitons are taken into
account. The parameters used in the present calculation are
summarized in Table 6.I. It is fond in Fig.6.8 that the experi-

mental dispersion spectra of scattering efficiency shows a good

agreement with that of theoretical dispersion.

Table 6.I. Parameters used in the estimation of forbidden-resonant
Brillouin scattering in cds.

piezoelectrically- [300 K]: [77 K]
active TA-phonons Egi=2'494 (ev) Egi=2‘552 (eV)(a)
= = (a)
?gs 2,553 Egs 2.640
:CB=—0.8 :CB=—O.8
piezoelectrically-~ [300 K]

inactiv -
ctive TA-phonons Egi=2.480 (ev)

Egs=2°494

EBA=—1.28

(a) : Cardona et al. ref. (30)
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A comparison of experimental curves with theoretical curves at 77 K
is shown in Fig.6.9. The experimental data are observed under the

polarization condition of I nlyvc—axis by using the amplified TA-

E
phonons with frequencies 1.0(0) and 1.4 GHz (®). The theoretical
curves are calculated by taking into account of the intermediate
virtual states of |B>— and |C> excitons, where band parameéters

30) are used(Table 6.I.). It is

at 77 K reported by Cardona et al.
found from the ocomparison that the experimental results are well
explained by the present model. Calculated curve of forbidden
scattering by piezoelectrically inactive TA phonon is shown by solid
line in Fig.6.10, along with experimental results, where the
theoretical calculation was carried out by taking into account of

the deformation potential scattering of |A> and |B> -virtual
excitons. The comparison of experimental results with theoretical
curve shown in Fig.6.10 is performed only in the case of inactive

TA phonons propagating in the c—plane(9dicut crystal). The observed
resonant feature near the fundamental edge is found to be well
explained by the theoretical dispersion. Although the experimental .
dispersions of forbidden scattering by piezoelectrically active and
inactive TA phonons show resonant enhancement in the photon energy
region, and a reasonable agreement with the theoretical curve, we find
that the present experimental data indicates a saturation or slight
decrease near the photon energy region very close to the intrinsic
band gap, while the theoretical curves of the scattering effici-
ency still increase. This effect is interpreted by broadening
effect}24) By taking into account such a broadening effect we

are able to explain the saturation behavior of observed dispersion

spectra in the present work.
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6.3. Summary

We observed resonant enhancement of forbidden Brillouin scat-
tering efficiency in CdsS. It is found in the present work that
the observed-forbidden Brillouin scattering efficiency shows a
resonant increase as the photon energy increase to the fundamental
absorption edge, where phenomenological theory(macroscopic theory)
predicts no scattering under the present configurations. Such a
resonance effect is considered as the inhdisic bulk effect and
explained by taking into account of the electronic contributions to
the Brillouin scattering. From the present analyses of selection
rules in optical transition and deformation potential scattering it
is found that the intermediate virtual excitations associated with
the spin orbit split off band( or C-excitons) play an important
role in the resonant-forbidden scattering by piezoelectrically
active TA phonons (T2-mode phonons ) in CdS. We also found a
resonant enhancement of forbidden Brillouin scattering by piezo-
electrically inactive TA phonons(Tl-mode phonons), where the
selection rule of macroscopic Brillouin scattering breakes down and
the scattering efficiency shows a resonant increase near the
fundamental edge. We conclude that the selection rule of Brillouin
scattering derived fram the crystal symmetry breakes down in the
photon energy region near the band edge and that the resonant
light scattering is explained by taking into account of proper

transition process of intermediate virtual excitons.
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VII Application of Acoustic Pulse Injection into Semiconductors

7.1. Introduction
We have already shown in previous chapters that an intense

acoustic domain excited in piezoelectric semiconductor CdS can be
injected into different materiéls and by making use of such injected
phonons packets one can investigate the resonance effect in Brillouin
scattering by propagating acoustic flux in many kinds of semicon-
ductors?s’zg) We found such an acoustic injection technique has a
very useful application to a study of acoustic propagation and mode
conversion in various semiconductors. In the present work firstly
we make use of such injected sound waves in study of resonant Brillouin
scattering of semi-insulating ZnSe(shown in Chap. IV) . Since such
an acoustic injection technique has been used successfully for an inves-
tigation of elastic properties of propagating acoustic flux in the

semiconductor%S’ZG).

Theoretical analysis given in this chapter is

indebted to K. Yamabe(See K. Yamabe;M.S. thesis (March,1977) and

K. Yamabe, K. Ando and C. Hamaguchi,Japan J.Appl.Phys. (submitted)).

We describe a theoretical analysis of injection efficiency of acoustic

flux by assuming an ideal bonding of CdS with ZnSe and ZnTe samples.
The reflection and transmission efficiencies of the acoustic

waves are calculated by solving elastic equation under a proper

boundary condition. From such analyses one can find the acoustic modes

excited in the end-bonded ZnSe and ZnTe samples?g) In the latter

part of this chapter some applications of acoustic injection technique

are presented,where elastic properties such as phase velocity, elastic

stiffness constants(cll, C and C44) and propagation loss in ZnSe

12
and ZnTe are determined by using the Brillouin scattering technique.
It should be noted that the injected acoustic flux consists of an

considerably wide frequency range from 0.1 to 2 GHz and therefore
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such an acoustic injection can be applied not only to the‘present
measurements of elastic properties but also to more various inves-

tigations of electron-phonon interaction in semiconductors.

7.2. Acoustic Field Equations and Transmission efficiency
As well known, there are two basic-field equations between the
strain(Sij), displacement(Ui) and stress(Tij) in a crystal. The

relation between strain and displacement is given by,

1 ou. ou.
Si5= = (—= + —34) (7.2-1)
2 arJ Bri

T, .=p—= - F, (7.2-2)

where r. is the orthogonal coordinate, p is the mass density and
Fi is the external force. By introducing the particle displacement
velocity[vi] defined by the first derivative of atomic displacement

with respect to time t, these two equations are reduced in following

convenient form; 3 avi :
- Tij=p - . (7.2—3)
or. ot
J
] ka
— T, .=C. . —_— 7.2-4
ot 13 i3kl arl ( )

where we droped the term of external force in eq. (7.2-1) and the
elastic stiffness constant Cijkl is introduced. Now we define the
acoustic poynting vector [P]ac with an analogy to the case of
electromagnetic field,

1 *

- [P] == —1I (Ii)vJ

T. . (7.2-5)
ac 2ij i

J

where (Ii) is the unit vector of i-direction in the coordinate

*
orthogonal system and Vj stands for the complex conjugate of Vj'
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One can determine the mode of acoustic waves by solving egs. (7.2-3)
and (7.2-4) and acoustic power propagation is estimated by using the
field parameters[vi] and [Tij] . Here we consider the boundary
conditions which is very important to solve the acoustic field-
equations. The boundary condition of [vi] is obtained by assuming

that the particle displacement velocity v is continuous at the

boundary surface(bonded-surface), which is expressed by,

[v.]

i1q= vyl (7.2-6)

where the subscripts 'l' and '2' refer to the specimen 1 and 2

in Fig.7.1, respectively.

Cfaxis ? 10

/

(2) |
ZnSe,ZnTe Qoop

Fig. 7.1. Schematic arangement of acoustic-
wave injection for CdS-ZnSe and CAdS-ZnTe sys-—
tems where € is the angle between the propa-
gation vector of injected sound wave and [001]
crystal direction in the (110) plane.

We also assume that motion of the boundary is ignored and that
the external traction force is continuous at the interface surface
between the two bonded specimens. From the above assumptions

one can obtain the Boundary condition of stress component Tij as,

[Tijll' [n] = [Tij] o2 [n] (7.2-7)
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where [n] is the unit vector normal to the interface surface.
Procedures to obtain the transmission and reflection coefficients
of the acoustic energy are as follows. First we solve egs. (7.2-3)
and (7.2-4) using the boundary condition (7.2-6) and (7.2-7).

Next we evaluate the acoustic pOynting vector [Pac] for incident,
reflected and transmitted waves. Finally we calculate the reflection
and transmission coefficients. In the present we carried out such
calculations for the case of CdS-ZnSe and CdS-ZnTe bonded systems.
Now we estimate the transmission and reflection coefficients of
acoustic waves in the special case of CdS-ZnSe (CdS-ZnTe)system.
We adopt the Cartesian coordinate system with X-axis normal to the
interface surface. The c-axis of Cas is fixed and parallel to the
7Z-direction, while the bonded specimens are cut so that the X-axis
(long-dimension)makes an arbitrary angle 6 with the [001] crystal
direction in the (110)plane. The elastic stiffness constant

matrix of CdS with 6mm symmetry is givn by,

’
C11 €12 €330 0 0 ] .
with
Cip €31 €330 0 0 ( ) /2 - )
C__=(C..~C .2-8
€13 C13 Cas 0 0 66~ (€117C12
0 0 0¢C,0 0
0 0 0 0C,, 0
Lo 0o o0 0 0 e |

The bonded crystals(ZnSe and ZnTe) belong to the class 43m and

the matrix of elastic constants is given by,

[ €17 €15 €50 0 0 ]
C12 C41 €20 0 0
C12€32C1 0 00 (7.2-9)
0 0 0c,0 0
0 0 0 0cC,, 0
L 0O 0 O0 0 O Caq |
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As illustrated in Fig.7.1, however, the crystal axis of bonded

specimen is rotated in the (110) plane.

Therefore the matrix given

by eq. (7.2-9) cannot be used directly in the case of the coordinate

system.

In such a case, it is very advantageous to apply a trans-

formation of the matrix to the coordinate system in Fig.7.1l.

The detail of the transformation is given in Appendix III and the

final result is,

C11

€12

C13

0
C1s
0

-

Where C;iks are given by eq. (AIII-7) in Appendix.

C12

€22

Ca3

0
Cas
0

Cll

o cu

13 15
C23 0 C3s
C33 0 C35
0cy, O
C35 0 Cxs
0 cy. 0

o )

0

0
Cie
0

Cll

66 |

(7.2-10)

In the present

configuration, the acoustoelectric domain consists of shear waves,

and thus we can put [V]I=[0,O,sz] for the atomic displacement

velocity and [k]I=[kI’O’O] for the wave vector of the incident

acoustic waves.

expressed by a plane wave;

that is,

[v(x)]I==[z]Azexp{i(-ka+wt)}

For simplicity we sssume that the incident wave is

(7.2-11) -

where bracket is used for vector quantity and [z] is the unit vector

in the z-direction.

In a similar

fashion we can describe the

reflected and transmitted waves in the following forms;

[v(x) 1= ([xIB, +[y]B +[2]B Jexpli(k x+ut) }

[V(X)]T==([X]Dx+[y]Dy+[ZIDz)exp{i(-ka+wt)}

(7.2-12)

(7.2-13)

where kR and kT are the wave vectors of the reflected and'trans—

mitted waves, respectively.

Using these expressions we can derive

the stress for the incident, reflected or transmitted waves by sub-

stituting eqSJ?.Z—llL(?.Z-lZ) or(7.2-13) into eq.(7.2-4).
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The coefficients Bi and Di are determined by using boundary condition

egs. (7.2-6) and (7.2-7) which can be rewritten as,

[V ()1 + [v; (0= [v (0], (7.2-14)

LTij(O)]I+ [Tij(O)]Rf=[Tij(0)]T (7.2-15)

The results are summarized in Table 7.1, where the particle dis-
placement velocity[v], phase velocity Vp, stress Tij and complex
acoustic poynting vector [Pac] are given for the incident (acousto-
electrically excited), reflected and transmitted waves. In general,
the reflected waves consist of one pure longitudinal (PL) and two
pure transverse (PT) mode acoustic waves, while the transmitted waves
are pure transverse (PT), quasi longitudinal (QL) and quasi transverse
(QT) mode coustic waves. In Table 7.1 we used contracted notation

for stress and

— l " n "o~ 2 n 2 —
a, = ; {c55+clli:((c55 C11) +4CY y1/2} (7.2-16)
B, = (C,-a,)/Cl¢ (7.2-17)

From the obtained particle velocity vectdr [v] we can calculate
polarization angle ¢_ and ¢ =¢_-90° for the QT and QL waves excited
in ZnSe and ZnTe, where the angles are defined by the angles between
the propagation direction and the particle displacement. In Fig.7.2

the angle ¢_ is shown as a function of the angle 6 which is defined

in Fig.7.1. The solid(ZnSe) and broken(ZnTe) curves in Fig.7.2

are calculated by using the elastic stiffness constant obtained by
the present work (which will be shown later section). Acoustic
poynting vectors for the reflected and transmitted waves are calcu-
lated by substituting [v] and‘[Tij] for each acoustic mode into

eqg.(7.2-5). The reflection and transmission coefficients are defined



119

Qo ALn {10)
,OO L 4 L L4 l 1§ 1 1} ‘
o - I,‘\‘\ o
:% g 1 \\\ —— 2ZnSe
¢ | -~~~ ZnTe
90f—- —-
3 7’. <=7 .
/P I ]
_ 9001 |
80 A E— 1 1 4 N A .

90
6 degree)

Fig. 7.2. Polarization angle
¢_ of injected QT phonons into
ZnSe and ZnTe as a function of
propagation angle 6.

by the ratio of the reflected and transmitted Poynting vectors

to the incident one.

use the particle velocity and stress given in Table 7.I.

lection coefficient Rp

The calculation is straight forward if we

The ref-

and transmission coefficient Tp for the

corresponding acoustic modes are as following:

BytYB_-T o

(R_) =( ——— ) (7.2-18)
2
c 2 (1+y)
(Ry)pr= I 32 (7.2-19)
Caq Be¥tYB_+1
2.2 2
ota, {(1+8%) %+82%} 2
(T ) gp =1 — Ll S SV p— Y ET N Y S\
P pc44 B++YB_+T
and»
TCR p'a,{(1+sf)2+63}]1/2 (—2 /2 (gem
T =
p’ QT 0Cy g B HYB_+T
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where (pcll)l/z"'(p'o°+)l/2
Y = = 1/2 ) 172 (7.2"'22)
(pCyq) +(p'a_)
(p'a+)l/28++(p'a_)l/2vﬁ
T = (7.2=-23)
(pC, )2 '
44

and p' is the mass density of the bonded specimen. The elastic

11 and C44 in egs. (7.2-18)-(7.2-23) are for CdS. Pure

transverse acoustic waves with atomic displacement parallel to the

constantsC

y-direction are not excited in the reflected and transmitted waves
due to the fact that the incident waves are pure shear waves with
atomic displacement parallel to the z-direction which are generated
by acoustoelectric effect.

In Fig; 7.3 we plotted the efficiencies of reflection R_ and
transmission Tp for each mode in ZInSe(solid line) and ZnTe (broken-
line) which are calculated by using the elastic constants determined
from the present work. It is found in Fig.7.3 that the trans-
mission coefficient for the quasi-transverse mode is about 95 % and
reaches about 99 % in a typical case(6=50). The transmission coeffi-
cient for the quasi longitudinal acoustic mode is less than 5 %.

These results are evident from the fact the inéident wave 1is polarized
parallel to the z-direction and thus the polarization direction of

the transmitted wave is strongly polarized in the z-direction .

The quasi longitudinal waves are excited weakly because the polarization
direction of the QL waves is almost parallel to the x-direction as
shown in Fig.7.2. These results are consistent with the experimental

observation stated later.
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Table 7.I. The particle Displacement velocity([v], the phase velocity Vb, the stress camponents[T] ard
the camplex acoustic Poynting vector[PaC] of incident, reflected and transmitted acoustic waves.

Incident wave : [PT-mode]
_ _ 1/2 . 1/2
IVJI—[Z]AZ(PT), Vp—(C44/b » [Tgl= (PCyy) AZ(PT)
PR § 2 1/2
Reflected waves:
PL-mode PT-mode PT-mode
[v]g=[x]B_(PL) [v1g=[y]B, (PT) [2]15=[2z]B,(PT)
_ 1/2 _ 1/2 _ 1/2
_ 1/2 _ 1/2 _ 1/2
o 1 2 1/2 — 2 1/2 — 2 1/2
[Pac = [XJEBX(PL) (oCll) [Pac = [XJE By(PT) (DC66) [Pac]— [XJEBZ(PT) (DC44)
Transmitted waves
PT-mode QL-mode QT-mode

[v],=[y]D, (PT)
- ] v 1/2

—— (" /2

" )l
l66 y
— 2 tn 1/2

[V]T=([x]+[Z]B+)DX(QL)
/2

[v] = ([x]+[2]18_)D, (QT)

o o] Lo oy 172
vp—(u+/o ) Vp—(a_/p )
tr,1=-(o'«_)*/?p_(om)

/

(r,1=-(0"a,)*/?p_(QL)

(T]=-(p'a,)6,D_(QL) [T51=-(o'a_) /28 D_(om)

(P _1=([x] (1+82)+ (2] 82) (e, 1=(1x] (1+8%) +[2187)

1
3 (o) % (pra,) /2 5D, (@m) 2 (pra_) /2
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7.3. Application of Acoustic Injection to an Investigation of
Elastic Properties

In the previous section we found that the three kinds of
acoustic modes (PT,QT and QL-modes) can be excited in the end
bonded specimens by the acoustic injection. The theoretical trans-
mission coefficients of complex acoustic Poynting vectors in the
cds-ZnSe and CdS-zZnTe systems are found to be more than 90% for the
arbitrary propagation directions in the (110) plane. Observed
transmission coefficients in the present experiments (Fig.7.4) are
smaller than the theoretical values, which seems to be due to the
boundary energy loss. We can confirmed expefimentally that the
considerably strong optical signals (scattering signals) can be
detected by using the such injected sound waves. The intensity of
injected acoustic power observed in the present measurements depends
upon the quality of bonding contact and one can find in Fig.7.4
the maximum transmission coefficient of acoustic Poynting vector is
about 50% for the 0.1 GHz acoustic phonons. Experimental trans-
mission coefficient depends on the frequency of the acoustic waves
and decreases with increasing the frequency, as shown in Fig.7.4,
where the results on the pure transverse (PT) waves propagating in
the [110] plane are given for example.

By using various kinds of injected acoustic waves we carried
out the following experiments: (1) determination of the three in-
dependent elastic stiffness constants (cll,c12 and c44) in the
ZnSe and ZnTe, (2) determination of propagation loss o (non-
electronic lattice loss) of the transverse acoustic waves in ZnSe
and ZnTe in the range of frequencies 0.5%v1.5 GHz. Measurements
are performed by using the similar experimental arrangement
in Chap.III. but for the light source of He-Ne laser. In order to

obtain a good bonded contact we covered the contact with araldite,
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which avoided unwanted signals from electro-luminescence near the

anode of Cds.

7.3.1 Determination of Elastic Stiffness Constants in ZnSe and
InTe

We have carried out the méasurements of velocities of quasi-
transverse sound waves propagating in the several directions in
the (110) plane. Phase velocities of propagating sound waves were
estimated from the time delay of scattered light signals as a
function of the probing positions. In Fig.7.5 and 7.6 we plot the
experimental sound velocities as s function of propagating direction
in ZnSe and ZnTe, respectively. The measurements were made by
using QT mode waves of 1.0GHz for ZnSe and 0.8GHz for 2ZnTe. As
shown in Table 7.1, the theoretical sound velocity of injected

QT mode into ZnSe and ZnTe is given by
" LU no__n 2 " 2 1/2
v =Coy/e S5t ((Cg5=C31) +4Ci5 ) /2
p p’ 2pl

(7.3-1)

where Cil,cgs and Cis are represented by three independent elastic

stiffness constants C and C of ZnSe and ZnTe (See egs.(A.III-

1112 44
7) and (A.III-4). Therefore the phase velocity observed in the

present measurements can be calculated as a function of Cll'C12’C44

and 6 . Three independentelastic stiffness constants of ZnSe and

ZnTe are obtained as set of three parameters which give a best fitted
theoretical curve of phase velocity to that of experimental curve

as shown in Figs.7.5 and 7.6. From the least square fit of experi-

mental data points to the theoretical curves(eq. (7.3~1)) we obtained

the following three parameters;cll=8.55, C12=4.49, C44=4.01¥10ll

(dyn/cm?) for zZnSe and C..=7.36, C,.=5.43, C,,=3.50 for ZnTe,

11 12 44
which are summarized in Table 7.II together with the results of

e88) 121)

Le and Berlincourt.
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Table 7.II. Values of the elastic stiffness constants obtained
by the best fitting.

present work Lee et al. Berlincourt et al.

C C C C - C C C C C
[zZnSe] 11 12 44 11 12 44 11 12 44

8.55 4.49 4.01 8.59 5.06 4.06 8.10 4.88 4.41

(dyn/cm?2)

C C C C C Cc C C C
[ZnTe] 11 12 44 11 12 44 11 12 44

7.36 5.43 3.50 7.11 4.07 3.13]7.13 4.07 3.12

7.3.2. Frequency Dependence of Attenuation Coefficients of
Injected Sound Waves in ZnSe and ZnTe

The attenuation coefficients of appropriate acoustic frequency
can be obtained from the measurement of the intensities of scat-
tered 1ight signals as a funtion of the probing position. In the
present study the measurements are carried out by using the T2-
mode acoustic waves propagating along the [001] ([110])direction
with shear polarization parallel to the {110} ([001]) direction in
znSe (ZnTe). The results of ZnSe and ZnTe are shown in Figs.7.7
and 7.8, respectively. The frequency dependence observed in the
present work is of the form :amel‘45 for ZnSe and ochrfl'2 for ZnTe,

which are inconsistent with the theoretical frequency dependence

of Akhieser loss,where is proportional to the square of fre-

oL
quency; amez. Departure from f2—dependence is also observed in
a survey of other materials?6’37’122) It is not clear why the
f-dependence is not quadratic. However,Miller123) has pointed out
that a strong frequency dependence for thermal phonon life time
itself gives a deviation from Akhieser type frequency dependence.

Tsubouchi and Mikoshiba have proposed that such a non—quadratic

frequency dependence reflects non-linear phonon-phonon interaction
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in the strong flux limit. In the present method the energy density
of amplified acoustic waves in CdS ranges from lO7 to lO9 in the
frequencies 0.1v2.0 GHz. From the measurement of scattered light
intensity by injected sound waves one can find that the energy of
injected acoustic flux is nearly same order of the flux in CdS

and thus we cannot neglect the non-linear interaction between the

phonons. Such an effect seems to explain the departure from the

fz—dependence.

7.4. Summary

A treatment of acoustic transmission theory is given in order
to determine the modes and intensities of injected acoustic waves
into ZnSe and ZnTe. It is found that the three acoustic modes
(PT-,QT-, and QL-modes) can be excited by the domain injection.
From the analyses the transmission coefficients of acoustic Poyn-
ting vectors in CdS-ZnSe and CdS-ZnTe systems are found to be higher
than 95% in the case of QT-mode acoustic waves. By using such
strong injected acoustic packets the measurements of Brillouin
scattering are performed and three independent elastic stiffness
and C are determined in ZnSe and ZnTe.

1'C12 44

Attenuation coefficient ap of the transverse acoustic waves are

also determined in the frequency range of 0.5 to 1.5 GHZ.

constants; Cl
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Chapter VIII Conclusions

The results and conclusions obtained in the present work
are summarized as follows:
1) The relevant photoelastic constant Pijkl concerning to the
resonant Brillouin scattering for different acoustic phonon
modes are determined by using the classical light scattering
theory.
2) Observed dispersion spectra of Brillouin scattering cross
sections by TA phonons show a sharp resonant enhancement near
the fundamental edge(MO—critical point) and also show a resonant
cancellation(antiresonance) just below the edge in CdS abd ZnSe.
3) It is found from the microscopic light scattering theory
that the electronic virtual excitations of holes( or excitons)
associated with the p-like valence bands(I‘7 and F9) have an
important role in the resonance effect in semiconductors.
4) In order to explain the observed dispersion spectra of the
resonant Brillouin scattering cross sections 2- and 3-Band models
are proposed which take into account of the transition process
of the intermediate virtual states associated with the valence
bands.
5) Microscopic expression of Brillouin scattering efficiency
taking into account of the exciton contributions was found to
explain the experimental dispersion spectra of scattering cross
sections.
6) The general formulation of resonant Brillouin scattering is
derived from the treatment of non-linear susceptibility and from
this analysis we find the theoretical resonant dispersions of
Bfillouin scattering efficiency in the higher photon energy

regions(Ml, M2 and M3—critica1 points in addition to Mo—critical
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point).

7) Antiresonance-structure in the disperion curves can be explained
by the fact that the sign of resonant contribution arising from
Mo—critical point is different from that of nonresonant contri-

bution arising from the higher energy M_-critical point.

2
8) Dispersion spectra of Brillouin scattering cross sections by
mode converted-PL mode phonons are found to show only the reso-
nant enhancement near the intrinsic edge of CdS and never show the
structure of resonant cancellation.

9) We find in the analysis of piezo-birefringence theory that the
relevant photoelastic constants Pijkl passes through zero while
under going a reversal in sign and the features are closely

related to the mechanism of resonant cancellation.

10) In the present measurements of optical modulation induced by
the propagating acoustic domain we observe a deep and narrow
minimum around 5600 A in CdS.

11) Present dispersion curves of optical modulation are essentially
different from those of optical modulation observed in n-GaAs,

where the mechanism in the latter case is believed to be associated
with Franz-Keldysh effect induced by the piezoelectric field in

the domain.

12) The domain induced optical modulation in CdS cannot be explained
by the edge-modulation through the Franz-Keldysh effect but the
mechanism seems to be associated with the resonant light scattering.
13) The crystal symmetry induced selection rule of Brillouin scat-
tering has broken down in the photon energy region near the
fundamental absorption edge in CdS.

14) Observed Brillouin scattering efficiency under the forbidden
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polarization conditions shows steep resonant enhancement near the
intrinsic band edge of Cds.

15) The electronic virtual excitations of spin orbit splitt off

band play a very important role in the resonant-forbidden scattering
by piezoelectrically active’TA phonons.

16) It is found from the analyses of acoustic transmission theory
that three kinds of acoustic phonon modes (PT-, QT, and QL-modes) can
be gxcited in the end bonded ZnSe and ZnTe crystals when we choose
proper crystal axis.

17) Injected acoustic waves of quasi-transverse mode are achieved
and the attenuation coefficients o of the propagating acoustic
waves in ZnSe and ZnTe are measured by making use of Brillouin
scattering technique.

18) The three independent elastic stiffness constants C C

117 T12

and C44 of ZnSe and ZnTe are determined from the measurements of

usual Brillouin scattering by making use of acoustic injection

technique.
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Appendix I. General Formulation of Resonant Brillouin Scattering

in Higher Energy Regions

The resonant behavior near the fundamental edge of semicon-

0)

ductors can be explained by Loudon'stheory2 or by the expression

of Pijkl(w’Mo) of eq.(2.7—19).. In this Appendix we discuss the
resonant light scattering in a higher photon energy region.

The general formulation ofAez(w,wq) developed in Chap.II is very
useful for the present discussion, which is given by

A, S (fw i’hwq—fzc\{&).)d

Sthw-€ (k)
Aez(w,wq)=(02 I cv

k + .dk (AI-1)
Hw - (k) fwthe e (K)
cv q cv

where A2=2A1/(2ﬂ)3and the 2-Band model is adopted for simplicity.
After a simple calculation eq. (AI-1l) can be written,

TA

— 2 - 7 _ - -
Be (w,u,) —iﬁ 5 [ §w-e_ (k) ak 8 thwthw, eoyk))dk 1 (a1-2)
w_w
d
As well known the imaginary part of the dielectric constant ez(w)is
. 2
defined as; e
! _ A 2 _ _
) -ﬂmzwzle Pl ¢ 8 (Ru-e_ (R)dk (AI-3)

Finally one obtains the expression of the change in the imaginary
part of the dielectric constantAez(w,wq) induced by the acoustic
phonons by using the general expression of ez(w),

1 13 k1 de

- 2
Ae,{w) =—- —(n_+—*=)s, . .E — (AI-4)
2 fie 922 ki dw
By an analogical treatment one also obtains the expression of €y
. 14
de
1 11 k1 CT1 _
[Ael(w) "l] = %-;(nq'f'fiz)skl_ a—w (AI 5)

Equations (AI-4) and (AI-5) are simple but important formulation in
the estimation of resonant enhancement at higher energy critical

points(Ml,M and M_,-critical points).

2’ 3
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The dispersions of ez(w) for three dimensional Mo’ Ml’ M, and M_-

2 3
70) 71

type critical points are derived by Batz and Matatagui. Acoustic

phonon induced change Aez(w) can be evaluated from eq. (AI-4) when we

know dez/dwglven by76)
0 (w<wgo)
. - : _ (AI-6a)
[MO] : dsz/dw —{ Co (w0 ) 1/2 (w>wgo)
2 go
C
(M,]: de./dw = 1 -1/2
1 2 ——(w (w<w )
{ 29l 91" (ai-éb)
0 (w>wgl)
0 (w<w_,)
[MZ]. dez/dw = gc g2 (AI-6c)
1—2 (w=-w )_l/2 (w>w_,)
2 g2 g2
3 -1/2
[M3]: dez/dw ={ - ;—(wg3 w (w<wg3)
0 (w>wg3) (AI"Gd)

The change Ael(w) which determines the resonant behavior in the
light scattering is obtained from the expression of dez/dw by using

Kramers-Kronig transformation, which is summarized in the following.

-1/2 -1/2.
{C;[‘“+“go) o =w) T2 (wu )

M ]:0e; (w)ede /dw =Y © 99 (a1-7a)
0 (w>w __)
go
y {0 (w<wgl)
[M.]:Ae, (w)=de,/dw = (AI-7b)
1170 L -cltw-u_p) 2172 (w>w_1)
gl
(M,]:Ae) (w)=de, /du = ~c), [ (ot )‘l/2+(wgz y~1/2) 45 (w<u,)
(AI-7¢c)
(w>wg2)
(w<wg3)
[M,]:A€, (0) xde, /dw = _
¥ ! cylumug3)1/2 (way) A7

The feature of resonant behavior of the Brillouin tensor (corresponds

to the Ael(w)) for three dimensional Mo'Ml'MZ and M3 critical
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points are schematically shown in Fig.AI.

We find from the figure that the resonant
behaviors of MO- and M2—critical points
are quite similar but for the sign. It is
also clear that contribution of M,- and
M3wtype critical points to the total
scattering efficiency in the region of
fundamental edge is negligibly small
because the contributions from those
critical points are significant only in
the photon energy region'hw>hwgl(hwg3),
where ﬁmgl and hwg3 are the energy gaps
of the Ml and M3~critical points. Then
vve suspect that the nonresonant contri-
bution to the total Brillouin scattering

cross section in the transparent energy

region originate mainly from that of M,-

critical point. This prediction is consistent with the appointment

72)

of Cardona, who estimated the nonresonant contribution from Penn-gap

Appendix II. Correction of Strong Absorption and Depletion of

Incident and Scattered Light in Anisotropic Crystals

We present here a derivation of the formula to relate the scat-

tering cross section g

with the measured values of IS and Io’ where

we properly take into account the birefringence and the difference

in the optical absorption coefficients for the incident and scattered

light. The light intensity

expressed by,

I(x') propagating in the material is

I(x')==Ioexp[—(ai+oT)x' ] (AIXI-1)
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where Io is the incident light intensity, o, is the absorption
coefficient of the incident light, and o is the total Brillouin

scattering coefficient. The total scattering coefficient I is

o .
is the trans-

defined by the relation I —Ioexp(—oTb'), where It

t Tt

mitted light in the absence of any scattering, I, is the light

t
transmitted after depletion by scattering, and b' is the optical
path length. The quantity O describes how much light is scattered
out of the incident beams by phonons of all possible wave vectors
that can contribute to the scattering. The differential scattering

intensity dIs(x') during the optical path between x' and x'+dx'

in the material is given by,
] — - ' ! -
dIS(x )-—Ioexp[ (ai+oT)x ]ode dQs, (AII~-2)

where dQS is the solid angle determined by the cone angle of the
detector. For the Brillouin scattering in a birefringent material,
the angles of incident and scattered light(ei and Gd) with respect‘
to the normal to the sample are different in general. When we
define a distance x by x'cosei, x is the effective optical path
length along the direction normal to the surface, and eq. (AII-2)

reduce to
dIS(x)==Ioexp[—(ai+0T)x/cosei]odedQs/cosei. (ATI-3)

Light intensity scattered at the point x', is also decreased by
absorption and scattering during the path length x"(=b'-x'),

where x'cosf .=b-x, and b is the width of the sample in the scattering

d
plane. Therefore the actual Brillouin scattered light intensity

is given by,
dIs(x,b)==dIs(x)exp[—(ad+oT)x ]

cos6 ., X
i

) ——

= I expl- (a,-a.,cosb,/cosb.)+0, (1~
°© i7d . d T cosed cosei

(o +dT)b

d

]xodedQs/cosei, (AITI-4)
cosb

d
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where g is the absorption coefficient of the scattered light.

Integrating eq. (AII-4) over the sample width, we obtain

I o_dQ (a,+5_)b
s _ B''s expl- d T ]
Io (ai—adnd/ni)+oT(l—nd/ni) cosei
' b
x( l—exp[—{(ai—adnd/ni)+oT(l-nd/ni) ]) (AII-5)
cos

i
where n, and ny are the refractive indices for the incident and
scattered light, respectively, and we used a relation nicosei=

. i - o, - . -
ndcosed Noting that Ind/nl 1|1 and ( i ddnd/nlr»oT(l nd/ni)

near the absorption edge(ad2>cT) we find from eq. (AII-5)

IS aBdQs
—_ T —— exp[—adb/cosed]
IO (ai—adnd/ni)
x( l—exp[—(ai-adnd/ni)b/cosei]) (AII-6)

In the region far from the edge((ai—adnd/ni)b/cosei<<l) we obtain

I
s 4 -— -
;— = oBdQSbexp[ (ad+oT)b/cosed]/cosei, (ATIXI-7)
o
or Ig
—a = UBdst/Cosei : (AII"'B)
I .
t
where Ii is the transmitted beam for the light polarization in

the same direction as the scattered light.

Appendix III. Representation of Elastic Constsnt Tensor for

Arbitrary Coordinate System in Cubic Crystals.

The following analysis can be applied to all ¢rystals with
cubic system. As we mentioned in Chap.VII, a ZnSe(ZnTe)crstals
is bonded to a CdS specimen and the long axis of the ZnSe makes an
arbitrary angle 6 with respect to the [001] crystal axis ?n the (110)

plane. Therefore the analysis can be very simplified when the
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elastic constant matrix is expressed in the new coordinate
system where x axis is taken to be the long axis of the specimen.
For this purpose we apply the following procedure. First, the
ZnSe (ZnTe) crystal is rotated around the [001l] axis by 45° to
locate the (110) plane parallel to the x axis, and we obtain the

elastic constants C! in this system. Second the [001] axis of

ijkl
the crystal is rotated by an angle 6 in the (110)plane and we

obtain the elastic constants C;jkl in the coordinate system. When

a rotation is applied to coordinate system rj, we obtain the new

coordinate system ri as r al] jr when [aij] ia unitary trans-

formation matrix element. The elastic constant Cpqrs is transformed

. . .
by the ?otatlon to Cijkl'

Cl]kl ipajqakralscpqrs (AIII-1)

The transformation: matrix [aij] is given by

1/[2 1/[Z o
la; 1= -2 12 o (AIII-2)
0 0 0

for the 45° rotation around the [001] axis. Therefore we obtain the

following expression for the elastic stiffness tensor,

Ar H ' ? B h
Ci1 C12 Cij3 0 0 0
l ] L
Ci2 €33 €13 0 0 0
¥ 1t 1 ] -
crycly Ci, 0 0 0 (AIII-3)
L
0 0 0 ¢, 0 0
1
0 0 0 0y, 0
[
Lo 0o o 0 ocy
A
with -
C11=(Cqq#Cq ) /24C s C1,=(Cy1+Cy5) /2-Cyyr C13=Cyy
— L — —
Cl3=Cy s Cj,=Cpqr and Cge=(Ci -Cy,)/2 (AITII-4)

where contracted notation is used. The second step of the trans-
formation is rotation of an angle around the new axis y'(=ré) and

the corresponding transformation matrix is given by,
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cosd 0 -siné
[aij] ={ 0 1 1 (AIII-5)
sin6 0 »cose

Usihg this matrix and the relation of eq.(AIII-1) we can obtain

the elastic stiffness tensor matrix [C?jkl] for the system in
~

i
Fig.7.1 ; Cll C12 C13 .0 C 15 0
C"12Ca2 C33 0 Cy5 O
11} n 1" n —
C 13 C 23 C 33 0 C35 0 (AIII-6)
0 0 0 C44 0 C46
Cls C35 C35 0 Cg5 O
| 0 0 0 C46 0 C66 )
where
cY.=C!? cos4e+2C' sin26c0326+c' sin46+c' sin226
11 -11 13 33 44>+ <%
oV = 2'.-2
C12 Clzcos 6+Cl351n e ,
||__..|'2 2'l 4 . 4 |'2 2_|'2
C13 C1131n 8cos e+cl3(cos 8+sin 6)+C3351n fcos™6 C4481n 20,
C"227C11-
cht_ =C! sin29+C' c0526
23 T12 13 !
n (At _nt ]
C25 (C12 Cl3)51n26/2
ct_ =C! sin49+2C' sinzecosze+C' cos49+c' sinze
33 T11 13 33 44 !
" = | e ] . 2 [ e | 2 ] :
Cls {(Cll Ci4)sin 6+(C13 C34)cos e+2c44cos26}81n29/2 ,
n e 2 l'2 ‘
C44—C44cos 6+C6651n 6 ,
w o~ e 3
C46 (C66 C44)51n26/2 ,
U (O o0 ' .2 ! 2
C55 (Cll ch3+c33)51n 26/4+C44cos 26 ,
u=|'2 ' 2 ‘ -
66 C4451n 9+C66cos ] (AIII-7)
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