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Abstract

Since the 1970*'s, much interest has grown up in the Maran-—
goni effect, because it may cause fluid—-flows even in a weak
gravity field, such as in a space laboratory. To wunderstand
micro—scale mechanisms for which capillary effects become impor—
tant is now required to develop new engineering devices and ap-—
plications. In this sense, the phenomena due to the Marangoni
effect and the relating mechanisms propose new subjects which are
to be significant in science and engineering. Since the 19-th
century when the Marangoni effect was recognized correctly as the
surface tension gradient, many investigations have been made ex-—
tensively. However, this effect still yields formidable problems
in carrying out experiments and analysis to clarify its mechanism
and to develop its applications. In the present thesis, a theo-—
retical approach to the Marangoni effect is made from the stand-
point of fluid mechanics. Rather elementary but fundamental
problems of the Marangoni instability, in which effects of free
surface deformations play an important role, are discussed here.
Prior to the main parts of the thesis, the investigations made so
far on the Marangoni effect are reviewed briefly in Chapter 1.

The main parts consist of the following three chapters:

Chapter 2. Marangoni instability of thin liquid sheet

The Marangoni instability of a thin liquid sheet driven by



the surface tension gradient (due to variations of temperature or
of concentration) is studied by means of a linear theory. It is
found that the critical Marangoni number for the steady mode can
be expressed as a simple function of the wavenumber when two
boundaries of the sheet are flat. When the surface deformations
are taken into account, another type of instability may occur at
small wavenumbers for small values of the Biot number. An effect
of deviation of the surface tension coefficient from the mean
value at the free surfaces and the resulting surface pattern at
small wavenumbers are also discussed. Furthermore, an eigenvalue
relation for the unsteady mode is examined 1in comparison with

that for the steady mode.

Chapter 3. Nonlinear surface waves driven by the Marangoni insta-—

bility in a heat transfer system

Nonlinear surface waves of long wavelength driven by the
Marangoni instability are investigated theoretically for a heat
transfer system, in which temperature of a thin liquid layer
causes variations of the surface tension coefficient. For two
examples considered there, the surface waves are governed,
respectively, by a nonlinear evolution equation of diffusion type
and the Kuramoto—Sivashinsky equation. It is shown for the first
example that the steady solution, which 1is expressed by the
cnoidal function, <c¢an be realized if a condition prescribed by
values of parameters involved is satisfied at an initial instant.

This result is confirmed by solving the initial value problem



numerically, where damping and explosive types of solutions are
also obtained. For the second example, it is shown that the sur-

face waves include two types of shock wave solutions.

Chapter 4. Marangoni instability due to chemical absorption with

an irreversible reaction

The Marangoni instability due to a chemical absorption is
studied theoretically by taking into account the mass transfer of
gas, solute and product resulting from an irreversible reaction,
It is found that the critical Marangoni number for an inactive
product and the <corresponding <critical wavenumber change in a
complicated manner depending on various parameters involved.
Furthermore, it is found that an active solute also leads to the
Marangoni instability, where roles of the gas are discussed as
well. The Marangoni effect due to the product and that due to
the solute are coupled so as to reinforce each other. Effects of
the surface deformation give rise to another type of instability

in the limit of zero wavenumber.



Chapter 1. Historical Review on the Marangoni Instability

§1. Earlier Work on the Marangoni Effect

Surface tension gradient along an interface of fluilds is now
called the Marangoni effect after Carlo Marangoni who first pro-—
posed a clear model for such surface phenomena. For this Maran-—
goni effect, we can trace a long history of investigations: Heyde
(1686)>17 observed fragments of camphor moving on the surface of
olive 0il; Romieu (1748> 1> observed the same motion of camphor on
the surface of water; Carradori (1794> 1% observed that reaction
of camphor particles against the spreading force of a camphor
film causes the particles to dance, whereas if a camphor particle
is held still, the underlying fluid can be visibly set into mo-—
tion. Thomson (1855),1'2) who observed that the surface tension
is not the same in different liquids, made the first correct ex—
planation for evaporative <convections such as the well—-known
tears of strong wine and the spreading of a drop of alcohol on
the surface of water: he rightly inferred that the surface ten-
sion gradient does occur in such a way that one portion of high
tension (more watery one)d aftracts another portion of low tension
(more alcoholic one). Marangoni (1871),1_3) who was aware of
Carradori's work but not of Thomson's, formulated a rather com—
plete theory for flows driven by the surface tension gradient due
to variations of temperature and of composition. Associated with

the Marangoni effect, other surface mechanisms were found in the



experiments made by Plateau (1869);1) he noted first the surface
viscosity and elasticlity peculiar to liquids, which arise as the
resistance of fluid against deformation. From the work of
Plateau, Marangoni (872> D recognized the role of surface con—
tamination, then Gibbs (1878 1% studied it more precisely; hence
the name "Plateau—Marangoni-Gibbs effect” was also introduced: it
causes tangential stress along interfaces of liquids. Further
details of early work and the subsequent development in the study
of the surface phenomena were cited extensively in a review “The
Marangoni effects” by Scriven and Sternling (1960),4) in which we
can find various relevant phenomena, such as emulsions in liq-—
uids, flows in crystal growth, liquid—liquid extractions, motion
of protoplasm, transport of bacteria, surface fractionation, ab-
sorption and distillation, foam stability, surface engine, and
others. We should also refer to a review "Evaporative convec—
tion” by Berg, Acrivos and Boudart (1966).9 The remarkable in-
vestigations on the Iinterface mechanisms were then made by
Oldroyd (1955),8> Scriven (1860>, 7 and others, in which the sur-
face viscosity and the surface dilational viscosity (called the
Gibbs effect) are discussed as well: for Newtonian surface
fluids, refer to the theory by Scriven.

At the opening of this century, Bénard (1900, 1901>2:8) op-
served the hexagonal cell pattern of convections in a horizontal
spermaceti layer, which was of thickness 0.5-1 [mm]l] and was ver-
tically bounded below by a heated metal plate and above by a free

surface. Rayleigh (19169 ¢onsidered that the convections were



caused by buoyancy. He showed, using linear stability theory,
that for a horizontal fluid layer with two free boundaries, a
quiescent state of the layer becomes unstable and cellular con-—
vections can occur if the Rayleigh number (i.e., the temperature
difference imposed on the layer) exceeds a <critical wvalue, at
which the corresponding critical wavenumber gives the cell size;
the qualitative agreement in the cell size between his results
and Bénard's experiments stimulated further to investigate the
buoyancy-driven instability (refer to Chandrasekhar (1961)10)),
Block (¢1956>11> found, however, that such hexagonal cell pattern
occurs actually when a liquid layer is very shallow and even when
it is cooled from below, and that the cells disappear when the
free surface 1is covered by an insoluble monolayer. Pearson
(1958)12) gshowed theoretically that the surface tension gradient
due to variations of temperature or of concentration (the Maran-
goni effect) can be responsible for convections in a liquid layer
with a free surface: two typical cases considered for the lower
boundary of the layer are that the heat flux is prescribed by (I
conducting (isothermal) <condition and by (II> insulating condi-
tion. The results in the case (I) revealed that the convections
observed by Bénard were certainly due to the surface tension
gradient rather than due to the buoyancy, because the Marangoni
number estimated from Bénard's data was larger than the critical
(though the Rayleigh number estimated was less than the critical)
and that the cell size gave the <c¢ritical wavenumber predicted.

On the basis of Pearson’s model, Scriven and Sternling (1964)13)



studied effects of the surface deformation on the steady Maran-—
goni convections. They showed that an upflow occurs beneath the
depression of the free surface and a downflow ocburs beneath the
elevation: this flow pattern is just the same as that found by
Bénard in his experiments, but is converse to that in buoyancy—
driven convections shown by Jeffreys (1951). 14 To clarify what
sort of cellular pattern was preferred in the Marangoni convec—
tions observed, Scanlon and Segel (196719 made a nonlinear
analysis for a fluid layer with semi—infinite depth. They showed
for the case of infinite Prandtl number that hexagonal cells are
stable for a range of Marangoni number from just below the criti-
cal to 64 times the critical; for the larger Marangoni number <(up
to 196 times the critical), roll cells, as well as the hexagons,
become stable.

On the other hand, to explain the origin of interfacial tur-—
bulence and of spontaneous agitation arising at fluid interfaces,
Sternling and Scriven (1959)18) studied the Marangoni instability
due to mass transfer. They adopted as a typical model two immis-
cible liquid layers with semi-infinite depth, at the interface of
which both the surface shear and dilational viscosities were also
taken into account. Their results contain various factors per-—
taining to instability, such as the viscosities of bulk fluids,
the diffusivities of compositions and the direction of the mass
transfer across the interface: one of the most typical results is
the oscillatory Marangoni instability due to the surface viscos—

jties (for details, see their paper). Then, extending the model



of Sternling and Scriven, Ruckenstein and Berbente (1964> 17
showed that a chemical reaction, even if small amount, affects
the stability condition 1in a very different manner as compared
with the instability in physical mass transfer. Brian, Vivian
and Matiatos (196718 found experimentally that the rate of mass
transfer increases over the values estimated by penetration theo—
ries and is much activated by the Marangoni convections due to
chemical reactions. Although there exist many investigations
made later for mass transfer systems, the details are omitted
here, because very complicated mechanisms of instability arise at
the gas—liquid interface and at the liquid—liquid interface
respectively, where other effects may also be concerned (for ef-
fects of electric force, see a review by Melcher and Taylor
(1969> 195 In this respect, Sherwood, Pigford and Wilke
(1975)20? suggested in their textbook that 'a great deal needs to
be done before interfacial turbulence becomes well understood and
the theory developed to the point where it is useful in engineer—

ing design.’

§2. Recent Development in the Study on the Marangoni Convection
for Heat Transfer Systems

Following the eminent work noted above, more realistic theo—
retical models based on actual phenomena have been proposed ac-—
tively, and well-controlled experiments have been made to obtain
the data of high accuracy. In this connection, we should note

that the Rayleigh—-Bénard convections have also been studied ex-—



tensively (both theoretically and experimentally), which has much
stimulated the study of Marangoni convections. To review the
recent development briefly, we focus our attention mainly to the
Marangoni convection due to variations of temperature.

Since gravity of the earth may affect the convections ob-
served in the usual experiments, Nield (1964>21> took into ac-—
count both the Marangoni effect and the buoyancy for the stabil-
ity of a horizontal fluid layer. He showed that the two agencies
causing instability reinforce each other and are tightly coupled
so as to make the cell size approximately the same as the one ob-
served by experiments. Smith (1966>22% studied the Marangoni in-—
stability for two immiscible horizontal fluid layers with finite
depth whose interface is deformable; he showed that the depth
ratio affects the onset of convection and the resulting flow pat—
tern, where the gravity waves have a stabilizing effect on the
convection when the gravity acts downward. Koschmieder (196723
made experiments for a shallow layer of silicone oil on a <cir-
cular plate heated from below, in which concentric circular rolls
appeared and then broke into hexagonal cells; this tendency was
found rather clearly when the layer was contiguous above to an
air layer, which showed qualitative agreement with the results by
Nield. Taking similar apparatus to that used by Koschmieder,
Hoard, Robertson and Acrivos (1970024 found that the cell pat—
tern 1in a layer of silicone oil was concentric circular rolls
when the layer was covered by a glass 1id, while hexagons when it

was in contact with a thin air layer; moreover, for Aroclor of



much variable viscosity, both the patterns of regular hexagons
and of rolls were found for the free and rigid upper <conditions:
note that the experiments were made with taking account of the
theoretical results for Dbuoyancy—driven convections by Palm
(1960),25) Schliiter, Lortz and Busse (1965),28) Busse (1967),27)
and Krishnamurti (1968). 28 Furthermore, Palmer and Berg
(1971229 nade experiments for a layer of silicone oil heated
from below and bounded above by a very thin air layer, and they
found that the data obtained gave excellent agreement with
Nield’s prediction: this appears to be the first quantitative
confirmation of the results from the linear stability theory for
the convections due to the Marangoni effect. Then, Kayser and
Berg (1973)30) studied free surface deformations accompanying
convections in shallow 1liquid pools heated from below by a
straight nichrome wire: their experiments demonstrated that as
thickness of the layer increases, the surface pattern transition
can occur from the pattern shown by Scriven and Sternling
(1964)13) to that shown by Jeffreys (1951, 14 This transition
was also confirmed by their numerical simulation. In addition to
the results for heat transfer systems, we should pay attention to
results obtained for mass transfer systems. Berg and Acrivos
(1965>31% extended Pearson’s analysis to consider effects of in-—
soluble surfactants, and they predicted that even trace amounts
of such materials would exert an extreme stabilizing influence on
the system. Palmer and Berg (1972)32) took into account the con-—

tamination of surfactant soclutions for Nield's model, the roles



of which in stabilizing convections were found to be in qualita-
tive agreement with the experimental results due to Palmer and
Berg (1973)>.33)

In the 19870's, much attention arose in the Marangoni effect,
since low—gravity environments were realized in spacecrafts. The
dramatic experiments for the onset of convections were made in
Apollo 14 where the acceleration due to gravity was evaluated as
1076g (see the report by Grodzka and Bannister (1972)34)). 1%
was confirmed that the surface tension gradient alone can drive
cellular convections of visible magnitude. The convections ob-—
served were affected, however, by the radial thermal conduction
which occurred along the bottom plate and in the sidewall of the
circular container. Subsequently, with a more improved appara-
tus, the experiments were made in a weaker gravity field of 10—8g
in Apollo 17, so that the polygonal cells were surely observed
and that their size was found to be just the one predicted by
Pearson’s theory (see Grodzka and Bannister (1975)39%), These
results much excited the investigations on the Marangoni convec—
tion, and they now seem to propose new subjects: evidently, one
of them is what occurs in low—gravity environments such as the
human has not recognized so far, in which there may arise fas-—
cinating topics for science and engineering. On the other hand,
recent subjects in engineering are micro—scale mechanisms for
which capillary effects become dominant, and they have to be un-—
derstood to achieve various applications: one of the typical ex-—

amples is crystal growth to make wup electronic large—-scale-—



integrated—circuits. Therefore, it seems that the Marangoni ef-—
fect and the relating mechanisms give new subjects with fruitful
future.

There exist, however, many formidable problems for the
Marangoni effect, ©pertaining to the very complicated surface
mechanisms and to the method of analytical approach,. Here we
consider some of them. In the case of Marangoni convections, the
stability problem is not self—adjoint and tﬁat the Marangoni num—
ber as an elgenvalue is contained in the boundary <conditions at
interfaces of fluids. Thus, it is not obvious whether the prin—
ciple of the exchange of stabilities may be applied or not.
Scriven and Sternling (1964> 13> showed that an oscillatory Maran-—
goni instability may occur due to the surface viscosity; Vidal

and Acrivos (1966) 36 found numerically that for Pearson’s model

of <case (ID, the neutral state of Marangoni convections is sta-—
tionary rather than oscillatory. Similar results were found by
Takashima (1970)37) for Rayleigh-Marangoni convections.

McConaghy and Finlayson 196938  found that an oscillatory
Marangoni instability may occur in a rotating fluid layer.
Takashima (1981739 showed numerically that the Marangoni number
for the woscillatory mode becomes negative values of large
magnitude. Sakata and Funada (19812407 found numerically that
for a chemical absorption system, an oscillatory Marangoni in-
stability may occur if the frequency is very large, which leads
to negative critical Marangoni numbers of large magnitude.

McTaggart (1983)41) showed that an oscillatory Marangoni in-



stability may occur wunder the condition such that the thermal
Marangoni number is positive and that the solutal Marangoni num-
ber is negative: this is a new type of instability which may stem
from combined Marangoni effects.

Because of the difficulties mentioned above, problems of
nonlinear Marangoni convections have been solved only for a few
cases. Kraska and Sani (197942 analyzed numerically the
Rayleigh—Marangoni convection for a horizontal layer of Newtonian
fluid of infinite horizontal extent resting on a heated, rigid
surface of high thermal conductivity, where a free surface defor-—
mation was also taken into account. The phase diagram for the
cell pattern transition was obtained for six disturbances of the
same critical wavenumber, for which the important results are as
follows: the range of the Marangoni number where hexagonal <cells
become stable is rather narrow as against that obtained by
Scanlon and Segel; this tendency becomes remarkable as effects of
the surface deformation dominate. Rosenblat, Davis and Homsy
(1982>43> studied the Rayleigh-Marangoni convections in cylindri-
cal containers, using stress—free conditions at the cylindrical
wall. Sivashinsky (1982>44> showed for Pearson’s model of case
an (in which the critical Marangoni number is given as 48 in
the limit of zero wavenumber) that finite amplitude of convec—
tions with large <cells are governed by a nonlinear diffusion
equation, and he discussed it in comparison with the Kuramoto-—
Sivashinsky equation that has chaotic solutions. Cloot and Lebon

(1984>45)  nade a nonlinear analysis for the Rayleigh—-Marangoni

10



convection, and showed supercritical and subcritical zones of in-—
stability where hexagonal cells are allowable. Riahi (198748
also found for the Rayleigh—Marangoni convection that hexagonal
cells are preferred. Now, for the results cited above, the con-—
firmation by experiments is eagerly expected. Since the 18970’s,
various aspects of Marangoni convections have been studied, which
we can find in the proceedings edited by Serensen (1979),47) in
the textbook “"Low—-Gravity Fluid Dynamics” by Myshkis et al.

(1987),48) and in a recent review due to Davis ¢1987),49

il
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Chapter 2. Marangoni Instability of Thin Liquid Sheet

8§1. Introduction

1D and by

Since the remarkable investigations made by Pearson
Sternling and Scriven,z) much attention has been paid to the
Marangoni instability, which 1is reviewed extensively in refs.3
and 4. Quite recently, a growing interest has arisen 1in the
Marangoni effect as a possible mechanism to drive a flow even in
a weak gravitational field, such as in a space laboratory.S)
From a practical point of view, especially in chemical engineer-
ing, the typical configurations treated so far are <classified
into two types: one is a liquid layer between a gas phase and a
solid wall and the other two immiscible liquid layers between two
solid walls. The surface tension gradient may occur at the gas—
liquid interface for the former, while at the liquid—liquid in-
terface for the latter. When a surface deformation does exist,
not only the surface tension gradient but also the surface ten-—
sion itself may have a significant effect on the Marangoni con-

6> There seems to be, however, no detajiled investiga—

vection.
tions on the stability problem of a liquid sheet between two ¢gas
phases, which is rather a prototype of the Marangoni effect in
the sense that Carlo Marangoni studied the effect on a soap bub-
ble in the 19—th century. This is the subject of this chapter.

Here we consider the linear stability of a thin liquid sheet

sandwiched in between two still gas phases. We assume that heat

15



and mass transfers arise in the sheet due to convection and dif-
fusion and that they are prescribed at the two free surfaces by
the conditions of the type of Newton’s cooling law. Thus the
Marangoni effect due to variations of temperature and/or of con-
centration may act on each free surface. This effect 1is con-—
cerned with so many factors derived from the material property at
the free surface’*8> that various effects may appear in a very
thin surface layer. The attention in this chapter, however, is
confined to the simplest case, in which only the momentum flux of
viscous 1liquid, the surface tension and its variation are taken
into account at each free surface. The effects of temperature
and of <concentration can be treated in a very similar manner,
thus we consider both along with. Since the surface tension
gradient may act on a free surface even when it is flat, the
problem for both flat free surfaces is most elementary, which is
called here Case (i), The problem is then extended for Case (iid
so as to include effects of the surface deformations, for which
we adopt a mean value of the surface tension coefficient at the
two surfaces. Formulation of the problem for Cases (i) and (ii)
is made in § 2, where an eigenvalue relation is derived for
parameters involved, and then results for the steady mode are
discussed in § 3. In 84, a deviation of the surface tension
coefficient from the mean value is taken inte account, which is
referred to as Case(iiid. For Cases(ii> and (iiid, a surface
pattern resulting from the surface deformations and an 1induced

flow in the 1imit of small wavenumbers are examined in 8 5.
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Furthermore, a temporal evolution of disturbances in the vicinity
of the steady disturbed state for Cases (i) and (ii) is examined

in Appendix.

§ 2. Formulation of the Problem

Suppose a viscous liquid sheet with thickness 2d, which is
sandwiched in between two still gas phases. Let us take a system
of Cartesian coordinates with the y-axis in the direction of
thickness and the x— and z—axes in the center plane of the sheet.
We thus label one gas phase at the upper side of the sheet (y>d)
as "I’ and the other at the lower side (y<=d> as ’II’. Basic
equations for this sheet consist of the equation of continuity,

the equation of motion and the convection—diffusion equation for

temperature or concentration:l)
Vv-v = 0, 2. 1
ov 1
— + (v V)v = - —Vp + v V2, 2. 2
ot fel
oX
— + (v:V)X = DV 2y, 2.3
ot

where v=(Cu,v,w) is the velocity, p is the pressure, X stands for

the temperature T or the concentration C, V=(3/98x, 8/ 9y,
8/ 32z), and t is the time. To simplify the analysis, the den-—
sity o, the viscosity 4 (= p v) and the thermometric conduc-
tivity (D=Dp> or the diffusivity (D=Dg) are taken to be constant.

Let us consider an undisturbed rest state with flat free
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surfaces at y==xd. Equations (2.1) and (2.2) have wequilibrium
solutions given by v=0 and p=constant. When the temperature of
the gas phase I is different from that of II or when the mass
transfer occurs across the free surfaces, the temperature or the
concentration has an equilibrium distribution XEE;(y) in the
sheet. It is assumed here that Q(y) is prescribed by boundary

conditions of the type of Newton’s cooling law:

dX -

— =-TI';j&X - Xp at y=d, (2. 4a)
dy

dx _

— = I';;&X - X{p at y=-d, (2. 4b)
dy

where I'y is the transfer coefficient across the wupper surface
and X7 is the value of X in the gas phase I at a point far from
the sheet, while for the lower surface, I't1 and Xy1 are defined
likewise. It is also assumed that the difference between ['y and
I'11 is sufficiently small, so that the transfer coefficients are
set as I'j=F1=T, say. We thus obtain the following solution
X(y> from (2.3) and (2.4):
X(y) = ay + b, | 2. 5

where

a = L s b = — . (2. 6a, b
1 + I'd 2 2

Here we should note that if I°" is zero, a disappears, giving rise
to a uniform distribution of X<d(y).
Upon this equilibrium state, small disturbances which are

denoted with prime are superimposed. The disturbances of tem—
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perature or of concentration may cause variations of the surface

tension coefficient. When the surface deformations h’I and h,II
are taken into account, the surface tension itself may also act
on each surface. In view of these effects on the surfaces, we

consider the case for which the surface tension coefficients o1
(at the upper deformed surface given by y=d+h'I) and o 11 (at the
lower deformed surface given by y=—d+h’II) are expressed as

61 = o + Bad + B X' + ah’ ), 2.7
srp = 6@ - Bad + B X' + ah’ D), 2. 8

where o (b) denotes their mean value in the undisturbed state,
and B (=83 0/98X) is taken as a constant; B ad stands for the
deviation due to the distribution of Q(y), and B ah’; and B ah’ 1
are the variations of i(y) caused by the surface deformations.
For small disturbances, the surface tension is estimated by the
first two terms in the right—hand—side of (2.7) and by those of
2.8, while it may be estimated approximately by ¢ (b) if the
deviation is small (either a in (2. 6ad is wvery small, or the
sheet is sufficiently thin, According to (2.7) and (2.8, on
the other hand, the surface tension gradient at each surface 1is
expressed as

VIO'I = A VI(X' + ah’I) at y=d+h’I, (2. 9a)
VIIO'II = A VII(X' + ah’II) at y=—d+h'II, 2. 9B

where ‘71 and §7II stand for the gradient operators taken along

the respective deformed surfaces. Because of the disturbance X’
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in (2.9a,b), the surface tension gradient can act on both of the
surfaces even if they are flat. Thus, we classify the problem
into the following three cases: in Case (i) both the surfaces are
flat, in Case(ii) the surface deformations exist and the surface
tension coefficients are estimated under the condition
| Bad |<<o (b)), and in Case(iii) the surface deformations exist
and the surface tension coefficients are given by (2.7) and
2. 8>, In this section, we formulate the problem for Cases (i)
and (ii>, while the complicated general Cased(iii) will be c¢con-—
sidered in § 4.

From (2,.1>—-(2.3), the linearized equations for the disturb—

ances are now given as

v v’ = 0, 2. 10
ov’ 1

= - —vVp + » V2, 2. 11)
ot o)
3X’

+ av’ = DV2X’. 2. 12)
a5t

The boundary conditions at each surface consist of the kinematic
condition, the tangential stress balance, the normal stress
balance and the condition of the type of Newton's cooling law:

they are expressed, at the upper surface (y=d), as

8h’ g
= v, 2. 13
ot
ov’ du’ 33X’ ah’
w(— + — )= B (— + a ), 2. 1408
o X oy ox ox
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av'  Bw ax’ ah' |

H(— + — )= B8 (— + a ), 2.1%
oz oYy oz oz
av, aZh,I 82}1'1
p* — 2u— = =0 (b)) ( + ), 2.16
By 5 x2 8z2
23X’
— = - &X* + ah’ D, 2.17
3y
and, at the lower surface (y=—d), as
8h' 11
—_— = V', .18
3t
Sv’ au’ SX’ ah’II
H(— + — ) =~-8(— + a —m), 2.19
ax oy 3x ox
ov’ ow’ ax’ ah’”
u(— + — ) = -B(— + a ), .20
oz 3y oz 9z
av’ 8%y 8%n ;g
p’ - 2u— = ¢ (b)) ( + ), 2,21
3y 8x2 822
X’
—_— = " X* + ah’ ). (2.22)
oy

To normalize the system of equations (2.10)-(2.22), representa-—
tive scales for the sheet are taken as follows: d for the length,
d2/D for the time, D/d for the velocity, 1AD/d2 for the pressure
and ad for the temperature or the concentration. Since there
arise no confusions, we shall use henceforth the same symbols for
the nondimensional variables and disturbances. Then, u’, w' and
p’ are eliminated from the boundary conditions by using (2.10)

and (2.11>, so that the stability problem against the small dis-

turbances can be denoted in terms of v’, X', h'I and h'II'
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where k=(kx,0,kz)

LLet us now seek the solution of the following form:

tv?, X', h'I, h'II]

= [fCy), gy), ST» sII]exp(ik~x +At),

is the complex growth rate.

for f and ¢g:

A
(£ - = £t =0,
PI’

£ - A)g=fo

get the boundary conditions

/\SI = f,

(£ + 2k2ys = Msz(g + sp,

Using (2.23),

at y=1:

where 53=d2/dy2—k2, and Pr=z//D is the Prandtl number.

A df k4

(£ - 22 - —— = — sy,
P. dy Ng

dg

- = -7 (g + SI),

dy

and the boundary conditions at y=—-1:

/\SII = f,

(£ + 2k2f = - MpkZ(g + sy,
A df k4

(£ - 2k2 - —— =~ — s,
Pr dy NC

dg

- = 7 (g + SII))

dy

22

(2. 23)

is the wavenumber vector of magnitude k, and A

we get the equations

2. 24>

(2. 25

Then, we

2. 26>

2. 27D

2. 28

2. 29

2.3

2.3D

(2. 32>

(2. 33



where the parameters are defined as

Bad2
MR = Marangoni number,
D
ry = I''d Biot number, (2. 34
uD
N = ———— Crispation number,
c (bdd

For the system of equations (2,24)-(2.33), let us consider
the problem of the steady mode (A =0, which is independent of
the Prandtl number. (The unsteady mode will be examined in Ap-—

pendix. ) The steady solutions of f and g are obtained as

f(y) = [AlY + Ag + y(Ag + A4Y)]cosh(ky), (2. 35
Y Y 1
gly) = [ASY + AS + "'"(Al + A2Y) + — A3(yY - -
2k 4k k
y Y
+ — A4(y — " 1cosh(ky), (2. 362
4k k
where Y=tanh (ky), and A1"*A6 are integration <constants. The

boundary conditions (2,26) and (2.30) for A =0 lead to
Ag = - AyZ Ay = — ApZ* (2. 37a, b
with Z=tanh (k) and Z*=1/Z. Using (2,28, (2.32> (for A=0) and

(2.37a,b), the surface deformations are expressed as

2NC 1
s = - —AZ - Ad— , 2. 38
k sinh (k)
2NC 1
sy = —(AZ + Ag)— , (2. 39
k sinh (k)

whence we see that the flat surfaces in Case (1) are given for-

mally by setting Ng=0. Then, from (2.29) and (2. 33, the con-
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stants A5 and Ag in (2.36) are expressed as

-1 1 1 27%-7 7 (sp=syp)

Ag = ———— (A [—+ A+ 7)¢C + 1 + }, (2. 40a)
r+ kz¥ 4 4x2 4k 2sinh (x>
-1 1 1 27-7* 7 (sp+sqp)

Ag = ——— (Agl— + U+7)( + Y1 + }. (2. 40b)
7y + kZ 4 4x2 4k 2cosh (k)

Substituting (2. 35 and (2. 36> into the boundary conditions
(2.27> and (2.3, and using (2.37)-(2.40), one obtains the fol-

lowing simultaneous equations for Al and A2:

MRZF4A1 = — 8FAg , (2.412)
X - k3 X
8F, Ay = MRZ™F4 Ay , (2.41bBD
where
— - b JE— X
F1 = Fl(k,Z) =k +7rZ, Fi = F;&k,ZM),
Fo = Fo(k,2) = k(l - 29, Fo* = Fo(k,Z%,
(2.42)
v4 72
F3 = Fgk,2) = (2 —-—)F‘z(k,Z) - -, FB* = F3(k,Z*).
k k
. - _ X X
F4 = Fyuk,2 = Fgk, 2> 8NcFg (k, 25, Fu = Fyuk,Z2™.
A set of equations (2.41a,b) can be solved straightforwardly, S0

that the eigenvalue relation for the steady mode is expressed as
MR=F(k.7’,NC), which describes a neutrally stable state for the

small disturbances.

8§ 3. Eigenvalue of the Steady Mode

The explicit form of the eigenvalue MR in Case (ii) (in-

cluding Case (i) as a special case) is given by

, G. D
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where the double sign * should be chosen subject to the follow—
ing fact. For the definition of Mp in (2,34, it is known that

for temperature or for concentration of organic substances, fA is

negative,a)

so that MR is taken to be positive (or negative) when
the gradient of the equilibrium solution i(y), a given by (2.6a),
is negative (or positive), while for concentration of inorganic
substances, B is positive, so that the sign of Mp agrees with
that of a. Therefore, jt is found that the surface tension
gradient may ¢give " rise to an instability of the sheet for both
signs of the Marangoni number. This makes a marked contrast to
the case of a liquid layer between a gas phase and a solid wall
in which the eigenvalue is always positive for the steady mode

(see refs.1, 6 and 9).

LLet us examine the eigenvalue in detail as a function of the

wavenumber. First, the asymptotic form of (3.1) for k—> o is
given by
MR = +8kk +7) Cases (i) and (i), (3. 2

while for k—0 it is given by

3
Mp = £ =/ 157 (r+ D Cr #0) (3.3
k
Case (i),
3+ 15
Mp = +£ Cr =0) (3. 4
k
37y (r+ 1D
Mg = i/ Cyr #0) (3. 5
Nc (1 - 3NE
Case (iid,
3x2
Mp = + Cr =0 (3.6
Nc (1 - 3NE
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where (3.3) can be derived by putting No=0; the small order terms
disregarded in (3.3) and (3.5) lead, for 7 =0, to (3.4) and (3.6)
respectively. In (3.3) and (3.4) with the positive sign, values
of MR become very large for small k, whereas in (3.5) and (3.6,
they become finite at k=0 C(e. g., MR given by (3.6) is found to be
zero: the disturbances of zero wavenumber drive always an insta-
bility). This gives a remarkable difference between Cases (i) and
(iid. Although the equations (3.5) and (3.6) hold for the range
0<Nq<1/3, they must be treated carefully under the condition for
Case(ii) that | Bad [<<o (b): this means here that Ng | Mg | <<1 or
NC<<NA’ where Np (551/[3(7‘2+7’+1)]) is the solution of NC to a
set of equations NC| MR| =1 and (3. 5. Thus, the condition
Ne<<Np =1/3 will restrict possible values of No especially when
v becomes large for which NA becomes small. Next, we consider
extrema of the eigenvalue with respect to k. Since the equation
dMp/ k=0 derived from (3.1) <can be regarded as a quadratic

equation for 7, one solution is obtained as

y = G, N = - By + ¥ Bg? - kk - 2B, (3. D
with
X ° )
ok
(3. 8)
1
Bp = —[(Z + Z% k - Bp + < - 2% %81,
2

whereas the other solution, being always negative, is meaningless
because the Biot number must be positive C(or zero for a particu-—

lar case). Using (3.7, the extrema are now expressed as MR=
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F(k, Gk, N>, No) =M, say. Although Mg can take both signs, we
choose here only the positive sign unless otherwise stated (note
that the neutral curves are symmetric with respect to MRp=0).

The neutral stability curves for Case(i), which are given,
on setting No=0, by (3.1) with the positive sign, are drawn by
the heavy solid lines in the (k,Mp) plane of Fig.1 for various
values of 7. The extrema (the minima) given by Mp=F(k,G(, 0>, 0
are also drawn in Fig.1l by the light solid line. We find from
this that the critical Marangoni number, which is defined as the
lowest value of Mp with respect to k, is just given by Mg for
each 7. We call hereafter this type of instability Type(A). It
is then found that the corresponding critical wavenumber ranges
between 0.941 and 1.615, because the Biot number given by 7=
G(k, 0> changes monotonically from zero to infinity in that range
(see Fig.3 for the details), Therefore the critical Marangoni
number for Case (i) is found to be given by the simple function
ME=F(k,G(k,0),0). which increases from 21.86 to infinity as 7
(=G (k,0)) increases.

The neutral curves for Case(ii) given by Mp=F(k, 7v,Ng) are
shown in Fig.2(a,b) together with the extrema ME=F(k,G(k.NC),NC).
It turns out from Fig.2Ca,b) that effects of the surface deforma-
tions arise remarkably for the disturbances of small wavenumbers.
This leads to another type of instability, say Type(B), and gives
another candidate of critical Marangoni number which is given, at
k=0, by (3.5) with the positive sign. Figure 2(a) shows that the

critical Marangoni number is given for small 7 by values of Type
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Fig. 2. Neutral <curves for Case(ii): (a) NC=0.0001 and (b>

NC=0.005. Mp and Mg are drawn as in Fig. 1.
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(B) (see the curves for 7 =0.01), while for large 7 by minima

of Type(A) (see the curves for 7 20.1: note that the minima for

NC>0 are slightly smaller than those for NC=0). As NC becomes
large, this tendency is found more clearly, as shown in Fig. 2 ()
for NC=0.005. It is then found from Fig.2(b) that the curve of

ME is in contact with the neutral curve for 7 =0.607 and ME dis—
appears for 7 <0. 607. To illustrate such variation of ME with

NC, the solution G(k,NC) given by (3.7 is drawn in Fig. 3 as

a4 /
G (k) Ne=0,005 /

_-0.0001

0.0005._

/\ -
1
e
0.005\\\_///;///
Q00120

|
0.722 " 1
0,941

Fig.3. Solution G(k,N¢) obtained from the extremum condition for

A\

MR-
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functions of k for various values of Np, for which the equations
8G/ 3k=0 and G(k,Nc>=0 (that is denoted as a quadratic equation
for NC) give k=0.722 and NC=0.0012: thus this value of NC satis—
fies the condition Np<<N,. When Nz=0.0012, the wavenumbers
ranging between 0.722 and 1.615 give the minima of ME (see also
Fig. 2)), while those smaller than 0. 722 give the maxima: note
that the curve of maxima gives a guide line below which, i.e.,
for the smaller wavenumbers, the effects of surface deformations
are dominant. When Nc>0.0012, the solution G(k,Np) is always
positive (Fig.3), so that Type(A) disappears and only Type (B
does exist for smaller 7 (<G(k,Ncd) (see again Fig.2()). To
compare the two types of instability for various values of N,
the minima Mg and the values of Mp at k=0 given by (3.5) are dis-—
played against 7 in Fig. 4. It follows from this that even for
the values of NC which allow both types of instability, Type (B)
gives smaller values of MR than Type (A) whenever 7 is small,.
Hence, the critical Marangoni number for Case(iid is given by
Type (B> for small r and it decreases with increasing Ng under
the condition No<<N,.

For a larger 7, the critical Marangoni number for both
Types (A) and (B) becomes larger. This is interpreted as follows:
if 7r becomes infinity, the boundary conditions (2.29) and (2.33)
reduce to

g+tsp =0 at y=1, and g + sy =0 at y=-1, (3. 9a, b
so that the surface tension gradients in (2.27) and (2.31) do

vanish.
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§4. Effects of Deviation of the Surface Tension Coefficient

Let us now consider the general case where the deviation of
the surface tension coefficient (which 1is given in (2.7) and
(2.8)) is taken into account. To this end, the boundary condi-
tions (2.28) and (2.32) have to be replaced, for Case(iiid of the

steady mode (A =0), by

df k4

(£ - 2k%— = — 1 + NoMpd sy at y=1, 4. 1
dy NC
df K4

(£ - 2k®H— = = —A = NeMpd sy at y=-1, 4.2
dy NC

Using the solutions (2,35 and (2. 36> and the -equations
(2. 37a,b), the boundary conditions (4.1) and (4.2) yield the fol-

lowing equations for the surface deformations:

2Ne A4Z = Ay 1
sp = - , 4.3
k 1 + NCMR sinh (k)
NG AjZ + Ay 1
SII = . 4. 4>

k 1 - NcMp sinh(k)

After tedious but straightforward calculation as was made in 8§ 2,

we find that the eigenvalue relation for this Case(iiid can be

expressed by a cubic egquation for MR2’ which is then factorized

as a product of MR2—NC_2

and a quadratic for MR2: the latter
reduces, in the limit of NC—+0, to a linear equation giving (3. 1)
for Case (ii). Thus we can obtain the eigenvalues explicitly for

Case (iii) as

Mp = + Jc; - /¢ 2 - Cy, 4. 5
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= £ — 4. 6

where
11 4 Fg Fy* 32
ClL=— —5 - — (— + )+ (Fy + Fo) (F* + Fy™,
2 * *
2 No2 Np Fg Fg FgFg
4. 8
64 FF ¥
Cz=——2' x
Ne? FgFg

Fy~Fg and F{*~Fg* being given in (2.42); the double sign * in
(4.5>-(4.7) can be interpreted as in § 3. It turns out that for
sufficiently small values of N and k, the magnitude of Mp given
by 4.5, (4.6 and (4.7) is, respectively, smaller than, equal
to and larger than NC—I. Thus (4.5 can be approximated by (3. D)
when No is sufficiently small, which suggests a critical Maran-
goni number at k=0 (Type(B)) as in Case (ii).

To examine the eigenvalue for Case(iii) in comparison with
that for Case(ii), we introduce here a condition No | Mp| =1 and

focus our attention only to (4.5). The asymptotic form of (4.5)

for k<<1 is obtained as

1 3r(r+ D
M = + /— , 4. 9
Ne 1 + 3NeCr= DD (r+ 2)

which leads to MR=0 for 7=0.  (Note that (4.5) takes the form of

MRo<j:k when 7 =0 and k<<l1, while it approaches (4.6) as k be-
comes large.) Using (4.9), the condition NC |MR | =1 is found to

be expressed as NC§§1/6. It is also found that (4.9) has two
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distinct features according as 7 is smaller than unity or not.
When o =21, Mp ¢given by (4.9) with the positive sign decreases
monotonically with increasing No. When 7 <1, No in (4.9) has the
upper limit, say Ng (=1/0[83U~-7) (r+2)1, which takes the lowest
value 1/6 in the limit of 7 —0). Thus we find that Mp decreases
with increasing Ng in the range No=Ng/2, while increases with Ng
in Ng/2<Np<Np (note that the condition Ng/2=1/6 always holds for
0 7 = (/' 5-1)/2). Therefore Nc in the latter range has a stabi-
lizing effect on the disturbances, whose typical example is shown
in Fig.5; at a certain value of o (for example, at 7r=1/4, for
which Np=0.1875>, Mp increases with increasing Nc over Ng/2.
This seems very interesting in contrast to the destabilizing ef-
fect of the surface deformation obtained in ref. 6. If Ng ap-
proaches NB, however, Mp at k=0 becomes very large, and the con-—
dition No=1/6 cannot be satisfied for larger values of 7 (K1),
The neutral curves for Case(iii), which is given by 4.5
with the positive sign, are shown in Fig.6(a,b> for Nr=0.005 and
N-=0. 01. To compare the values of Mp for Cases(iii) and (ii), we
set (4.9) equal with (3.5, then we get 7’=(vr§—1)/2557'1, say.
According as 7 <7 or 7 1<7, the positive value of Mp given by
(4.9) becomes larger or smaller than that given by (3.5, For
the small values of 7 and for Np sufficiently small, the criti-
cal Marangoni number given at k=0 ((Fig.6(Cd)>, i.e., Type®B), may
be approximated by that for Case(ii) (Figs.2({b) and 4). For 7
of order unity, maxima and minima of MR given by (4.5) can be

found in Fig.6(), where the latter, Type (A), gives the critical
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Fig. 5. Neutral curves in the limit of small wavenumbers given by

4. D for wvarious values of NC: the ’*stabilizing effect’ arises
when NC changes within the ransge NB/2<NC<NB, for which the value

of NB=O.1975 is obtained at 97 =1/4. (The broken line denotes

MR=F(O,7‘,NB/2)=j:8V'T Cr+DCr+2>A-7) derived from 4. D,

which implies the envelope for MR with respect to NC.)
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value (see the curve for 7 =5). For 7 =10, again Type(B) domi-
nates. These show that the maxima and the minima are on a closed
curve that is given in the range OESMR<NC_1 by a set of equations
BdMp/ 8k=0 and (4.5, for which Type(A) disappears for both small
and large values of 7. As No becomes large, the curve is then
contracted, so that only Type(B) gives the critical value, as
seen in Fig.6(). This is the most typical result for Cased(iiid:
the critical Marangoni number is given at k=0 by (4.9) for larger

values of NC so far as the condition NC IMR ] £1 is satisfied.

8§ 5. Surface Pattern at Small Wavenumbers
The surface pattern relative to the induced flow gives a
very important criterion for what mechanical effect causes an in-—

) Then it may be interested to

stability for the steady mode. ©
ask what sort of surface pattern arises at the wupper and the
lower surfaces of the liquid sheet. Since the effects of surface
deformations for Cases(ii) and (iii) are remarkable for the dis-—
turbances of small wavenumbers, we examine here the surface pat—

tern and the flow direction in the limit of small wavenumbers.

For k—0, the equation (2.41a) for Case(ii) can be written

as
A
2
= = £k, (5. D
Aq
with
NcMp
£= c . (5.2
r+ 1
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Using (5.1, (2.35) and (2.37-(2.39, we

equations:

s;;p _ S+ 1
SI 5" 1
SI NC 1
= — (— = 1),
df k2 £
(—
dy y=1
SII NC 1
—_—— = ~§ (— + 1
df k g
()
dy y=-1

On the other hand,

can be written, for k—0, as

Ay _ K

Al n
with

(2 +7>A - Ne2Mp® - 1
77:
NCMR

We thus get the following equations from (2. 35),
and (4. 4D

s;;p £t 1

SI Z"‘ 1

51 NC 7 -1
df k€ 1 + NcMp
)

dy y=1
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have

the following

5. 3D

(5. 4

(5.5

the relation between Al and A2 for Case(iii)

(5. 6)

B.D

.37,

4. 3

(5. 8

5. P



STI NC n + 1

= _E _— (5.100
(—)
dy y=-—1
where
r+ 2
g = NCMR' (6. 11>
7+ 1

It should be remarked here that MR in (6.1)-(5.5) is given by
(3.5 and that in (5.62—-(5.11> by (4.9,

Making use of the above relations, we consider the surface
deformations at a certain station, say x=0, in a fixed plane z=0.
For simplicity, we assume that sy and sjyy are real functions of
k, by which the levels of the free surfaces at x=0 are set as
y=1l+sy and y=-1+sy;. In the limit of 7 —0, in which Mp=0 for
both Cases(ii) and (iiid>, the right—hand—side of (5.3 and that
of (56.8) reduce to -1 (i.e., Syp=—sp)- This means that if sy is
a surface depression (i.e., sy<0), then sj; is a surface eleva-
tion. The corresponding surface deformations at another station
x=% /k Cor x=—m /k) should be an elevation —s; and a depression
-syyp respectively. Therefore the surface pattern for 7 —0 is a
symmetric type with respect to the center plane of the sheet
(y=0). When 7 >0, on the other hand, the condition for Case (ii)
and (5.2) yield | £ | =Ng|Mp| <<1l, so that the sign of (5. 3
does not change. It turns out from this that the amplitude sy is
always smaller than sy; for (3.5 with the positive sign, while
vice versa with the negative sign: for the double sign in (3.5),

the surface pattern for Case(ii) is somewhat similar to the sym—
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metric type. For Case(iii), three kinds of surface pattern may
be found subject to ¢ in (5, 8. Setting | £ | =1, we have from
(4.9) the following relation between Ng and 7:

1 7+ 1

NC = - (
3 Qr+ Dr+ 2

i

NG, say). (5. 12>

When No<Ng, i.e., | & | <1, the surface pattern for Case(iii) is
qualitatively similar to that for Case (ii). When N~=Ng, the up-
per surface becomes flat for ¢ =1, while the lower surface be-
comes flat for & =-1. When No>Ngg, both of the surface deforma-
tions become in—phase, so that only the elevations or the depres-—
sions do appear at x=0.

Let us now consider the induced flow relative to the surface
deformations, with assuming that f is a real function of k and vy.

When an upflow (a downflow) occurs near y=1, (df/dy)y=1 must be

negative (positive), because the kinematic condition (2.26) d{{for
A=0) gives f (1>=0. To the contrary, an upflow near y=—1 makes
(df/dy)y=_1 positive, because (2.30) gives f (-1)=0. In accord-

ance with these and under the condition for Case(ii) (Np | Mp |
<<1), the equations (5.4) and (5.5) with 0< £ <<1 show that when a
surface depression s; and an elevation sy exist at x=0, an up-—
flow arises near y=1 and y=—-1; then, at the station x== /k, the
elevation —sy; and the depression —sjyy arise together with a down-
flow near y=1 and y=-1. A typical example of such cellular flows
is given 1in Fig.7, where the steady convection and the surface
deformations for Case(ii) are displayed in the cross plane of the

sheet (which is denoted by -z /k=x= 7mw/k and -1 £y£1 at z=0),
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T ’ ke
_..T(_ 0 k

Fig., 7. A typical flow pattern for Cased(iid. By setting k=0.125,
7 =1, N¢=0.0001 and A¢=1, the eigenvalue relation (3.1) leads to
Mp=243, sI=~1.57><10_3, sII=1.61><10_3, the maximum velocity of
the steady convection Max( |v’ | )>=0.036 (which is drawn by the
black triangles), and MinC |v’* | )=0 ({.e., stagnation points,
which are indicated by the blank); the center of each triangle

denotes the coordinate x,y) in the cross plane of the sheet

(-n/ksxs n/k, -1sSy&£1 at z=0), intermediate intensities of
the velocity are painted in four ranks (single triangles, double
ones, top-painted ones, and heavy—lined ones) and the top of the

triangles denotes the direction of the cellular flow; the

amplitude s1 and s{p are intensified,
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For Case(iii), the relations between the induced flow and
the surface deformations are given by (5.9) and (5.10). The con-—
dition | » | =1 gives Npo=N; and Np=1/6, while the condition 7 =0
leads to

1

~
il

NE, say). (5. 13

1
NC=—
3

r+ 2

This gives the relation O<N;=Np=1/6, where the equality holds
only for 7 =0, Using (4.9) with the positive sign, it is found
that 7 =1 corresponds to Np=Ng and 7»=-1 to Nc=1/6. From these
relations and the condition No=1/6, 77 can be classified into
two ranges: ©>7 20 for O<Ng<Np and 0= »#>-1 for Ng<Np<1/6. Al-
though the sign of (5.9) changes across the critical state NC=NG
(n=¢=D, the sign of sy also changes at the same time: the
direction of the induced flow near y=1 at x=0 does not change ir-
respective of the sign of sy. Contrary to this, (5.10> does not
change the sign, so that the induced flow near y=-1 (at x=0) has
the same direction as that near y=1 even when N increases within
the range O0<Nc<1/6. Therefore, we can conclude for Case(iiid
that an upflow occurs when sy; is an elevation, while a downflow
occurs when syy 1s a depression, irrespective of the situation of
the upper surface deformation.

Finally, let us evaluate typical values of the parameters
for aqueous solution. The data of pure water at 25°C provides
the following values: 4 =0.89X 10”3 ([N sec -m™ 21, DT=1.42><10—'7
m?/secl, De=2. 14 X 1079 m?/sec], o (b>=7.2X1072[N/m]  and

ﬂ=—1.6><10—4[N/m-deg] at air-water surface for heat transfer.S)
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These lead to NC=1.76><10—9/d and MR=~1.27><106ad2 for D=Dy, and
NC=2.65><10_11/d for D=Dy, where d (the half-thickness of the
sheet in the undisturbed state) is measured in meter and ad C(the
temperature difference) is in degree (Celsius). When d is less
than 10-4[m]. Type(A) of instability may arise for large 7,
while Type(B) for small 7 : both the types may drive the Maran-—
goni convection in the sheet. Although the order of magnitude of
the diffusivity changes little for almost all substances solved
in water, some substances such as glycerin and sucrose change the
viscosity of aqueous solution as a hundred times as large com—
pared with pure water, Furthermore, some substances such as
acetone and surface active agencies make Ng IMR | close to unity.
These properties changing No or NcMp  suggest that the 1liquid
sheet can easily become unstable when the surface deformations do
exist. This conjecture seems to be reasonable, because a soap
bubble cannot be made up when the temperature difference between
the inside and the outside temperatures is large.

The results for the relation between the surface pattern and
the 1induced flow may also give a criterion to distinguish the
Marangoni convection from other convections which do not include
the Marangoni effect, and may be applicable to study the break-up

of the sheet.
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Appendix: Temporal Evolution of Disturbances in the Vicinity
of the Steady Disturbed State
Let us now consider a temporal evolution of disturbances in
the vicinity of the steady disturbed state for Cases (i) and (iid.
Assuming that the evolution occurs very slowly, we take the fol-

lowing perturbation expansion:

f=1fg+ ef; +0Ced, (A. 1D
g =g+ egq +0Ce?), (A. 2
Mp = Mpg + eMpy + 0Ce ®), (A. 3
A= ed; +0(e?, A. 4

where E (<<1) denotes the magnitude of the complex growth rate
A, where A, is scaled as of O(1). Substituting (A, 1D-(A, 4O
into (2.24>-(2.33), and arranging them by like powers of &£, we
get the governing system of equations for O(C1) and OCeg). For
0(1>, we readily find that f;, &g and Mo take the same forms as
(2. 35), (2.36> and (3.1), respectively.

To seek solutions of OCe), we have to solve an adjoint
problem for the disturbed state for O(l1): it is given by the
equations for tt and ¢*:

£2t% - ¢t = o, (A. 5)

£gt =0, (A. 6

together with the boundary conditions:

a2¢t

+ k2% = 0 at y==+1, (A. 7a, b)
dy2
k4 at*
— % = Mpgk? — + 7t at y==%1, (A. 8a, b)
NC dy
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agt aft

dy dy

dgt at”t

— = 7rgt + Mpok? — at y=-1, (A. 9b)
dy dy

for which the following relation is always satisfied:
<tt£2> + <gt(Lgg-f)> = <fg(£2fT-gNH> + <ggL£e™>, 410
where the angular brackets stand for the integration in the range
-1=sy=1. By setting Nc=0, (A.8a,b) reduce to the conditions
such that f%t=0 at y=+1, which correspond to the conditions of
Case (i). The solutions to (A.5) and (A.6) are obtained as
+

g = (ByY + Bogldcosh(ky), A. 11D

f* = (BgY + By + y(Bg + Bg®)

Bly 1 B2y Y
+ —— (yY - + — (y - D 1coshky), (A, 125
8k2 k 8k2 Kk
where integration constants Bl'\‘BS can be expressed, by using

(A. 7>—-CA. 9, as

~MpnB 1
R
By = 072 (7% + kN1 1-22 - =, (A. 132)
1 ” C
8 (7 +kZ™ k
By = ([Z + k(8Ne-2>1 (1-Z%%) - =, (A. 13b)
8 C 7 +k2) k
B 8No—1
1 C
By = - ——=[(BNg-2Z*2 + 1 + %, (A. 142)
2
8k k
2
By = - —=[(8Nc-2Z% + 1 + 71, (A. 14Db)
4 5 [(8Nc
8k k
By Bo
Bs = — (8Ng-2>Z%, Bg = ——(8Ng=2Z. (A. 15a, b)
8k< 8k2

46



The simultaneous equations (A, 13a,b) lead to the same eigenvalue
relation as (3. 1).

From (A. 1)—(A. 15), one obtains the solvability condition for

fl and gI:
= " " (=H, say), (A. 16)
MRI <f0£f >/Pr + <g0g > 4+ R
where
art art
Q = [—(gp + spd1  + [—(gy + syp] , (A. 172
dy y=1 dy y=-1
aft ast
R=s;[(£-2kH—1 - sy;[(£-2k%—1] : (A. 17b)
dy vy=1 dy y=-1

Using (A.16), the equation (A.3) is then expressed as
Ay
MRo * &€Mpy = Mpg + e—;— . (A. 18

The function H (=H(k, 7,Ng,P.)) is found to be positive, so that
Ay (= A +tiAy) has to be real (A ;=0>: the oscillatory mode
does not exist in the vicinity of the steady disturbed state.
This also means that A ;. becomes positive for the supercritical
state (Mp;>0), but negative for the subcritical state. The typi-
cal examples given by (A.18) with a fixed value e A1,=0.1 are
illustrated in Fig.Al for Case(id (No=0> and in Fig.A2 for Case
(ii> (Ne=0.005)>, where the parameters are set as 7 =0, 1, 5 and
P,=0.1, 1, 10, Figure Al shows that Mp (=Mpo*+ € MR;) takes larger
values at larger wavenumbers especially when P, is small, which

should be compared with the curves of MRO (drawn by the broken

lines): when Pr=0'1’ the minimum of MR for r=0 is given by
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Fig.Al. Examples of the temboral evolution of disturbances in the
vicinity of the steady disturbed state for Case (i) (NC=O), with
setting 7 =0, 1, 5 and P,=0.1, 1, 10. The equi—-growth rate
curves MR (=MR0+5:MR1) with € A,r1=0.1 are drawn by the solid

lines, and MRO by the broken lines.
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Fig. A2. Examples of the temporal evolution of disturbances in the
vicinity of the steady disturbed state for Case(ii) (NC=O.005):

the parameters are taken as in Fig. Al.
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27.385 at k=1.042 (recall that the critical Marangoni number was
given by 21.864 at k=0.941). This tendency becomes remarkable as
7r 1increases. It is then shown that when & A {.=0.2 and P.=0.1,
MR for 7 =0 takes the minimum of 32.616 at k=1, 109: both the min-
imum and the <corresponding wavenumber increase with the growth
rate. Similar results can be obtained for Case(ii)d in Fig. A2,
For Type(B) of instability, it is found that MR takes minima at
lfinite wavenumbers: for P.=0.1 and 7 =0, they are given by 12. 536
at k=0.198 when & A ,.=0.1, and by 19.386 at k=0.259 when e A=
0.2 (note in Fig.A2 that if A 4,.#0, MR becomes infinity at k=0).
This suggests that when the sheet becomes unstable, the <convec-

tion cells of finite size may grow up.
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a,

List of Principal Symbols

gradient of equilibrium distribution of X (temperature

concentration);

velocity v;

ly, at the upper

to wavenumber;

respectively,

at

or

and

the

b, mean value of equilibrium distribution of X;

C, concentration in liquid;

D, thermometric diffusivity (D=DT) or diffusivity (D=Dp);
d, half—thickness of the sheet;

F, eigenvalue relation;

f, function of y, denoting disturbance of

f+, function in adjoint problem, corresponding to f;
G, solution of Biot number obtained from extremum condition
for eigenvalue;

g, function of y, denoting disturbance of X;

g+, function in adjoint problem, corresponding to g;
h’I, h’II, surface deformations, respective

the lower surfaces;

k=(kx,0,kz), wavenumber vector of magnitude k;

MR, Marangoni number;

ME' extremum of eigenvalue MR with respect

Ne» Crispation number;

P, Prandtl number;

P, pressure;

P, pressure disturbance;

STs SYI» amplitude of surface deformation,

upper and the lower surfaces;

T,

temperature;
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t, time variable;

v=(u,v,w5, velocity vector;

v'=@',v',w' ), velocity disturbance;

X, temperature (X=T) or concentration X=C);

XI' XII’ value of X, respectively, in gas phase I and I1;

X', disturbance of X;

X, ¥, 2, variables in Cartesian coordinates;

Y, function, Y= tanh(ky);

Z, function, Z=tanh k) ;

z¥,  function, Z¥=1/Z=coth (k) ;

B, derivative of the surface tension coefficient with respect
to X (temperature or concentration);

r, transfer coefficient across boundaries of the sheet;

r I» r‘II’ transfer coefficient, respectively, across the upper

and the lower surfaces;

T, Biot number, transfer coefficient across the free surface;
A, complex growth rate;

JTIR viscosity of liquid;

v, kinematic viscosity of liquid;

O, density of liquid;

61» O11> surface tension coefficient, respectively, at the up-—

per and lower surfaces;
c (b)), mean value of the surface tension coefficient at two free

surfaces;
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Chapter 3. Nonlinear Surface Waves Driven by the Marangoni Insta-

bility in a Heat Transfer System

§1. Introduction

When heat and mass transfers occur across or near phase
boundaries of fluids, the surface tension gradient due to varia-—
tions of temperature and of mass concentration oftep drives con-

vections called the interfacial turbulence or the Marangoni con-

D 2 and of

vection. Since the pioneering work of Pearson
Sternling and Scriven,S) many studies on the Marangoni convection
have been made by means of a linear stability theory. A further
interesting problem may arise if one includes the effect of sur-—
face deformation. The effect of surface deformation on the
Marangoni convection has been studied first by Scriven and
Sternling.4) They have shown that there is no critical Marangoni
number for the onset of steady convection and that the limiting
case of zero wavenumber is always unstable: this gives one of the
most typical examples of the effect of surface deformation.
Smith®’ has shown, for the Marangoni instability of two immis-—
cible liquid layers, that the effect of interface deformation ap-
pears remarkably at small wavenumbers. He has also discussed how
the gravity affects the neutral stability condition for the
steady mode. Zeren and RBYHOldSG) have shown, for the Rayleigh-—-

Marangoni instability of two immiscible liquid layers, that the

effect of interface deformation arises at small wavenumbers when-—
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ever the Marangoni instability surpasses the Rayleigh instabili-
ty. Furthermore, when the surface deformation is taken into ac—
count, similar results have been obtained for various Marangoni
convection systems (see Takashima,7’8) Chapters 2 and 4 of this
thesis): note that even for the oscillatory mode, the effect of
surface deformation arises at small wavenumbers. 8’ Therefore, it
is almost certain that the effects of surface and interface
deformations on the Marangoni convection are always remarkable
for the disturbances of small wavenumbers rather than those of
large wavenumbers. This motivates the present study (Chapter 3O
to consider a nonlinear effect of the surface deformation on the
Marangoni convection.

Quite recently, Kai et al. 9’ have found experimentally that
the interface deformation between two immiscible 1liquid layers
grows as macroscopic angular waves in double concentric or single
cylindrical containers. They have suggested that one but strong
candidate of this mechanism is the Marangoni effect due to chemi-
cal reactions. For such surface waves driven by the Marangoni
effect, it has Dbeen shown that the surface deformation is gov—
erned by a nonlinear evolution equation of diffusion type and
that an explosive solution can exist for a special case of the
equation.lO) The special case has also been studied numerically
by Pimputkar and Ostrach. 1) Then, Kopbosynov and Pukhnachev
have derived an extended version of the evolution equation (for

their investigation, refer to the textbooklz)). On the other

hand, KuramotolS) has derived a similar type of equation for
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phase dynamics in reaction—diffusion systems. Kawahara and
Toh14) have also derived a similar equation for the nonlinear
cross—field instability in weakly ionized plasma, and they have

15) 435

found an explosive type of solution numerically. Yamada
derived, in nonlinear phase dynamics, a more extended equation as
a typical example with spatial periodicity. A main purpose of
this chapter is to discuss typical solutions to the nonlinear
diffusion equation and to extend the previous theory.lO)

On the other hand, much attention has been paid to the
Kuramoto—Sivashinsky equation16’17) because of the importance to
describe finite amplitude waves in various dissipative systems.
The extended equation (including a dispersion term) has been
studied numerically and analytically by Kawahara and Toh. 18,19
These give one of recent topics for the nonlinear waves giving
rise to chaos. It is quite interesting to ask whether the sur-—
face waves due to the Marangoni instability are governed by this
kind of equation.

We now consider nonlinear surface waves of long wavelength
driven by the Marangoni instability, which occur in a thin layer
of viscous liquid between a free surface and a plane wall. We
assume that a temperature of the liquid causes variations of the
surface tension coefficient, while all the other material proper—
ties are kept constant. Thus the heat transfer affects a flow
field only through the boundary conditions at the free surface,

and the gravity force is taken into account with a constant den-

sity of the liquid. Along this line, formulation of the problem
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is made in 8 2, in which each parameter is put to a typical mag-
nitude and then two examples are proposed. The first one, say
Example (i), is examined in 83 as compared with the results from
the linear stability analysis.4’7) An evolution equation govern-—
ing the surface waves is derived there, and its steady solution
is shown to be expressed by the cnoidal function. Initial value
problems of the evolution equation are numerically solved in 84,
where damping, steady and explosive solutions are obtained for
prescribed values of parameters. Then a condition to <classify
the three types of solutions is derived by applying the method
developed by Kawahara and Toh. 18:1%9)  The second one, say Example
(ii>, is discussed in 8§85, in which an inhomogeneous temperature
distribution along the plane wall is taken into account and then
two types of shock wave solutions ©progressing with a constant

velocity are shown.

§ 2. Formulation of the Problem

Let us suppose that a heat transfer occurs through a thin
layer of viscous liquid between a plane wall and a still gas
phase, and that a temperature T of the liquid causes a variation
of the surface tension coefficient ¢ (T) in the following manner:

9 ¢

6 (T = o (T + (—>(T ~ T, 2. D

2T
where Ta denotes an equilibrium value of the temperature at the
free surface. Thus the Marangoni convection and a surface defor-—

mation may arise due to the surface tension gradient, the surface
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tension itself and the gravity. Using a system of Cartesian
coordinates, we put the horizontal plane wall at y=0 in the (x, z)
plane and a mean level of the free surface at y=ha. To simplify
the analysis, we consider two—dimensional configuration in the
sense that the flow velocity, the pressure of the liquid and the
temperature depend upon x, y and time t, and the surface deforma-
tion depends upon x and t. All the characteristic quantities for
this liquid layer are thus listed as follows: density po, viscos-—
ity u, the mean thickness h,, the wavelength ¢, the equilibrium
temperature T,, thermometric diffusivity D, heat transfer coeffi-
cients Kg and K, for the free surface and the plane wall respec-
tively, specific heat ¢ of the liquid, the acceleration due to

gravity (0, -g, 0> (or (O, g€, 00> when the gravity acts upwards

with respect to the liquid layer), and the surface tension coef-
ficient given by (2. 1). From these quantities, representative
values can be taken as follows: ha for the y scale, ¢t for the x

scale, Lha/D for the time, D for the stream function, uD/ha2
for the pressure and Ta for the temperature. In this connection,
various nondimensional parameters are defined as

h

e = 2 Shallow water parameter,
L
o
P, = — Prandtl number,
pD
e Taha
MR = Marangoni number, 2. 2
oT uD
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NC = — Crispation number,

B, = — Bond number,

Biot number for the free surface,

B, = Biot number for the plane wall,.
o cD

Since we consider the surface waves of long wavelength, the shal-
low water parameter & is taken to be sufficiently small and it
is adopted as a measure for the small order of magnitude. It
should be noted here that the Marangoni number takes negative
values, since 3 ¢/ 3T is negative for most liquids.ZO) The Bond
number is set to be positive when the gravity acts downwards,
while negative when it acts upwards.

Basic equations for this Marangoni convection system are

given, in nondimensional form, as

e D 5 Y Sp +_8 Y
—— —— = = g — 4 ], , 2.3
Pr Dt o8y ox oy
e2 D 5 8p 3 ¥
= +w+ eLt , (2. 4)

Pr Dt ax oy ox

DZ
e — = L%z, (2. 5

Dt
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where ¥ 1is the stream function, p is the pressure, W=B /N, and
Z= (T—Ta)/Ta denotes the deviation of temperature; the operators

D/Dt and LY are defined as

D 7o) a2y 8 % B
= + - , (2 Ga)
Dt ot Sy 3x Ox oy
2 2
7o) )
LY = + g2 . (2. 6b)
ay2 8x2

The boundary conditions at the free surface y=h(x,t) are given by
the tangential stress balance, the normal stress balance, the

kinematic condition and the Newton’s cooling law:

22y
cos28 (L™ P> — 2esin28
ox 3y
o7 oZ
= Mp (ecos@ —— + sinf —), 2. D
I X 3y
52 % _
P ~ Pg + 2ec0s280 —— + sin26 A ¥
99X 0y
1 52h
= - e2(— + MpD) cosPo— , 2. 8
NC oX
oh Y 2h DY
+ = = , 2.9
ot oy 9x X
YA 2ah 3827
(— - &2 — —) cos@ = - B, (Z - Zp, 2. 10
oy dx Ox

where ¢ (T) given by (2.1) causes the surface tension gradient in

2. D and the surface tension in (2.8, and Py and Zg denote,
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respectively, the constant pressure and the constant temperature

in the still gas phase; 6 and L~ are defined as

8h T , 872
tanf = & — , L = - & . (2.11a,bd
3 X 8y2 ax2

The boundary conditions at the plane wall y=0 are given by

3 ¥ 3 ¥
= = 0, (2. 12a, b
9x ovy
37
_— = Bw Z - ZW)' 2,13
oy
where Z, denotes the temperature of the plane wall and it may

depend upon x and t.

From typical material values cited in ref. 20, it is seen
that, for most liquids, the typical order of magnitude of Pr is
about 10. When we take the liquid layer of mean thickness about
10—5~v10_4[m], the order of magnitude of each parameter can be

estimated as
Mp=102~103, Ne=10"%4~107%, w=10"1~102, (2. 14

which are evaluated for pure water at about 20 [°C]. It should
be noted, however, that Mp and N become large as the temperature
of the 1liquid increases, or if some substance making the free
surface active is solved in the liquid. On the other hand, when
the wall is metal, it is well—known that the ratio Bg/Bw is suf-
ficiently small in usual circumstances. 207 Taking these facts
into account, we consider two examples, say Examples (i) and (iid

respectively, given by the following scalings:
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(1> €=0.001, Z,=0, BEBg/s=O(1), By — 0,

M=Mpe=0C1>, Ny= &/Ng=0C1)>, W=0(1); 2. 15

(ii> &=0.01, Z =Ax, Bg=0, By ™ o,

M=Mg e =0(1>, No= & 2/Ne=0(1), W=0(1), (2. 16>

where the values of Z, in (2.15) and of Z, at x=0 in (2.16) have
been set zero, since, by virtue of the ordering for Bg, the tem—
perature distribution for the lowest order of & becomes constant
in the direction of thickness of the liquid layer. The tempera-—
ture gradient A in (2.16) along the plane wall is taken as a con-—
stant of O(1). Example (i) is proposed to examine a nonlinear
behavior of the surface deformation in the vicinity of zero wave-—
number, which is compared with the existing results based on the
linear stability analysis.4’7) (To check a temporal variation of
disturbances, a linear analysis for the unsteady mode is made in
Appendix A.) Example (ii) may be of practical importance, be—
cause such an inhomogeneous temperature distribution along the
wall often arises in actual phenomena. Quite recently, Sen?l)
has investigated steady cavity flows due to the Marangoni effect
with the constant temperature gradient along the bottom wall but
without effects of the gravity. Example (ii> may also relate to

such cavity flows due to the Marangoni effect.
8 3. Nonlinear Analysis of Surface Waves (Example (i))
Making wuse of the small parameter € and the ordering

2.15, we can carry out the iteration procedure for the equa-—
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tions 2. 3)-(2. 5 and the boundary conditions (2.7, 2.8,
2.10, (2.12) and (2.13). We thus obtain the following solu-

tions for %, p and Z:

My &h dh 83 1 1
p = e——y2 + e W — - eNj—) — y3 - — hyD
2 8x 8 x ax3 6 2
oh e 2
- £2MpBh — y2 + 0(— , D, 3. 1
3x Pr
5 2h
P =Py + W - y) - &N +0Ce?, (3. 2
9x
Z = eBZ,(1 - eBhy +0Ced, (3.3
where MA=M°B~Zg (whose meaning 1is given in Appendix A). In

(3. 1>, we have neglected 0(5:2/Pr) as well as 0(5:3). because the
effects of finite Prandtl number are little different from those
of P.—> o as far as P/>5. Using (3.1, the kinematic condition
(2.9 is now written as

&h My B ah W 3 5h

+ (h2 —> - — + eMB— h3—
3ty 2 9x 3x 3 9x ox
€ o 83h €
+ — N;— 33— = 0(— , e, (3. 4
3 ox 8x3 Pr
Here we have introduced a slow time wvariable t].E et, since a

temporal variation of h must occur very slowly with respect to
the original time variable t: although such a stretching of the
time scale can be justified systematically by invoking the method
of multiple scales,zz) the details of derivation are very cumber—

some and omitted here. Because of this time scaling, the equa-—
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tion (3.4) describes a temporal evolution of h(x,tl) on discard-
ing the terms of O(e:/Pr,e:z). It should be noted here that,
since M is negative, My must take opposite sign to Zg: if Mp<0O
(i.e., Zg>0), the Marangoni effect plays a role of nonlinear
diffusion, but if Mp>0, it acts as an inverse diffusion. In the
third term, the effect of gravity plays a similar role according
as W>0 or W<O0. In contrast to these, the fourth term acts always
as a diffusion. When we set as Mpy>0 and W=0 and discard the
terms of OCe), (3.4) is reduced to a simple nonlinear equation
with the inverse diffusion, which causes explosion of its solu-
tion at a certain time.l0> A special case of (3.4) with Mp=N;=0
and W>0 has been studied for nonlinear thermal conduction,zs)
spreading viscous 1liquid drop24) and weakly nonlinear waves on

highly viscous liquid 1ayer.25)

Following the results of the linear stability analysis,4’7)
the <c¢ritical Marangoni number MAC (i.e., the eigenvalue in the
1imit of zero wavenumber for the steady mode) can be given, in
our notation, as
2
Myc =— WA +e B2, (3. 5
3
Therefore, if Mpy is taken, with a constant shift Ma 0>, as
2
MA =—8-W(1 +2 € B) +eMa>MAC, (3. 6)
values of MA correspond to an unstable state predicted by the

linear stability theory (refer to Fig.Al in Appendix A). Sub-

stituting (3.6) into (3.4, and setting h=1+e¢h, we get the ap—
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proximate form of (83, 4):

ah s _ oh 5 2h 3 4h
+ g—Ch —) + B8 + 7 = 0, 3.7
8t2 ox I X 8x2 8x4
where
W M, Ny
a= ——, B=—, and r=— , 3.8
3 2 3

The slower time variable to= €t = e2t is employed here, which
is again guaranteed by the method of multiple scales. If the
amplitude of h is taken to be infinitesimal, (3.7 admits the
solution of the form %cxexp(ikx+.lt2) with the wavenumber k and
the complex growth rate A, for which the characteristic equation
for A is given by

A= k2(B8-7kD. (3. 9
It follows from this that h decreases in time if 0<8<7k2, i.e.,
the disturbances of non—zero wavenumbers still decay for B 1in
this range, though values of MA given by (3.6) are over the crit-
ical Marangoni number in the limit of zero wavenumber. It should
be noted, however, that surface deformations of small but finite
amplitude may become steady or even unstable for 0<ﬁ?<7’k2, as
will be shown in § 4. If ﬁ3>7’k2, the surface deformations are
always unstable even for an infinitesimal amplitude of %, as pre-—
dicted by the linear stability analysis.4’7)

Let us consider the equation (3.7) under the spatially peri-
odic condition with a period L:

Tox, tg) = hixtl, ty). (3. 10

Integrating (3.7) in the range 0=x=L, and using (3.10), we find
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that the first moment of ﬁ(x,tz) is always conserved:
d L _

— f h dx = 0. (3.1

dt2 0
Then, we find that the higher moments of %(x,t2) may not be
conserved. On the other hand, we can obtain the steady periodic
solution of (3. 7):

48 r

hx) = u(x), (3.12a)
aL2

where u(x) is expressed by the cnoidal function:

ux> = ug + uy endax, m, (3. 12b)
with

ug = - Km [Em + m?-DKm]1, (3. 13a)
u; = m2Km 2, (3. 13b)
a = 24/ uy/mL, (3. 13c>

1 B L2
m = - 3KmEm + 2Km 2 , (3. 13d

Km 4 167

where K(m) and E({m) denote, respectively, the complete elliptic
integrals of the first and the second kinds. The modulus m in
(3.13d) <c¢an be determined by the iteration procedure for given
values of B, 7 and L. Using (3.12) and (3.13), the second mo-—
ment of h(x) can be expressed, in terms of u(x), as

j:fL u? dx =-i-K(m)2[(m2—1)K(m)2

L 0 3

- @mZ-HDKMEm - 3Em 21, (3. 14)

66



These expressions for the steady solution ((3,12)-(3.14)) give an
important condition to classify various solutions of (3.7), which

will be shown in 8§ 4.

§ 4. Numerical Analysis for Equation (3.7

LLet us solve (3.7) numerically using the method of finite
difference. The calculation procedure is given in Appendix B,
where the difference equation (B.2) approximating (3.7 is
derived. We now take an initial value as

h(x,0 = - coszx, 4. 1
for which the period is set as L=2x /k=2, the first moment of
ﬁ(x,O) as zero, and the second moment as unity. The actual cal-
culations have been carried out for a=1 and for wvarious values
of B and 7, whose representative values are shown in Table I
together with a rough type—classification of the solutions thus
obtained. The asymptotic behavior of the surface deformation at
large times may be classified into three types: damping type
(labeled as 'D'>, steady type, and explosive type CE’'), It
should be noted here that the classification for r=1 and 0.1
(for the first and the second columns in Table I) may be pre-—
dicted by (3.9, but that for 7 =0.01 shows always explosive type
even when B‘<7‘k2. To illustrate temporal variations of the
numerical solutions, the value of ﬁ(x,tz) at the center plane

(x=L/2=1), which is denoted by h is plotted against to in

max*
Fig.1 for each typical set of B and 7 : note that the final sam—

pling time has been set as t2=ts><64=0.08192 for the sampling
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Table I. Classification of numerical solutions

Ca=1):

D ——— Damping type and E —— Explosive type.

BN\r]| 1.0 0.1 0.01 | 0.001
2.0 D E1l E3 E5
1.75 D | E1l E3 ES5
1.5 D E1l E3 E5
1.75 D E1l E3 E5
1.0 D E1l E3 E4
0.75 D D E3 E4
0.5 D D E3 E4
0.25 D D E3 E4
0.1 D D E2 E4
0. 075 D D E2 E4
0. 05 D D E 2 E4
0. 025 D D E2 E4
0. 01 D D E?2 E4
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vi_ ]
hmax /7
vii \\
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i 2 0. 001 X1 \
ii 0.5 0.001 A
Xii iii 0.75 0.01

iv 0.075 0.01
v 0.01 0.01
vi 2 0.1
vii 0.41 0.05
viii 1 0.1
iXx 0.945 0.1
X 0.75 0.1
xi 0.5 0.1

1 xii 2 1

0 0.04 0.08

t-

Fig. 1. Temporal variation of hmax (the value of ﬁ at x=L/2)

(natural—-logarithmic scale) versus tg for various values of §S

and 7.
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Fig. 1. The other

grows for small

B8=0.5 and B=0.75

also be applied to

ol

(for the definition of tg

and Table I,

the damping solution is

line denotes the initial profile
subject to (3.9, so that hmax
time (see the result for B =2 and

see Appendix B).

4. 1.

In view

we now discuss the wave profile for each

shown 1in

where the solid line denotes the wave profile at t2=0.0256

This

vanishes before

r =1 in

example is the damping solution such that hmax

to but decays at large tg (see the results for

with 7=0.1 in Fig. 1): note that
predict the decaying manner.
T T
/// \\\ B
e N
7 A
™ 5

-1 J.—,/’/

Fig. 2.

(solid

Damping solution

line) for

at

t2=0

B =2 and ¢ =1.

70

(broken

line)

and

(3. 3 may

t5=0. 0256



Owing to the inverse diffusion term in (3.7, the explosive
solution, which is characterized by a continuously growing hp ...,
can be found more easily rather than the steady solution. Ac—
cording to the classification in Table I, five typical patterns
of explosion are displayed in Figs. 3-7. ‘The first example shown
in Fig.3 represents the solutions labeled as *E1® (which include
an unstable harmonic component giving A3>7'k2). Comparing this
with the 1initial profile, we find that the convex portion of
%(x,tz) becomes more convex, while the concave ©portion becomes
more concave, as indicated by the arrows in Fig. 3. It is then
found that higher harmonics affect the growth of hmax at large tg
(see the results for B8=2 and B=1 with 7=0.1 in Fig. 1D. The
second example 'E2' (Fig. 4), which is found for B-<7’k2, shows
that the concave portion becomes flat, though the convex portion
shows a similar Dbehavior to that in Fig. 3. It seems that the
growth of hmax is due to the nonlinear inverse diffusion and such
tendency becomes remarkable for smaller B and T . (see the
results for B3=0.01 and B=0.075 with 7=0.01 in Fig. 1), The
third example *E3' (Fig.5 for B=0.75 and 7 =0.01> exhibits more
remarkable tendency to explosion (see also Fig.1>, because hp, .
becomes larger than the critical value (that has been set twenty
in the numerical calculation) before the final sampling time.
Note that this example includes two unstable harmonics (i.e., k=
7z and 27x). Furthermore, for the fourth example "E4’ shown in

Fig. 6, it is seen that h grows more rapidly than those in

max

Figs. 3-5, since this 1includes seven unstable harmonics (refer
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Fig. 3. Explosive solution of type El at t2=0 (broken line) and

t9=0. 08192 (so0lid line) for B8=2 and 7 =0.1.

Fig. 4, Explosive solution of type E2 at t2=0 (broken 1line) and

t9=0. 0768 (solid line) for B=0.01 and 7 =0.01.
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Fig.5. Explosive solution of type E3 at t2=0 (broken line) and

t5=0. 0384 (solid line) for B8 =0.75 and 7 =0.01.

i
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Fig. 6. Explosive solution of type E4 at t2=0 (broken 1line) and

to=0. 0166 (solid line) for B =0.5 and 7 =0.001.
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Fig. 7. Evolutional process of explosive solution of type E5 for

B=2 and 7 =0.001 from to=3Xt  to 0.01024 (5".-8th).
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also to the result for B=0.5 and 7=0.001 in Fig. 1). Comparing
Fig.6 with Fig.3, we find that the explosion of solution arises
locally around the center (x=1). The evolution process of type
*ER? is illustrated in Fig.7 for several time steps: the convex
portion at the center grows, two additional convex portions ap-—
pear around the center, and h . then grows explosively (note
that this example includes fourteen unstable harmonics). This is
because the effect of the nonlinear inverse diffusion becomes so
dominant that the growth of h . is much accelerated (see the
result for B8=2 and 7 =0.001 in Fig. 1), It is interesting to
note here that the explosion process (Fig.7) is very similar to
that in Fig.1 of ref. 14 (where the parameters were taken as «a=1,
B=0.01 and 7=5.066x10"8 in our notation).

From the classification in Table I, it may be expected that
the steady solution 1is possible for B and 7 between their
values giving Types 'D’ and 'E’. Figure 1 also shows that h .
for 7=0.1 grows slowly for B#8=1, while it decays slowly for
B=0.75: thus the range 0.75<8<1 is suggested. The steady solu—
tion is found, in fact, for B =0.945 and 7 =0.1 (see Fig.1), and
it is displayed in Fig.8 in comparison with the analytical solu-—
tion (3.12): both wave profiles show an exéellent agreement. In
this case, the second moment of %(x,tz) is found to change little
from the initial instant up to the final sampling time (note that
the second moment grows if we set initially B =0.946 but decays
if we set B=0.944>. The steady solutions are also found so far

for four other cases: B =0. 006 and r =0. 02, A=0.1 and 7=
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0. 02585, A =0.41 and 7 =0.05 (given in Fig.1>, and B=0.088 and

7 =0. 025.
. .
T
/.alytical Soluti‘o\
T
/umerical Solutio\
Fig. 8. Comparison of numerical steady solution with analytical

one expressed by the cnoidal function for A=0.945 and 7 =0.1.
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For the solutions shown above, the second moment of the ini-—
tial value (4.1 is transformed, to adapt it for the expression
(3. 14>, into (<1L2/487')2/L, whose values are plotted against
B/7r (= BLZ/49)> in Fig.9 by the black circles. The data for

*) are also displayed by the white <circles. The

cnoidal waves
second moment given by (3.14) (for the left ordinate) and the

modulus m given by (3.13d) (for the right ordinate) are drawn by

the solid 1lines. The circles on the curve of (3.14) represent
the steady solutions obtained numerically, while +the <circles
below or above the curve denote, respectively, the damping solu-

tions or the explosive ones: note that the data of (ch2/487')2/L
for each column in Table I are given as 3.472% 1073  for r =1,
0.3472 for 7=0.1, and 34.72 for 7 =0.01. Therefore it is found
that if and only if the 1initial second moment for ©prescribed
values of B and 7 takes the same value as (3.14), the wave form
is deformed in time without changing both values of the first and
the second moments, and it arrives asymptotically at the steady
*) The numerical analysis has also been carried out by taking the
cnoidal wave as initial value. Using (3.12)>-(3.14>, the initial
wave forms with numerical accuracy of 8 figures have been employ-
ed. For these initial values, the tendency to converge to the
steady solutions (3.12) has been confirmed. However, when per-—
turbations of small magnitude about 107° are added to the cnoidal

waves, the convergence to the steady solutions becomes unstable,.
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10

0 5 01

Fig. 9. The second moment _fLuz dx/L (taken in natural—logarithmic
scale for the left ordinate? and the modulus m of the complete
elliptic integral (taken in linear scale for the right ordinate)
versus B8/7r with fixed values a=1 and L=2: the black <circles

denote the data of the second moment for harmonic waves, while

the white ones for cnoidal waves.

78



solution (3.12), though the time necessary to attain the steady
solution depends strongly upon the deviation of the initial wave
form from the steady solution. It is also interesting to note
that solitary waves may arise for small values of B/7, i.e.,
for Marangoni numbers slightly above the critical Marangoni num-—
ber Mpc, while harmonic waves can arise on the neutral curve of
linear stability. These may remind us of the critical amplitude
of disturbances for subcritical state in the theory of nonlinear
stability.zs) On the other hand, for the explosive type of solu-
tions with B:>7‘k2, it seems that the evolution equation (3.7)
becomes invalid after some finite time (refer also to the discus-—
sions in ref. 14D,

For the initial values given by the <c¢noidal wave, we can
derive another condition to arrive at the steady solutions,. If
we take the steady solution h given by (3.12> as an initial con-
dition to the following equation:

ah s _ ah 5 2h 5 4h

+ a—Cth —) + (p+8™H + 7 = 0, 4.2
dto ax  Bx 8 x? ax4

L'

h governed by (4.2) must evolve in time due to the parameter per-—
turbation ﬂ'h For a short interval from the initial instant, we
can consider that the evolution of h subject to (4.2) satisfies
the periodic <condition (8.10) and the conservation relation
(3.1, then the second moment of h should satisfy the following

equation:

d L _ .. oh
—f %2 dx =28%f (—>2 ax. 4, ¥
dty O 0 ox
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* The initial condition h taken above satisfies the following

8 _ 8% 82k 5 4%
equation: a—Ch —) + 8 > r =0 together with the
X X ox 8x4

conditions (3.10) and (3.11). Taking the difference between this
a%h 3 2h

+ gt

8t2 8)(2

equation and (4. 2), one obtains = 0. Multiplying

it by % and integrating the resultant with respect to x, we have

4. 3.
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Thus we find that the second moment of h increases in time if
B% >0, but decreases if B*ko. This implies the mismatch of the
second moment between the value given by the prescribed parame-—
ters and that required to make up the steady solution to the
equation (4. 2), Therefore, it follows from this that the steady
surface deformations arise only when ﬁ?+=0. This approach can be

applied similarly to a parameter perturbation for o.

§ 5. Effect of Inhomogeneous Temperature Distribution (Example
(iid
Carrying out a similar iteration procedure to that in 8§83,

subject to the ordering (2.16), we obtain

3 2
M 5h 53h 1 1 eM 5h
b
,/) = —— y2 +e (W — - N2 ) (— y3 _.__hy2) - b h2 —_— y2
2 X 8x3 6 2 2 99X
+ 0Ce 2y, (5. 1)
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52h 5h

P = pg + Wh-y) = (Ng +e&Mpx) 2—2eMb——+o<e2>,(5.2)
9 x 9x
1 1
Z = Ax +eMpA— y3 - —n2y + 0ce D, (5. 3
6 2 |

where Mb=M-A. Using (56.1) and (2.9), we can obtain the evolution
equation for Example (ii)d. Then, its approximate form <can be
derived as follows: setting h=1+ e h(x,t) and retaining the terms

up to OCe), one obtains

ah _ o% 2% N, 3%%
+ Mbh —_—— Wl + — = 0, (5. 4
5t o€ 552 3 s¢el
where £ Ex—Mbt, t1=et and WIEW/3+Mb2/2. This describes the

evolution of Hh with respect to the slow time variable ty in a
frame of reference moving with the constant velocity M. When
Wi<0 (i.e., for the liquid layer bounded above by the wall and
below by the gas phase), (5,4) corresponds to the Kuramoto-—
Sivashinsky equation.16’17) As was shown by Kuramoto and
Tsuzuki.lS) the equation (5.4) with W ;<0 has a ’'steady’ shock-

like solution which is expressed, in our notation, as

N 2Ng
heeg) = v(ED, (5. 5a)
3M,,
where
3w,
V(E) = 60{(~x3 — —— kx)dtanhx &€ + x3tanh3x £}, (5.5
38N,

with
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33W1
K = - —, (5, 6
76Ng
On the other hand, when Wl is positive, (5.5) does also hold if

one takes K as

3w, |
k = [ —. (5.7
76N

The typical wave form given by (56.5) and (5.6> (say Type(A)) and
that given by (5.5) and (6.7) (say Type(B)) are illustrated 1in
Fig. 10. For both wave forms of Types(A) and (B>, the sign of My
determines the progressive direction of the waves,

Quite recently, Alekseenko et al. 27 have made experiments
for nonlinear waves on a falling liquid film, and they have found
several types of traveling wave solutions governed by the
Kuramoto—Sivashinsky equation. (Refer also to Chang.28)) Such
solutions may also arise in the Marangoni convection systems sub-

ject to (5.4),
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Fig. 10, Two types of shock wave solutions v(g) for Mb>0, propa—
gating in the positive direction of & (for simplicity, the ab-

solute value of WI/NQ is set as 1/3).
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Appendix A: Linear Theory for the Unsteady Mode
In order to examine an unsteady problem against small dis-—
turbances, we begin by showing the basic, equilibrium rest state

with a flat free surface. Its temperature T=T(y) is governed by

the equation:

= 0, A. D

with the boundary conditions:

dT -

—_— = - Bg(T - Tg) at the flat surface y=1, (A. 2a)

dy

dT —

— = BT - TP at the plane wall y=0, (A. 2b)

dy
where Tg and Tw denote, respectively, the temperature of the gas
phase and that of the wall, the Biot numbers Bg and Bw being
given in (2. 2); to specify again the scaling of temperature, Tg,

Tw and T(y) are taken in dimensional form. From (A. 1) and (A. 2),

we have ?(y):

T(y) = ay + b, (A. D
where
B,B (T, — T,) B, T, + B,(1 + BT
a= Y & W p = =& V¥ E ¥ (A da,
BgB, + By, *+ By BB, + B, + By

for which the equilibrium temperature T, at the free surface |is
expressed as

T, = T()> = a + b. (A. 4¢0)
Using (A.4), we re—define the Marangoni number as Mp=aMR/T, in

terms of the temperature difference a=T(1)-T(0> and MR given in
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2. 2. When Bg—+0, we get T(0)=b=Tw and T(1)=a+b=Tw, so that a
uniform distribution T(y)=Tw, for which Z= (T—Ta)/Ta=0, holds in
the 1liquid layer. When Bw—>oo, we get a=TaBg(Zg-Zw)/(1+Bg).
Therefore, for this limiting case, we may set MB=MA/(1+eB) where
WIAEMRBng=MBZg and Bg= € B.

For a perturbed state, small disturbances which are denoted
with prime are superimposed upon the equilibrium state. They are
decomposed in the normal mode as

3 Y’ T

- . , h’]l = [f¢y), glyd), sl exp(ikx +A t), (A. B
ox a

where k is the wavenumber, A 1is the complex growth rate, and € x
is replaced here by x. Linearizing the equations (2. 3>-(2.13)
with respect to the disturbances, and using (A.5), we obtain the

governing system of equations for f, g and s:

A
(£ - —)£f =0, (A. 6)
Pr
(£ - Adg = f, (A. D
f = As at y=1, (A, 8)
(£ + 2kDf = Mgk + ) at y=1, (A. 9
A df s
(£ - 2k2 - —— = k2«2 + B — at y=1, (A. 1)
P. dy N
dg
— = = By(g + ) at y=1, A. 11D
dy
df dg
f=-—=—-Bg =0 at y=0, (A. 12)
dy dy

where &£=d2/dy2-k2, Solving (A.6)—-(A.12), we obtain an eigen—
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value relation:
MB = F(k,Bg,Bw,NC,Bo,,R,Pr). (A, 13

From this, we then get the asymptotic form of MB in the limit of

k—0:
A
MB ~ 5 G(Bg,Bw,NC.BO,.K,Pr). (A. 14
k<P,
The explicit form of G is omitted here. It should be noted that

(A. 14) has very different dependence on the wavenumber k as com—
pared with the asymptotic form of MB (MBC, say) for the steady
mode:

2B, By + By + By

- 2y
Mpc = + 0k, (A. 15)
3N B

w

which is derived from (A.13) by setting k<<l and A=0: this
reduces for B,—® to the critical Marangoni number in the limit
of zero wavenumber which corresponds to (3. 5). For B,— % and
for A sufficiently small (i.e., slow time variation), (A. 14> and
(A. 15> lead to the following relation of A:
2B,
Ao — (1 +Bpk? + Mg - Mg k? + 0kh, (A. 16)
3N¢
which assures the derivation of (3.7,
Examples of the eigenvalue relation (A, 13) are displayed in
Fig. Al for various values of the equi-growth rate A (=reél con—
stant), 1in which we set as P,=10, B,=10%, B,=10"°, and Ng=B =
0. 0005 (that gives W=1) on account of the scaling (2.15). The

steady neutral curve of Mg (which is given at k=0 by (A.15)) may
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Fig. Al. Curves of equi—growth rate for various values of A with

setting P =10, B,=10°, B,=10"%, and Ng=B,=0.0005 (which gives
w=1>.
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arise in between the curves for A=-0.0001 and A =0.0001. Maxi-—
mal values of MB with respect to k give a guide line below which,
i.e., for the smaller wavenumbers, the effect of surface deforma—
tion dominates over the convective term in (A. 7). In Fig.Al, we
find that the curves for | A | <0.1 exist near the steady neutral
curve, which supports the validity of the slow time scale intro-—
duced in § 3. For A £0, the disturbances of non—zero wavenum-—
bers will decay if their amplitude is infinitesimal, but they may
become steady or even unstable if it is finite: this is the case
that was discussed in §3 and § 4. It is also found that the
lowest value of MB for 0< A <<l appears at small but finite values
of k, which is often called ’'extrinsic’ instability: the effect
of surface deformation may give rise to large but finite size of
convection cells when Mg increases over Mpc.

We now examine typical examples which may be found in other
heat transfer systems. The case of small Prandtl number (P,.=0.1)
and the insulating case (Bg=Bw=0) are shown, respectively, in
Figs. A2 and AS. It follows from Fig. A2 that the deviation of Mg
(for A #+0) from the steady neutral curve (which is again found
in between the curves for A=20.0001) appears remarkabiy in con—
trast to that in Fig.Al: the growth rate seems to be estimated by
A/P,. rather than A itself. In Fig. A3, the curves for

| A | <0.1 are found around the steady neutral curve (that gives

the critical Marangoni number as MBC=48 at k=02)).
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Appendix B: Procedure of the Numerical Analysis

We specify the procedure to solve the equation (3.7) numeri-
cally. By following the method of finite difference, the surface
deformation ﬁ(x,tz) is now written as

Bax,tg) =hd s, Jod> = hy j, ‘ (B. 1
where & and T stand for the finite differences for space and
time respectively, thus hi,j denotes the value of ﬁ(x,tz) at a
mesh point (i, j) in the (x,t2) plane. Using (B.1), we can obtain

the following difference equation approximating (3. 7):

hy,j+#1 = hi

a T
EU T SR TR A ST s PR s b PR RS PR B - L

BT
- "‘—(hi+1.j = 2hy

5 2 i, * hi-1, 5

T T

84 (hi+2,j - 4h1+1,j + Ghl,j - 4hi—1.j + hi—2.j)

+ Ey g, (B. 2)

with the total error Ei,j given by
— O (2> (3 (€'Y
Ei,j = 7 (E i,j + aFE i.j + BE i,j + ’)’E i,j)'(B'3)

Here EM for n=1,2,3,4 (for the respective terms in (3.7))

i,

denote the deviations arising from the finite difference scheme.
Using the Taylor—expansion, they may be estimated as

T 82%

i,3 = —¢

g (D -
2 8ty

>i.4 +t0ocTD, (B. 42)
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52 52 5% 1 & _ a5

g2 . = [ ¢h )y - - —<¢h )1, + 0(8h,
1.4 2 5x2 8x? 3 5x ox3 1 (B. 4b)

52 54h

E@, = ——; ; +0csh, (B. 4¢)
12 ax%
52 5%

E@ | | = ——; ; +0wsh. (B. 4d)
6 ox8 7’

The period L (which 1is set as L=2 for the initial value
(4.1)) and the finite difference & lead to the equation N=L/§&
for the number N of the mesh points along x, so that hi,j is

taken for i=0 to N (note that the equation hO,j=hN,j holds at

every step of J, which <corresponds to the periodic condition
(3.100). Although a lot of the mesh points may need to get high
accuracy, due to the restricted performance of the computer, we

set here as N=128 for which & =1/64. On the other hand, it 1is
seen from (B.2) that the time difference 7T should be taken so as

to make the numerical calculation stable. To do so, strictly

E(n) .

speaking, all the deviations i

,j given by (B.4a—d> should be
taken into account. However, we content ourselves by adopting a
loose condition as z=6% (%55.953126X1078 =7z |, say) for 7<1
and ©=0.1x &% (%5,953125X10™% =74, say) for 1= 7<10,
Therefore, if the parameters a, B and 7 and the magnitude of
hy,j are of order unity, this setting for & and T implies that

the total deviation Ei, is of order (?6 and will be neglected in

J
the actual calculations.

Following the algorithm mentioned above, hi,j can be ob-—
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tained at each step of j. But the number of results over many
time—steps becomes enormous. To deal with +this under the
restriction of the memory capacity of the computer, we sample a
series of data at every time interval t, (where t,=21501X 7z =
1.28 %1073 for 7<1 and t,=215013 X 'L‘2=1.'28X10_3 for 1= <10,
and we set the total number of sampling times as 64, for which
the final sampling time is given by t X 64=0.08192. On the other
hand, when (B.2) has an explosive solution (which was shown in
84), the numerical calculation breaks down at a certain time
step before the final sampling time, which is due to a numerical
over—flow in the computer. To avoid the trouble, the actual cal-
culation is terminated at the time step when the maximum value of

h becomes larger than twenty.

i,

To check the numerical accuracy of hj'j, we calculate the
first moment of hi,j at every time step, and compare the result
with the first moment of the initial wvalue 4. 1>, The main

results obtained from the numerical check are as follows: in ac—

cordance with trapezoidal rule, the integration of hi,j (the

first moment) is of order of 1071% for (4.1>; 0010713 for the
damping solution (Fig.2) at every time step; 0¢10”11) for the ex-
plosive solutions (Figs. 3= at the terminated time step;
0(10—12) for the steady solution (Fig.8) at the final sampling
time. These data assure that all the computations hold with very
high accuracy.

The numerical calculation has been carried out on the

electronic computer MS—175 of Wakayama College of Technology.
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List of Principal Symbols

(x=1);

(id;

A, temperature gradient along plane wall;

Bg, Biot number for free surface;

B, Bond number;

By Biot number for plane wall;

c, specific heat of liquid;

D, thermometric diffusivity;

g, acceleration due to gravity;

h, level of free surface;

h, surface deformation;

ha mean level of free surface, mean thickness of liquid layer;
hmax' value of surface deformation at center plane
hi,j’ value of surface deformation at mesh point (i, j> (in Ap~—
pendix B);

Kg, heat transfer coefficient across free surface;
Kw, heat transfer coefficient across plane wall;
k, wavenumber;

L, spatial period;

Ma» Marangoni number of the steady mode in Example
MAC’ critical Marangoni number of the steady mode;
Mg, Marangoni number re—defined in Appendix A;

Mb, Marangoni number in Example (ii);

Mg» Marangoni number;

Nc» Crispation number;

P, Prandtl number;

P, pressure;
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constant pressure in gas phase;
temperature;

equilibrium temperature at free surface;
gas temperature (in Appendix A);

wall temperature (in Appendix A);

time variable;

Ty to, slow time—-variable;

sampling interval in numerical calculation;
steady solution of Example (i);
steady solution of Example (ii);
W=B,/Nc;
variables in Cartesian coordinates;
temperature in nondimensional form;
gas temperature in nondimensional form;
wall temperature in nondimensional form;
y T coefficients in equation (3. 7);
finite difference of coordinate x (in Appendix B);
shallow water parameter;
wavelength;
complex growth rate (in Appendix A);
viscosity of liquid;
kinematic viscosity of liquid;
density of liquid;
surface tension coefficient as function of temperature
finite difference of time (in Appendix B);

stream function;
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Chapter 4. Marangoni Instability Due to Chemical Absorption with

an Irreversible Reaction

8§81. Introduction

For the mass transfer across phase boundaries of fluids, it
has been found experimentally that the rate of mass transfer of—
ten increases over the values estimated by penetration theo—

1 It has also been found from visual observations that the

ries.
Marangoni convection occurs and activates the mass transfer.
From engineering point of view, especially in chemical engineer—
ing, it is of great significance to study what causes the Maran-—
goni convection and whether we can control 1it.

On the basis of the experimental results so far obtained for
various chemical absorption systems, Imaishi and Fujinawaz) have
discussed roles of temperature, solute and product causing the
Marangoni convection, and they have found that the most important
factor in the chemical absorption is an inactive product. Then
they have studied the linear stability of a chemical absorption
system where a gas absorbed into a liquid makes a product through
the first order irreversible reaction, and they have shown that
the Marangoni instability arises, indeed, from the inactive prod-—
uct. (Refer also to ImaishiB) for the details.) It seems, how-—
ever, that a more extensive investigation is required for stabil-—

ity problems of such chemical absorption systems, by taking ac—

count of detailed reaction processes, Marangoni effects due to
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multiple components and various types of boundary conditions.
The purpose of this chapter is to examine this sort of problems.
We <consider the Marangoni instability due to a chemical ab-
sorption, which occurs in a viscous liquid layer between a plane
wall and a ¢gas phase. The gas component is absorbed into the
liquid and reacts on the solute, so that a product is made up ac-—
cording to an irreversible reaction. Thus, the gas, the solute
and the product may cause surface tension gradients (Marangoni
effects) at the free surface. A typical example of such chemical
absorption so far found experimentally is the absorption of
carbon dioxide into aqueous monoethanolamine in a short wetted—
wall column, where the reaction proceeds as an irreversible
process.2'3) For this sort of systems, Imaishi and FujinawaZ)
proposed a simplified model in a liquid layer at rest, that is,
they assumed that the Marangoni convections may occur from a rest
state of the liquid layer. This model seems to be very reason-—
able in the following situation. In fact, as shown in a textbook
by Landau and Lifshitz,4) the basic equations of a ’single’ com—
ponent fluid may also be applied to two component fluid if each
small portion moves without changing its components, which is
possible for fluids with a dilute component. Extending this
model to the multi—component system, we assume that the solute is
very rich in the liquid and that the heat transfer concerning the
reaction is negligible. This reaction is thus approximated by a
first order irreversible process in an isothermal state. The

mass transfer of the three components occurs in the liquid from
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the reaction, diffusion and convection, and it is assumed to be
prescribed by boundary conditions of the type of Newton’s cooling
law, in which the gas—liquid resistance (the so—called <contact-—
resistance) that may occur at the free surface is taken into ac-—
count as a simple model. It is also assumed that material
properties of the liquid (except for the surface tension coeffi-
cient) are constant and that the effect of gravity is negligible.
Under these assumptions, equilibrium solutions for a steady
static state are obtained in § 2, and then a stability problem
against small disturbances of the steady mode is proposed with
including effects of a surface deformation. To clarify roles of
the components causing the Marangoni instability, the problem is
divided 1into three elementary ones each of which is given as an
eigenvalue problem. Since the Marangoni effect can occur even
when the free surface is flat, results for the flat free surface
are given in 8§ 3. First, the Marangoni instability due to an in-
active product (Case (i)) is examined in detail with noting the
mass transfer of the gas across the boundaries of the liquid
layer. The critical Marangoni number for the product and the
corresponding critical wavenumber are discussed there for various
values of parameters involved. In particular, it is shown that
the Marangoni instability due to the product may occur most
easily when the reaction proceeds at a slow rate and when the
mass transfer of the gas is prescribed as a constant concentra-—
tion at the plane wall and zero flux at the free surface. Next,

it is shown, for a special case (which is given by x=0 in § 3.2,
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see (2.24) for the definition of x), that the eigenvalue rela-—
tion for an active solute (Case (ii)) is equivalent to that for
an inactive product, The eigenvalue relation for the solute is
examined further with changing values of the parameters. Results
obtained for the solute seem to be interesting, because the
Marangoni instability due to the active solute has been found ex-—
perimentally (see also refs.2 and 3. Furthermore, the Marangoni
instability due to the gas (Case (iii)) is examined in 8§ 3. 3. By
taking account of the Marangoni effects due to both the product
and the solute, a general eigenvalue relation (a coupled Maran-—
goni instability) for this chemical absorption system is dis—
cussed in § 3. 4. In the final section 4, effects of the surface
deformation are discussed in comparison with the results obtained

for the flat free surface.
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§2. Formulation of the Problem

Let us consider a chemical absorption for a liquid layer be-
tween a plane wall and a gas phase of a component A. The gas A
is absorbed into the liquid across a free surface and reacts on a
solute B, so that a product P is made up according to an irre—
versible reaction A+mB—k—+nP, where m and n are stoichiometric

factors and the rate constant k depends upon the liquid tempera-

ture T, The rate equation for this reaction is given by

'p r'p
~rp=-—=—-=r, 2. 1a)
m n
r = kCpCg", (2. 1b
where rps I'p and rp denote, respectively, the rate of production
of the components A, B and P, r being a representative rate of
production, and CA and CB are the concentrations of A and B. In
order to simplify (2.1b), we assume here that B is very rich in

the liquid throughout the reaction, so that we may divide CB into
two parts:
CB = CBO + CBI’ 2.2

where CBI denotes a small deviation from the constant concentra-—

tion CBO' and it takes a negative value, because the solute
decreases owing to the reaction. In addition, the heat transfer
concerning the reaction is assumed to be negligible, so that the

rate constant k may be expressed as
k = k(T) = k(TO), 2.3

where Tg is a mean temperature of the liquid. In view of (2.2)
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and (2.3), r given by (2.1b) can now be approximated as

r = KCp, 2. 0
with the constant defined as K=k(Tp Cgy™. The reaction process
given by (2.1a) and (2.4) is thus regarded as the first order ir-
reversible reaction in the isothermal state (T=Ty.

Through this reaction process, the components A, B and P may

change the surface tension coefficient o] in the following

manner:
c = 0 (CA’ CB’ CP)
o 0c o c o0
= gg + (—) 85Cy + (— 5Cg + (—) &Cp, 2. 5
N aCq 5Cp

where ol is a constant corresponding to a steady static state,
and & Cy, 0 Cpg and &Cp denote the deviations of the concentra-
tions. We take the coefficients such that (8 ¢/ 3Cpg)<0,
(3 06/ 3Cx>>0 and (0 0/ 8Cp)>0: the negative one is referred to
as active agency, while the positive ones as inactive agency.

This setting of the coefficients provides a necessary condition

to make c larger than o, by which a strong surface tension
gradient to drive convections is to be realized. To simplify the
analysis, the other material properties of the liquid, such as
viscosity um, density p, diffusivity Dy for the component A, Dp

for B and Dp for P, are taken to be constant throughout the reac-
tion.

Using a Cartesian coordinate system x=(x;,X9,xg3), we take
the xg—axis in the direction of thickness of the liquid layer and

the xq-— and Xg—axes on the plane wall (x2=0). Then we put the
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free surface at x2=d+§’ with a mean level d and a surface defor-
mation & °'. Under the assumptions made above, basic equations

for this liquid layer are given by

v-.v = 0, 2. 6)
Dv 1
— = - — Vp + v V3, 2.1
Dt fo)
I)CA
- 2
= Dy V<Cy - KCp, (2. 8a)
Dt
= DBV CBl - mKCA, (2. 8
Dt
I)Cp 9
= DpV“Cp + nKC,, (2. 8¢)
P P A
Dt
where v=(v1,v2,vs) is the velocity, p is the pressure, v=Eu/ p

is the kinematic viscosity, and D/Dt=3/8t+w V> with the
time variable t. The reaction given by (2.1a) and (2.4) is taken
into account in (2. 8a-c¢).

The mass transfer of A across the free surface is assumed to

be prescribed by a condition of the type of Newton's cooling law:

. kag
n-vVCy = - (Cp = Cag)» 2. 9
Da

where n is the unit normal vector taken outward from the ligquid

layer, kAG denotes the mass transfer coefficient, and CAG is the

constant concentration of A defined in the gas phase. The value
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of Cp at the free surface approaches Cpg as kpg becomes large,
and the state of Cp=Cpg given by kpg— ® is referred to as the
saturated state. In contrast to the gas, the solute B is assumed
to be little in the gas phase, so that the transfer coefficient
kgg for B is taken to be sufficiently small. Using this and
(2. 2>, the boundary condition for Cg at the free surface is ap-

proximated as

N kBG
n: VCBI = - CBO‘ 2,100

Dy

The product P is assumed to be nonvolatile, so that CP satisfies

n'VCP = 0, 2.1
at the free surface, The kinematic condition and the balance of
the momentum flux4) at the free surface are expressed as

D ¢

= vo, 2. 12>
Dt

(pg=Pdnj + Tjjn; = Vo +o6Sny  for i=1,2,3, (2.13a,b,0)

where the tensor notation is used in (2.13a,b,c)> with taking the
summation convention for the repeated index j; PG denotes the
constant pressure of the gas phase, the viscous stress tensor

T is expressed as

SVi an
T i =g (— + — ), (2. 14>
J
axj 8xi
and €;i stands for the i—th component of the gradient operator
taken along the free surface. Since we will consider disturb-

ances of small magnitude, the mean curvature S of the free sur-
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face and the unit normal vector n are approximated as

82{: azgt
S = 2 + 5 n = (0, 1, 0. (2. 15a, bd
le 8)(3

On the other hand, the boundary conditions at the plane wall

(x2=0) are given by

v = CB]. = Cp = 0, (2.16)
SCA kAW

= Cas 2. 17
8X2 DA

where kAW is the transfer coefficient of A across the wall.
For a steady static state of the liquid layer with a flat
free surface given by x2=d, it is easy to find that (2.6)—-(2.17)

admit equilibrium solutions given by v =v=0, P =p=pg and

CA = Cp = CAS(BAwsinh'ry + 9y cosh7ry)/a, 2. 18
Cg;y = Cpy = Cpisi—xy - Bplr (1 + a*yd/a = Cp/Cu l), (2,19
Co = Cp = Cp. Boly (1 + a¥yd)/a = Ca/Ch.d, 2. 20)
P P PsPp A7Cas
with
_ CacB
AGBaG
Cas = , 2. 21>
'ra*/a + BAG
nD E a
ACa
Bp = ——— = , 2. 222>
DpCpg ry 1 +a®™ - a
mDAEA Qa +x)a
fg = ——=— = ~ ~ , (2. 22b)
DBCBIS ’r(l+a)—a
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a = BAwsinh7'+7'cosh7', a¥ = Bchosh7’+7'sinh7’, (2. 23a,b)
where the overbar attached denotes the steady static state, the

suffix s stands for the values taken at the flat free surface,

y=x2/d, and the parameters are defined as

ry =d /— Reaction parameter,

BAG = — Gas Biot number for the free surface,

BAW = — Gas Biot number for the plane wall,

dkpgCro
= Solute flux parameter. (2. 24)

DpCR1s
For the solutions (2.18)—(2,20>, the distributions of EA' EBI and
Cp for Byy— o differ from those for Bpy=0 when 7 £3 (i.e., for
slow rates of the reaction), whereas the differences between the
distributions for the two limiting cases disappear when 7 >3.
The latter is convincing from the fact that the solution (2.18)
can be approximated, for 7 >>1, as EAeéEAsexp[7'(y—l)J (i.e., EA'
EBI and Ep become independent of BAW' because the reaction occurs
only in a thin surface layer of thickness d/ 7). From (2.21),
the saturated state is found to be given by Bpg— . In con-—
trast, when Bps=0, EAs is taken as a perturbation from the value
of 6A5=0 in order to take account of the absorption of gas. In

(2. 22a), BI’ is found to be positive for all the values of 72 and
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BAW' This implies that Cp is affected by the reaction even when
7 =0. When x =0, we find that (2.22b)> reduces to Bg=—Bp, so
that we get Cpg/Cpj =Cp/Cpg from (2.19) and (2.20>. Equation
(2. 22b) also indicates that Eﬁls becomes negative when -1<x =0,
Thus this range of x may be allowable to consider the distribu-
tion of EBI' though the approximation made in (2. 10) holds well
under the <condition | x | <<I. At the same time, the case of
x==1 should be added to the range, because it describes the
desorption of the active solute without the reaction. The cases
examined above provide some typical examples which will be seen

2,3,%

later. To adapt the normalization used before, we intro-

duce the following nondimensional expression for (2.18)-(2.20):

oA B1 Cp
Cas CB1s

1, (2. 25>

CPs
and we will use henceforth the same symbols for the nondimen-—

sional forms of EA' EBI and EP'

In a perturbed state, small disturbances which are denoted
with prime are superimposed upon the steady static state. Fol-
lowing the usual linear stability theory, we can obtain a govern-—
ing system of equations for the disturbances from (2.6)-(2. 17,

Let us represent the disturbances by [v2’, CA', CBI" Cp', £'1]

after eliminating vy’ vy and p°’, and take the normal mode

decomposition:
veg” Ca' Cpi” Cpr &7

[ y = -, ]
Dp/d  Cpg Cps d

CB1s
= [y, g, G&I, hy), s] explU @ x; + 1agxg)rdl, (2.26
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with the wavenumber vector (e 1,0,<x3) of magnitude a; here we
restrict ourselves only to the disturbances of the steady mode,
because the stability problem previously solved for the disturb-
ances vg’, Cp’ and Cp’ has shown that the critical Marangoni num-

ber is given by positive values for the steady mode,2’3’5) while

by negative values of large magnitude for the oscillatory mode.S)

The governing system of equations for the steady mode are written

as follows:

£2¢ = 0, 2.2
1 dC,
(£ - y2g = — f(—), (2. 28)
LA dy

1 dCp,

£6 = — f(— + Bpg7r2g, (2. 29

LB dy

dCp

£h = f(— - Bp7 2, (2. 30)
dy

together with the boundary conditions at y=1:

dg dCp

— + 725 + Bpgg + s —) =0, 2.3
dy dy

dG

— + Bg7r2s =0, (2. 32
dy

dh

— - Bpr2s =0, (2. 33)
dy

f =0, (2. 34)
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d21 dCg4 dC)

_ .2
—— = a?2[Mph + LgMg(G + s ) + LpMp (g + 5 —1,
dy2 dy dy

df al
(£ - 2ad)— = s,

dy NC

and the boundary conditions at y=0:

df
f=—=G=h=0,
dy
dg
— ~ Bayg = 0,
dy

where £=d2/dy2 —¢22, and the parameters are defined as

o c CPsd
MP = ( ) Product Marangoni number,
SCP ,UDP
oo ] CBlSd
Mg = ( ) Solute Marangoni number,
e CASd .
MA = ( ) Gas Marangoni number,
SCA MDA
Dy
LA = — Diffusivity ratio to gas,
Dp
Dg
LB = — Diffusivity ratio to solute,
Dp
MDp
NC = Crispation number,
O'0d
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Here o in (2.5) is taken as 0 =0 (Cp.,Cpp+Cpys+Cpg)» and the
deviations 0O Cp, 6Cg and dCp are taken, respectively, as the
disturbance of concentration plus a variation of the wequilibrium
concentration caused by the surface deformation (see the right-—
hand—side of (2.35) implying the surface tension gradient).

From (2.27), (2.34) and (2.37), we readily obtain

f(y) = bo[sinhay -ay coshay + (acotha—-1>y sinhayl,

2.4
where by is an integration constant which may be set as unity.
Equations (2.36) and (2.40) yield
2N¢
s = =~ ——— 2.4

sinh a

It follows from this that NC should be zero whenever the free

surface is flat (i.e., s=0), while NC should be non—zero when the
surface deformation does exist. It is also found that the mag-
nitude of s becomes large for a <<l but small for a>>1. This

sugdests that effects of the surface deformation manifest remark-
ably at small wavenumbers. Using (2. 400 and the equilibrium
solutions EA’ (—:Bl and Ep, we obtain the following solutions to

(2. 28)~(2, 300

1
gly) = blsinhny + bzcoshﬂy + — Uy), (2.42)
La
1 a*
GCy) = b3sinhay + b4coshay - —(x + —7r BB)V(y)
LB a
1 1
+ BB[g(y) + (— - /W11, (2.43)
Lp La
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h(y) = b55inhay + bscoshay

sk
a 1
+Bp[—'rV(y) - gy — (1 = =)W1, (2. 44>
a LA
where 7n= ¢12+7’2, and b1~vb6 are integration constants; the ex-—

plicit forms of the functions U(y), V(y) and W(y) are ¢glven in
Appendix.

Substituting (2.41>-(2.44) into (2.31>-(2.33), (2, 37) and
(2, 38, we can determine the <constants b1-b6. Thus, from

(2.35), we obtain an eigenvalue relation:

FMp,Mg.Mp. @, 7,Lp, L, Bays Bage % N> = 0, (2. 45

which describes a neutrally stable state for the disturbances of
the steady mode. To clarify roles of the three components caus-—
ing the Marangoni instability, we divide this into three elemen—

tary problems (Cases (i), (iid> and (iii) respectively):

&P MP = FP( a, r, LA’ BAW' BAG’ Nc) N MA = MB = 0, (2. 462
(i1) Mg = Fg(a, 7,Lp/Lg Boy:Bagr % Ngd» My = Mp = 0, (2. 46b)
(iiid MA = FA( a, 7v, BAW’ BAG’ Nc) N Mp = MB = 0. (2. 46¢)

Since the diffusivity of the product can be eliminated for Cases
(ii1) and iid, (2. 46b) contains Lp/Lp(=Dy/Dp) only, and (2. 46¢)
does not contain such diffusivity ratios. This simply implies a
normalization of the velocity in terms of the diffusivity of each
component (i.e., Dg or Dp): note that in accordance with this, Ng

in (2.46b,c) is redefined as well. It should be noted here that,
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as the Marangoni effect can occur even when the free surface 1is
flat, eigenvalue problems for the flat free surface (s=0) are
most elementary. Hence, setting NC=O, let us discuss the three
elementary problems given by (2.46a—-c> and then proceed to the
general problem given by (2.45). Effects of the surface deforma-—

tion will be discussed in § 4.

§ 3. Results for the Flat Free Surface
3.1 Eigenvalue Mp (Case (i)) for Np=0

The eigenvalue relation Mp=FpCa, 7,Lp,Baoy.Bpg,0) includes
one typical case studied in ref.2, which is given by Bpyy—> % and
Bag™ . We now examine in more detail the effects of mass
transfer of the gas across the boundaries of the 1liquid lavyer.
In addition to the above case, we take Bpy=1 and Bpy=0 as two
representative values in 0=Bpy<o® and Bpg=0 as the opposite
limiting case (in which the mass transfer of the gas across the
free surface may be suppressed in contrast to the saturated state
given by BAG~*<D): other values of Bpy and Bag will be examined

after these typical cases. Then, we choose LA as 0.1, 1 and 10

T Since LA—I denotes the

in view of the data of various liquids.
magnitude of the convective transfer against the diffusion (see
the equation (2.28) for the disturbance of gas concentration),
this choice gives the typical examples such that the convective
transfer is dominant (L,=0.1), the diffusion is dominant (L,=10),
and both balance (Lp=D.

LLet us begin with the case of BAW=1 and BAG—*GD. Figure 1
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Fig. 1. Neutral stabjlity curves for BAW=1 and BAG—>00 displayed
in the (a,MP) plane with taking the three typical values of LA

and 7 =1,
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shows some examples of the neutral stability curves displayed in
the ((X.MP) plane with taking the three typical values of LA and
=1, Positive values of Mp on the curves of Fig.1 support that
the inactive product can cause the Marangoni instability. For
each set of values of 7, Lp, Bpy and Bpyg as in Fig.1l, the eigen—
value Mp has the lowest value Mps at a critical wavenumber a g,
which is given just by the minimum of Mp with respect to a .
Using this eigenvalue relation, the critical value Mpc and the
corresponding critical wavenumber &¢c versus 7 for BAG-+G> are
shown in Fig.2 for the typical values of L,, where the curves of
Mpc and a ¢ for Bpy=l are drawn by the solid lines and those for
Bpow=0 by the chain lines. For the sake of comparison, the pre—
vious results?’ for Bpy— © (drawn by the broken lines) are also
cited in Fig. 2. When 7 £5, for each Lp, the critical value
Mpc for Bpy=0 becomes larger than that for Bpy— % and concen-
trates upon MPC=130.91 given at 7 =0, because the convection term
in (2.28) vanishes, i.e., EA becomes wuniform when 7 =B,yu=0.
Then, Mpc for Bpy=1 ranges in between the curve of Mpc for
Bpy— © and that for Bpy=0. When 7 >5, all the curves in
Fig.2(a> are independent of Bpy since the reaction occurs only
within a thin surface layer, as noted in § 2. Figure 2(a) also
shows that when the convective transfer of the gas is dominant
(i.e., Lp=0.1>, Mpc takes smaller values, except for Mpc=130. 91
given at 7 =0 for Bpy=0. For smaller values of Lp, the minimum
of Mpc with respect to 7 occurs at remarkably smaller values of

7. It is then found that Mpg decreases monotonically as Bpy
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160 T T 1

Fig. 2. Critical values MPC and ac for BAG—*GD versus 7 : (&) MPC
and (b) ac. The curves of MPC for BAW=1 are drawn by the solid
lines, while those for BAW=O by the chain lines and for BAW”’“’
by the broken lines. The curves of ac are classified as well by

the three values of BAW'
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increases from zero to infinity, and that it appears between the
largest value MpC=130.91 and the smallest value of MPC=29.09
given at 7 =2.27 for Lp=0.1 and Bpy— . Therefore the effects
of BAW on MPC appear most typically at 7 =0 (i.e., in the limit
of slow rate of reaction). In Fig.2(b), if L, changes from 10 to
0.1, the critical wavenumber ac for each Bpy decreases when
r £5, whereas @ increases when 7 >5: the variation of a ver—
sus T is larger for smaller values of LA. We also find for
small values of L, that ac for Bpy=0 takes a minimum with
respect to T and it concentrates upon (2C=1.844 giving
Mpc=130.91 at 7 =0. In this respect, detailed check for various
values of BAW shows that, as BAW decreases from infinity to zero,
the wvalue of ¢ at 7 =0 decreases until it attains the minimum
(that is obtained, for example, as a=1.567 at Bpy=0.82 for
LA=0.1, for which MpC=49.61), and then it increases again, by
which the minimum of @ shifts to a positive value of 7 (e. g.,
the minimum for Lp=0.1 and Bpy=0 is found to be a=1.603 at
7=1.1, which gives Mpp=51. 16). Figure 2(b) also shows that ag
for La=0.1 has a maximum at 7 % 16. (The maximum of a for a
larger L)y exists at a much larger 7, but is less than that for
Lpa=0.1.D Therefore ac can be found within this maximum and the
minimum of a given at 7 =0 for Lp=0.1, with changing 7, Lp and
Bpyw- If 7 increases further, all the values of @ approach the
fixed value 1.983 given in the limit of 7y —> 00, The typical
values of Mpe and @ at 7r=0 for Byg—> o (Fig.2) are listed in

the left side column of Table I. (Those for BAG=0 listed in the
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right side column will be discussed below.) Other typical values
for BAG_*GD are given by MPC=109‘41 at (1C=1.867 for 7 =0, LA~*G>
and Bpy— © and by Mpp=79.61 at a(=1.993 in the limit of 7 — oo,
It should be remarked here that the latter critical value cor—
responds to the results obtained for the Marangoni instability

due to the heat transfers’g) or due to the physical absorption—

desorption.lO)

Table 1. Typical values of MPC and ac given at r=0 for BAG_’QD

and those for BAG=0 with taking various values of LA and BAW'

Bag ™ © Bag=0

Lo | Baw | Mpc ac Mpc ac
10 o 106.70 1.858 | 101.79 1.815
1 119.67 1.846 | 116.42 1.809
0 130.91  1.844 | 130.91 1.844
1 oo 87.07 1.798 | 60.70 1.566
1 106.04 1.785 | 81.78  1.489
0 130.91  1.844 | 130.91 1.844
0.1| 30.27  1.655 11.41  1.359
1 48.25  1.567 17.35  1.096
0 130.91  1.844 | 130.91 1.844

For the case of BAG=O’ examples of MPC and @ versus 7 are
shown in Fig.3 with setting the same values of LA and BAW as in
Fig. 2. Comparing Fig. 3 with Fig. 2, we find that the dependences

of Mpc and @ on the parameters 7, Lp and Bpy are qualitatively
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160 ] T ,

140— ————— BAw-—>CO -

(b)

Fig. 3. Critical values MPC and ac for BAG=0 versus 7 : (a) MPC
and (b> ac. The three sorts of lines have the same meaning as

in Fig. 2.
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similar to each other. It should be noted, however, that the
values of Mpc for Bpg=0 (Fig.3(ad)) are smaller than those for
Bpg =™ (Fig.2(a)) and such tendency can be seen more remarkably
for smaller values of L, (refer also to Table ID. This result
implies that, with decrease of BAG’ the disturbed value g(1) of
the gas concentration at the flat free surface has a remarkable
effect on the disturbed value h(1) of the product concentration
(see the boundary condition (2.31) and the solution h(y) given by
(2.44>>. On the other hand, as Bpg increases, the value of g
approaches a constant (which is given, for BAG—+03, as g (1)=0
from (2.31) with s=0), so that the value of h{(l1)> becomes small as
seen from (2.44). Thus, the larger value of g(1), arising from
decrease of Bpg and especially for small values of Lj, leads to
the larger value of h(l) (which gives rise to a stronger surface
tension gradient due to the inactive product in (2,35)), for
which Mpr becomes smaller. We also find from Fig.3(a) that the
curve of Mpes for Lp=0.1 and Bpy— o exhibits the smallest value
at 7 =0, and thus both the lafgest and the smallest values of Mpc
exist at 7 =0 (refer again to Table ID. Figure 3(b) shows that
the variations of ag against 7 are more remarkable than those
in Fig.2M®): e. g., ac for LA=0.1 and BAW=0 changes about two
times. In this <connection, it is worth noting that, on the
curves of ac for L,=0.1, the minimum at =0 is given by
a =0. 801 when Bpy=0.16, for which Mpr=43.84, and the minimum for
Bpy=0 is given by a=1.035 at 7 =0.49, for which Mps=47. 66. On

the other hand, MPC and ac for BAG=0 take the same values as
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those for Bpg—>% in the three limiting cases: they are given,
respectively, at 7 =0 when Bpy+0 and Lp— % (where Mps and ac
depend on Bpy), at 7 =0 for Bpy=0, and in the limit of 7 — .

When O0<Bpg<o, it is found that both Mprs and a range be—
tween the values for Bpg— ® (Fig.2) and those for Bpg=0 (Fig. 3),
for all values of 7, L, and Bpy considered here. Therefore, the
two limiting cases are representative of various values of Bpg.
3.2 Eigenvalue Mg (Case (ii)) for No=0

A simple but typical example of the eigenvalue relation
Mg=Fg(a, 7 ,Lp/Lp,Bpy:Bag: x,0) is the case for which x =0, since
the results of this case can be obtained by Figs.1-3 if one sim—
ply replaces LA by LA/LB and Mp by Mg in the problem solved 'in
§3. 1. This is not surprising, because decrease of the active
solute at the free surface gives rise to increase of the surface
tension coefficient subject to (2.5, as if the inactive product
increases at the free surface. (Refer also to refs.2 and 3.)

In addition to the case of x =0, we now examine the cases of

x=—-0.25, -0.5 and -1, The examples of Mg~ (the critical value
of MB) and Q@ versus 7 are shown in Fig. 4, where we set as
LA/LB=0.1 and BAG=0 to display the effects of x clearly. When

x=—1, as already suggested in 82, the eigenvalue MB given by
(2. 46b) depends upon « only, so that one obtains the fixed
values MBC=79.61 and aC=1.993. This indicates that the desorp-—
tion of the active solute leads to the Marangoni instability.
(Note that the desorption of the solute without the reaction cor-—

responds to the physical absorption of inactive substances.)
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Fig. 4.
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Baw = 1 By = 0
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Critical values of MBC and ac versus

on setting LA/LB=0.1 and BAG=O:
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Figure 4 also shows that, as x decreases from 0 to —1, Dboth
curves of Mpc and @ change gradually and attain, respectively,
to the straight line corresponding to the fixed value: the varia-—
tions of Mgc and @ against 7 become small. It turns out from
this that when 7 $£3, Mpe increases for Bpy— % (which means
"stabilizing’) but decreases for Bpyy=0 (*destabilizing’). It is
thus found that a balance among 7, LA/LB, BAW' BAG and x always
yields MBC=79.61 (see the curves of MBC for BAW=0 in Fig.4@d).
Such tendency is observed as well for other values of LA/LB, Baw
and Bpg., so that Mgc and a can be found within the values for
x=0 and for x=-1. The typical values of MBC and a ¢ at 7 =0
for Bpo=0 (Fig.4) together with those for Bpg— % are listed in

Table II.

Table II. Typical values of MBC and @ given at 7=0 for the two
limiting cases of BAG with taking various values of x and BAW

and the fixed value LA/LB=0. 1.

Bag ™ Bpg=0

x Baw | MBc ac Mpc ac
-0.25| o 35.95  1.683 14.62  1.376
1 53.99 1.620 | 22.00 1.125

0 112.92 1.892 [112.92 1.892

-0.5 | o 44.20 1.727 | 20.28 1,407
1 61.02 1.697 | 29.92 1.184

0 99.17  1.931 99.17  1.931

-1 - 79.61 1.993 | 79.61 1.993
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3.3 Eigenvalue M, (Case (iiid))> for Ng=0

An obvious example of the eigenvalue relation for the gas
(Mp=FpCa, 7,Bpy:Bpg»0) is given by Bpg— ©: since the boundary
condition (2.31> with s=0 (NC=0) reduces to g(1)=0, the Marangoni
effect due to the gas concentration vanishes (see (2.35)). In
other words, when Bps— 0, the disturbance of gas concentration

5)

itself cannot cause the Marangoni instability, 0] that an

eigenvalue problem for the gas coupled with the product C(or the
solute) reduces to the one discussed in 8§83.1 (or §3.2).

When Bpg<oo, the eigenvalue My takes finite wvalues. The
critical values Mpc and a ¢ thus obtained are shown in Fig.5 for
various values of Bpy and two limiting cases of Bay. It turns
out from Fig.5(a) that My changes considerably with the varia—
tion of Bpg, and that Mpe for Bpg>1 can be estimated mainly by
Bpg whenever 7 >3. This is because the gas absorbed exists only
within a thin surface layer and that it is expended in the ©proc-—
ess of the reaction. The dependence of MAC on BAW appears only
for 7 £3, and Mpc for Bpy=0 increases as 7 decreases, since Ma
for Bpy=0 takes the form of Mp 772 in the vicinity of 7 =0 (but
My for Bpyw=0 gives, in the limit of 7 —0, an exceptional exam-—
ple, though it is omitted here). In Fig.5(M), Q@c lincreases
monotonically with increase of 7 (>3). Then, the curves of ag
for BAG2104 approach a single curve expressed as ac=7 for
r >5. For small values of 7, ac decreases with decrease of
Bpy: note that ac at 7 =0 for Bpy=0 corresponds to the excep-—

tional example. One of the typical values of MAC in Fig.5C) is
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Fig. 5. Critical wvalues MAC and ac versus 7 for various values

of BAG: (ad MAC and (b) ac.
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found to be given by Mpc=79.61 at «a=1.893 when 7 =Bpg=0 and
Bpy— ®; this agrees with the result for the physical absorp-—
tion. 100
3.4 Marangoni instability due to multiple components

Taking account of the results obtained for the three elemen-—
tary problems, let us now consider a coupled Marangoni instabil-
ity due to the product and the solute. On setting Mp=N-=0, the

general eigenvalue relation (2.45) can be written as

F = gg + !E - 1=0, 3. D
Fp Fp
where Fp and Fpg are of the forms given in (2. 46a,b). For the
sake of convenience, Mp is taken as a function of a with a
parameter MB and the parameters contained in Fp and FB' Along
this line, the lowest value Mpc can be obtained at a «critical
wavenumber a . Since Fp and Fp are bounded, respectively, as

Fpé Mp) g and FB%MBC (in which (Mpc>y denotes the value of Mpc
for Mp=0, and Mpe is the critical value of Mg given in 83.2),
the equation (3.1) yields

M Mp
e o z 1, (3. 2

Mpcdg  Mpc

where the equality holds for MB=0 and MB=MBC (for which MPC=0),
while the inequality holds for the range of 0<MB<MBC except some
special cases to be discussed later. In addition, differentiat—

ihg (3.1) with respect to a leads, on imposing the condition
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8Mp/’8¢z=0, to the equation:
MPC 8Fp Mp 3Fp
+ = 0 at
Fp2 2 a FB2 3 a
so that SFP/’S(I must take opposite
0<MB<MBC (otherwise it should hold that

Thus, for the general case, both Mprs and

do not coincide with those given in 8§ 3. 1.

of MPC and a¢ for typical values of Ljp
setting r=0.1, LB=1’ Bszl’ BAG=0 and
MB/MBC' we find in Fig. 6 that the
takes the maximum 1. 098 for LA=O.1. 1. 021

LA=10. At the same time, ac

as predicted by (3. 3), and the wvariation

remarkable for smaller values of LA.

tained for other values of 7, LB, BAW' Bag and x,

left—hand—side

to about 1.1. In this sense,

"sign

we can say that the Marangoni

a=ac (3.

to SFB/S a in
8Fp/ o a= 3Fg/ 9 a =0),
ac obtained from (3. 1)

To see this, examples

are shown in Fig. 6 with

x =—1. On changing

left—hand—-side of (3.2

for Lp=1, and 1.003 for

in Fig.6() changes monotonically

of @ versus MB/MBC is

Similar results can be ob-

for which the

of (3.2) can be evaluated within the range from 1

ef—

fect due to the product and that due to the solute are coupled so

as to reinforce each other.

LLet us discuss special cases of

3. D.

the eigenvalue relation for the solute

the product obtained in 8§ 3. 1),

the replacement LA/LB—+LA), we can

(MP"‘MB):FP(a s T ’LA’ BAW’ BAG’ 0. Then we
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the eigenvalue relation

in 883.2 (in which

is equivalent to that for

and setting LB=1 (for which note

write down 3. D as

can define an effective
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Fig. 6. Examples of the coupled Marangoni instability due to the
product and the solute for typical values of LA: ad MPC/(MPC)O

versus MB/MBC’ and (b) aC versus MB/MBC'
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Marangoni number as (Mp+Mg) whose critical value 1{is given by
(MP+MB)C=Fp(czC.‘r,LA,BAw,BAG.O). This implies that, as both Mp
and MB are taken to be positive, the Marangoni instability easily
occurs when the two Marangoni effects <coexist: they reinforce
each other even if individual Marangoni effect is weak. The dis-
cussion made here is also applicable to the 1limit of 9 — o0,

which leads to (Mp+MB)C=79.61 at a=1.893 irrespective of L,,

LB, BAW' BAG and b A

§4. Effects of the Surface Deformation

Following the conjecture made in 8§ 2, let us derive asymp-—
totic forms of neutral stability curves for small wavenumbers.
Expanding the solutions (2.40)-(2.44) and b;~bg about a=0, we

get the following expression for (2. 35):

2 (12
- —— = [Mp + LgMg(l +x)1E = LgMgx + LaMaQ@ + 0Ca?, &. D
3 Ng
with
Byra” + 7a
q = 28 , 4. 2ad
BAGa +7a
q a* q
E= Bpr2d ——=- — q+ — , = (4. 2b)
a a r
2¥
Q=— - q, 4. 2¢)
a

where the term of O(¢22) in (4.1) consists of the terms of order

a2 multiplied by Mp, MB or MA and of the higher order terms; the
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functions U(y), V(y) and W(y) in (2.42>—-(2.44> can be discarded,
since the magnitude of the surface deformation at small wavenum-—
bers 1is much larger than that of the velocity (refer to (2.41>).
Equation (4.1) thus implies the tangential stress balance at the
deformed free surface for small wavenumbers. The function E
given by (4.2b) is plotted against 92 in Fig. 7. We find that E
depends upon BAW and BAG only for 7 £5 and its variation with
respect to BAW and BAG appears most typically at 7 =0: note that
the value at 7 =0 for BAW=0 is given as E=2 for 0<Bpg and E=1 for
Bpog=0, while that for Bpy— énd Bpog=0 as E=3. Then, E ap-
proaches unity in the limit of 7 — oo, so that it is found that
the values of E fall within 1SE<3 with changing 7, Bpy and
Bag: On the other hand, the function Q given by (4.2¢) is shown
in Fig. 8. We find here that Q for BAG=0 and BAG=1 takes positive
values for BAW—*GD, while negative values for BAW=0' This means
that Q changes its sign at a certain value of BAW’ for which the
relation Bpy=7., ¢giving Q=0, is obtained from (4, 2c) (see the
curves for Bpy=1, which take negative values for 7>Bpy. Since
Q@ vanishes for 7>3, it seems that the term LyMpQ in (4.1) may be
dropped out for larger values of 7. For the other case given by
Bpog— ©., @ is always zero, then the disturbance of gas concentra-
tion does not cause the Marangoni effect.

Using (4.1), asymptotic forms of the eigenvalues for three

elementary problems can be written as

2 a?
Mp = — — + 0Ca ™, 4.3
3E N¢
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Fig. 7.

The function E versus
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The function Q versus 7.
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2

2 1 a

Mp = — +ocah, 4. *
3 (1+xJE-x Ng
2 a2

My = — — + 0Ca®. 4. 5)
3@ Ng |

In deriving (4.4) and 4. 5), LB and LA in (4.1) are set to be

unity by renormalizing the velocity, i.e., NC is redefined.

% As for the case of NC=0, the asymptotic form of Mg at small

wavenumbers is expressed, for 7 >>1, as

MB=_§ ’ 4. 6)

560
Mg = , 4.7
@20+ x)I-7 %1
with
1 L BAW(SSBAW+1lBAwBAG+258AG+105)
J = — [—E + 11Bpyt141. (4. 8)
2Bpyt3  Lp 3 (Bpog*BawBag+Baw’
When x=-1, 1. D {reduces to (4.6). If one makes replacement

MB—>MP and LA/LB—>LA, 4. 8 and . D with x=0 give the
asymptotic form of the eigenvalue discussed in & 3.1. In con-—
trast to these, the asymptotic form for a>>1 is expressed as

MB=8a2 irrespective of the parameters involved.
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Equation (4.3) agrees, in the limit of r — oo, with the
asymptotic form obtained in refs. 9, 11 and 12. When x =0, the
right-hand—-side of (4.4) is equal to that of (4.3), while when
x =—1, (4. 4) agrees with (4.3) in the limit of 7 — 00, We then
notice that (4.4) is positive for -1= x =0 and is similar to
. 3. Therefore, it follows from (4.3) and (4.4) that effects
of the surface deformation arise remarkably for the disturbances
of small wavenumbers, and that the critical Marangoni number is
always given in the limit of 2zero wavenumber. This makes a
striking contrast to the results obtained for the flat free sur-—
face. To illustrate this result, the eigenvalue relation given
by (2.46b) is plotted in the (a ,Mg) plane of Fig. 8, in which the
neutral stability curves for small wavenumbers are considerably
affected by the surface deformation, as predicted just by the
asymptotic form (4. 4).

As noted above, M, in (4.5> changes its sign, depending upon
whether Q>0 or Q<0: note that (4.5) becomes invalid when Q=0.
This means that when Q>0, the equation (4.5) leads also to the
critical Marangoni number at zero wavenumber, while when Q<0, it
leads to a negative critical value at a non—zero wavenumber. The
latter result seems to be very interesting in contrast to the
former one and the results obtained above for Mp and Mg, though
the instability due to the gas may occur only for the special
case given by Bpg<o and Bpy<7 =< 3.

Finally, let us consider the coupled Marangoni instability

due to the product and the solute with effects of +the surface
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deformation. On setting MA=):=O, the equation (4.1) yields
MP+LBMB=O at a =0, so that the state given by MP>0 and MB>O is

always unstable. For other cases of x, similar results can be

obtained.

Fig. 9. Typical examples of the neutral stability curves of MB

with effects of the surface deformation.
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Appendix
The functions U(y), V (yd and Wd{y) in (2.42>-(2. 448 are

expressed as follows:

dC
- A
U = (£-r27 g —
dy
1 at7r
= — {[BAWY - ry + (BAw - rb IlsinhCa+ 7))y
4a a 7r
a~—7r
- [BAWY + ry - (BAW + 7rbd JsinhCa—-7)y
a 7T
a+r
- [BAwy - ry + (BAwb - ) ]cosh(a+'r)y
a r
a—7
+ [BAwy T rY - Bpyb + 7 JcoshCa—-7r)dy}, A, 1D
a T
Viy) = £ 1¢
y 3 1
=-— [— coshay - y sinhay + b(y coshay — — sinhay)l,
4 a a
(A. 2)
dc
- A
W) = £71¢ —)
dy
a 2Ca + 7)) sinhCa+7r)y
= - {[BAWY - TrYy + (BAw - Tb) ]
2a 72 + 2a 7 r+ 2a
2Ca —7r>D sinhCa-7r)y
+ B + + +
AWY 7Yy (BAW ’)’b) 2 _ ] _
r 2a 7 r—- 2a
2Ca + ) cosh(Ca+7r)dy
= [Bayy = 7Y + Bpyb - 7 ]
7’2+2a'r r+ 2a
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2Ca -7 coshCa—-7)dy

- [BAwy + ')’Y + (BAwb + ’)’) o ] ).
r© —2a7r r— 2a
(A. 3
with
1 1
b = cotha - — , and Y = by + — ., A, D
a a
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List of Principal Symbols
A, gas component;
B, solute component;
BAG' BAW' gas Biot number (transfer coefficient of gas),
respectively, across free surface and plane wall;
Cp» gas concentration;
CAG' a constant of gas concentration in gas phase;
CAs' equilibrium value of gas concentration at free surface;
CB, solute concentration, a constant CBO plus deviation CBl;
CBls’ equilibrium value of solute concentration at free surface;
CP' product concentration;

Cps, equilibrium value of product concentration at free surface;

DA' DB, Dp, diffusivity, respectively, of gas, solute, and

product;
d, mean level of free surface (thickness of liquid layer);
F, eigenvalue relation; FA, Fg, Fp, eigenvalue relation for

each component (gas, solute, and product);

K, rate constant for a first order irreversible reaction;
k=k (T), rate constant of reaction as function of temperature;
kAG' kAW’ transfer coefficient of gas, respectively, across free

surface and plane wall;

kBG' transfer coefficient of solute across free surface;

LA, diffusivity ratio to gas;

LB’ diffusivity ratio to solute;

MA, gas Marangoni number; its critical value, MAC;
MB’ solute Marangoni number; its critical value, MBC;
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MP’ product Marangoni number; its critical value, Mpc;

m, n, stoichiometric factors;

NC, Crispation number;

n, unhit normal vector;

P, product component;

P., Prandtl number;

P, pressure in liquid;

PG, constant pressure of gas phase;

r, representative rate of production;

rp> rg, Ip» rate of production, respectively, for gas, solute,

and product;

S,

T,

o,

o,

curvature of free surface;

temperature;

mean temperature of liquid;

v2,v3), velocity;

XZ'XB)' variables in Cartesian coordinates;
wavenumber; its critical value, a3
reaction parameter;

free surface deformation;

viscosity of liquid;

kinematic viscosity of liquid;
density of liquid;

surface tension coefficient; its constant value correspond-—

ing to a steady static state, S0

T,

X

viscous stress tensor;

solute flux parameter;
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