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Abstract
We show that any lexsegment ideal with linear resolution lasar quotients
with respect to a suitable ordering of its minimal monomiehgrators. For com-
pletely lexsegment ideals with linear resolution we shoat the decomposition func-
tion is regular. For arbitrary lexsegment ideals we complgedepth and the dimen-
sion. As application we characterize the Cohen—Macaulaselgxent ideals.

Introduction

Let S = K[xg,..., X,] be the polynomial ring inn variables over a fielk. We
order lexicographically the monomials & such thatx; > X, > --- > x,. Letd > 2 be
an integer and\y the set of monomials of degrek For two monomialau, v € My,
with U >jex v, the set

LU, v) ={w € My | U Zjex W Zjex v}

is called a lexsegment. A lexsegment idealdiis a monomial ideal ofs which is gen-

erated by a lexsegment. Lexsegment ideals have been ingddwy Hulett and Martin
[10]. Arbitrary lexsegment ideals have been studied by Aamova, E. De Negri, and
J. Herzog in [1] and [4]. They characterized the lexsegméeals which have a linear
resolution.

Let | ¢ S be a monomial ideal an(l) its minimal monomial set of generators.
| has linear quotients if there exists an ordering. .., uy of the elements of5(l)
such that for all 2< j < m, the colon idealsu, ..., uj_1) : u; are generated by a
subset of{xy, ..., Xn}.

Ideals with linear quotients have a linear resolution, lwitgeneral, the converse is
not true. Therefore it is natural to ask whether lexsegmaeals with linear resolution
have linear quotients. We positively answer this questionSection 1 we show that
any completely lexsegment ideal with linear resolution laesar quotients with respect
to the following order of the generators. Given two monomiaf degreed in S, w =

X ooxen andw’ = x§ - xih, we setw < w' if ag < B1 o ag = B and w >jex w'.
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Let u, v € My which define the completely lexsegment idéak (L(u, v)) with
linear resolution. If£(u, v) = {ws,...,w}, wherew; < wy <--- < wy, We show that
has linear quotients with respect to this ordering of theegators. The non-completely
lexsegment ideal will be separately studied in Section 2.

For the monomial ideals with linear quotients one may carsttie associated de-
composition function defined in [9]. When this function has additional property,
namely it is regular, then one may apply the iterated mappgimge procedure devel-
oped in [9] (see also [5]) to get the explicit resolution oé tideal.

For the completely lexsegment ideals with linear resotutiowill turn out that
their decomposition function with respect to the orderirgs regular. Therefore, we
get the explicit resolutions for this class of ideals.

In the last section of our paper we study the depth and the rdiioe of lexseg-
ment ideals. Our results show that one may compute theseianta just looking at
the ends of the lexsegment. As an application, we charaetéhie Cohen—Macaulay
lexsegment ideals.

We acknowledge the support provided by the computer algspstems CoCoA
[3] and Singular [7] for the extensive experiments whichpleel us to obtain some of
the results of this work.

1. Completely lexsegment ideals with linear resolutions

In the theory of Hilbert functions or in extremal combinatsrusually one consid-
ers initial lexsegment ideals, that is ideals generated rbyniial lexsegmentl' (v) =
{w e My | w >1ex v}. Initial lexsegment ideals are stable in the sense of Eliatuod
Kervaire ([6], [2]) and they have linear quotients with respto lexicographical order
[11, Proposition 2.1].

One may also define the final lexsegmeht(u) = {w € My | U >ex w}. Final
lexsegment ideals are generated by final lexsegments. Theeglso stable in the sense
of Eliahou and Kervaire with respect %, > x,_1 > --- > X;. Therefore they have
linear quotients.

Throughout this paper we use the following notationsml= x;*- - -x% is a mono-
mial of S, we denote by;(m) the exponent of the variabbe in m, that isv;(m) = «;j,

i =1,...,n. Also, we will denote maxt)) = maxi | x; | m}.

Hulett and Martin call a lexsegmerit completely lexsegmerit all the iterated
shadows ofL are again lexsegments. We recall that the shadow of & sat mono-
mials is the set Shatdl) = {vx |ve T, 1 <i < n}. Thei-th shadow is recursively
defined as Sha(T) = Shad(Sh&d*(T)). The initial lexsegments have the property that
their shadow is again an initial lexsegment, a fact whichastrue for arbitrary lexseg-
ments. An ideal spanned by a completely lexsegment is callemmpletely lexsegment
ideal. All the completely lexsegment ideals with linear resalatiare determined in [1]:
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Theorem 1.1 ([1]). Letu=x{*---x¥, v = xfl---x,?n be monomials of degree
d with u>, v, and let | = (L(u, v)) be a completely lexsegment idedhen | has a
linear resolution if and only if one of the following conditis holds
(@) u=x2x33, v = x2x3d=2 for some a 0 < a < d;
() by <&y —1;
(c) by = &y — 1 and for the largestw <iex v, w monomial of degree done has
Xlw/xmax(w) Zlex U.

Theorem 1.2. Let u=x{"---x&, with a >0, andv = xi’l -+ -xE be monomials
of degree d with &>« v, and let | = (£(u, v)) be a completely lexsegment ided@hen
| has a linear resolution if and only if | has linear quotients

Proof. We have to prove that if has a linear resolution theh has linear quo-
tients, since the other implication is known [8]. By Theor&m, sincel has a linear
resolution, one of the conditions (a), (b), (c) holds.

We define on the set of the monomials of degredrom S the following total
order: for
w' = X[t exb

— y% o
U)—Xl ---Xn”,

we set

w=<w if oy<pr of er=p and w > w.
Let

LU, v) = {w,..., w}, where w;<wy<---<w.

We will prove thatl = (£(u, v)) has linear quotients with respect to this ordering of
the generators.

Assume thatu, v satisfy the condition (a) and < d (the casea =d is trivial).
Then | is isomorphic asS-module to the ideal generated by the final lexsegment
L£7(x§7®) c S and the ordering< of its minimal generators coincides with the lexi-
cographical ordering>ex. The ideal (Cf(xg‘a))ﬂk[xz,...,xn] is the initial lexseg-
ment ideal ink[xy, ..., X,] defined byx9-3, which has linear quotients with respect
to >x. Hencel has linear quotients with respect to since it is the extension in
the ring K[Xy, ..., Xn] of a monomial ideal with linear quotients iR[xy, ..., Xn].

Next we assume that, v satisfy the condition (b) or (c).

By definition, | has linear quotients with respect to the monomial genesator...,
wy if the colon ideals 1, ..., wi_1) : w; are generated by variables for all> 2,
that is for all j < i there exists an integer £ k < i and an integet € [n] such that
wk/gcd(wk, wi) =X andx divides wj/gcd(wj, wi).
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In other words, for anyw; < wi, wj, wi € £(u, v), we have to find a monomial
w’ € L(u, v) such that
4

()
w u)j

! i, ———— =X, f I , d divid _—
w' < w; gcd . w) X or some | €[n], and X ivides gcd;, w)

Let us fixw; = x*---x% andw; = x{*--- x4, wi, wj € £(u, v), such thatw; <
wj. By the definition of the ordering<, we must have

,31<(x1 or ,31=Oll and Wj >lex Wj.

CAse 1: Let 81 < ;. One may find an integdr, 2 <1 < n, such thatos > Ss
for all s <| ando < B since, otherwise, deg() > deg@;) = d which is impossible.
We obviously have max(j) > 1. If | > max@i), one may takew = xwj/x; which
satisfies the condition« since the inequalitie® < wj, w <iex w; <ex U hold, and we
will show that w >jex wj. This will imply that w >jex v, hencew € L(u, v).

The inequalityw >jex w; is obviously fulfilled if a1 —1 > By or if o3 — 1= B
and at least one of the inequalitieg > Bs for 2 <s </, is strict. If ¢; —1 = B; and
as = fs for all s <1, comparing the degrees ofi and w; it resultsd = a1 +--- +
g =pB+1+B+ +B 1+ <@B+1)+B2+---+ p. It follows thatd >
Br+po+---+p >d—1, thatisp+ 2+ --+p =d. This implies thal = maxw;)
andf = o + 1, that isw = xqwi /xq = X2 - x" = x o = ).

From now on, in Case 1, we may assume thatmaxw;). We will show that at
least one of the following monomials:

, X wi p KW

w = , w = —

Xmax@w) X1

belongs toL(u, v). It is clear that both monomials are strictly less than with re-
spect to the orderings. Therefore one of the monomials’, w” will satisfy the con-
dition (x).

The following inequalities are fulfilled:

’
W >lex Wi Zlex U,
and
” <
W <|ex Wi Slex U.

Let us assume, by contradiction, that >« U and w” <ex v. Comparing the
exponents of the variabhe;, we obtaina; —1 < o3 —1 < b;. Since the ideal generated
by L(u, v) has a linear resolution, we must halle = a; — 1. Let z be the largest
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monomial of degreal such thatz < v. Then, by our assumption on”, we also
have the inequalityw” <iex z.
Now we need the following

Lemma 1.3. Let m=x{*---x%, m = xfl ---xP be two monomials of degree d
If m lex m’ then r'ryxmax(m) lex m//Xmax(m’)-

Proof. The proof is immediate. ]

Going back to the proof of our theorem, we apply the above laffanthe monomials
w” andz and we Obtairw///xmax(w”) Slex Z/Xmax(z)y which impIies thab(lw///xmax(w”) Slex
X1Z/Xmaxg)- BY using condition (c) in Theorem 1.1 it follows th&iw” /Xmaxg") <iex U.
On the other handsiw"” /Xmaxe) = X1X Wi /(X1 Xmax@)) = X Wi /Xmaxw,) = w’. Therefore,
it resultsw’ <iex U, which contradicts our assumption an.

Consequently, we have’ < U or w” > v, Which proves that at least one of
the monomialsw’, w” belongs toL(u, v).

CASE 2: Let 1 = a1 and wj >ex wi. Then there exists, 2 <| < n, such that
as = fBs, forall s <1 andey < Bi. If max(w;) <I, then, looking at the degrees of;
andwj, we getd = ay+az+---+a < 1+ B2+ -+ B, contradiction. Thereford, <
max(;). We proceed in a similar way as in the previous case. Nanadgctly as in
Case 1, it results that at least one of the following two moiasrw’ = X wi /Xmaxg)»
w” = xyw; /X, belongs toL(u, v). It is clear that both monomials are strictly less than
w; with respect to the ordek. OJ

EXAMPLE 1.4. LetS = K[Xy, X2, X3]. We consider the monomialsl = X;XoX3
andv = x2x§, U > v, and letl be the monomial ideal generated lyu, v). The
minimal system of generators of the iddalis

G(I) = L(u, v) = {X1XaX3, X1X3, X3, XZX3, XX2}.

Since | verifies the condition (¢) in Theorem 1.1, it follows thatis a com-
pletely lexsegment ideal with linear resolution. We dentbte monomials fromG(l)
as follows: Up = X1XoX3, Uz = X;X2, Uz = X3, Us = X3X3, Us = XpX2, SO Up >ex
Uz >lex « - - >lex Us. The colon ideal ({3, up) : us = (X1X3) is not generated by a subset
of {Xi1, X2, X3}. This shows thatl is not with linear quotients with respect to lexico-
graphical order.

We consider now the ordex and check by direct computation that has lin-
ear quotients. We label the monomials fra@(l) as follows: u; = x3, U, = x3Xs,

Uz = XpX3, Uy = X1XpX3, Us = X1X3, SOU < Up < --- < Us. Then (1) : Up = (X2),
(U1, Uz) : Uz = (X2), (U, Uz, U3) : Ug = (X2, X3), (U1, U2, U3, Ug) : Us = (X2).
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We further study the decomposition function of a completeksegment ideal with
linear resolution. The decomposition function of a mondndaal was introduced by
J. Herzog and Y. Takayama in [9].

We recall the following notation. I C S is a monomial ideal with linear quo-
tients with respect to the ordering, ..., uy, of its minimal generators, then we denote

setlj) = {ke[n] | X« € (g, ..., Uj_1) : uj}
forj=1,...,m

DEFINITION 1.5 ([9]). Letl C She amonomial ideal with linear quotients with re-
spect to the sequence of minimal monomial generatgrs., un and set; = (ug, ..., u;),
for j =1,..., m. Let M(l) be the set of all monomials ih. The mapg: M(l) — G(I)
defined asg(u) = uj, wherej is the smallest number such thak 1;, is calledthe de-
composition functiof | .

We say that the decomposition functign M(1) — G(I) is regular if set(Q(xsu)) <
setf) for all s € set{s) andu € G(I).

We show in the sequel that completely lexsegment ideals twhave linear quo-
tients with respect te< have also regular decomposition functions.

In order to do this, we need some preparatory notations asultse

For an arbitrary lexsegment(u, v) with the elements ordered by, we denote
by 1.,, the ideal generated by all the monomials L£(u, v) with z < w. I<w will
be the ideal generated by all the monomials L£(u, v) with z < w.

Lemma 1.6. Let | = (L(u, v)) be a lexsegment ideal which has linear quotients
with respect to the ordex of the generatorsThen for any w € £(u, v), 1 ¢ setw).

Proof. Let us assume that d setw), that isx;w € l,. It follows that there
existsw’ € L(u, v), w’ < w, and a variablex; such thatx;w = xjw’. Obviously, we
have j > 2. But this equality shows that;(w’) > vi(w), which is impossible since
w < w. ]

Lemma 1.7. Let | =(L£(u,v)) be a completely lexsegment ideal which has linear
guotients with respect to the ordering of the generators and let :gM(1) — G(I)
the decomposition function of | with respect to the orderivg If w € £(u, v) and
s € setw), then

Xsw

) it Xsw >jex X1,
X1
g(Xsw) - Xsw

, I Xsw <jex Xqv.
Xmax(w)



PROPERTIES OFLEXSEGMENT IDEALS 73

Proof. Letu =x®.--x¥, v=x---xD

n 3.1 > 0, andw = X;‘l---Xﬁ”.
In the first place we consider

XsW Zjex X1 V.

Since, by Lemma 1.6, we hawe> 2, the above inequality shows thed(w) > 1. We
have to show thag(xsw) = Xsw/X3, that isXsw/X; = min_{w’ € L(u, v) | Xsw € l<y}.
It is clear thatv <jex Xsw/X1 <jex W <jex U, hencexsw/x; € L(u, v). Let w’ € L(u, v)
such thatxsw € 1<, . We have to show thatsw/x; < w’. Let w” € L(u, v), w” < w’
such thatxsw = w”x;, for some variablex;. Thenw” = Xsw/Xj > Xsw/xy by the
definition of our ordering<. This implies thatw’ > Xsw/X;.

Now we have to consider the second inequality,

(1.1 XsW <|ey X10.

Sinces € setw), we havexsw € |-, that is there exist®’ € L(u, v), w’ < w,
and a variablexj, j # s, such that

(1.2) Xsw = Xjw'.

If | =1, thenxsw = X;w' > X1v, contradiction. Hencg > 2. We also note
thatx; | w since j # s, thus j < maxw). The following inequalities hold:

(1.3)

If vi(w) < &, we obviously getXsw/Xmaxw) <lex U. Let vi(w) = &. From the
inequality (1.1) we obtaira; < by + 1.

If a; = by thenu = xflxg*a1 andv = x®*x%2 py Theorem 1.1. Sincev <iex U,
by using Lemma 1.3, we havesw /Xmaxw) Slex XsU/Xmax@) = XsU/X2 <jex U, the last
inequality being true by Lemma 1.6. Therefosew /Xmaxw) € L(U, v).

If a3 = by + 1 then the condition (c) in Theorem 1.1 holds. Letbe the
largest monomial with respect to the lexicographical orglech thatz <« v. Since
Xsw/X1 <jex v by hypothesis, we also havgw/X; <iex z. By Lemma 1.3 we obtain
XsW /(X1 Xmaxgw/x1)) Slex Z/Xmax@). Next we apply the condition (c) from Theorem 1.1
and get the following inequalities:

XsW

(1-4) X Slex X1

1 S lex u.
X1 Xmax(xsw/x1) Xmax()

From the equality (1.1) we have’ = xsw/X;. As j # 1, vi(w’) = vi(w), and the
inequalityw’ < w givesw’ >jex w, that isxsw/X; >iex w, Which implies thatxs >jex X;.
This shows that < j < maxw). Now looking at the inequalities (1.4), we have

XsW

(1.5) <lex U.

Xmax(w)
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From (1.5) and (1.3) we obtaiRsw /Xmaxw) € L£(U, v).

It remains to show thaksw /Xmaxw) = Min<{w’ € L(u, v) | Xsw € I<y}. Let w =
min_{w’ € L(u, v) | Xsw € l<y}. We obviously havew X Xsw/Xmaxw) < w. By the
choice ofw we have

XsW = Xt w

for some variablex;.

If t =s we getw = w which is impossible sinc&v < w. Therefore,t # s. Then
Xt | w, sot < maxw). It follows that w = Xsw/X; Siex XsW/Xmax@)- If t =1 we have
X1 = Xsw <jex X1, Which implies thatv <k v, contradiction. Thereforé # 1 and,
moreover,w > Xsw/Xmaxw), the inequality being true by the definition of the ordering
<. This yieldsw = Xsw /Xmax@). Therefore we have proved th&lw /Xmaxw) = 9(Xsw).

After this preparation, we prove the following

Theorem 1.8. Let u= xfl---xrﬁ‘", V= xfl---xr?“, u, v € My, with u >, v, and
| = (£(u,v)) be a completely lexsegment ideal which has a linear resmiufThen the
decomposition function:gM (1) — G(I) associated to the ordering of the generators
from G(1) is regular

Proof. Letw € L(u,v) and s € setw). We have to show that seffksw)) C
setw).

Let t € set@(xsw)). In order to prove that € setw), that isxw € I-,, we will
consider the following two cases:

CASELl: Letxsw >jex X1v. By Lemma 1.7 g(Xsw) = Xsw/X;. Sincet € set@(xsw)),
we have

Xt Xsw
X1

€ |<X5u)/X1!

so there existav’ < xsw/xy, w’ € L(u, v), and a variablex;, such thatxxsw/x; =
xjw’, that is

(1.6) XeXsw = XqXjw'.

By Lemma 1.6,s,t # 1 and, sincav’ < Xsw/X;, we havej #t. Note also thaww’ < w
sincevi(w’) < vi(w). If j =sthenxw = xw’ € -, andt € setw).

Now let j # s. If j =1, we havexxsw = x?w’, which implies thatvy(w’) =
v1(w) — 2. The following inequalities holdy <jex Xw'/Xs <jex w <iex U, the first one
being true sincev <jex w’, sov1(v) < vi(w’). These inequalities show thatw’/xs €
L(u, v). But we also havexw’/Xs < w, hencexjw’/Xs € | <y,.
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To finish this case we only need to treat the c@sg 1, j # s. We are going to
show that at least one of the monomiadgw’/Xs or x;w’/Xs belongs tol.,. In any
case this will lead to the conclusion thatw € |-, by using (1.6).

From the equality (1.6), we havg | w, hencej < maxw), andvi(w’) = vi(w)—1.
Sincew’ < Xsw/X; and vi(w’) = vi(w) — 1 = vi(Xsw/X1), we get

X
(L.7) W iex o,
X1

which gives

Xlw’

Xe >lex U.
If the inequality

X I
(1'8) L Slex U

Xs

holds, then we gekiw'/%xs € L(u, v). We also note thavi(xiw’/Xs) = vi(w) and
X1w'/Xs >1ex w (by (1.7)). Thereforex;w’/xs < w and we may writexw = X;j (Xyw’/Xs) €
I-,. This implies that € setw).

Now we look at the monomiak;w’/xs for which we havevi(Xx;w’/Xs) = vi(w’) <
v1i(w), SOXjw'/Xs <iex W Zjex U. If the inequality

!

Xjw

Zlex V

(2.9)
S
holds, we obtairx;w’/xs € £(u, v). Obviously we havex;w’/xs < w. By using (1.6),
we may writex;w = X1(X;w’/Xs) € <, Which shows that € setw).
To finish the proof in Case 1 we need to consider the situatibenaboth inequal-
ities (1.8) and (1.9) fail. Hence, let

X]_w/
Xs

>lex U

and
Xj w’
Xs

<lex V.

We will show that this inequalities cannot hold simultanglgu Comparing the expo-
nents ofx; in the monomials involved in the above inequalities, we wbta(w’) =

b; > ay — 1. Since, by hypothesisxsw >ex X1v, we havev;(w) > b;. On the other
hand, w <iex U implies thatvy(w) < a;. Sob; =a; — 1 and £(u, v) satisfies the con-
dition (c) in Theorem 1.1. Let, as usuallg, be the largest monomial with respect to
the lexicographical order such that<e v.
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Since x;w’/Xs <iex v, We havex;w’/Xs <iex z. By Lemma 1.3 and using the con-
dition X;Z/Xmax@) Slex U, We obtain:XyXj w’/(XsXmaxg;w'/x;)) lex U. But our assumption
was thatu <jex Xw’/Xs. Therefore, combining the last two inequalities, after cedn
lation, one obtains thatj <iex Xmaxg;juw'/x) = Xmaxgw/x;) = Xmaxw)- 1NiS leads to the
inequality j > maxw) and, sincej < maxw), we get max@) > max w), which
is impossible.

CASE 2: Let Xsw <jex X1v. Then g(Xsw) = Xsw/Xmaxw). IN particular we have
XsW/Xmax@) < w. Indeed, sinces € setw), we havexsw € I-,, that is there exists
w' € L(u, v), w' < w, such thatxsw € l<,,. By the definition of the decomposition
function we haveg(xsw) < w’ and next we geg(Xsw) < w. Since vi(Xsw/Xmaxqw)) =
v1(w), the above inequality implies thatsw /Xmaxw) >lex W, that iS Xs >jex Xmaxqw)
which means thas < max).

As t € setQ(xsw)), there existsw’ < Xsw/Xmaxw), W' € L(u, v), and a variable;,
such that

XtXSw 7
= Xj w,
Xmax(w)
that is
(1.10) XtXsW = Xj Xmax(w) W -

As in the previous case, we would like to show that one of th@eontals Xmaxg)w’/Xs
or xjw’/xs belongs toL(u, v) and it is strictly less thamw with respect to<. In this
way we obtainxiw € |-, andt € setw).

We begin our proof noticing thas,t # 1, by Lemma 1.6. The equality =t
is impossible sincew’ # Xsw/Xmaxw)- If ] =S, then xw = w'Xmaxw) € l<w. But
W < XsW/Xmaxw) < W, hencexiw € l.,.

Let j #s,t. From the equality (1.10) we havg | w, so j < maxw). We firstly
considerj = 1. Then the equality (1.10) becomes

(1.11) X XsW = X1 Xmax) W' -

Sinces < maxw), we haveXmaxw)w'/Xs <iex W’ <iex U. If the inequality Xmaxw)w’/Xs
>lex v holds too, themXmaxw)w’/Xs € L£(u, v) and, asvi(w’) < vi(w), it follows that
Xmax@)W'/%s < w. From (1.11), we havecw = Xi(Xmax@)W'/Xs) € l<w, hencet €
setw).

From the inequalityxsw <jex X1v, we get

i
XsW <|ex X1W',

SO

Xiw

>lex W.
S
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Let us assume that,w'/Xs <iex U. Sincev;(xiw’/Xs) = v1(w), by using the definition of
the ordering< we getxyw’/Xs € l<,. Then we may Writew = Xmaxw)(X1w’'/Xs) € l<w.

It remains to consider thatmaxu)w'/Xs <iex v and xqw’/Xs >jex U. Proceeding as
in Case 1 we show that we reach a contradiction and this erepribof for j = 1.
We only need to notice that we have to consiller< a; — 1. Indeed, we can not have
b; = a; since one may find inC(u, v) at least two monomials, namely and w’, with
vi(w’) < va(w).

Finally, let j # 1. Recall that in the equality (1.10) we haye# 1,t, s ands <
max@). From (1.10) we obtaini(w) = vi(w’). Since w’ < Xsw/Xmaxw), We have
w >jex XsW /Xmax(w)s that is

(1.12) W' Xmax(w) >lex XstW-

Replacingw’Xmaxg) bY XXsw/X; in (1.12), we get; >jex Xj, Which meand < j.
It follows that: Xmaxg)w'/Xs = X w/Xj >lex W Zjex v. SiNces < maxw), as in the proof
for j =1, we haveXmaxw)W'/Xs <iex U. Thereforexmaxwyw’/%s € L(u, v). In addition,
from (1.12), Xmax@)W'/Xs >lex W aNd v1(Xmax@)w'/Xs) = v1(w), SO Xmaxw)W'/Xs < w.
In other words, we have got thafw = Xj(Xmaxe)w'/Xs) € l<, andt € setw). U]

The general problem of determining the resolution of aabjtiexsegment ideals is
not completely solved. The resolutions of the lexsegmeaal& with linear quotients
are described in [9] using iterated mapping cones. We rehal construction from
[9]. Suppose that the monomial idelalhas linear quotients with respect to the ordering
ui,..., Um of its minimal generators. Sét = (uy,...,u;) andL; = (ug,...,u;) : Uj41.
Sincelj4+1/1; >~ S/Lj, we get the exact sequences

0— S/Lj — §/lj = S/lj41— 0,

where the morphisn®/L; — S/I; is the multiplication byuj1. Let F) be a graded
free resolution ofS/l1j, K () the Koszul complex associated to the regular sequence
Xeis - - - Xk, With ki € set(j 1), and y): KOO — F() a graded complex morphism
lifting the map S/L; — S/1j. Then the mapping con€(y) of v yields a free
resolution ofS/1;,1. By iterated mapping cones we obtain step by step a graded fre
resolution ofS/1.

Lemma 1.9 ([9]). Supposedegu; < degu, < --- < degun. Then the iterated
mapping coner, derived from the sequence,u. ., Uy, is a minimal graded free res-
olution of ¥1, and for all i > 0 the symbols

f(o;u) with ueG(l), o cCsetl), [o]=i-1

form a homogeneous basis of the S-modyleMoreoverdeg(f (o;u)) = |o| + deg(i).
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Theorem 1.10 ([9]). Let | be a monomial ideal of S with linear quotienend
F, the graded minimal free resolution of/& Suppose that the decomposition function
g: M(I) = G(I) is regular Then the chain map of F, is given by

o(f(osu) = =) _(~1FI%f (o \'siu) + Y (=19 1 (0 \ s; gxsU)),

( )
if o # @, and
a(f(P;u)) =u
otherwise Here a(o;s) = |{t e o | t < S}|.

In our specific context we get the following

Corollary 1.11. Let | = (£(u,v)) C S be a completely lexsegment ideal with lin-
ear quotients with respect te andF, the graded minimal free resolution of/ B Then
the chain map off, is given by

a(f(osw) ==Y (1@ \sw) + Y (—1)“‘“:S)X1f<“\s: . )

seo Se€o:
XsW Z|exX1V

XsW
+ > (- 1)"‘("5)xmax(w)f<o\s >
Xmax(w)

Se€o:
XsW <|exX1V

if o # 0, and
(f (0, w)) =w
otherwise For convenience we set(d; w) = 0 if o € setw.

EXAMPLE 1.12. Letu = x2x, andv = x3 be monomials in the polynomial ring
S = K[X1, X2, X3]. Then

3 2 2 2
L(u, v) = {X3, X1X3, X1X2X3, X1X3, X;X2}.

The ideal | = (L£(u, v)) is a completely lexsegment ideal with linear quotientshwi
respect to this ordering of the generators. We dengte X3, Uy = X1X2, Uz = X1XXa,
Us = X1X3, Us = Xix,. We have set(y) = 0, setiz) = {2}, set(iz) = {2}, setlis) = {2},
setls) = {2, 3}. Let F, be the minimal graded free resolution 8f1.

Since max|setw)| | w € L(u, v)} = 2, we haveF; = 0, for alli > 4.

A basis for theS-module F; is {f(@; u1), f(9;uz), f(F;uz), f(d;us), f(D;us)}.

A basis for theS-module F;, is

{f({2} u2), T({2}:u3), ({2): ua), T({2: us), T({3}: us)}.
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A basis for theS-module F3 is { f ({2, 3}; us)}.
We have the minimal graded free resolutiBgt

0— (-5) > -4 5 (-3 % S— S/l -0

where the maps are

do(f@;u)) =u, for 1<i <5,

so
do=(X XX XiXoXz XX X2 ).
01(f({2}; u2)) = —x2 F(0; u2) + x¢ F(9; u),
01(f({2}; ug)) = —x2 F(9; uz) + x3 f (4 u2),
01(F({2}; ug)) = —x2 T (B; uy) + X3 T (0; uz),
01(f({2}; us)) = —x2 (0; us) + X1 T (B; uy),
01(f({3}: us)) = X3 f(@: us) — x¢. f(0: us),

S0

92(T ({2, 3}; us)) = =% T ({3}; us) + X3 T ({2}; us) 4+ x1 T ({3}; u2) — X1 F({2}; u3)
= —X2 T ({3}: us) + x3 f ({2}: us) — x1 F ({2}: us),

since {3} £ set(y), so

0

X1
0 = 0
X3

2. Non-completely lexsegment ideals with linear resolutits

Theorem 2.1. Letu= xj‘l---x;’;‘ﬂ, v= xgz---x,?n be monomials of degree d in S
a; > 0. Suppose that the ideal & (£(u, v)) is not completely lexsegment idedlhen
| has a linear resolution if and only if | has linear quotients
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Proof. We only have to prove that if has a linear resolution theh has linear
quotients for a suitable ordering of its minimal monomiaingeators. By [1, Theo-
rem 2.4], sincel has a linear resolutiony and v have the form:

u=xxrr-x®, v=xx3"* forsome | > 2.

Then the ideall = (£(u, v)) can be written as a sum of ideals= J + K, where J
is the ideal generated by all the monomials £(u, v) which are not divisible byx;
and K is generated by all the monomials 8{u, v) which are divisible byx;. More
precise, we have

J=({w]| Xg Zlex W Zlex V})
and
K = ({w | Ujex w >jex Xax3 ).

One may see thal is generated by the initial lexsegmefit(v) C K[X, ..., X,], and
hence it has linear quotients with respect to lexicogragdhtzder > . Let G(J) =
{01 <--- < 0gm}, Whereg; < g; if and only if gi >ex gj. The idealK is isomorphic
to the ideal generated by the final lexsegmériu/x;) of degreed — 1. Since final
lexsegments are stable with respect to the orges --- > x; of the variables, it fol-
lows that the ideaK has linear quotients with respect tgz;, where bylex we mean
the lexicographical order correspondingxe> --- > x;. Let G(K) = {hy <--- < hp},
where h; < h;if and only if h; > h;. We consider the following ordering of the
monomials ofG(l):

G(l)={g1 <+ <0gm=<hy <.+ <hp}h

We claim that, for this ordering of its minimal monomial gesw®rs, | has linear quo-
tients. In order to check this, we firstly notice tHat; : g = J.4: g for everyg € G(J).
Since J has linear quotients with respect to it follows that J.q : g is generated by
variables. Now it is enough to show that, for any gener&tasf K, the colon ideal
I.n : h is generated by variables. We note that

lsh:h=J:h+K.,:h

SinceK has linear quotients, we already know théty : h is generated by variables.
Therefore we only need to prove thdt: h is generated by variables. We will show

that J : h = (xg, ..., %) and this will end our proof. Letn € J : h be a monomial. It
follows thatmhe J. Sinceh is a generator oK, h is of the formh = x;x}%!. .. %",

that ish ¢ (xo, ..., X). But this implies thatm must be in the idealx, ..., x). For
the reverse inclusion, let 2t <I|. Thenx:h = x; for some monomialy, of degree
d. Replacingh in the equality we gety = x X} --- & which shows thaty is a
generator ofJ. Hencex:h € J. L]
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EXAMPLE 2.2. Letl = (£(u,v)) CK[X1, ..., Xg] With u = x;x2xs andv = XXg.
| is not a completely lexsegment ideal as it follows applyidg Theorem 2.3], but
has a linear resolution by [1, Theorem 2.4]has linear quotients if we order its min-
imal monomial generators as indicated in the proof of thevalibeorem. On the other
hand, if we order the generators bfusing the order relation defined in the proof of
Theorem 1.2 we can easy see thatloes not have linear quotients. Indeed, following
the definition of the order relation from Theorem 1.2 we sHaake

G(l) = {X5 < X3X3 < - -+ < XoX§ < X1X5X5 < X1X5Xg < X1XaXZ < - -+ < X1X3}.
For h = xlxgxf one may easy check thaty, : h is not generated by variables.

EXAMPLE 2.3. Letu = XiX3Xq, v = xzxf be monomials ink[xy, ..., X4]. The
ideal I = (£(u, v)) C K[X1,..., X4] is @ non-completely lexsegment ideal, since it does
not verify the condition [4, Theorem 2.3 (b)]. By [1, Theore2], | has a linear
resolution and by the proof of Theorem 2.11 has linear quotients with respect to the
following ordering of its minimal monomial generators:

3 2 2 2 2 2
X5y Xo X3, X5X4, X2X3, X2X3X4, X2Xy, X1Xy, X1X3X4.

We note that sexgx2) = {2} and setf(X;x,X3)) = setfx?) = {2, 3} Z setfx?), so
the decomposition function is not regular for this orderofgthe generators.

3. Cohen—-Macaulay lexsegment ideals

In this section we study the dimension and the depth of anyittexsegment ideals.
These results are applied to describe the lexsegments idéséth are Cohen—Macaulay.
We begin with the study of the dimension. As in the previougieas, letd > 2 be an
integer. We denoten = (Xg, ..., X,). It is clear that ifl = (£(u, v)) C Sis a lexsegment
ideal of degrea then dimS/1) = 0 if and only if | = m9.

Proposition 3.1. Let u= x{*---x&, v = xg“---xrﬁ’n, 1<qg=n, a;,by >0, be two
monomials of degree d such that>y, v and let | be the lexsegment ideal generated
by £(u, v). We assume that # m?. Then

. n—q, if 1<q<n,
dim(S/1) = {1, if g=n.
Proof. Forq =1, we havel C (x;). Obviously ;) is a minimal prime ofl and
dim(S/1) =n—-1.
Let g = n, that isv = x¢ and £(u, v) = £7(u). We may write the ideal as a
sum of two ideals,| = J+ K, whereJ = (x3£(u/x1, x371)) and K = (£(xd, x9)). Let
p D | be a monomial prime ideal. i; € p, thenJ C p. Sincep also containK, we
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have p D (X2,...,Xn). Hencep = (X1, X2,..., Xn). If Xg ¢ p, we obtain ko, ..., X,) C p.
Hence, the only minimal prime ideal df is (X, ..., X,). Therefore, dim§/1) = 1.

Now we consider 1< q < n and write | as before,| = J + K, where J =
(x1L(u/x1, Xx371)) and K = (£(x3, v)).

Firstly we considemu = xf. Let p D | be a monomial prime ideal. Thep > x;
and, sincep D K, we also havep D (x2,..., Xq). Hence &, ..., Xg) C p. Since
I C (X1, ..., Xq), it follows that i, ..., Xq) is the only minimal prime ideal of .
Therefore dim§/1) = n—q.

Secondly, ley; > 1 andu # x‘f. The lexsegment(u/xy, x3~1) contains the lexseg-
mentL(xg‘l, x¢4=1). Let p be a monomial prime ideal which contaihsand such that
X1 ¢ p. Thenp D £(x3~2, x4-1) which implies that Xa, . . ., Xa) C p. Obviously we also

havel C (X2, ..., Xn), hence X, . . ., Xp) is @ minimal prime ideal of .
Let p O | be a monomial prime ideal which contaimg. Since p D K, we also
have &, ..., Xq) C p. This shows thatXy, ..., Xq) is @ minimal prime ideal of . In

conclusion, fora; > 1, the minimal prime ideals of are (i,...,Xq) and o, ..., Xn).
Sinceq <n-1, we get ht{) =q and dimg/1) =n—q.

Finally, leta; = 1, that isu = xle“ - X2, for someg > 0, | > 2. As in the
previous case, we obtairxy ..., Xq) a minimal prime ideal ofl. Now we look for
those minimal prime ideals of which do not contair;.

If & =d—1, the ideald = (x1£(u/x1, x371)) becomes] = (x;£(x?L, xd—1). If

p D | is a monomial prime ideal such thet ¢ p, we get &,...,X,) C p, and, sincep
containsK, we obtain Kz,...,Xq) C p. This shows that if| < then &o,...,Xq, X,..., Xn)
is a minimal prime ideal of of heightq+n—1>q, and ifq > 1, then &, ..., Xy) is

a minimal prime ideal of height — 1 > g. In both cases we may draw the conclusion
that ht() = g and, consequently, dir§{1) =n—gq.

The last case we have to considerais< d — 1. Thenl < n and, with similar
arguments as above, we obtain dBn() = n —q. L]

In order to study the depth of arbitrary lexsegment ideals, nete that one can
restrict to those lexsegments defined by monomials of the for= x* - - x%, v =
X2t ... xb of degreed with a; > 0 andb; = 0.

Indeed, ifa; = by, thenl = (L(u, v)) is isomorphic, as ars-module, to the ideal
generated by the lexsegmefifu/x:", v/xfl) of degreed — a;. This lexsegment may
be studied in the polynomial ring in a smaller number of Jalga.

If a; > by, thenl| = (£(u, v)) is isomorphic, as ars-module, to the ideal gen-
erated by the lexsegmeni(u’, v’), whereu’ = u/xf1 hasv;(U) = a; —b; > 0 and
vV = v/Xf1 hasvi(v') = 0.

Taking into account these remarks, from now on, we consigeselgment ideals

of endsu = x"--- x&, v = xqbcl ... xb, for someq > 2, ay, by > 0.

n
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The first step in the depth’s study is the next

Proposition 3.2. Let | = (£(u, v)), where u= X" ---x&, v = xf;q coexBq > 2,

n 1

ap, by > 0. Thendepth@/1) = 0 if and only if %u/X1 >jex v.

Proof. Letxnu/X; >jex v. We claim that [ : (u/X1)) = (X1, ..., Xn). Indeed, for
1 < j = n, the inequalitiesu >jex XjU/X1 Zjex XnU/X1 >jex v hold. They show that
Xju/xy € | for 1 < j <n. Therefore Xy, ..., Xa) € (I : (U/X1)). The other inclusion is

obvious. We conclude thaky, . . ., x,) € Ass(S/1), hence depttg/l) = 0.

For the converse, let us assume, by contradiction, ¥hayx; <ex v. We will
show thatx; — x, is regular onS/1. This will imply that depth§/1) > 0, which
contradicts our hypothesis. We firstly notice that, from #imve inequality, we have
a1 —1=0, that isay = 1. Therefore,u is of the formu = xlxla* s, 1 >2, 8 >0.
Moreover, we have > .

Let us suppose that; — x, is not regular onS/1, that is there exists at least a
polynomial f ¢ | such thatf(x; — X,) € I. One may assume that all monomials of
supp(f) do not belong tol. Let us choose such a polynomiél= cw; + - - - + Ciuy,

G ek, 1<i=<t, with wy >jex W2 >jex -+ >ex W, wj ¢ 1, 1 <1 <t.
Then inex((X1 — Xn) f) = xqw1 € |. It follows that there existsx € G(I) such that

(3-1) Xiw; = o - o

for some monomiak’. We havex; t o’ since, otherwisew; € |, which is false.
Hencew is a minimal generator of which is divisible byx;, that is« is of the form
o = xqy, for some monomialy such thatxd—? <jex ¥ <iex U/X;. Looking at (3.1), we
get wy; = ya’. This equality shows that; 4 w;. We claim that the monomiak,w;
does not cancel in the expansion bfx; — X,). Indeed, it is clear thak,w; cannot
cancel by some monomiad,w;, i > 2. But it also cannot cancel by some monomial
of the form x;w; sincex,w; is not divisible byx;. Now we may draw the conclusion
that there exists a monomial ¢ | such thatw(x; — X,) € |, that iswx;, wX, € 1.

Let w ¢ | be a monomial such thatx;, wx, € I, let«, 8 € L(u, v) ando’, g’
monomials such that

(3.2) Xw =o-o
and
(3.3) Xow = BB

As before, we gek; + w, henceg must be a minimal generator ¢fsuch thatxgj >lex
B >1ex v. By using (3.3), we can see that does not divided’, hencex, | 8. It follows that
w is divisible by8/x,. w is also divisible byx/x;. Therefore§ = lcm(a /X1, 8/X%n) | w. If
degé > d there exists a variabbe;, with j > 2, such thatX;8/x,) | §, thus &; 8/xn) | w.
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It is obvious thatxg Zlex Xj B/%n Zlex B Zlex v, hencex;B/x, is a minimal generator of
I which dividesw, contradiction. This implies that has the degred — 1. This yields
/X1 = B/Xn. Thenp = Xna /X1 <jex XnU/X1 <lex v, cONtradiction. [

Next we are going to characterize the lexsegment idealsch that deptB/l > 0,
that is xpu/X1 <jex v, Which implies thatu has the formu = x1x|al -+ x2, for some
| >2, a4 >0andl >q, orl =q andag < by. We denoteu’ = u/x; = X - - - x&.
Then we havex,u’ <jex v. From the proof of Proposition 3.2 we know that— x, is
regular onS/I. Therefore

depth§/1) = depthS/1") + 1,

whereS = K[X,...,Xs] and |’ is the ideal of S whose minimal monomial generating
set isG(l") = x, L(U/, x$~ 1) U L' (v).

Lemma 3.3. In the above notations and hypotheses on the lexsegmerit lidea
the following statements hald
(@) If v=xJ and | > 4, thendepth§/1") =1 - 3.
(b) If v= xg‘lx,- forsome3<j<n—-2and|> j+2thendepth§/1')=I1—-j—1.
(c) depth§/1') = 0 in all the other cases

Proof. (a) Letv= xg andl > 4. The ideall’ C S is minimally generated by all
the monomialsx,y, Wherex,ﬁ“1 <iex ¥ <lex U, degf) =d —1, and by the monomial

xd. Then it is clear thafxs, ..., x_1} is a regular sequence d8/1’, hence
S/’
depthS/1" = depth +1-3.
Pns/ P (X3, ..., X-1)S/I
We have
S/’ N K[X2, X1, ..., Xn]
(X3, ..., %_)S/1” — "N k[X2, X1y ..., %]

In this way we may reduce the computation of depthl’) to the case (c).
(b) Letv= xg‘lxj, for some 3< j <n-2 andl > j+2. Hencel’ is minimally
generated by the following set of monomials
{Xny | y monomial of degreal — 1 such thatxﬁ‘1 Slex ¥ <tex U’}

d ,d-1 d-1
U{X5, X3 X3, ..., X5 "X}
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Then {Xj+1, ..., Xi—1} is a regular sequence d8/I" and
S/’ .
depthS/1’ = depth +(-j-1).
pinS/ P (Xj+1s - - X—2)S/IV (=1-1
Since
S/l N K[X2, ..oy Xjy Xty e v vy Xn]
(X1, - -0 X—)S/1 — 1"OK[X2, ooy Xjy Xty v ey Xn]

we may reduce the computation of def@H(’) to the case (c).

(c) In each of the cases that it remains to treat, we will shioat o, ..., Xn) €
Ass(S/1"), that is there exists a monomial ¢ |’ such thatl’: w = (Xg,..., Xy). This
implies that depth /1) = 0.

SUBCASE Ci: v =xJ, | =2. Thenw = x¢1 ¢ 1’ and x¢™1 <jex Xjw/Xy =

X X972 <jex XoXI72 Sje X2 -+ - x& = U/, for all 2< j < n. Hencey = Xjw/X, has the
property thatx,y € G(lI’). Therefore,x; € I’ : w for all 2 < j < n. It follows that
I rw = (X, ..., Xn)-

SUBCASE Cp: v =x§, | =3. Thenw = x§~x4-1 ¢ 1", Indeed,x¢ + w and if
we assume that there exist§™ <jex y <iex U, degy = d — 1, such thatx,y | w, we
obtain x,y | x4~ which is impossible.

We show thatxjw € |’ for all 2 < j < n. Indeed,xw = xIx31 e I". Let 3<
j <n. Then x% 7 <igx Xjx82 <jex XaXU2 <jex U'. It follows that y = x;x3-2 has
the property thatx,y = xjx,ﬁ"l e G(I"). Sincex,y | Xjw, we havexjw € |I’. This
arguments shows thdt : w = (X2, ..., Xn).

SUBCASE C3: v = xJ71x; for some 3< j <n-—1and 2<| <j+ 1. Let us
consider again the monomial = x3-1x4-1. It is clear thatxw € | for all 2<t < j.
Lett > j + 1. Thenxw is divisible by xxd~1. Sincex;x9~2 satisfies the inequalities
X971 <jex X972 <jex U, We havex,xd—t € G(1'). It follows thatxw € 1’ for t > j +1.
Assume thatw € I, Sincenglxt tw for 2<t < j, we should have,y | w for some
y of degreed — 1 such thatx?~! <jex y <jex U'. Sincey | X3 1x4=2 and y <ex U, wWe
getl =2 anda; = vo(U) > vo(y). Lety = xzanglfa, for somea > 1. In this case
we change the monomial. Namely, we consider the monomial’ = xzxrﬁ‘*2 which
does not belong t@&(l") since it has degred — 1.

If a; > 2, for anyj such that 2< j <n, we havexd—1 <jex Xjw'/Xn = XX X372 <jex

X2 - -x3 =u'. This shows thakjw’ € 1’ for 2< j <nand hence)’:w = (X, ..., Xp).

If & =1, we takew” = x31 ¢ 1. For all j such that 2< j < n, we have
X1 <jex Xjw" /Xy = X;X472 <jex XoX372 <jex . Thereforexjw” € 1’ for 2 < j <n,
hencel’: w” = (Xz,..., Xy). In conclusion we have proved that in every case one may
find a monomialw ¢ |” such thatl’ : w = (X2, ..., Xn).

SUBCASE C4: Finally, letv <iex x371x,. In this case, the idedl : x$~! obviously
contains Kz, . . ., X). Since the other inclusion is trivial, we get: X3 = (X, ..., Xa).

It is clear thatxd 1 ¢ 1. O
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By using Lemma 3.3 we get:

Proposition 3.4. Let | = (L(u, v)) be a lexsegment ideal defined by the mono-
mials u= xx* -+ x&, v = xqbq -+ Xt where @, bg > 0, 1,9 > 2 and %U/X; <jex V.
Then the following statements hold
(@) If v=xd and | > 4 thendepth§/I) =1 — 2;

(b) If v= nglxj for some3 < j<n-—2and|>j+2thendepthG/I) =1 — j;
(c) depth§/1) = 1 in all the other cases

Proof. Sincex; — x, is regular onS/1 if xpu/X1 <jex v, We have deptt§/1) =
depth@/1") + 1. The conclusion follows applying Lemma 3.3. O

As a consequence of the results of this section we may clesizetthe Cohen—
Macaulay lexsegment ideals.

In the first place, we note that the only Cohen—Macaulay lexeeq ideal such
that dim@S/1) =0 is | =mY. Therefore it remains to consider Cohen—Macaulay ideals
I with dim(S/1) > 1.

Theorem 3.5. Let n> 3 be an integerlet u= x---x, v = x{* -- - x, with
a; > by > 0, monomials of degree,dand | = (£(u, v)) C S the lexsegment ideal de-
fined by u andv. We assume thadim(S/1) > 1. Then | is Cohen—Macaulay if and
only if one of the following conditions is fulfilled
(@) u=xxd"tandv=xg;
(b) v =x2 ,x972 for some a> 0 and %U/X; <jex V.

Proof. Letu,v be as in (a). Then ding/1) = n — 2, by Proposition 3.1 and
depth§/1) = n—2 by using (a) in Proposition 3.4 far > 4 and (c) forn = 3.

Let u,v as in (b). Then dim%/l1) = 1 by Proposition 3.1. By using Proposi-
tion 3.4 (c), we obtain dept§/1) = 1, henceS/| is Cohen—Macaulay.

For the converse, in the first place, let us thke be Cohen—Macaulay of dirg(1)=
1. By Proposition 3.1 we hawe=norq = n—1. If g = n, thenv = x% andx,u/X; >jex
v. By Proposition 3.2, deptl§/1) = 0, sol is not Cohen—Macaulay.

Let g = n—1, that isv = x2 ,x972 for somea > 0. By Proposition 3.2, since
depth§/1) > 0, we must havexau/X; <jex v, thus we get (b).

Finally, let dim(S/1) > 2, that isq < n—2. By using Proposition 3.4, we obtain
g = 2. Therefore dim$/1) = depthS/1) = n — 2. Using again Proposition 3.4 (a),
(b), it follows thatu = x;x3= and v = x§. O
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