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Introduction

The notion of generalized Wiener functions (or “functionals” if the underly-
ing space is a function space) has been introduced in a development of the Mal-
liavin calculus ([17] [20] [21]). 'This is a natural infinite dimensional analogy of
the Schwartz distribution theory in which the role of the Lebesgue measure on
a Euclidean space R" is now replaced by a Gaussian measure on a Banach space.
(Such a measure space is called an abstract Wiener space.) In this paper, we
will show that generalized Wiener functions which are positive, i.e., those which
yield non-negative values when they act upon positive test functions, are meas-
ures on the underlying Banach space. It is an analogue of the fact that positive
Schwartz distributions are measures.

The class of measures corresponding to positive generalized Wiener func-
tions contains many measures which are singular with respect to the original
Gaussian measure and yet, in contrast with finite dimensional cases, it con-
stitutes a rather small class in the totality of finite Borel measures on the Banach
space. Many properties of this class can be stated in terms of the potential
theory over the abstract Wiener space, particularly, in terms of capacities. Such
a potential theory has been discussed, among others, by Malliavin [10], Fuku-
shima [3], Fukushima-Kaneko [4] and Takeda [19]. We will show in this paper
that these measures can not have their mass in any set of capacities zero and
that, on the contrary, for any set of non-zero capacity, there exists a non-trivial
measure in this class which is supported on the closure of the set.

In many probelms of extending results in finite dimensional spaces to those
in infinite dimensional spaces, a difficulty usually occurs from the fact that an
infinite dimensional vector space is not locally compact. Indeed, this is the
case in our problem, too. However, this difficulty can be fortunately overcome
by the fact that a probability measure on a complete separable metric space is

1) Supported partially by the YUKAWA foundation.
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tight, i.e., for any £>0, we can take a compact set whose measure is not less
than 1—¢&. Especially, in the case of a Gaussian measure on a separable Banach
space, a theorem of Gross (Lemma 1.1 below) is essential. In addition, we have
a powerful tool of the so-called Ornstein-Uhlenbeck semigroup by which we can
connect the Gross theorem to the Malliavin calculus. It will play an important
role throughout the present paper as something like a mollifier on the abstract
Wiener space (Lemma 2.1~2.5).

In section 1, we will introduce basic notions in the theory of abstract Wiener
spaces and the Malliavin calculus including the Gross theorem. In section 2,
we will establish several lemmas involving the Ornstein-Uhlenbeck semigroup.
In section 3, the properties of capacities will be summarized and, among others,
we will prove the capacitability of Borel sets, i.e., any Borel set can be approx-
imated in capacities by compact sets from below. In section 4, we will prove
that positive generalized Wiener functions are measures and that such measures
never have their mass in any set of capacities zero. In section 5, we will in-
vestigate the equilibrium measures of sets, which are special examples of our
measures. In the last section, we will discuss positive generalized Wiener func-
tions from viewpoints other than the potential theory. In conclusion, we can say
that the program of Fukushima [2] or Maz’ya-Khavin [11] in finite dimensional
cases could be realized in our infinite case as well.

Finally, the author wishes to thank Professors N. Ikeda, S. Kotani and M.
Takeda for their fruitful suggestions and hearty encouragement, and an anony-
mous referee for his kind advice. Above all, the author wishes to express his
deepest gratitude to Professor S. Watanabe for the careful proofreading of his
manuscript and for giving him many invaluable comments.

1. Preliminaries

General notation

“A:=B" or “B=:A4" means “A is defined by B”.

N:=the set of all positive integers.

R:=the set of all real numbers.

xVy:=max(x,y), x \y: =min(x, y), x, yER.

If A and B are sets, A\B:={x€ A; x B}.

D(R") and 9’'(R") are the n-dimensional Schwartz spaces of test functions
and distributions respectively.

B(X) is the topological o-algebra of a topological space X.

If X is a Banach space, ||+||5x denotes its norm. But if X is a Hilbert space,
the norm is denoted by | - | ; and the inner product by <-, ->x. In particular, if
X is a Euclidean space R", they are denoted simply by |- |and {-, - respectively.

If X is a topological linear space, X* denotes its topological dual space, and
the pairing of X* and X is denoted by (-, *).
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If V is a linear operator densely defined on a topological linear space, V*
is its dual operator.

A symbol “S” stands for a continuous imbedding.

Sometimes we omit the domain of integration, if it is the whole space.

Abstract Wiener space

First we have to make our framework clear. Let ¥ be a real separable
Banach space. If » is a measure on a measurable space (W, B(W)) and if E is a
real separable Hilbert space, we use the term “E-valued v-measurable mapping”
to mean ‘“‘E-valued mapping defined on W which is B(W)*| B(E)-measurable”,
where B(W)" stands for the completion of B(W) by the measure ». We define
L,(v; E)=L,(v; W—E) for 1< p<co as the totality of E-valued v-measurable
mappings F such that | F|% are v-integrable. As usual, two elements of L,(v; E)
which coincide v-a.e. are identified. Hence L,(v; E) is a Banach space with a

norm ”F”Lp(v;E)::{S | F(w)|% v(dw)}'?, FEL(v; E). Itis convenient to de-
w
fine L,(v; E):= U Lyv;E)and L._(v;E):= N L,(v;E). In case E=R,
<o 1<psee

1<p <
we simply denote L,(v; E) by L,(v) for 1< p<<oo or p=1+4, co—. Note that
L.._(v) is an algebra.
Let p be a Gaussian measure on (W, B(W)) with mean vector 0 whose to-
pological support spreads over the whole space . Then there is a unique real
separable Hilbert space H continuously and densely imbedded in W such that

S exp (v — 1(J, w)) u(dw)=exp(— |1|%/2) holds for each I W*. (Since HCW

implies W*C H* and H* is identified with H by the Riesz theorem, an element
[ of W* is regarded as an element of H. It is readily seen that W*S H and
that W* is dense in H.) The triplet (W, H, u) is called an abstract Wiener space.
Accordingly, E-valued p-measurable mappings are called E-valued Wiener func-
tions (or “functionals” when W is a function space). The following lemma is
crucial in our theory.

Lemma 1.1. There exists a separable Banach space W, such that
(i) HS W,S W, where both imbeddings are compact,

(1) w(W)=1, (ii) |+ lw, & Leo- ().

For (i) and (ii), see [6]. As for (iii), we should notice that although [|z]|y,
is not defined for we W\W,, ||+||y, is defined p-a.e. on account of (ii). Its
measurability is clear from the construction of W, (indeed, it is B (W )-meas-
urable) and finally its integrability is due to Fernique [1]. See also an excellent
review of Kuo [8].

This lemma tells us that (WW,, H, w) is again an abstract Wiener space. Con-
sequently, the Banach space W is not essential for the Gaussian measure p. It
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is merely a support of x4, and we can always replace it by a smaller support W,.
But anyway, we fix such a W, from now on.

ExampLE 1.1. (The classical Wiener space) Let W§ be a Banach space
consisting of all continuous functions w of [0, T'], T>>0, into R? such that w(0)=
0 with the usual maximum norm, and H' be a Hilbert space consisting of all
absolutely continuous functions % of [0, T'] into R? such that 4(0)=0 and that

T
|h|§11:=S |-jt—h(t)!2dt<°°- Then together with the standard Wiener measure
0

P, on W3§, the triplet (W§, H', P)) forms an abstract Wiener space, which is
called the classical d-dimensional Wiener space. 'Then a smaller Banach space W,
is taken, for example, as follows; Let 0<a<1/2 and meN. We put

(1.1) We: = {weL,,(dt; [0, T]) — R%) ;
oll s = [ {7 12O gy 1" < oy

| t_‘sl 1+2ma

Suppose 2ma>1. Then each element of WW*?” has a continuous version and a
Banach space W,: = {we W**"; w(0)=0} with the norm ||+ ||y, : =]|+||5 . is well-
defined as a subspace of W¢. It can be shown that this W, plays the required
role in Lemma 1.1 (for the compact imbedding W, S W§, see Muramatsu [14]).

Sobolev spaces over an abstract Wiener space
Now let us proceed to the definition of the Sobolev spaces over (W, H, u).
First we introduce polynomials. We put

P: = {F: W— R; there exist n€N, 1, ---, [, W*, and a polynomial
f: R" — R such that F(w) = f((};, w), -+, (1,, w)), wE W} ,

and

P,: = {FeP; the polynomial f in the above expression is of degree

atmostn}, n=20,1,2, --.

Note that P is a dense subspace of L,(u), 1=<p<<oco. Let Z,:=P,=the space
of all constant functions, and Z,:=PL:® N P;-,, n=1,2,--- (“|” stands for
the orthogonal complement). Then we get an orthogonal direct sum decomposi-
tion of L,(u), known as the Wiener homogeneous chaos decomposition. 'The
Ornstein-Uhlenbeck operator L is defined by a spectral decomposition L:=337_,
(—n) J,, where ], is the orthogonal projection of L,(x) onto Z,. Obviously, L
maps P into P. Furthermore, we define operators (I—L)”, r& R, mapping P
into P by (I—Ly”:=33;_o(1+n)y? J,. In order to introduce E-valued Sobolev
spaces, we define E-valued polynomials as finite sums of functions F(w) e, wE W,
ecE and FEP. The totality of E-valued polynomials is denoted by P(E). If
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S is a linear mapping from P into itself, it naturally induces a linear mapping S
from P(E) into itself defined by S(F(-)e)(w):=(SF) (w)e, we W, ecE and
FeP. S will be denoted by the same letter S.

DeFINITION 1.1, For 1<p<<co and r& R, we define a Sobolev space D)(E)
of E-valued Wiener functions as the completion of P(E) with respect to a norm
ellpss g2 =II({—L)®||,u; - For simplicity, we denote Dj(R) and |||, ,;r
by D} and ||-||,,,, respectively.

p is of course the integrability index, while » can be interpreted as the dif-
ferentiability index. In fact, in case 7 is a positive integer, the norm ||-||,,; s is
equivalent to another Sobolev norm defined in terms of the H-differential ([16]).
To be precise, let J{(E) be the set of all linear mappings H—E of Hilbert-Schmidt
type. It is a separable Hilbert space with the Hilbert-Schmidt norm. We in-
ductively define H*(E) by (A" XE)),n=1, 2, :--, where HE): =H(E). Since
H(R) is nothing but H*, it is usually identified with H. Now H-differential
operator D mapping P(E) into P(9{(E)) is defined by

DF (w) [h]::lli?}%(F(w—f—th)—F(w)), weW,heH for FeP(E).

Obviously, n-times iteration of D, n€ N, yields the mapping D": P(E)—P (4"
(E)). Then it is known that the norm ||-||, ,; ¢ is equivalent to a norm ||-|[, S B
4D ||z ; amen- In other words, D}(E) is again obtained by completing
P(E) with respect to the latter norm ([17], Th.2.4]).

Our Sobolev spaces have the following properties ([17] [21]).
(1) The system of norms {||+|l,,; z; 1<p<<oo,rERY} is compatible. Furthermore,
if p<p' and r<r’', we have ||*||,,; r=||*||y . ; r and hence D}y(E)S D}(E).
(i) ForreR and 1<p, g<co satisfying 1/p+1/g=1, we have (D,(E))*=D;"(E)
under the standard identification of (L(p; E))*=L(w; E). In particular, it holds
that (®, F)<||®|l,.—,; £ lIF |l ; £ for D€ D]’ (E) and Fe D)(E).
By the property (i), the following definitions make sense.

DEerINITION 1.2.

D*(E):= U U DYE), D™E):= U U Dy (E).

1P >0 1<gLee >0

D**(R) and D™=(R) are denoted simply by D** and D~ respectively.

Giving D*=(E) the topology induced by the norms ||+||,,; s n=1, 2, -,
it is a complete countable normed space and then the property (ii) implies that
D~~(E) is identified with (D*=(E))*. Hence it is natural to call an element of
D~~(E) an E-valued generalized Wiener function (or “functional”’ when W is a
function space). The term ‘“‘generalized Wiener funciton(-al)”’ will be abbre-
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viated to “GWF”. It is important to notice that D*> is an algebra.

Now, the operators defined on P(E) above are closable and hence, can be
extended uniquely to operators on D~(E); Namely, L: D~(E)—D =(E),
(I—Ly*®: D~=(E)->D =(E) and D: D (E)—>D (4 (E)) are all well-defined
and L: Dy E)—D; *(E), (I—L)": Dy(E)—>D;"(E) and D: Dj(E)—D;~*(4(E)),
1<p<oo,seR,rER, are all continuous. In particular, the operator (I—L)~""
gives an isometry from L,(x; E) onto Dj(E). By the duality, D*: D~=(4((E))—
D =(E) is well-defined and D*: Dj(4{(E))— D; '(E) is continuous for all
1<p<oo,s€R. Furthermore, it holds that L=—D*D (cf. [17] [21]).

2. The Ornstein-Uhlenbeck semigroup

The Ornstein-Uhlenbeck semigroup {T,},s, is a semigroup generated by the
operator L, ie., T,:=e*=>7_0e™™ J,. Obviously, T}, >0, maps P(E) and
L,(u; E) into P(E) and L,(p; E), respectively. For a bounded continuous func-
tion F: W— R, the following expression is known;

@.1) T,F (w) = g Fle™'w-+/1—e%0) u(dv), weW, >0 .
The next lemma is nearly directly derived from this expression.

Lemma 2.1.

(i) T, t>0, is uniquely extended to a continuous linear operator on L,(un),
1< p<oo, with operator norm 1.

(ii) For each FELy(p), 1= p<<oco, T,F converges to F in L,(p) as t| 0.

(i) If F is bounded and continuous, then T,F(w) is also bounded and con-
tinuous and it converges to F(w) for all weW as t | 0.

(iv) T, t>0, s a positive operator, i.e., if FEL,(p) is non-negative p-a.e.,
then so is T,F. Hence T, is Markovian, i.e., if 0OSF<M, p-a.e. for some M>0,
then so is T,F.

(¥) Ty t>0, is peinvariant, ie., S T,F du— S Fdyu, FELy).

Note that the equality (2.1) holds for all F&L,(x) that are continuous on
account of (i) in the lemma.

The role {T}},>, will play in the sequel may be compared to the one that
the mollifier has played in the finite dimensional analysis. Namely we have the
following, in addition to Lemma 2.1 (it can be seen in [5] with an incomplete
proof).

Lemma 2.2.

(i) For any t>0, any 1<p<<oco and any pair r<<s, T; maps D}(E) into
D;(E) continuously.

(i) If >0 and F belongs to L.._(u; E), then T,F belongs to D*“(E). In
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particular, if F: W— R is u-measurable and bounded, then T,F & D**.

Proof. (ii) is obvious from (i) and we show (i) only. For this, it is enough
to show when E=R ([17], Lem. 2.2). We first put FC}:={F: W—R; F(w)=
(4 w), +++, (I, w)) for some nEN, 1, --+, 1, and f: R"—>R of C'-class bounded
with its derivatives} and prove that

-t

(2.2) ”DT:F”L,,GL =0 Vie? [1F 200

for all FEF C;, where ¢ is a positive constant independent of F and ¢.
Let {/;}7-1 be a complete orthonormal system (abbreviated to CONS) of H
each element /; of which is taken from W*. We calculate the following;

DTF(@), 1y = <D [ | Pl + v/ 1= 0) u(do) | @), 14
— S (DF (et 4 /1= ) (w), l;>y u(do)
= et [ (DF) (¢t wt vV T=e7 0), 1y u(do)

-1

- \/1e ztS {DF(e'w++/1—e7%+) (v), [>y p(d0)
_ ? [ P+ v/ T=e o) (D*1) (0) (do)

Noticing that (D*I;) (v)=(l;, v), we know {D*/;} 7., forms a CONS of the Wiener
homogeneous chaos Z, of order one ([17], Th.3.3). Consequently, we have

| DT F(w) | % = 27-.1<KDTF(w), %

= [ [ Rt VT 0 (4 0) i) |

-2t JE—
= 1i7 |1 F (e '~/ 1—e™* )12 -
Since L,(x)-norm and L,(u)-norm are equivalent on the subspace Z,, and
since [, is a bounded operator also on L,(x), we can find ¢>0 so that || J,G||1,w
=c||Gll,m for all GEL,(x) ([17], Lem. 1.1, Th. 2.3). Hence we have

[IpTF@) 1 wmzer [ = T It v Tl i)

2”’[\/T—M (@) I F(ew+ v/ T=e 0) |? u(do)

_ [ﬁ] S w(dw) T,(|F|?) (w)
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et »
=c? [ﬁ] IF 12 0 -

The last “="" is due to Lemma 2.1 (v). Thus (2.2) is proved.

Since F'C} is dense in L,(u), (2.2) implies that T, maps L,(u) into Dj
continuously. For any nEN, replacing ¢t by #/n and using the semigroup
property, we see T, maps L,(u) into D} continuously. Now assertion (i) can be
concluded by recalling that 7, commutes with (/— L)*""2, Q.E.D.

REMARK. By Meyer’s result ([13] Th.2), the inequality (2.2) implies that

IV =L Flleyw S¢' g 1Pl FEL,(w), where v/—L=31 v/ J,

and ¢’ is a certain positive constant. Therefore we have

R P “t/k
V=LY Tl = IV = T Flliso S | g | 1Pl

for FEL,(u). Then it follows from another Meyer’s result ([13] Th.3) that

-tlk

(23) DT F L sian < | i | 1Pl

S ”F”L,(IL» FEL;:(I") ’

where ¢”” and ¢’” are positive constants independent of ¢ and F and we used here

an inequality e™*/(1—e~#)"2<(2£)~2 for t>0.

We present here two approximation lemmas. The former one is easily
derived from Lemma 2.1, Lemma 2.2 and the fact that 7, commutes with
(I—L)*,

Lemma 2.3. Let 1<p<co and rER. For each FeD)(E), T,F(€D;~
(E):= ﬂo D} (E)) converges to F in D,(E) ast | 0.
>

Before proceeding to the next lemma, we give some remarks on the resolvents
(aI—L)™', >0, or more generally, their fractional powers (al—L)™ "2, a>0,
r>0. Every theorem and lemma of this article involving approximation argu-
ments can be rewritten by using these operators instead of T}, £>>0. The op-
erator (af—L)™"”* has the following integral expression;

1

(2.4) (@l=1)"" =

S, 121 g=as T ds, a>0,r>0.

Most properties of this operator are derived from the above expression and the
properties of T,, t>0. For example, a'(al—L)™"" is a positive Markovian
operator, bounded on L,(x) with operator norm 1 and it converges strongly to
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the identity operator on L,(u) as ¢—>co. The only difference from T3, >0, is
that it maps Dj(E) into D;*’(E) continuously, but not into Dj;~(E).

Lemma 2.4. Let FE D}, 1<<p<<co,r>0, be non-negative y-a.e. Then for
any >0, there exists GED™*™ such that it is non-negative u-a.e. and that
|F—G]|,,<é&.

Proof. Put Fy:=I—LYy"*{(—M)V{I—LYy” F)A M}, M>0. Clearly
Fy €D} and F,, converges to F in D}, hence in L,(x), as M—co. Because F =0
w-a.e., F,, V0 also converges to F in Ly(u). Therefore we can take >0 and
t>0 by Lemma 2.2 and Lemma 2.3 so that the two conditions below are fulfilled;
| Ty(Fy V 0)—T,Fl|,,<<€/2
\IT,F—Fl|, ,<é2
Thus we have ||T(F)V0)—F]||,,<&, but F,, VO is bounded (due to the re-

marks just mentioned before this lemma) and non-negative, hence T(F,\V0)E
D*= and it is non-negative y-a.e. Q.E.D.

We will state one more rather interesting lemma. It asserts that any two
closed sets which are separated from each other with a positive distance can be
separated by a function in D*=.

Lemma 2.5. Let A be an arbitrary closed set of W and & be an arbitrary
positive number. We put A,:={weW,; dist(w, A)<E}, where dist(w, A):=
inf {|[|lw—v|ly; vEA}. Then we can find a function F,: W— R which satisfies the
following four conditions.

(1) F,1s continuous,

(ii) O=ZF(w)=<1 for all weW,

(iii) Fy(w)=1if we A4 and F(w)=0 if we W\A4,,
(iv) F.eD*~.

Proof. Step 1: The case of bounded A; We define a function F: W—R
by F(w):=0v(1——62- dist(w, A)). Obviously, F has the following properties;

(2.5) F is Lipschitz continuous, i.e., |F(w)—F()| g% lo—olly, w,vEW,

(2.6) 0<Fw)<1, weW,
2.7) F(w)=1if weA and F(w) =0 if wcW\4,,.

Now let R>0 be such that 4,C {we W,; ||w||p<<R}. Then if we A4, we have
(2.8) | T,F(w)—1| =< S |F(e™t w4~/ 1—e™* v)—F(w) | u(dv)

§% S lle* w4/ T—€ # v—w|ly p(do)
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= Z[a—e) olly++/ T2  lolly w(av) |
s Z[a—e Rt v T=e [ il wiao) |.

Consequently, we can choose 7,>>0 so small that 0<¢t<r, implies that T,F(w)>
2/3 for each we A4.
On the other hand, if we W\A4,, we have

0<T,F(w) = SF(e"w—l—\/ 1—¢% 0) p(do)

= [ Lot ot v T=67 0) (o)

= p({veW;etwt+\/ 1—e*vedy,})
= u((1—e )2 (4y—e'w))

where 1,,,, is the indicator function of the set 4,;,. Take 7,>>0 so that

2.9) Riexp(r)—1} <% and  exp(—,) >% :

Then we see easily that dist(e™*w, A,,2)>—§~ for 0<t<7, and we W\A4,. Hence
we have 4

0STF@)Sp({veW; llolly 2 (1) £)), 0<tr, weW\4,.

Suppose that R’ is a positive number such that u({veW; ||v|lp=R'})<1/3.

Then taking 7,>>0 so that 0<<¢<r, implies (l—e‘z')“”-igR’, we have T,F(w)
<1/3 for 0<t=<m,Ars and we W\A4,. 4

Therefore if 0<t<7; AT,A7s, it holds that T,F(w)>2/3 for we A and that
T, F(w)<<1/3 for we W\A,. Now we take a function ¢: R— R satisfying

¢ is of C=-class, 0<¢(x)<1,xER,

(2.10) {¢,(x) = 1if ¥>2/3 and ¢(x) =0 if x<1/3.

We finally define F, by using this function as follows;

Fyw): = ¢(T,F(w)), t:=rArAr,wEW.

It is easy to see that F| satisfies all the conditions (i)~(iv).
Step 2:  The general case; Let A,:={wesA;n—1=||w|lp=n}and F,(w):=

OV(I—% dist(w, 4,)). Since each A, is bounded, we can take #,>>0 so that

F, (w): =¢(T,, F,(w)) satisfies all the required conditions (i)~(iv) for 4,,n=
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1,2, ... It easily follows from (2.8) (2.9) in the proof of Step 1 that ¢,=O(1/n)
will do for large n. Now we consider the following sum.

2::1 Fn,e(w)’ weW

Note that it is actually a sum of finite terms for each weW. Clearly it is
bounded and continuous. Moreover we can show that it is an element of D**.
What we will prove for this is that 337_||F, .||, ,<<oo for each 1<p<<oo and
kEN.

To this end, it is enough to see that

(2.11) 2l ell <o, 1<p<oo,

(2.12) SretllDFEy el s iy <oo, 1<p<oo, REN.
The latter condition may be replaced by the following.

(2-13) 27—1||DkT:”Fn“Lp(# s k(R << OO, 1<P<°° , REN.

Indeed, suppose (2.13) holds and let k=2 for example. (The same method
works for any other k.) By the chain rule,

DF, ,=¢'(T,, F,) D°T, F,+¢"(T, F,) DT, F,QDT, F,
and it holds by the Holder inequality that
(2.14)  NID°F, ol s2cn S N1 (Tr, F)ll oyl ID* Ty, Full gy s s2crn+
1" (T, F)lloyyomlIDTy, Falliypm: m -

Observing that
6"(Te, Flllzzyor=supl ' ()1, 116"(T, F)llzy e Ssup| ¢”(x)]

and that 337.,||DT,, F,||.,,w <<oo implies 237..||DT,, F,,HZ,_”(,L)<OO, we can con-
clude that 37 [|DFy om0 < oo

(2.11) is obvious. So we have to prove (2.13) only, but it is also easy.
In fact, the estimate (2.3) says that

SH=illDAT, Fyll s arcen ¢ 7an 2| Fyll
<" e 7 w({we W Fo(w)>0})
¢ i1 542 p(fwe W |lwlly>n—1—¢}) .

IA |

Since £,=O0(1/n) and u({we W; ||w||y>n—1—&})=0(e"**") for some a>0 by
a theorem of Fernique [1] (cf. also [8]), the above sum is finite. Thus 337, F,,
eD** is valid.

We finally define F, by Fy(w):= (;b(E:,l F,,,,(w)), weW. It obviously
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satisfies all the required conditions. Q.E.D.

3. Capacities over an abstract Wiener space

In this section, we will summarize the properties of capacities which are
defined in accordance with our Sobolev spaces Dj. Let us start with their de-
finition following Malliavin [10], Fukushima-Kaneko [4] and others.

DeFINITION 3.1. Let 1<p<<oo and r>0. For an open set O of W, we
define its (p, r)-capacity C5(O) by

Cy0): =inf {||U|}3,,; UeDj, U=1 p-a.e. on O} .
For each subset 4 of W, we define its (p, 7)-capacity Cy(A) by
"3(A): = inf {C}(0); O is open and OD A} .

These capacities were originally introduced to discuss the regularity of
functions of D} ([10]). They are more subtle scales to estimate the size of sets
than p, i.e., a set of (p, r)-capacity zero is always u-measure zero, but the con-
verse is false in general. Now let us introduce some terms and notations to
describe some known results exactly. We will use a term “(p, r)-quasi-every-
where” or simply “(p,7)-g.e.”’ to mean “‘except on a set of (p, r)-capacity zero”.
If (p,r)-capacity of a set A vanishes for every 1<<p<<co and every r>0, the
set A is said to be slim. By ‘‘co-quasi-everywhere” or simply ‘“co-g.e.”’, we
mean “‘except on a slim set”. A function F: W—R is said to be (p, r)-quasi-
continuous, if for any £€>0 there exists an open set O with C}(0O)<<€ such that
F is continuous on the complement W\O of O. If F is (p, r)-quasi-continuous
for every 1<p<<oo and every r>0, F is said to be co-quasi-continuous.

Lemma 3.1.

(A) Let 1<p<<oo and r>0.

(i) For each FE Dy, there exists a function F' such that F=F p-a.e. and F
is (p, r)-quasi-continuous. F is uniquely defined (p, r)-q.e.

(ii) Let FEDj} and F,eD}, n=1,2,---. If F, converges to F in D}, we
can take a suitable subsequence {F,} of {F,} so that F, ; converges to f’( p,7)-q.e.
(Here the symbol ““~” stands for the (p, r)-quasi-continuous version stated in (i).)

(iii) If FE D} is non-negative p-a.e., then F is non-negative (p, r)-q.e.

(B) (i) For each FE D*=, there exists a function F' such that F=F p-a.e. and
F' is co-quasi-continuous. F' is uniquely defined co-q.e.

(ity Let FeD™™ and F,eD**, n=1,2, -.-. If F, converges to F in D*~,
we can take a suitable subsequence {F,} of {F,} so that F’,,j converges to F' co-g.e.
(Here the symbol “~”’ stands for the oo-quasi-continuous version stated in (i).)

(iii)y If FED*™ is non-negative u-a.c., then F is non-negative oo-q.e.
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For the proof, see [2], [4] and [10].

From now on, the (p,r)-(or oo-) quasi-continuous version of F& D}, (or D*)
will be denoted by F' as Lemma 3.1, and the pair of indices p and r will be arbitrarily
Sfixed so that 1<p<<oco and r>0.

The following is another result of Fukushima-Kaneko [4].

Lemma 3.2.
(i)  For an arbitrary subset A of W, it holds that
Cy(A)=inf {||U||%,; U D} and U=1 (p, r)-q.e. on A}.
(ii)  There exists a unique element U,=U , ; , ,E D}, such that
U,=1(p,7)-ge. on A and Cy(A)=||U,4I%.,.
(i) T,=0(p,7)ge.

DeFINITION 3.2. U, of Lemma 3.2 is called the (p, r)-equilibrium potential
or the (p, r)-capacity potential of the set A.

U, is clearly non-zero if Cj(4)>0. The equilibrium potentials will play
a fundamental role in the subsequent sections.

Now our next aim is to establish the capacitability of Borel sets by compact
sets. Namely, we will show the following.

Theorem 3.1. For B B(W), it holds that
C;(B) = sup{Cy(K); Kc B, K is compact} .

This theorem can not be proved by directly applying the general theory of
Choquet (cf. [11]), because W is not locally compact if dim W=co. However,
we can instead apply the following lemma which asserts the tightness of capa-
cities, i.e., capacities are almost supported by compact sets. It can be seen in
[5] with an uncompleted proof. (In the case of the Dirichlet space, i.e., p=2
and r=1, it has been rigorously proved by Kusuoka [9] and Takeda [19].)

Lemma 3.3. Given an arbitrary €>0, there exists a compact set K of W
such that Cy(W\K)<€.

Proof. Step 1; First we will construct a Wiener function F: W—R U {oo}
(we allow the value co for convenience’s sake) satisfying the following condi-
tions.

(i) FebDb*=
(i1) For each M >0, the set {we W; F(w)<M} is
(3.1) relatively compact.

(iif) For each €>0, there exists M >0 such that
p({weW; F(w)>M})<¢t.
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Actually, the function Ty||:||y,, >0, (recall Lemma 1.1) is a candidate. It
belongs to D*> by virtue of Lemma 1.1 (iii) and Lemma 2.2 (ii). #>0 being
fixed, let us specify one of its versions by

Tllwlly, = | Il w0+ v/ T=e olly, u(de), weW,
1
o, weW\W,

(3.2) F(w):=

Suppose we W,. Since we have

| T ll2ollw,— ool l, | égw Hle™*w++/ 1—e™ o||y, —||wllw, | n(dv)
=(1-¢) “w”W1+82 ’

where we put §;:=1—¢7* and §,:=+/1—e#* S llo]lw, u(dv), it holds that
Wy

(3.3) (1—38,) llwllw,—8,= Tillwlly, < (1+38)) llwlly, +8., weW,.

Therefore we see that {weW; F(w)<M} is contained in {weW; ||w|ly,=
(M+3,)/(1—38))}, and hence it is relatively compact by Lemma 1.1 (i). On the
other hand, (3.3) also implies that {we W; F(w)>M} is contained in {weW;
llwllyw,>(M—8,)/(14-8,)}, and hence it follows from Lemma 1.1 (i) that
pw({we W; F(w)>M}) can be arbitrarily small if we take M sufficiently large.
Thus the function F satisfies all the required conditions (3.1).

Step 2; Take a family of functions {¢z} z>o S0 that

$rEC(RU {0} >R), 0= p(x)<1,xER, pp(°) =1,
dp(x) =1 if |x|>R+3;(8;>0 being fixed),

(3.4) dx(x) =0 if |x|<R,
d )” = o — voe
fg}? %l;? (7; ¢’R(‘x) _ Mn< ) n = 1) 2’ )

and define Fr,e D*~, R>0, by

(3.5) Fi(w): = p(F@), weW,

where F is the function defined by (3.2). Then we have the following estimate
(3.6) IFll,usc w({we W; F(w)>R}).

Here ke N and ¢>0 is a constant independent of R. Let us prove (3.6) when
k=2, for example. (The same method works in other cases.) As was re-
marked in section 1, it is sufficient to show the following;

(3.7) 1Fallzym <6, w({w€ W; Fw)>R}),
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(3.8) ”DzFR”L,,(M a2 =S¢ p({wEW; F(w)>R}) .

The former is obvious for ¢;=1. To prove the latter, we use the chain rule and
the Holder inequality. That is, we get the following estimate in the same
way as (2.14).

“DZFRlle(I";le(R))é“d);?(F)“sz(F')I|D2F||sz(ll-;JIZ(R))—i—
+|I¢’RI(F)”L3P(F‘)”DFIlzLap(l"‘;H)

Consequently, we have (3.8) for
C; = M1“D2F”L2,(u;ﬁ’(R))‘l‘Mz,”DF“ia,(M;H) .

Step 3; Now let Ky be the topological closure of the set {weW; F(w)=<
R+8}. Kj is a compact set on account of (3.1) (ii). In addition, by the
definition of (p, r)-capacity and its monotone property, we have Cj(W\Kg)<
Cy({weW; F(w)>R+38:})=<||Fgll5.,. Observe that this inequality is still valid
when we replace ||Fgll,, by [|Fgll,, provided % is a positive integer not less than
r. On the other hand, (3.6) and (3.1) (iii) implies that ||Fg||,; can be made
arbitrarily small by taking R sufficiently large. Q.E.D.

Remarx. In the case of the classical Wiener space (Example 1.1), it can
be verified that a functional F(w) defined by

F(w): = ||o0]|2%m = SZST [w(t)—w(s) |

0 't__s|1+2mw

dsdt, meN, 0<a<1/2,2ma>1,

satisfies all the conditions of (3.1).

Corollary. W\W, is a slim set.
Proof. Obvious from CH(W\W,) < Cj({we W; F(w)>R-+383}). Q.E.D.

Proof of Theorem 3.1. Let C be the set of all compact sets of W. The

followings hold.
(i) If K, K,eC and K,CK,, then C}(K,)=Cj(K,).
(i) If K,&C K,CKyiy n=1,2, -, then C}(UK,)=sup C}(K,).

(iiiy If K,eC, K,DK,;, n=1,2, -+, then C}( N K,)=inf C}(K,).

(1) is obvious and (ii) was proved by Fukushima-Kaneko [4] without compactness.
To show (iii), it is enough to see that Cj;(N K,)=inf C}(K,). For an arbitrary

&>0, we can find an open set O such that OD N K, and that C}(O)=<Cy(NK,)
+&. But since K,’s are compact, K,CO holds for sufficiently large n. Con-
sequently, we have Cj( N K,)=inf Cj(K,).

Let B B(W) and &€ be an arbitrary positive number again. We first take
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a compact set K so that C,(W\K)<€/2. Since BNK is a Borel set of K in the
induced topology, it is C-analytic. Therefore the properties (i) (ii) and (iii) stated
above assure that there exists a compact set K'C BN K such that Cj(BNK)=<
Cy(K")+¢€/2 ([12], IIT, T19). Then we have, by the subadditivity of the ca-
pacity, C}(B)=C(BN K)+CyW\K)<CyK')+¢&, which completes the proof.
Q.E.D.

4. Positive generalized Wiener functions

The following is well-known; Positive Schwartz distributions are measures.
Namely, let 7€ 9'(R") satisfy that (7, f)=0 for each f& P(R") which is non-
negative at every point. Then there exists a unique positive Radon measure v

on R" such that (T, f) S (%) v(dx) for each fe P(R") ([15]). In this section,

we will claim that an analogous theorem holds replacing 7' by a GWF @, posi-
tive in the sense of Definition 4.1 below, and R” by the Banach space W. Then
the corresponding measure will be a Borel measure on W. After proving it,
the relations between the capacities and measures corresponding to positive
GWF’s will be revealed.

Before entering into the subject, let us fix one more notation; As in the
previous section, we assume that the indices p and 7 are given and fixed such that
1<p<oo and r>0 respectively. In addition, we will fix an index q, 1<g<<oo,
to denote the dual index of p, i.e., such that 1/p+1/g=1 from now on.

DEFINITION 4.1. Let ® be a GWF (i.e., an element of D). We say
@ is positive, if it holds that (@, F)=0 for each FE D" such that F(w)=0
p-aewesW.

Positive GWF is abbreviated to PGWF, and is denoted by ®=0. We re-
mark that if @€ D;’, we have “®=0 if and only if (D, F)=0 for each FE D;,
such that F(w)=0 p-a.eweW.” In particular, if @<L (u), then we have “®=0
if and only if ®(w)=0 p-a.ewesW.” For the proof, use Lemma 2.4.

Theorem 4.1. For each PGWF @, there exists a unique finite positive
measure vy, on (W, B(W)) such that

(4.1) (@, F) — S F(w) ve(dw)

for all FEFCy. Here the space FCy is defined by

FCy: = {FeD*; F(w) = f((l,, w), -+, (I,, w)),weW, for some neN,
Ly, L,eW* and f: R"—>R which is bounded and of C=-class} .

ReEMARK. S C7 is a dense subspace of D*™,
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Proof. Without a loss of generality, we may assume that (&, 1)=1 and
then we can use the probabilistic terminology. (Note that 1€ D*~ and that
the condition (®, 1)=1 assures the total mass of v, to be equal to one, if it
exists.)

Let I, -+, e W* be arbitrarily chosen. For f, f,€ D(R"), j=1,2, ---, we
put

F(w) : =f((ll’ w)’ "')(lm w)) , weW,
Fi(w): :fi((ll’ ZU), H) (lm w)) ’ ZUEW, ]= 1) 2: tre.

It is clear that F, F;&D*= and that if f; converges to f in 9(R") as j—>oo, F;
converges to F in D**. Then since ®@ is a GWF, it follows that (P, F;) con-
verges to (@, F), which in turn implies the continuity of a mapping ®: D(R")>
f (@, F)eR. Of course (®, F)=0 for f=0 and hence ® is a positive distri-
bution. Therefore it follows from the Schwartz theorem that there exists a
unique Radon measure v, .., on R" such that

(4.2) @, G) = SR 8% e ) Vo 1y, (dyeediny)

for all G(w)=g((l, w), **+, (I, w)), g€ D(R"). It is easy to see that (4.2) holds
for all G(w)=g((,, w), ***, (L,, w))€FCy, by means of a smooth partition of
unity over R".

Thus we obtained a family of finite dimensional probability distributions
{vo ;11,3 by 0y LEW*, nE N}, which is obviously consistent. That is to say,
vy is realized as a cylindrical measure on W. In order for v, to be countably ad-
ditive on B(W), it is sufficient to show the following ([6] [8]).

For an arbitrary £>>0, there exists a compact set K,

3
(*+3) such that v4(C) <<€ for any cylinder set C with CN K,=¢ .

Now let us assume @& D;* for a positive integer k. Let F and Fy be the func-
tions defined in the proof of Lemma 3.3. Then take R sufficiently large so that

(+4) DRI, -l Fell 0 <<€

This is possible by virtue of (3.6). We know from (3.3) and (3.4) that taking
sufficiently large R'(R'>(1+38,) (R+8,4+8,)/(1—38,)+9, will do), the two sets
{weW; F(w)<R+36:;} and {weW; F(w)>R'} are separated by two W, -balls
both centered at the origin but with distinct radii. Namely, the former lies inside
the smaller W, -ball, say B,, and the latter lies outside the bigger W,-ball, say B,.

Let K, be the closure of the set {we W; F(w)<R'}. We already know that
K, is compact. Suppose that a cylinder set C with an expression C={we W;
(L, w), =, (I, w))EE,}, E,€ B(R"), I, -+, [, W*, does not intersect K,. Let
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Ct={weW,; (I, w), -+, (I,, w)) EE}}, where Ef€ B(R") is the p-neighborhood
of E,, p>0. Then we have C°N{weW; F(w)<R+35;} =¢ for sufficiently
small p. (This follows from the fact that the interior of the ball B, and the
exterior of the ball B, are separated from each other with a positive distance when
restricted to a finite dimensional subspace.) Now taking a function J&C>
(R"— R) with properties

0=y (x)=1, xeR",

all its derivatives are bounded,

Yv(x)=1 if x€E,,

P(x)=0 if xR"\E;,

we put G(w):=+((}}, w), -, (I,, w)). Obviously GEFCy. Therefore we see
D‘P(C)ésknw(xl) "ty xn) Vo1 R (dxl'"dxn) = ((D’ G) .

On the other hand, that Fe(W)=G(w), we W, and the positivity of @ imply that
(@, G)=(P, Fp)=I|®||,,-sl|Fkllys But the last term is smaller than &, hence we
have »,(C)<é€. Q.E.D.

The measure corresponding to a PGWF ® by this theorem will be denoted by
ve in the sequel.

ReEMARK (i). In the case of the classical Wiener space (Example 1.1), the
countable additivity of v, on B(W) can be directly proved by the following
inequality.

(4-5) [2,—x,|* vy, tits (dx, dxz)écul—tzizr 0=t,t,=T,

SR"XR“
where v, ;,, ;, denotes the joint distribution of (w(t,), w(2,)) R* X R* under the
cylindrical measure »,, and ¢>0 is a constant independent of ¢, and £, To show
(4.5), we first claim that the left-hand side of (4.5) is equal to (®, | w(t,)—w(t,)|*).
Then noting that |w(t,)—w(t,)|'< P,, we have

(@, lw(t)—w(t) |) PRIl -l [20(2) — 2 (2) 1]l
§I|¢||q,—r all lw(tl)_w(tz)lﬂlL,(u)
=Py, -r all T20(t)—w (2) |*l] Loy
= ”':D”q,—p c3|t1—~t2|2 .

Here the constants ¢;, ¢, and ¢, are all positive and independent of ¢, and ¢,.
(For the proof of these inequalities, see [17] Lem. 1.1, Th. 2.3.)

ReEMARK (ii). If a PGWF @ is an element of D;', we need not take the
regularization T||||y, of |[+||y, because [|-||y, itself belongs to D; ([9][18]).
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Therefore we can proceed the above proof replacing (3.5) by

OV Es (lwllw,—RN AL, weW,

(3.5) Fr(w): = { o we .

Now, note that u need not be Gaussian in this case. Namely, only Lemma
1.1 (i) (ii) and (3.5)" are needed to prove (4.3). Particularly, in the case of
Dirichlet spaces over infinite dimensional spaces discussed by Kusuoka [9], we
obtain the following.

Let (€,F) be a Dirichlet space over a Banach space B with a probability
measure v on it (not necessarily Gaussian) satisfying all the conditions of Theorem
2 of Kusuoka [9]. Then, for each positive bounded linear functional ® on F with
respect to a bilinear form E,(=E-the inner product of L,(v; B— R)), there exists a
unique positive finite Borel measure vy on B such that an analogy of Theorem 4.1
holds.

ExampLE 4.1. Let F=(F", -+, F)eD*(R?). If F is non-degenerate in
Malliavin’s sense, i.e,, det({DF!, DF">,)'&L.._(u), we can give a rigorous
meaning to the pull back ToF= D™ of any d-dimensional Schwartz tempered
distribution 7" under the mapping F ([20] [21]). Then if T is positive, and hence
a positive measure, the pull back ToF is a PGWF. If, in particular, 8,0F=0, the
probability measure corresponding to a PGWF @y ,, yE R, defined by

(4.6) Dr 0 = 8,0F/(8,0F, 1),

where 8, is the Dirac measure concentrated at y, is nothing but the conditional
probability measure u(-|F=y) given F=y. Of course, this measure is singular
with respect to u.

Lemma 4.1. Let {®,};., be a sequence of PGWF’s belonging to D;". We
assume (®,, 1)=1, n=1,2, ...
W If sup [|@allg,—r<oo, then the family of probability measures {vy }w.1 is
uniformly tight.
(il) If @, converges to some ®<D;" weakly in D7’ (i.e., (®,, F) converges to
(P, F) for each F€ Dy}), then ® is positive and vy, converges to vy weakly.
(i) If sup [1®,ll,,-,<oo and vy, converges to some v weakly, then there exists a

unique PGWF ®< D7 such that v=v, and P, converges to @ in D;” weakly.
Proof. (i) Taking an integer k=r, we have sup ||®,||, = sup [|D,ll, -,
< oo. For an arbitrary £€>0, take R>0 so large that sup||®,||, _4/|Fgll,:<<E,

where Fy is given by (3.2) and let K, be the compact set defincd in the proof of
Theorem 4.1. Then we have v, (C)<& in the same way as Theorem 4.1 for
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any n€N and any cilynder set C with CNK,=¢. Thus the family of the
probability measures {ve };-; is uniformly tight .(ii) ©=0 is obvious. Since
sup ||®,||, -,<<oo follows from the weak convergence of @, in D;’, we see

{ve }n-1 is uniformly tight by (i). Therefore we have only to check the
convergence of each finite dimensional distribution of {ve,}7-1. But it is easy,
because we can approximate any bounded continuous function defined on a
finite dimensional space by C~-functions which are bounded together with their
all derivatives. (iii) Since D;” is a reflexive Banach space, every bounded
set of it is weakly compact. Consequently, we can take an appropriate sub-
sequence of {®,}..; which converges to some ®=D;” weakly. Then v=u,
follows from (if). Now the weak convergence of ®, to ® in D;” is clear.

Q.E.D.

Lemma 4.2. Let D]’ be positive. Putting ®,:=T,, P, n=1,2, -,
we have
(i) ®,eL(p), @(w)=0 p-aewsW, n=1,2,..,
(il) P, converges to @ in D;” (i.e., in the norm ||-||, _,),
(i) (@, 1)=(®,1), n=1,2, .

Proof. That ®,&L,(x) and (ii) were already proved in Lemma 2.2 and
Lemma 2.3 respectively. So we have to prove the positivity of @, and (iii) only.
We first prove ®,=0. Let FED*™ be non-negative p-a.e. Since 73, is a
symmetric operator on L,(u), it holds that (®,, F)=(®, T},,F). In addition, the
positivity of 7, leads us to conclude that (®, T),,F)=0. Therefore @, is a
PGWEF, which means ®,(w)=0 u-a.e. (iii) is also proved using the symmetry of
Tyjus 1.6y (D, 1)=(Ty1 @, 1)=(®, Ty, 1)=(®, 1). Q.E.D.

Lemma 4.1 and Lemma 4.2 give us a method to approximate the measure
vy corresponding to a PGWF & by a sequence of measures which are ab-
solutely continuous relative to the measure p. Namely, let = D;” be positive
and {®,};., be as in Lemma 4.2. Then we have the followings.

(4.7) ®,L,(p) are non-negative p-a.e. and ve (dw) = D,(w) u(dw) .
(4.8) @, converges to ® in D;” .
(4.9) v, converges to v, weakly.

As an easy consequence of this, we can show that if F Dj is continuous and
bounded, we have (@, F)=S F(w) vo(dw). Indeed, it is sufficient to note that
(®,, F)—(®, F), S F(w) ”on(dw)”s F(w) vy, (dw) and that (&, F):g F(w) ®,(w)
,u,(dw)=s F(w) vy (dw). This assertion is an improvement of Theorem 4.1, but

it will be fully improved in the coming Theorem 4.3.
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The following theorem is another consequence of the above argument,
which directly connects PGWEF’s with the potential theory.

Theorem 4.2. Let @<= Dy’ be positive. Then its corresponding measure vq
has no mass in any set of (p, r)-capacity zero. More precisely, we have

(4.10) 2o(A) =1®|l,,-(C5(A))"*

for any set A of W, where vy denotes the outer measure induced by ve. In parti-
cular, a measure corresponding to a PGWF never has its mass in slim sets.

Proof. Let ®,:=T,,®, n=1,2,... We already know (4.7)~(4.9) hold.
Let O and U, be an arbitrary open set and its (p, 7)-equilibrium potential re-
spectively. By (4.7) and Lemma 3.2 (ii) (iii), we have

(@, U= | ®,Updnz| @.Usdnz| @,du=1s,0).
o (o]

On account of (4.9) and since O is open, we see lim vy (O)=v4(0). On the
other hand, (4.8) implies that e

}‘1_’1'2 (q)m UO) = (q)y Uo)é”(D”q,—r“UO”p,r:“q>“q,—r(C;(O))lh) .

Thus we have proved (4.10) for an open O. And hence (4.10) holds for any
set A by Definition 3.1. Q.E.D.

Recall that W\ W, is a slim set (Corollary to Lemma 3.3). This fact together
with Theorem 4.2 implies that vo( W\W,)=0, i.e., vy is actually supported by
W,. But of course it is quite trivial, because (W), H, p) is again an abstract
Wiener space. Thus »e is always supported by a Banach space contained in
W which supports u. So we can say vg is very close to u in a sense, although
it may be singular with respect to p. In fact, in the case of the classical 1-
dimensional Wiener space, Takeda [19] proved that co-quasi-all paths have
nowhere differentiability, Lévy’s Holder continuity and they obey the law of
iterated logarithm at #=0. Consequently, ve-almost all paths should possess
all these properties as almost all Brownian paths do. Therefore, the class of
measures corresponding to PGWF’s is a rather small class in the totality of
finite Borel measures on the path space Wj.

Let ®=D;” be positive. Since v, may fail to be absolutely continuous
with respect to u, a Wiener function F need not be vg,-measurable. However
the pairing (®, F) for FE D} has a definite value, hence it is natural to guess
that the integration of F by vs should be rigorously defined in a certain manner,
and that its value should be equal to (®, F). In fact, this idea is realized in
the following theorem.
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Theorem 4.3.
(A) Let D7 be positive. Then for each Fe D}, any (p, r)-quasi-con-
tinuous version F of F is vy-measurable and integrable. In addition, it holds that

(4.11) (@, F) = S F () vo(dw) .

(B) Let ® be a PGWF. Then for each FED*", any oo-quasi-continuous
version F' of F is v,-measurable and integrable, and in addition, (4.11) holds.

Proof. It is enough to prove (A) only.

Step 1:  The vo-measurability of F'; By the definition of (p, 7)-quasi-con-
tinuity, there exists a decreasing sequence of open sets {O,} .. such that C}(0O,)
converges to zero and that F' is continuous on W\O,, n=1,2, ---. Putting
F,(w):=F () Iy\o,(w), we see F, is B(W)-measurable. Because the (p,7)-
capacity is a monotonous set function, we have C;(N O,)=0 and hence »4(NO,)
=0 by Theorem 4.2. Therefore the convergence of F, to F on W\(NO,) is a
vp-a.e. convergence. Thus F is ve-measurable.

Step 2:  For Fe D' which is bounded u-a.e.; We first note that |F | <M
p-a.e. implies |F| <M oco-q.e. (Lemma 3.1 (B) (iii)), and hence |F| <M vq-a.e.
Let {;} 7., be a CONS of H each /; of which is taken from W* and _CB,, be a sub
o-algebra of B(W) generated by linear functions {(};, w);i=1,2, .-, n}. Now
we put F,:=E[F|#,], n=1,2, -, ie., F, is the conditional expectation of F
with respect to @ under the probablhty w. Then each F, has a version F,
which belongs to FCy. (This is due to the Sobolev imbedding theorem.) Hence

we have S F”dll@:(@, F,). On the other hand, we can prove that F, converges

to F in D*= by the convergence theorem of martingales and the fact that LF,=
E[LF | ®,] (see [10]). This lmplles that (®, F,) converges to (P, F) and also
that some subsequence ¥, of F, converges to ¥ co-q.e. (Lemma 3.1 (B) (ii)).

Then it holds that SF,, ;@ve converges to SFd”‘P by the bounded convergence

theorem. Thus, we have (4.11) for F& D** which is bounded p-a.e.

Step 3: For Fe D} which is bounded p-a.e.; Let F,:=T,,,F, n=1,2, ---
Since F is bounded, each F, is an element of D*~ (Lemma 2.2 (ii)) and if
|F|<M p-ae., then |F,| <M p-ae. (Lemma 2.1 (iv)) and hence |F,|<M
(p, 7)-q.e. (Lemma 3.1 (A) (iii)). Consequently, by the bounded convergence
theorem, Lemma 3.1 (A) (ii), Lemma 2.3 and Step 2 above, (4.11) is valid for
Fe D}, which is bounded p-a.e.

Step 4. For general Fe D;; We put

— (I—L)" (I—Ly? F\0), F-:=(I—L)~"?(I—Ly"”F A0).

The positivity of the operator (I—L)~"”* implies that F*=>0 and F~ <0 p-a.e.
Of course we have F=F*+F~, hence |F|<F*—F~. Now let us show ve-
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integrability of F* and (4.11) for F*. To this end, we put F;:=([—L)"*
{(I—L)y”?FVvO0)An},n=1,2,---. Itis easy to see that F, converges to F* in
Dj;. Moreover, the positivity of (I—L)™"?* again implies that 0<F; <n, F, <
Fi . <F* p-ae., n=1,2, . Therefore F; converges non-decreasingly to Fr

ve-a.e., and hence S F}dv, converges to S F*dvg (=possibly c0). On the other

hand, because F; is bounded, it follows from Step 3 that (4.11) holds for F;.
Combining these two with the convergence of (®, F;) to (®, F*), we conclude
that F'* is ve-integrable and (4.11) holds for F*. Getting the same result for
F~, we finish the proof. Q.E.D.

ExampLE 4.2. Let C:=C([0, co)—>R") be the space of all n-dimensional
continuous paths with the usual topology of uniform convergence on bounded
time intervals. A continuous #-dimensional stochastic process X, defined on an
abstract Wiener space (W, H, p), is nothing but a C-valued p-measurable
function. X is said to be oo-quasi-continuous if for every 1<<p<<oco,r>0 and
&€>0, there exists an open set O in W such that C}(O)<€& and W\O>w—
X(w)eC is continuous.

Let (W§, H', P,) be the classical d-dimensional Wiener space (Example 1.1)

and V,, V,, -+, V, be vector fields on R"; V (x)=3_, Vi (x)—aa——, a=0,1,---,d,
X

where the coefficients V}(x) are C*-functions whose derivatives of orders >1 are

all bounded. Given x& R", an n-dimensional continuous process X, is defined

by the solution of the following stochastic differential equation (SDE);

{dX, = D1 V(X)) dw?+ V(X)) dt, w= (w}, -, w)EW],
Xo==x.

Then the following assertion holds.

X=(X,) has an oo-quasi-continuous version X as a C-valued u-measurable
function. X is uniquely defined oo-q.e.

To show this assertion, let 7>>0 be arbitrarily fixed. We define Cr:=
C([0, T]—R") and Bp:=W** (W= and ||+||,.» below are those defined in

Example 1.1. We also assume 0<a<%, meN and 2ma>1). C, with the

maximum norm and By with a norm ||+||g,:=[||+||7% 4|+ ||2%m]/*" are Banach
spaces. As we mentioned in Example 1.1, we can regard B; as a continuously
imbedded dense subspace of C;. Then we can verify that X is a B, -valued u-
measurable function and moreover, that the function || X(:)||%%: W—R is an
element of D*~. Let {X,}={(X,,)} be a sequence of B;-valued continuous
functions such that ||X{(+)—X,(+)||%; converges to 0 in D** (for example, take
polygonal approximations. cf. [7] [21]). Then, for any pair of integers m>n,

X,,—X, is continuous and hence we have the following Chebyshev-type ine-
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quality;
C({we W; || Xu(w)— X, ()|l >0 SN2 11X (- ) — X215,

Hence applying the similar argument of Fukushima [2], we can show that X
has an co-quasi-continuous version X as a Bj-valued function, and therefore as
a Cr-valued function.

Now assume further that, for a fixed 7>0, X, is non-degenerate in the
sense of Malliavin (cf. [21] for a sufficient condition in terms of the vector fields
V,). Then a PGWF §,0X,, ye R, is well-defined and, if furthermore &,0 X,
0, we have a Borel probability measure v, on W§ corresponding to ®=38,0X,/
(8,0X, 1). Clearly, every C-valued oo-quasi-continuous function is v¢-measur-
able, that is, it is a continuous process on the probability space (W§, vo). Hence,
for any solution Y of an SDE with regular coefficients as above, the process X=
(X,) in particular, its oo-quasi-continuous version Y is a continuous process on
the probability space (W§, v). This remark will give a new approach to pinned
processes. Indeed, the process X on (W¢, vs) is just the pinned process of X
conditioned by X,=y.

5. Equilibrium measures

Let ®=D;” be positive. A function U D), defined by (5.1) below is
called the (p, 7)-potential of ® or of ve.

(5.1) U= (I—L)"" {(I—L)~"" &} .

Observing that (I—L) "2 &L, (1) and it is non-negative p-a.e., we know U
is well-defined as a non-negative element of D}. If p=¢=2 and r=1, (5.1)
becomes U=(I—L)™' ®, which is well-known as a 1-potential in the usual po-
tential theory ([2]). If p=¢=2 but r=1, the potential U is expressed as U=
(I—L) "2 ®, which is an infinite dimensional analogue of the Riesz potential.
In these cases, the equation (5.1) is linear and hence the potential theory is said
to be linear, otherwise it is said to be non-linear ([11]).

Let @€ D;” be positive and U be its (p, r)-potential. We readily see that

s ﬁdv°=[[U||£,,=l[¢[|Z,_,, the common value of which is called the (p, 7)-energy

of U or ® or ve. In this context, vy is called a measure of finite (p, r)-energy
([11).

We first claim that a (p, 7)-equilibrium potential introduced in Definition
3.2 is actually a (p, r)-potential. Namely, we have the following.

Theorem 5.1. Let U,=U,,,, be the (p, r)-equilibrium potential of a set A.
Then there exists a unigue PGWF ®,=®,,,,D;" such that U, is the (p,7)-
potential of @, or of its corresponding measure v, =v, ,,=ve,. Furthermore, the
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topological support of v , is contained in the topological closure A of A.

Proof. Although the proof is merely a paraphrase of [11] Lem. 4.1, we
will present it for completeness.

First we extend (5.1) for all ®=D;” that are not necessarily positive as
follows.

(5.2) U= (I-L)y"#{|(I—L)y"" ®|** (I—L)"" &}

Then (5.2) turns out to be a one-to-one mapping from D;” onto D}, and its
inverse is written down explicitly as

(5-3) @ = (I-Ly®{|(I—Ly” U|*"*(I-Ly" U} .

Therefore what we must show is the positivity of ®,& D;’, where @, is defined
by (5.3) for U=U,.

Take an arbitrary FE D), such that F =0 p-a.e. Recall that F=0 (p, 7)-q.e.
by virtue of Lemma 3.1 (A) (iii). A parameter A being assumed to be non-
negative, Lemma 3.2 implies that the quantity ||U,+AF |5, takes its minimum

at A=0. Therefore if it is differentiable in A, we must have %H U +MNFl5 =0
=0. In fact, it is differentiable, because we can easily justify the commutation

of S and % in the following calculation.

L UAFI,
_i T2 — I\ b4
_dxp(l Ly2 U+ (I—Ly”2F|? du

— g %| (I—Ly® U\ (I—Ly” F|? dp

=p | (I—Ly? F|(I—Ly? U0 (I-Ly® F |7 *{(I— Ly U, +
A (—Ly”F}dp .

Here we used dilxli’zplxl"z x. Substituting A=0, we get
x

U ANFIR o = p | (1= Ly F (= Ly? U197 (U~ Ly? U, d
—» S (I—Ly” FI—L)"" &, du
= P(q)m F) .

Consequently, we have (®4, F)=0, which shows the positivity of ®,.
Clearly, the same reasoning applies to FE D} satisfying F=0, (p, r)-q.e.
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only on 4: We can still conclude that S Fdvo=(®,4, F)=0. In particular, if
F=0 (p,r)-qe. on 4, thenSF’dvA=0 holds, because both (®,, F)=0 and
(P4 —F)=0 should hold. Take an arbitrary w,& W\A4. Put 6:2% dist

(wo, A), which is strictly positive, and B:={weEW; ||lw—w,||p<&}. By virtue
of Lemma 2.5, we can take a function F& D** such that F is non-negative, con-

tinuous, F(w)=0 for w4 and F(w)=1 for weB. ThenngvA-——O and this

implies v,(B)=0. Thus we conclude that the topological support of v, is con-
tained in A. Q.E.D.

DEerFINITION 5.1. The measure v,=v,,,, in the above theorem is called
the (p, r)-equilibrium measure or the (p, r)-capacity measure of the set A.

Combining Theorem 3.1 with this theorem, we obtain the following theo-
rem, which characterizes Borel slim sets by means of PGWF’s.

Theorem 5.2. Let B€ B(W).

(A) B is of (p,r)-capacity zero, if and only if B is of ve-measure zero for
each PGWF & Dy’.

(B) B is slim, if and only if B is of ve-measure zero for each PGWF ®.

(B) is an immediate consequence of (A), while (A) is proved in the same way
as [2] Th. 3.3.2.

ExampLE 5.1. Let [, .-+, ;& W* be such that the matrix V=(<I;, [;>y) is
non-singular. Put F(w):=((,,, w), -+, (ls, w))ER’, we W, and define a closed
set A, yER?, by Ap,.=F~y). Then provided that r/2=[d/2]41 ([d/2]
denotes the smallest integer not exceeding d/2), the (2, r)-equilibrium measure
of A, is a constant times the measure corresponding to a PGWF §,0F, or
equivalently, a constant times the Gaussian probability measure wp(-|F=y).
More precisely, we have

e—Zs__

—_ 1 *e r—1 e e’ -1 ].—1 | F=
dv‘”"'—[l‘(r) So s lexp(—s e V3y,y)ds| du(-|F=y).

In particular, when y=0 (then A, is a closed linear subspace of W), v,,, is
nothing but u(- | F=0).

In the remainder of the section, we will verify the above example. For
this, we need the following lemma which presents a sufficient condition for a
(2, r)-potential to be equilibrium one.

Lemma 5.1. Let ®=D;" be positive and U D} be the (2, r)-potential of
®. Suppose that a vy-measurable set A is a support of vy, t.e., vo(W\A)=0, and
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that U=1, (2,7)-q.e. on A. Then vy and U are the (2, r)-equilibrium measure and
the (2, r)-equilibrium potential of A, respectively.

Proof. Take an arbitrary F& D} whose (2, r)-quasi-continuous version F is
non-negative (2, r)-q.e. on 4. We have %HU%—)&F”E, |a=0=2(D, F) as before,
and this is non-negative because it coincides with 2 S Fdv,. Thus we have ‘—;-1;

HU+AF|]3,,|x=0=0. It follows from this that the quantity || U+\F||3,, decreases
as A | 0 in some neighborhood of A=0. However since it is a polynomial in A
of degree two (provided F is non-zero), it holds that [|U||3 , <||U+2F||3,, for all
A>0, particularly, ||U|l5,<||[U+F]||3,,. Therefore we conclude that U is the
(2, r)-equilibrium potential of 4 by referring to Lemma 3.2. Q.E.D.

Now let us verify Example 5.1. We define
Ayt = e W,y =<y )<y 4 i1, dh, n=1,2,-
Here »* denotes the 7-th component of the vector y& R%. We put
D, (w): = I, (w)/p(4,), weEW, n=12,--.
First we note that
(5.5) dvey, = ®,dp converges to p(- | F = y) weakly.

Next, we calculate the following (cf. (2.4)).

=7 _ 1 ® a1 s
=By = iy gy L, < T I
l “ rf2—-1 ,~s - T =25
i b e | ale T ) i)

For s>0, putting yi:={y'—e (I, v)izi} [(1—e%)"2, we have
n

SWI,,“(e"‘w-{—\/T:F 2) p(do)
= [L({?)EW;y.‘_<(l,, ‘v)<yf¥7 i = 1) Tty d})

— (2m det V)"0 Si*s; exp (—~;—<V‘1 £, £) dg

§(27z det V)""/2 n'd(l_e—Zs)-—d/z .

Therefore it holds that

<(]— -r/2 S(zﬂ det V)-d/zn_d ® rf2=1 ,=s(1__ ,—2s\—d/[2
0S(—1) 7 @) S I [t ety s,
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for all weW. The integral of the last term is finite if /2 —1=[d/2]. Since

(fq )(27: det V)~%2n~? converges to exp (l {Vy,y>) as n—>oo, we see that
sup sup |(I—L) "% ®,(w)] <co and hence sup [|D,ll,, -, << oo, if 7/2=[d]2]+1.
nEN WEW

Then according to Lemma 4.1 (iii) and (5.5), we know that there exists a unique
®eD;’ such that ®=0, u(-|F=y)=v, and that ®, converges to ® in D;”
weakly. Obviously, we have ®=®& , (Example 4.1 (4.6)). Furthermore &,
actually converges to @ in the norm |[|+||,_,. Indeed, it is not hard to see that

(I—L)~""* ®,(w) converges to

1 1
65:8) Ty GV B

x [ exp [ —s— TV y—e ), y—e~t Fhpf(1—e™) | ds,

for all weW. Since sup sup |(/—L) "2 ®, (w)| <o, we can regard this con-

vergence as the convergence in L,(u). Therefore @, is convergent in |[-|l, —,,
and of course the limit is nothing but @ ,. Namely, (5.6) is equal to (/—L)™"*
@ (w). Replacing r/2 by 7, we explicitly have the (2, 7)-potential Uy, corres-
ponding to @ , as follows.

Ur,,(w) = I,() p( Lev- 1y, y0) X

X Sw s""lexp [——s——z-(V“(y—e" F(w)), y—e™ F(w)>/(1 —e‘zs)] ds
0
weW. Now suppose wE Ay ,, i.e., F(w)=y, then we have

-2 -3
1 S s lexp (—s—& "¢ __823 V1y,y>)ds.

U S
™) do 1—e

Hence the assertion of Example 5.1 follows from Lemma 5.1.

6. Other properties of PGWF’s

In this section, we will survey properties of PGWF’s and their correspond-
ing measures from viewpoints other than the potential theory.

Since the space of the polynomials P is dense in each Sobolev space D}
by the definition, a linear functional over P which is continuous in the norm
]+1l,,, will be uniquely extended to an element of (D})¥*, or equivalently of D7”.
Therefore we can characterize the measures corresponding to PGWF’s as fol-
lows.

Theorem 6.1. Let v be a positive finite measure over (W, B(W)). Then
(A) (B) and (C) below are equivalent to each other.
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(A) There exists a PGWF ® such that v=vs.
(B) PCL\(v) and there exist 1<<p<<oo,r>0 and c<O0 such that

|S F(w) o(dw)| <c||F|l,, for each FEP.

(C) (1) v has no mass in any slim set,
(11) for each FED*>, any oco-quasi-continuous version F of F is an element

of Ly(v),

(1il) there exist 1<<p<<oo,r>0 and c>0 such that
|S F(w) v(dw)| <c||F|l,, for each FED** .

Proof. (A)e>(B) is just mentioned. (A)«>(C) is clear by the previous
section. Q.E.D.

As we consider the product of elements of P(R") and P’'(R"), we can define
the product G D™ of GED* and ®= D™~ by (GP, F):=(P, GF), Fe
D*>. But in case ® is positive, we are allowed to define the product G D™=
when G belongs to a certain space much wider than D**. Namely;

Theorem 6.2. Let ® be a PGWF and GEL,, (vy). Then the product
GO D™ is well-defined by (G, F)::Sf’(w) G(w) vo(dw), FED*™.

Proof. Tt is obvious that the measure G(w) vo(dw) (in general, a signed
measure) has no mass in any slim set and that ¥ is Gve-measurable for each
FeD*. Since D* is an algbera, F belongs to L.._(vs), and hence it is |G |v-
integrable. So let us verify the condition of Theorem 6.1 (C) (iii) for the meas-
ure |G |v,.

We may assume GE L, (ve) for some 0<€=1. By the Holder inequality,

we have |S FGdv,| é”F”Lm(vQ)HG”Lm/(VM’ where m is an even integer not less
than (14-€)/6 and m':=m/(m—1) (=1+4€). Similarly we get HF'“L,,,(W):
U Fmdvo]l/mz(¢, F™m<||®|| ™| |F"||3/#. Here indices g, —k are chosen so
that ®=D;* and ke N. Recalling that ||F"||, ,<c||F || for a suitable con-
stant ¢>0 independent of F ([17] Th.3.1), we see, with the help of the above

inequalities, that | S FG dvy| <c™||G| £,y [P/ 2 || F [|1p,4 Which completes the
proof. Q.E.D.

ExampLE 6.1. Let X(w)=(X,(w)) be the solution of the SDE discussed in
Example 4.2. Here we also assume that X, is non-degenerate in Malliavin’s
sense for a fixed T7>>0. We define o,(w):=inf {s>0; X ,(w)e D}, De B(R?),
where X=(X,) is an co-quasi-continuous version of X=(X,) in the sense of
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Example 4.2. Then the product I, >p(w) (8,0X7), yER?, is well-defined as a
PGWF by Theorem 6.2. This is because I, (w) is measurable with respect
to the measure corresponding to the PGWF §,0.X .

We mentioned after the proof of Theorem 4.2 that the measures corres-
ponding to PGWEF’s are very close to x in a sense, though they may be singular
relative to u. The following theorem shows an example of this similarity con-
cerning the integrability or, equivalently, the order of decay of the tail.

Theorem 6.3 (Fernique-type theorem). Let ® be a PGWF. Then there
exists 3>0 such that a function exp (B||w||%), wE W, is vo-integrable.

Proof. It is enough to show the following.

(6.1) [ There exist ¢>0, ®>0 and @,>0 such that

vo({weEW,; ||lw||lp>a})<ce** if a>a,.

Let t>0 and a family of functions {¢z}z>, satisfy the conditions of (3.4). As
we saw in the proof of Lemma 3.3, we have

(6.2) { {we W; (lwlly>a}  lwe W; Tllwlly™>(1—8) a—5} ,

{weW; Tilwlly>a} C{weW; ||lwlly>(a—8§,)/(1+38,)} .

where §;:=1—e¢*and §,:=+/1—e* S”‘ZJ”W w(dv). Putting Fp(w):=¢(Tl|w|lw),
we have by (3.6) that

(6.3) WFRllpa=chr n({wEW; Ti||lwlly>R}), 1<p<oo,kEN,
where ¢; ;>0 is a certain constant independent of R. Then it follows from
(6.2) and (6.3) that
vo({weW; ||w|ly>a})

Svo({weW; Ty|lwlly>(1-38,) a—3,)}

ég Fo-8a-8;-55(w) vo(dw)

= (CI)» F(l—&;)a-&g—&a)

S |IDRlly, -4 HFei-8a-85-85 15,8

=|1®@llg,-x 56 p({wEW; Ti||lwlly>(1-38,) a—8,—385})

=|Dllg,-x 50 ({wEW; [lwlly > {(1—8,) a—28,— 83} [(14-8))})

Here we assumed ® € D;* and kEN.
On the other hand, Fernique’s theorem [1] says that there exist ¢'>>0 and
a’>0 such that

(6.4) p({weW; ||wlly>a})Sc' e, a>0.
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Therefore we have

vo({0E W llnlly>a}) S 1Pl -+ chu ¢ exp | —ar {1=2L =28,

1+31

from which (6.1) easily follows. Q.E.D.

ReMARK. By taking >0 and 8,>0 sufficiently small, & of (6.1) can be

taken arbitrarily close to &’ of (6.4).
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