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Bounds for the order of automorphism groups of

hyperelliptic fibrations*

Tatsuya Arakawa

Abstract

For a nonsingular complex algebraic surface with a pencil of hyperelliptic curves of
genus g over a nonsingular algebraic curve, we take two approaches to get upper
bounds for the order of its automorphism group as a generalization of Chen’s results
on genus two fibrations. If the genus of the base curve is neither one nor zero, we
estimate the order of each automorphism group of the base curve and the general
fiber by a theorem of Hurwitz and that of Tuji. In the cases of rational or elliptic
base curves, we use the inequality of Horikawa-Persson to see the contribution of

singular fibers.

1 Introduction

Let S be a nonsingular complex projective surface and C a nonsingular projective curve
of genus 7. Let f : S — C denote a relatively minimal fibration of curves of genus g.

An automorphism of f is, by definition, a pair of & € Aut(S) and o € Aut(C) which

satisfies

fo=0f
The group of automorphisms of f will be denoted by Aut(f). (cf. [3, DEFINITION
0.1])

Suppose S is a surface of general type and G a subgroup of Aut(f). Then Xiao [9]
showed the following upper bounds for the order of G:

Proposition 1.1 (cf. [9, Proposition 1])

) < | 3K ift>2
| 168(2g +1)(K%+8g —8) otherwise.
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Furthermore Chen [3] obtained a more detailed estimate in the case of genus two fibrations:

Proposition 1.2 (cf. [3, THEOREM 0.1]) Let f: S — C be a relatively minimal fibra-
tion of genus two. Then
IG| < 504K?
form > 2. If f is not locally trivial, then
126 K2 ifr>2
1G] < { 144K? ifr=1
120K2 4 960 if 7 = 0.
In the present paper, we will attempt to generalize a part of Chen’s results to hyper-
elliptic fibrations of higher genus.
The author would like to express his thanks to Professor Kazuhiro Konno for advise
and encouragement. He also thanks the refree for pointing out several mistakes in the

earlier version.

2 Preliminaries

Let us recall basic facts on hyperelliptic fibrations (cf. [5], [6], [7]):

Let f : S — C denote a relatively minimal hyperelliptic fibration of genus g over
a nonsingular projective curve C of genus . Then there exist a projective line bundle
¥: W — C and a divisor B on W with a double covering @ : S’ — W branched along B
such that we have a birational map g : S — S’ which satisfies f = Ywpu.

By canonical resolution, we get a smooth model S* of S’ with a composite S*—S of
blowing downs.

Let Fi, F; ... denote the singular fibers of f. Then there exists a nonnegative rational

number Ind(F}) for each F}; such that the following holds:
Proposition 2.1 (cf. [7, THEOREM 2.1))

K= U g+ ) - 0+ D)

where Kg is the canonical bundle and x is the holomorhic Euler-Poincaré characteristic

of the surface S.

In particular we have

(1) k2> De s -1,

A singular fiber of type 0 is, by definition, a singular fiber with Ind = 0.
The follwoing is obvious by the proof of [7, THEOREM 2.1]:
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Lemma 2.1 If a singular fiber F' is not of type 0, then we have

md(F) > 2=4.
g

As for the topological Euler number e, we have:

Proposition 2.2 (cf. [1, Proposition I1I.11.4]) For each singular fiber F; of f, the fol-
lowing hold:

(i) e(F;) >2—2g.

(ii) e(S) = (2 —2¢)(2 — 2m) + 3 {e(F}) + 29 - 2}.
Therefore we have

(2) e(5) 2 (2 - 29)(2 — 2m).

By Propositions 2.1 and 2.2 and Noether’s formula, we get the following:

Proposition 2.3 (i)

X == 1)(r = 1)+ g0 So{Ind(F) + e(Fy) + 29 — 2},

. 39 g—1
2
K2 — _ -1 F. F.) 4 — 9},

(ii) In particular,
X2 (g=1)(r—1), K5>8(g—1)(r~1).

3 Upper bounds for |G|

Let G denote the automorphism group of a relatively minimal hyperelliptic fibration
f S — C. By the same arguments as in [3], we conclude that there exist two exact

sequences of groups:
1= K—-G—-H-—=1

12, - K—>K—1,
where

K ={(¢,0) € G;o =idc¢},
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H C Aut(C), K C Aut(P!) and Z, is the cyclic group of order two coming from the
hyperelliptic involution.

Suppose ® = w(C) > 2. Then, by a theorem of Hurwitz, we have
|H| < 84(7 — 1).

On the other hand, since a general fiber of f is of genus g, we have the following upper
bound for the order of K:

Lemma 3.1 (cf. [4], [8]) (1) If g # 2,3,5,9, then |K| < 4g + 4.

(ii) If g = 2,3, then |K| < 24.

(iii) If g = 5,9, then |K| < 60.

Therefore we get the following estimate for |G| = 2[K||H| by Proposition 2.3 (ii):

Theorem 1 If 7 > 2, then we have

1
gad T CK% ifg#2,3,5,9
g —
504 K2 if g=2
Gl < 252K ifg=3
315K2 ifg="5
| 157.5K% if g=9.

To investigate the cases of 7 < 1, we assume that f has at least one singular fiber when
7 = 1 and at least three singular fibers when # = 0. Moreover we assume that G is
a finite subgroup of Aut(f) which contains the hyperelliptic involution in the following
arguments in this section.

Now suppose that the fiber F of f over p € C is singular and that |H| = n, |Hp| = n/r.
Then, by Proposition 2.3 (i), we have

2 nfg-—1 3g
> _ —_ — —
K;>8(g—1)(xm—1)+ " (29 1{e(F) +29—2}+ % 1Ind(F)) ,

which implies .
2(2g +1)|K]|
3 Gl <
©) 1= 3gmd(F) 7 (9 - Die(F) + 29— 2]

where

K%o=K5;—8(g—1)(r —1).




Lemma 3.2 Suppose that the horizontal part By of the branch locus B is étale over C
and B # By. Then we have

1
49%174{%,0 ifg #2359
2urKl  ifg=2
= g0 fg=3
15rK%,,  ifg=5
157K, ifg=9.

Proof Since B has only a finite number of double points, we have Ind(F) = 0. On the
other hand, the singular fiber F' is of the form

F=2FE+E+E+...4 Eyqio,
where each E; is a nonsingular rational curve with
Eg =—-g - 1,

E,-E]-:O (1Si<j§29+2),
EoE; =1 (1<j<29+2).

Hence we have e¢(F) = 2¢g + 4 and the lemma follows. 0

Lemma 3.3 Suppose that f has only singular fibers of type 0 and that we cannot choose
the branch locus B on W in such a way that its horizontal part By is étale over C. Then

we have

4(2g + 1)

|G| < r
g—1

Kc.
Proof Since Ind(F) = 0, we have to show
K| < 2(e(F) + 29 — 2).

Let B; denote the restriction of B to a general fiber I'; of 1. Then B; consists of
2(g+1) distinct points of T'; & P! and K is nothing but a finite subgroup of Aut(I';) with

T(—Bt = Bt.
Hence K is isomorphic to one of the following:

® T, (Tetrahedral group)

® Oy (Octahedral group)




e Ig (Icosahedral group)
o Dy (I=2g+2,29,9+1,...) (Dihedral group)
o Z; (I=29+2,29g+1,...) (Cyclic group),

where the suffix is the order of the group, and we may assume |K| is not 1.

A point of W is said to be bad if it is a singular point of B or B is tangent to the fiber
at that point. Now let us look at bad points of Bon I' = ¢~ !(p) C W.

If there exists a bad point z € I' such that |[Kz| = |K|, then we have e(F)+2g—2 > |K]|
since each point of Kz is also a bad point. So we assume that, for each bad point z on T,

(a) K = Ty;. We have [Kz| = 4 or 6. Let I, denote the intersection number of
By and T at z. Then I, > 3 if |[Kz| = 4 and I, > 2 if [Kz| = 6. Therefore we have
e(F)+2g —2 > 8 or 6 and the claim follows.

(b) K = Og. We have [Kz| =6, 12 or 8 and if [Kz| = 6 (resp. 8), I, > 4 (resp. 3).
Hence we have e(F) + 2g — 2 > 18 (resp. 16) if |[Kz| = 6 (resp. 8).

(c) K & Isy. We have |Kz| = 12, 30 or 20. Moreover we have I, > 5 (resp. 3) if
|Kz| = 12 (resp. 20). Hence we have e(F) + 2g — 2 > 48 (resp. 40) if [Kz| = 12 (resp.
20).

(d) K & Dy or Z;. Suppose K = Dy and By has bad points only at the north and
south poles. Then we have I, > [, and therefore

e(F)+29—2>1—14+1-1=2-2.

If K = Z and B, has bad points only at the north or south poles, then we have
e(F)+2g —2 >1—1 by the same arguments as above. Since [ > 2 the claim follows. O

Suppose that a singular fiber F' of f over p € C is not of type 0. Then the horizontal
part By of the branch locus B cannot be étale over C and hence K # Dyypq, Dy, (cf. [3,
LEMMA 2.1]). Therefore we have [K| < 2g + 2. By Lemma 2.1, Proposition 2.2 (i) and

the inequality (3), we have

4g+1)(29+1)

Tg — 13
Though this estimate may be far from being the best possible, it is not so bad when g is
small.

(4) G| <

T.Ifgv/c

Proposition 3.1 Let f : S — C denote a fibration of hyperelliptic curves of genus g.
Suppose that there exists a singular fiber F = f~1(p) with |Stabg(p)| = r. Then we have




24rK%c ifg =2
147’K§/C ifg=3
G| < 127‘K§/C ifg=4
157 K26 ifg=5

4o+ 1)(29+1) :
g —13 rng/C if g > 6.

Proof This is a direct consequence of Lemmas 3.2 and 3.3, and the inequarity (4). O

Now we estimate the value of 7. It is well known that if 7 = 1, then r is at most 6. So we
assume that 7 = 0. Then H C Aut(C) is isomorphic to one of Tyz, Os4, Igo, Dy and Z,.
If H = Tyy,044 or Ig, we have |Stabg(p)| < 5 for each p on C. Suppose H = Dy or Z,.
Then by the assumption that f has at least three singular fibers, we conclude that there
exists at least one singular fiber not over the north nor south pole of C, which implies

that r =1 or 2 for that singular fiber. Hence we get the following lemma:
Lemma 3.4 There exists a singular fiber f~1(p) of f such that

r = |Stabgy(p)| < 5.

Consequently we get the following:

Theorem 2 (i) If # =1 and f has at least one singular fiber, we have

144K 2 ifg=2
84 K% ifg=3
G| < 4 T2K% ifg=4
90K 2 ifg="5
249+ 1)(29+1) .y .
K > 6.
Tg—13 s g2

(ii) If = 0 and f has at least three singular fibers, we have

120(K% + 8) ifg=2
T0(K% + 16) ifg=3
IG| < 60(K2 + 24) ifg=14
75(K32 + 32) ifg=5
R D ks 8- 1) g2

Remark Beauville [2] showed that a family of curves over P! with at most two singular
fibers is isotrivial (cf. [2, Proposition 1.1]). In this situation, there exist hyperelliptic

fibrations with arbitrarily large automorphism groups.
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