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1. Introduction

It is well known that each positive integer can be expressed uniquely as a sum
= 0 + 1 + · · · + with an integral base number ≥ 2, 6= 0 and ∈

{0 . . . − 1}. This concept can be generalized in several directions.
On the one hand the base sequence 1, ,2, . . . can be replaced by a sequence

1 = 0 < 1 < 2 < · · · to obtain representations of positive integers. Of special
interest is the case where the sequence{ }∞=0 is defined by a linear recurrence. A
famous example belonging to this class is the so-called Zeckendorf representation.

On the other hand, one can generalize the set of numbers whichcan be repre-
sented. We mention two kinds of number systems belonging to this class:

The so calledβ-expansions introduced by Rényi [27] which are representations
of real numbers in the unit interval as sums of powers of a realbase numberβ.
These digit representations of real numbers are strongly related to digit representations
of positive integers ifβ is a zero of the characteristic polynomial of a linear recur-
ring base sequence{ }∞=0. Of special interest is the case whereβ is a Pisot number.
These expansions have been extensively studied. We mentionhere the papers Berend-
Frougny [6] , Frougny [12, 13], Frougny-Solomyak [14, 15] and Loraud [25] and refer
to the references given there.

Another kind of number systems which admit the representation of a set which is
different from N are the so-calledcanonical number systems(for short CNS). Since
CNS form the main object studied in the present paper we recall their definition
(cf. Akiyama-Pethő [2]).

DEFINITION 1.1. Let

( ) := + −1
−1 + · · · + 0 ∈ Z[ ]

be such that ≥ 1 and = 1 (set = 0 for > ). Let N = {0 1 . . . | 0|−1} and
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R be the quotient ring

R = Z[ ]/ ( )Z[ ]

• We say thatγ ∈ R has a finite representation if it admits a representation of the
shape

γ = 0 + 1 + · · · +

with ∈ N for 0≤ ≤ and 6= 0 for 6= 0 (set = 0 for > ).
• The numbers = (γ), ≥ 0, are called the digits ofγ with respect to

( ( ) N ).
• The pair ( ( )N ) is called canonical number system or CNS inR, if eachγ ∈

R has a finite representation.N is called digit set of this CNS.
• If ( ) is irreducible, then letα be one of its zeros. In this caseR is isomorphic

to Z[α], the ring generated byZ and α. Therefore we may replace byα in the
above expansions. In this case, we simplify the notation ( ( )N ) to (α N ) and α
is called base of this CNS.

Unlike for “ordinary” number systems, where it is clear thateach integer ≥ 2
can serve as base, it is a difficult problem to determine whichpolynomials provide
CNS. Despite there are many papers dealing with the characterization of possible poly-
nomials — we will give a detailed overview in the next section— there does not
exist a complete characterization up to now. Some of the known results provide the
characterization of the polynomials for some classes of CNS, others give algorithms
that allow to decide whether a given polynomial ( ) forms a CNSor not. In the
present paper we have two aims. First we want to present a fastalgorithm for deciding
whether a given ( ) is a CNS polynomial or not, in a second step we use this new
algorithm to characterize a large class of CNS polynomials.Our results prove Conjec-
ture 1 of Akiyama-Pethő [2] and provide a conditional proofof Conjecture 2 of the
same paper.

The paper is organized as follows. In the next section we discuss earlier results on
the characterization of CNS and state some easy facts about them. Section 3 is devoted
to the definition of certain graphs and automata which reflectmany important proper-
ties of CNS and thus are very important for the proofs of our results. In Section 4
we establish a fast algorithm which allows to decide whethera given ( ) is a CNS
polynomial or not (Theorem 4.4). In Section 5 we use our algorithm to characterize
a large class of CNS polynomials (Theorem 5.8). Section 6 contains characterizations
of cubic (Theorem 6.1) and quartic (Theorem 6.2) CNS under a certain condition. In
Section 7 some numerically found examples are presented dealing with conjectures on
CNS polynomials. We finish the paper with some remarks in Section 8.
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2. Some facts about canonical number systems

In this section we want to review some earlier results on CNS.Some of them will
be used in the proofs of our results.

As mentioned in the introduction it is an open problem to givea complete charac-
terization of all polynomials that provide a CNS. Nevertheless, there are many partial
results. Knuth [21] considered certain examples of bases, one of them the Gaussian in-
teger−1+ which is intimately related to the famous “twin dragon” fractal (as for the
connection between fractals and CNS cf. also Akiyama-Thuswaldner [4, 5], Kátai [17]
and Scheicher-Thuswaldner [29]). The first systematic treatment was given in Kátai-
Szabó [20], where all Gaussian integers which are CNS basesare characterized. This
result was generalized to quadratic integers in Kátai-Kovács [18, 19] and independently
in Gilbert [16]. Kőrnyei [22] dealt with a special class of cubic integers and very re-
cently Brunotte [9, 10] characterized all CNS whose bases are roots of trinomials. As
for the general case Kovács [23] proved that an algebraic integer α gives rise to a
CNS if its minimal polynomial ( ) = + −1

−1 + · · · + 1 + 0 satisfies

2≤ 0 ≥ 1 ≥ · · · ≥ −1 ≥ 1

However, this characterization is not complete. Examples not contained in this class
are provided in Kovács-Pethő [24], where also an algorithm is established that decides
whether a givenα is a CNS base or not. Recently, Akiyama-Pethő [2] developeda
much faster algorithm than the one in [24]. In particular, they proved the following
result. Let be a positive integer andα be an algebraic integer of degree with
minimal polynomial ( ) as in Definition 1.1. If 0 ≥ (1 + −1)

∑
=1 | | then it

suffices to check for (2 ) elements ofR whether they have finite representation in
order to decide if ( ) is a CNS polynomial or not. These (2 ) numbers are given
explicitly. Since this criterion works for all polynomialssatisfying

(2.1)
∑

=1

| | < 0

we will call (2.1) the Akiyama-Peth̋o-condition or the AP condition, for short. This
condition will also play an important role in our paper.

It is the aim of the present paper to give further improvements of the Akiyama-
Pethő-Algorithm. These improvements allow us to characterize a large class of CNS
polynomials. In principle we even get a complete characterization of all CNS under
the AP condition. But unfortunately this characterizationcontains many awkward sets
of inequalities which surely can be simplified considerably. For the case of cubic and
quartic CNS we achieve such simplifications and are thus ableto give easy criteria in
order to decide whether ( ) is a CNS polynomial or not.

In our proofs we use finite automata and graphs. These objectsturned out to be
useful for the treatment of characterization problems (cf.for instance Scheicher [28]
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and Thuswaldner [31, 32]).
It is easy to see that a necessary condition for ( ( )N ) to be a CNS is thatN

forms a complete residue systemZ[ ] modulo ( ( )), the ideal generated by and
( ). Indeed, if the residue class mod ( ( )) does not occur inN then noγ ∈ R

with γ ≡ mod ( ( )) has a representation. Due to this fact we may define the
mapping ( ) fromR to itself by

( ) = −1( − )

where is the unique element ofN satisfying ≡ mod ( ( )). Kovács-Pethő [24]
remarked that ( ) can serve as a polynomial for a CNS only if allits zeros are
greater than 1 in modulus. This ensures that the iterates , ( ), 2( ), . . . end up
in the finite set

:= { = 0 + 1 + · · · + −1
−1 ∈ R : | | ≤ }

where > 0 is a certain computable constant. The finiteness of impliesthat the
sequence{ ( )} ≥0 becomes ultimately periodic for each∈ R. Let P be the set of
all points which can occur in such a period, i.e.

P := { ∈ | ∃ω ∈ N : = ω( )}

It is clear from the definition of andP that each ∈ R admits a unique represen-
tation of the shape

(2.2) =
∑

=0

+ +1

with ∈ P , ∈ N and ∈ N as small as possible. Since is a periodic point, it
has a representation of the shape

(2.3) =
ω−1∑

=0

modω + ω

for each ∈ N. For this reason we will use the abbreviation

= ([ ω−1 · · · 0]∞ · · · 0)

for the representation (2.2). Here [ω−1 · · · 0]∞ is the infinite repetition of the string

ω−1 · · · 0. Instead of ([0]∞ · · · 0) we will simply write ( · · · 0). As mentioned
in Definition 1.1 in this case the representation is called finite. Generalizing Defini-
tion 1.1 we will use the notation ( ) for the -th digit in the representation of , i.e.
the coefficient of in this representation.
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The following lemma contains an easy criterion for ( ) to be the polynomial of
a CNS.

Lemma 2.1. Suppose that each zero of( ) has modulus greater than1 and
N is a complete residue systemmod( ( )). Then ( ( ) N ) is a CNS if and only
if P = {0}.

Proof. If P = {0} then (2.2) ensures that ( ( )N ) is a CNS. If 06= ∈ P and
ω( ) = then has a representation of the shape (2.3). If all (0≤ ≤ ω − 1)

were equal to zero this would imply = 0, a contradiction. Since the representation
of is ([ ω−1 · · · 0]∞) this representation can not be finite.

We want to mention here thatγ ∈ R has finite representation if and only if the
sequence{ (γ)} ≥0 is ultimately zero. This is an easy consequence of the definition
of .

In the remaining part of the paper we will always assume thatN = {0 1 . . .

| 0| − 1} is a complete residue system mod( ( )) and that all zeros of ( ) are
greater than 1 in modulus. By the above considerations this ensures that eachγ ∈ R
admits a representation of the shape (2.2).

3. Definition of graphs and automata

In this section we want to define certain classes of directed graphs. These graphs
will be used to perform the addition of fixed numbers on the space of representations.
Furthermore, we will state some properties of these graphs and discuss their relation
to so-called transducer automata. First of all we want to give a definition of this kind
of automata.

DEFINITION 3.1 (cf. Berstel [8] or Eilenberg [11]). The 6-tuple
A = ( 0 ) is called a finite state transducer automaton if
• , and are nonempty, finite sets, and
• : × → and : × → are unique mappings.

The sets and are called input and output alphabet, respectively. is called the
set of states and0 is the starting state. The mappings and are called transition
and result function, respectively.

A finite automaton works as follows. The automaton starts at time 0 at the state

0. At each discrete time , the automaton reads an input digit and determines the
corresponding output digit′ = ( ) as well as the next state+1 = ( ).

A transducer automaton can be interpreted as a labeled directed graph in the
following way. The vertices of are the elements of the set of states . Furthermore,

there exists an edge from a vertex1 to a vertex 2 labeled by 1 | ′
1, 1

1|
′
1−−→ 2 for
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short, if ( 1 1) = 2 and ( 1 1) = ′
1. We will need this interpretation frequently in

the present paper.

DEFINITION 3.2. Let ( ) be as in Definition 1.1. We say that the addition of the
number ∈ R is computable by the finite state transducer ( ), if
• for any γ ∈ R the transducer ( ) is able to read the digits (γ) of the repre-

sentation ofγ as input string and returns the digits (γ + ) of the representation of
γ + as output string.
• a finite representation ofγ results in a finite representation ofγ + .

The transducer (1) is called the counting automaton or adding machine of ( ( )N ).

We will need the transducers ( ) for certain numbers∈ R in order to derive
our characterization results. These transducers will emerge from the following infinite
labeled directed graph. LetA(R) be the labeled directed graph with set of verticesR.
The edges connecting two vertices are defined as follows. Let0, 1 be two vertices
of R. Then there exists an edge from0 to 1 labeled by 0| ′0 with 0, ′

0 ∈ N if and
only if

(3.1) 0 + 0 = ′
0 + 1

This edge will be denoted by

0
0|

′
0−−→ 1

Of course, relation (3.1) can be iterated. If one starts at the vertex 0 and uses as input
the digits of the representation of a number0 + · · · + , one ends at the state+1

where

(3.2) 0 + 0 + · · · + = ′
0 + · · · + ′ + +1

+1

The and ′ can be interpreted as input and output digits, respectively. Suppose that
we use the digits of the finite representation

= ( · · · 0)

as input digits (from right to left) starting at a vertex ∈ R. Then we can see
from (3.2) that the sequence′0, ′

1, . . . of output digits is the representation

+ =
(
[ ′

′+ω · · · ′
+1]

∞ ′
′ · · · ′

0

)

The representation formed from the output string is obviously always finite, i.e. ′
′+1 =

0 andω = 1, if ( ( ) N ) is a CNS.
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The above procedure becomes more clear if we set up a new type of represen-
tation for the elements ofR. This representation has been found independently in
Brunotte [9, 10].

Lemma 3.3. Let ( ) be as inDefinition 1.1. Each ∈ R has a unique repre-
sentation

(3.3) =
−1∑

=0

with

(3.4) =
∑

=1

ε + (ε ∈ Z = 0 . . . − 1)

For such sums we will use the notation

(3.5) = (ε1 . . . ε )ε

This representation will be called theε-representation of . The change
( 0 . . . −1) → (ε1 . . . ε )ε corresponds to a linear base transformation of the lat-
tice R.

Proof. The equations (3.4) provide a linear system of equations




0 · · · 0

−1
. ..

...
...

. .. 0

1 2 · · ·







ε1
...
...
ε




=




−1
...
...

0




This system has a unique solution such thatε ∈ Z for all , since = 1 and ,
∈ Z.

Let = (ε1 . . . ε )ε. We will now examine how thisε-representation changes if

we move along the edge
| ′

−−→ ′ in A(R), i.e. we will determine theε-representation
of ′ from the ε-representation of . By the above lemma we have

(3.6) =
−1∑

=0

∑

=1

ε +

By the definition of the edges ofA(R) there exists a unique ∈ Z such that

(3.7) ε1 1 + · · · + ε + = 0 + ′
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Since

+ −1
−1 + · · · + 0 = 0

we can subtract times this minimal polynomial from (3.6) to obtain

=
∑

=0

(
− +

∑

=1

ε +

)

Since + = ′ + ′ this implies that

′ =
−1∑

=0

(
− +1 +

∑

=1

ε + +1

)
= (− ε1 . . . ε −1)ε

Thus theε-representation of ′ emerges from theε-representation of by cancel-
ing ε , shifting ε1 . . . ε −1 to the right and inserting− , which is defined according
to (3.7), as the first element.

DEFINITION 3.4. An edge of the shape (ε1 . . . ε )ε → ( ε1 . . . ε −1)ε in A(R)
is called anedge of type . If we emphasize on the type of an edge we will use the
notation

(ε1 . . . ε )ε
type−−−→ ( ε1 . . . ε −1)ε

We will be interested in subgraphs ofA(R) which are closed in a certain sense.
To this matter we need the following definition.

DEFINITION 3.5. A number +1 is called reachable from0 if there exist 0 . . .

∈ N such that (3.2) holds. We will denote this by0 +1. The series of states

0
0|

′
0−−→ 1

1|
′
1−−→ · · · | ′

−−→ +1

is called the path connecting0 with +1. Let ⊂ R. Then denotes the set

= { ′ |  ′ ∈ }

In the following lemma we show the existence of a rather “small” set , which
is closed in the sense of the above definition.

Lemma 3.6. Let ( ) be as inDefinition 1.1 and suppose that ( ) fulfills the
AP condition(2.1). Then = { | = (ε1 . . . ε )ε ε ∈ {−1 0 1}} satisfies = .
Thus has 3 elements.
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Proof. We have to show that for each∈ the existence of an edge
| ′

−−→ ′

in A(R) implies ′ ∈ . Suppose that = (ε1 . . . ε )ε with ε ∈ {−1 0 1}. From
the AP condition it follows that

∣∣∣∣∣
∑

=1

ε

∣∣∣∣∣ ≤
∑

=1

| | < 0

and thus

− 0 < ε1 1 + · · · + ε < 0

Since ∈ N , we obtain

− 0 < ε1 1 + · · · + ε + < 2 0 − 1

Hence there exists a∈ {−1 0 1} such that

(3.8) ε1 1 + · · · + ε + = 0 + ′

Thus the edge
| ′

−−→ ′ is an edge of type− and we obtain

′ = (− ε1 . . . ε −1)ε

Since | | ≤ 1 this implies ′ ∈ and we are done.

Let A( ) = A( ) be the restriction ofA(R) to the set of vertices . Since is
closed in the sense of Definition 3.5 we conclude that for any pair ∈ , ∈ N there

exist ′ ∈ , ′ ∈ N such that
| ′

−−→ ′ is an edge inA( ).
We end this section with a definition that relates certain paths in the graphA(R)

to the iterates of the function defined in the previous section.

DEFINITION 3.7. Let be a subgraph ofA(R). Suppose we start at a vertex0.
If we use an input string consisting only of zeros, the corresponding walk 0→ 1→

2 → · · · is called the zero walk starting in0. Note that by the definition of we
have = ( 0) for each ∈ N.

Definition 3.7 implies that zero walk in a subgraph ofA(R) ends up in a cycle
whose vertices are contained inP after finitely many steps.

4. The algorithmic characterization

In the present section we give a fast algorithm which decideswhether a given
polynomial ( ) provides a CNS, provided that ( ) satisfies the AP condition. With
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help of this algorithm we will be able to determine a large class of polynomials which
provide a CNS. First we need some preparatory results.

Proposition 4.1. The addition of a number ∈ is computable by a finite
transducer automaton if each element of{ } has finite representation.

Proof. Since{ } ⊂ , Lemma 3.6 shows that{ } is finite. If we start in a ver-
tex ∈ of the graphA(R) and move through its edges using the digits ( ) of
∈ R as input string we get the digits ( + ) of + as output string. Since

is closed in the sense of Definition 3.5 during this procedurewe never leave the sub-
graphA( ). Thus the addition of to an arbitrary number∈ R can be performed
with help of the finite graphA( ). Using the notation of Definition 3.1 we now define
the transducer automaton ( ) in the following way. Set

:=

= := N
( ) := ′ where ′ is the solution of + = ′ + ′ ( ′ ∈ N )

( ) := ′ where ′ ∈ N is the solution of + = ′ + ′

0 :=

Thus ( ) regarded as a graph in the sense explained after Definition 3.1 is equal
to A( ). So ( ) is able to read the input digits ( ) and returns the output digits

( + ).
In order to fulfill the requirements of Definition 3.2 it remains to check that ( )

transforms finite representations to finite representations. Since the input string has
only finitely many nonzero digits after finitely many steps weenter a zero walk. On
entering this zero walk the automaton rests at a certain state ∈ { }. By Defini-
tion 3.7 this zero walk runs through the vertices ( ). Since byassumption has
finite representation this walk reaches zero after finitely many steps. Because the re-
sult function of the automaton ( ) fulfills (0 0) = 0, from this point on the out-
put digits are all equal to zero. Thus the output string is thedigit string of a finite
representation, and we are done.

This proposition allows us to prove a first algorithmic criterion to check whether
a given polynomial ( ) provides a CNS or not.

Proposition 4.2. Let ( ) be as in Definition 1.1 and suppose that ( ) ful-
fills the AP condition. Set 1 := (1 0 . . . 0)ε . . . := (0 . . . 0 1)ε and :=
{± 1 . . . ± }.

Then ( ( ) N ) is a CNS if and only if each ∈ has a finite representation.
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Proof. Since ⊂ , by Proposition 4.1 the addition of each± ∈ is com-
putable by a finite transducer automaton (± ). We have to show that each ∈ R
has a finite representation. By Lemma 3.3, has anε-representation of the form

= (ε1 . . . ε )ε (ε ∈ Z)

We will now build up in finitely many steps starting from0 = 0 = (0 . . . 0)ε.
Obviously, 0 has the finite representation (0). Putting the digits of this trivial rep-
resentation in the automaton (sign(ε1) 1) we obtain a finite representation of1 =
(sign(ε1) · 1 0 . . . 0)ε. Putting the finite representation of1 again in the automaton

(sign(ε1) 1) and repeating this procedure|ε1| times produces a finite representation
of

|ε1| = (sign(ε1)|ε1| 0 . . . 0)ε = (ε1 0 . . . 0)ε

The finiteness of this representation is assured by the fact that the automaton
(sign(ε1) 1) sends finite representations to finite representations. Now we put |ε1| for
|ε2| times in the automaton (sign(ε2) 2) which yields that |ε1|+|ε2| = (ε1 ε2 0 . . . 0)ε
has finite representation. Treating the other coordinates in the same way we finally ar-
rive at

= |ε1|+···+|ε | = (ε1 . . . ε )ε

This implies that has finite representation. Since was arbitrary we conclude that
( ( ) N ) is a CNS.

REMARK 4.3. This proves Conjecture 2. of [2] under the AP condition.

We are now in a position to prove our first main result.

Theorem 4.4. Let ( ) be as inDefinition 1.1 and suppose that ( ) satisfies
the AP condition. Then( ( ) N ) is a CNS if and only if each element of the set

(4.1) :={ | = (ε1 . . . ε )ε ε ∈ {0 1}}

has a finite representation.

Proof. By Lemma 2.1, ( ( )N ) is a CNS if P = {0}, i.e. if all zero walks
in A(R) end up in the cycle at the vertex zero. By Proposition 4.2 it is sufficient to
check this only for the zero paths starting in∈ , since ⊂ . What we have to
show is that we can even confine ourselves to checking all zeropaths starting in ∈

. We will prove this in the following way. Suppose that there exists an element :=
(ε1 . . . ε )ε ∈ with at least oneε = −1 having infinite representation. If we can
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show that this implies the existence of an element (ε′1 . . . ε′ )ε ∈ having infinite
representation we are done. Indeed, this would imply that ifthere exist elements with
infinite representation then some of them must lie in .

Suppose now that ∈ has infinite representation. We will look more closely on
what happens if we follow the zero walk starting at . Since theinput digit = 0, the
AP condition implies that

− 0 < ε1 1 + · · · + ε + < 0

Hence, there exist ∈ {−1 0} and ′ ∈ N such that

ε1 1 + · · · + ε + = 0 + ′

Arguing in the same way as in the paragraphs preceding the statement of Lemma 3.6
yields that the first edge on the zero walk is

(ε1 . . . ε )ε → (− ε1 . . . ε −1)ε

Thus after one step on the zero walk the first coordinate in theε-representation is zero
or one. Iterating this procedure times yields

(ε1 . . . ε )ε → · · · · · ·︸ ︷︷ ︸ → (ε′1 . . . ε′ )ε =: ′

steps

with ε′ ∈ {0 1} for 1 ≤ ≤ . Thus ′ ∈ . Note that by assumption has an
infinite representation. Thus{ ( )} ≥0 is not ultimately zero. Since′ = ( ) this
implies that{ ( ′)} ≥0 = { + ( )} ≥0 is not ultimately zero. Hence,′ has an infi-
nite representation. Thus we found an element of having an infinite representation.
This ends the proof.

5. The characterization of a class of CNS polynomials

In what follows we want to exhibit algebraic conditions which will allow us to
decide whether a given polynomial ( ) provides a CNS or not. These conditions will
enable us to characterize a large class of CNS polynomials. First we want to give the
following definition.

DEFINITION 5.1 (cf. Berlekamp [7, p. 84], or Lothaire [26]).
• We say a string ′ emerges from the string by digit rotation if there exist two

words and such that = and′ = .
• A string 1 · · · has period ∈ {1 . . . } if = + for = 1 . . . − .
• A string 1 · · · has primitive period 0 ∈ {1 . . . } if it has period 0 and no

period < 0.
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• A necklaceof length is an equivalence class of strings of length under rota-
tion.
• A primitive necklaceof length is a necklace with primitive period (i.e. an ape-

riodic necklace).
• A Lyndon word is the lexicographically smallest representative of a primitive

necklace.

From the proof of Theorem 4.4 follows that it is sufficient to check if all elements
of the set have finite representation in order to decide whether a given ( ) forms
a CNS or not. By the definition of this is equivalent toP = {0}, where

P := { ∈ | ∃ω ∈ N : = ω( )}

Since each ∈ P generates a zero cycle in the graphA( ), which is the restriction
of A(R) to the set of vertices , we get the following simple result.

Lemma 5.2. Let ( ) be as inDefinition 1.1 fulfilling the AP condition. Then
( ( ) N ) is a CNS if and only ifA( ) contains no zero cycle apart from
(0 . . . 0)ε → (0 . . . 0)ε.

Note that the longest zero cycle contained inA( ) can not be longer than 2− 1
becauseA( ) has 2 states and (0. . . 0)ε must not occur in a nontrivial cycle. Sup-
pose that the state

(ε1 . . . ε ε1 . . . ε . . . ε mod )ε ε ∈ {0 1}

of A( ) has — regarded as a binary string — primitive period for a ∈
{1 . . . 2 − 1}. (Here mod is chosen from the residue system{1 . . . } modulo
.) If this state belongs to a zero cycle of length , this is the zero cycle generated by

the periodε1ε2 · · · ε , i.e.

(ε1 ε2 . . . ε ε1 ε2 . . . ε . . . . . . ε mod )ε
type ε−−−−→

(ε ε1 . . . ε −1 ε ε1 . . . ε −1 . . . . . . ε −1mod )ε
type ε −1−−−−−→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ε2 ε3 . . . ε1 ε2 ε3 . . . ε1 . . . . . . ε − +1mod )ε
type ε1−−−−→

(ε1 ε2 . . . ε ε1 ε2 . . . ε . . . . . . ε mod )ε

(note thatε mod = ε − mod ). Since (0 . . . 0)ε must not occur in a nontrivial cycle,
the state

(ε1 . . . ε ε1 . . . ε . . . ε mod )ε ε ∈ {0 1}



340 K. SCHEICHER AND J.M. THUSWALDNER

regarded as a binary string must not contain more than− 1 consecutive zeros. Let

0 := { | 1≤ ≤ and ε −1mod = 0}
1 := { | 1≤ ≤ and ε −1mod = 1}

Then by the definition of type edges this cycle exists if and only if the system of
inequalities

(5.1)
0 ≤ ε 1 + · · · + ε − +1 + ε1 − +2 + · · · + ε −1 < 0 for ∈ 0

− 0 ≤ ε 1 + · · · + ε − +1 + ε1 − +2 + · · · + ε −1 < 0 for ∈ 1

holds (note that = 0 for > ). Summing up what we have proved we get the
following result.

Lemma 5.3. Let ( ) be as inDefinition 1.1 satisfying the AP condition. Then
there exists a zero cycle of length∈ {1 . . . 2 −1} generated by the periodε1 · · · ε
if and only if the inequalities(5.1) hold simultaneously. Thus to each zero cycle of
length there corresponds a set of inequalities.

REMARK 5.4. Note that (5.1) provides a full characterization of allCNS which
fulfill the AP condition. Let ( ) be as in Definition 1.1 fulfilling the AP condition.
Then ( ) provides a CNS if and only if the set of inequalities (5.1) does not hold
simultaneously for any cycle of length≤ 2 − 1. Of course, this criterion is very hard
to survey. In Section 6, however, we will show that it can be used to derive simple
algebraic criteria in certain cases.

In what follows we will have to deal with concrete cycles of small length. Thus
we are interested in how many cycles of a given length exist inthe graphA( ). To
this matter we need the following result.

Lemma 5.5. Let be the number of binary Lyndon words of length . Then

=
1∑

|

µ

( )
2(5.2)

whereµ denotes the M̈obius function.

Proof. The number of binary words of length is 2 . Each word of length has
primitive period with | . Therefore

2 =
∑

|

Möbius inversion yields (5.2).
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REMARK 5.6. Concerning the sequence we refer to sequenceA001037 in
Sloane’s database of integer sequences [30].

The above notion is useful for counting the possible zero cycles in A( ).

Lemma 5.7. For each ∈ {1 . . . 2 − 1} there exist at most possible zero
cycles of length inA( ).

Proof. LetL be the set of Lyndon words of length which do not have more
than leading zeros and do not contain two equal subwords of length . If we re-
gard theε-representations of the states ofA( ) as strings, each vertex is a binary
string of length . A cycle of length ∈ {1 . . . 2 − 1} is then generated by an
equivalence class of binary strings of primitive period under rotation. Thus by Defi-
nition 5.1 there is a one-to-one correspondence between thenontrivial cycles of length

which do not contain (0. . . 0)ε andL . The lemma now follows from Lemma 5.5.

We are now in a position to state the criterion.

Theorem 5.8. Let ( ) be as inDefinition 1.1 satisfying the AP condition. If

(5.3)
∑

=1

≥ 0

and

(5.4) 2 ≥ 0 . . . −1 ≥ 0

then ( ( ) N ) is a CNS.

Proof. By Lemma 5.2 we have to show that under the assumptionsof the theo-
rem there exists no zero cycle inA( ) apart from 0→ 0. We start with the examina-
tion of the cycle

(5.5) (1 . . . 1)ε
type 1−−−→ (1 . . . 1)ε

By Lemma 5.3 this is the only possible nontrivial zero cycle of length one. This zero
cycle exists if and only if

1 + · · · + < 0

holds. Since this inequality contradicts (5.3) we concludethat the zero cycle (5.5) does
not exist inA( ).
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Now suppose that there exists a zero cycle of length≥ 2 in A( ). Let
ε1 · · · ε be the corresponding Lyndon word. Henceε1 · · · ε is lexicographic minimal
and ε = 1. Otherwise one could rotateε1 · · · ε by one digit to get one more leading
zero. Furthermore, there exists a minimal∈ {2 . . . } with ε = 1 such that

ε1 · · · ε = 0 · · ·0ε · · · ε

Sinceε = 1, there must be a type 1 edge

(0 0 . . . 0 ε ε +1 . . . ε . . . . . .)ε
type 1−−−→

(1 0 . . . 0 0 ε . . . ε −1 . . . . . .)ε

This is only possible if

ε + · · · + ε < 0

Sinceε ≥ 0, this inequality contradicts (5.4).

REMARK 5.9. Theorem 5.8 proves Conjecture 1 of Akiyama-Pethő [2].

6. Characterization of cubic and quartic CNS

In order to characterize cubic and quartic CNS we have to lookmore closely to
the possible zero cycles up to length 23 − 1 = 7 and 24 − 1 = 15, respectively. First of
all we give a complete list of these cycles up to length 4 together with their associated
inequalities. To this matter let ( ) be as in Definition 1.1 satisfying the AP condition.
Furthermore, set = 1 and = 0 for> . Now we determine the possible cycles
of the graphA( ) associated to ( ) up to length 4 as well as one important cycle
of length 5.
• There exist two possible cycles of length one:

(1.a) (0 . . . 0)ε
type 0−−−→ (0 . . . 0)ε

type 0−−−→ . . . .
This cycle is the trivial cycle.

(1.b) (1 . . . 1)ε
type 1−−−→ (1 . . . 1)ε

type 1−−−→ . . . .
To this cycle there corresponds the inequality

− 0 < 1 + · · · + < 0

• There exists one possible cycle of length two:

(2) (0 1 0 . . .)ε
type 1−−−→ (1 0 1 . . .)ε

type 0−−−→ (0 1 0 . . .)ε
type 1−−−→ . . . .

This cycle occurs if

− 0 < 2 + 4 + 6 + · · · < 0
0 ≤ 1 + 3 + 5 + · · · < 0
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• There exist two possible cycles of length three:

(3.a) (1 0 0 . . .)ε
type 0−−−→ (0 1 0 . . .)ε

type 0−−−→ (0 0 1 . . .)ε
type 1−−−→

(1 0 0 . . .)ε
type 0−−−→ . . .

The related inequalities are

0 ≤ 1 + 4 + 7 + · · · < 0

0 ≤ 2 + 5 + 8 + · · · < 0

− 0 < 3 + 6 + 9 + · · · < 0

(3.b) (0 1 1 . . .)ε
type 1−−−→ (1 0 1 . . .)ε

type 1−−−→ (1 1 0 . . .)ε
type 0−−−→

(0 1 1 . . .)ε
type 1−−−→ . . .

The related inequalities are

− 0 < 2 + 3 + 5 + 6 . . . < 0
− 0 < 1 + 3 + 4 + 6 . . . < 0

0 ≤ 1 + 2 + 4 + 5 . . . < 0

• There exist three possible cycles of length four:

(4.a) (1 0 0 0 . . .)ε
type 0−−−→ (0 1 0 0 . . .)ε

type 0−−−→ (0 0 1 0 . . .)ε
type 0−−−→

(0 0 0 1 . . .)ε
type 1−−−→ . . .

The related inequalities are

0 ≤ 1 + 5 + 9 + · · · < 0

0 ≤ 2 + 6 + 10 + · · · < 0

0 ≤ 3 + 7 + 11 + · · · < 0

− 0 < 4 + 8 + 12 + · · · < 0

(4.b) (1 1 0 0 . . .)ε
type 0−−−→ (0 1 1 0 . . .)ε

type 0−−−→ (0 0 1 1 . . .)ε
type 1−−−→

(1 0 0 1 . . .)ε
type 1−−−→ . . .

The related inequalities are

0 ≤ 1 + 2 + 5 + · · · < 0

0 ≤ 2 + 3 + 6 + · · · < 0

− 0 ≤ 3 + 4 + 7 + · · · < 0
− 0 < 1 + 4 + 5 + · · · < 0

(4.c) (1 1 1 0 . . .)ε
type 0−−−→ (0 1 1 1 . . .)ε

type 1−−−→ (1 0 1 1 . . .)ε
type 1−−−→

(1 1 0 1 . . .)ε
type 1−−−→ . . .
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The related inequalities are

0 ≤ 1 + 2 + 3 + · · · < 0

− 0 ≤ 2 + 3 + 4 + · · · < 0
− 0 ≤ 1 + 3 + 4 + · · · < 0
− 0 < 1 + 2 + 4 + · · · < 0

• By Lemma 5.7 there exist six possible cycles of length five. Since only one of
them will play a prominent role in the forthcoming calculations we will confine our-
selves to writing down only this one:

(5) (1 0 0 1 0 1 . . .)ε
type 0−−−→ (0 1 0 0 1 0 . . .)ε

type 1−−−→
(1 0 1 0 0 1 . . .)ε

type 0−−−→ (0 1 0 1 0 0 . . .)ε
type 0−−−→

(0 0 1 0 1 0 . . .)ε
type 1−−−→ (1 0 0 1 0 1 . . .)ε

type 0−−−→ . . .
This cycle occurs if

0 ≤ 1 + 4 + 6 + · · · < 0

− 0 < 2 + 5 + 7 + · · · < 0
0 ≤ 1 + 3 + 6 + · · · < 0

0 ≤ 2 + 4 + 7 + · · · < 0

− 0 < 3 + 5 + 8 + · · · < 0

Of course it is an easy task to extend this list up to cycles of arbitrary length with
increasing effort. To this matter one needs to know explicitly all Lyndon words up to
a certain length.

6.1. The cubic case. Let ( ) be as in Definition 1.1 satisfying the AP condi-
tion. In this subsection we want to find simple algebraic conditions under which there
do not exist cycles inA( ). This will lead to a complete characterization of cubic
CNS under the AP condition. Since the condition related to the cycle (1.b) must not
be fulfilled we get the necessary condition

(6.1) 1 + 2 + 1≥ 0

for ( ) to provide a cubic CNS. Next we deal with the zero cycle (2). Suppose that

2 < 0. Then, in order to avoid this zero cycle, we must have1 + 1 < 0 because
otherwise both inequalities for the cycle (2) would be fulfilled. But adding these two
inequalities gives an inequality which contradicts (6.1).Thus we get

(6.2) 2 ≥ 0

(6.1) and (6.2) exclude the occurrence of the cycles (1.b) and (2). Since there can oc-
cur zero cycles up to length seven we have to check next whether (3.a) and (3.b) can
exist. The third inequality of (3.a) reads− 0 < 1 < 0 in the cubic case. It can ob-
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viously never be fulfilled. Thus (3.a) can not occur. The firstinequality of (3.b) reads
− 0 < 2+1< 0. By (6.2) it can never be fulfilled. Thus also this cycle can not occur.

Similarly, one can exclude the occurrence of all the other cycles up to length
seven. By Lemma 5.7 one has to check all cycles which do not contain more than
three consecutive zeros. These cycles correspond to all binary Lyndon words with
length≤ seven with less than three leading zeros. This are

∑7
=1 = 41 words. Thus

we have to check 41 sets of inequalities. This can be done easily with help of a short
computer program. One can considerably diminish the numberof sets of inequalities
by arguing in a similar way as in the quartic case below.

So the necessary conditions (6.1) and (6.2) assure that there does not exist a zero
cycle inA( ) apart from 0→ 0. Thus they are also sufficient. Summing up we proved
the following result.

Theorem 6.1. Let ( ) = 3 + 2
2 + 1 + 0 satisfying the AP condition. Then

( ( ) N ) is a CNS if and only if

1 + 2 + 1≥ 0 and 2 ≥ 0

hold.

6.2. The quartic case. For quartic polynomials we get the following character-
ization result.

Theorem 6.2. Let ( ) = 4 + 3
3 + 2

2 + 1 + 0 satisfying the AP condition.
Then ( ( ) N ) is a CNS if and only if

1 + 2 + 3 + 1≥ 0 2 + 3 ≥ −1 2 ≥ −1 1 ≥ −1 3 ≥ 0 or

1 + 2 + 3 + 1≥ 0 2 + 3 ≥ −1 2 ≥ −1 1 < −1 3 ≥ −1

holds.

In order to prove this theorem we need the following preparatory lemma.

Lemma 6.3. Let ( ) be a quartic polynomial ( ) = 4 + 3
3 + 2

2 + 1 + 0

which fulfills

3 + 1 ≥ 0

2 + 1 ≥ 0

Suppose that no cycle of length less than or equal to6 exists inA( ). Then the re-
lated graphA( ) contains no cycle of length greater than6.
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Proof. Note thatA( ) has 16 states. If we can show that there exist 10 states
which can not be contained in a cycle of length greater than 6 the result follows. For
abbreviation we call a cycle of length greater than 6 along cycle.

Suppose that (0000)ε is contained in a long cycle. Then this cycle contains either

the edge (0000)ε
type 0−−−→ (0000)ε or the edge (0000)ε

type 1−−−→ (1000)ε. In the first case
(0000)ε forms a cycle of length 1, the second case would yield the inequalities− 0 <

0< 0 which are never fulfilled. Thus (0000)ε can not be contained in a long cycle.
Suppose that (0001)ε were contained in a long cycle. Then, since (0000)ε is ex-

cluded, we must have an edge (0001)ε
type 1−−−→ (1000)ε in this long cycle. But this im-

plies the inequalities− 0 < 1 < 0 which are never fulfilled. Thus (0001)ε can not be
contained in a long cycle.

(1000)ε can also not be an element of a long cycle because it would imply that
one of the edges (0000)ε → (1000)ε or (0001)ε → (1000)ε were contained in it, which
is impossible by the above paragraphs.

Now we show that neither (0101)ε nor (0010)ε can belong to a long cycle. To this
matter we distinguish three cases.

• The case 3 ≥ 0. (0101)ε
type 1−−−→ (1010)ε is impossible because it would lead to

− 0 < 2 + 1 < 0, a contradiction. Thus we must have (0101)ε
type 0−−−→ (0010)ε. But

(0010)ε has no successor since (0001)ε can not belong to a long cycle and the exis-

tence of the edge (0010)ε
type 1−−−→ (1001)ε would lead to the contradiction3 < 0.

• The case 3 = −1 and 2 ≥ 0. In this case we must have1 + 1< 0, because oth-
erwise the cycle (3.a) would exist. Furthermore,1 + 2 ≥ 0 and 2 + 3 ≥ 0 must
hold, because otherwise the cycle (1.b) would exist. But under these conditions the
only walk starting from (0101)ε is

(0101)ε
type 0−−−→ (0010)ε

type 1−−−→ (1001)ε
type 1−−−→ (1100)ε

type 0−−−→ (0110)ε
type 0−−−→ (0011)ε

type 0−−−→ (0001)ε

But since (0001)ε can not exist in a long cycle, neither (0101)ε nor (0010)ε can be-
long to a long cycle.
• The case 3 = −1 and 2 = −1. In this case we must have1+1> 0 and 1+ 3 ≥

0 in order to avoid cycle (1.b). Thus the only walk leading away from (0101)ε is

(0101)ε
type 0−−−→ (0010)ε

type 1−−−→ (1001)ε
type 0−−−→ (0100)ε

type 1−−−→ (1010)ε
type 0−−−→ (0101)ε

This is a cycle of length 5. Thus also in this case neither (0101)ε nor (0010)ε can
belong to a long cycle.

Since the above mentioned 5 elements can not be contained in along cycle, the
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only path of length 3 which can lead to (1010)ε in a long cycle is given by

(0011)ε
type 1−−−→ (1001)ε

type 0−−−→ (0100)ε
type 1−−−→ (1010)ε

But the first edge yields− 0 < 3 + 1< 0, a contradiction. Thus (1001)ε, (0100)ε and
(1010)ε can not exist in a long cycle.

It is now easy to see that (0011)ε can have no successors and (1100)ε can have
no predecessors in a long cycle. Thus, summing up we get that the elements

(0000)ε (0001)ε (0010)ε (0100)ε (1000)ε
(1001)ε (1010)ε (0101)ε (1100)ε (0011)ε

can not occur in a long cycle. Thus there can not exist cycles of length greater than 6
if the conditions of the lemma are fulfilled and we are done.

After this preparation we are in a position to prove Theorem 6.2.

Proof. By similar arguments as in the cubic case we find that the cycle (1.b)
does not exist if

(6.3) 1 + 2 + 3 + 1≥ 0

Again in the same way as above we see that the cycle (2) does notexist if

(6.4) 2 + 1≥ 0

Furthermore, we see that cycle (3.b) does not exist if one of the following conditions
is true.
(i) 2 + 3 ≥ 0,
(ii) 1 + 3 + 1≥ 0,
(iii) 1 + 2 + 1< 0.
If (iii) holds then 3 ≥ 1 by (6.3). Together with (6.4) this implies2 + 3 ≥ 0 and we
reduced this case to (i).

In order to treat (i) we have to distinguish four cases.
• The case 2 ≥ 0 and 1 + 1≥ 0. In this case we must have

3 ≥ 0

because otherwise the cycle (3.a) would exist.
• The case 2 ≥ 0 and 1 + 1< 0. In this case we must have

3 ≥ −1

because otherwise the cycle (4.b) would exist.
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• The case 2 = −1 and 1 + 1 ≥ 0. In this case we must have either3 ≥ 0 or

1 + 3 < 0 because otherwise the cycle (5) would exist. Since1 + 3 < 0 together
with 2 = −1 would imply the existence of the cycle (1.b) we conclude that

3 ≥ 0

has to hold in this case.
• The case 2 = −1 and 1 + 1< 0. In this case we must have

3 ≥ 0

because otherwise the cycle (1.b) would exist.
It remains to deal with (ii). Since (i) is already treated we can assume that

(6.5) 2 + 3 < 0

Suppose first that 2 ≥ 0. Then (6.5) implies 3 < 0 and thus by (ii) we also have

1 ≥ 0. But the last three inequalities yield the existence of thecycle (3.a). Thus

2 = −1 must hold. In this case exactly the same arguments as used in(i) yield the
additional condition 3 ≥ 0.

Summing up we get that the condition

(6.6) 1 + 2 + 3 + 1≥ 0 2 + 3 ≥ −1 2 ≥ −1 1 ≥ −1 3 ≥ 0 or

1 + 2 + 3 + 1≥ 0 2 + 3 ≥ −1 2 ≥ −1 1 < −1 3 ≥ −1

is necessary for the quartic polynomial ( ) to provide a CNS.
Furthermore, it is easy to check that this condition ensuresthat none of the cycles

up to length 6 can exist. To this matter by Lemma 5.7 one has to check
∑6

=1 = 23
sets of inequalities. Since1−1≥ 0 and 3−1≥ 0, Lemma 6.3 yields that there does
not exist any cycle of length greater than 6. Thus condition (6.6) is also sufficient and
the proof is finished.

7. Some interesting examples

In this section we present some numerically constructed examples of polynomials
which have interesting properties. The polynomials in thisexamples do not fulfill the
AP condition. However, they are expanding in the sense that each of their roots lie
outside the unit circle.
• It was conjectured for a long time that if ( ) is a CNS polynomial, then ( )+1

is also a CNS polynomial. A counterexample to this conjecture is given by

( ) = 3 + 173 2 + 257 + 198

( ) is a CNS polynomial (which can be proved by Brunotte’s method; cf. [9, 10])
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but ( ) + 1 possesses the cycle

(−1 3 −3)ε → ( −1 −1 3)ε → ( 3 −1 −1)ε →
(−3 3 −1)ε → ( 2 −3 3)ε → ( 1 2 −3)ε →
(−3 1 2)ε → ( 3 −3 1)ε → ( −1 3 −3)ε

• Next we give an expanding cubic polynomial having a long cycle. Let

( ) = 3 + 196 2 + 341 + 199

Then ( ) has a cycle of length 84. One element of this cycle is (−11 10 −6)ε. We
conjecture that already cubic polynomials can have arbitrary long cycles.
• Let

( ) = 3 + 192 2 + 272 + 199

Then ( ) has a cycle of length eight which consists of elements( 1 2 3)ε with
| | ≥ 2. One element of this cycle is (−6 3 2)ε. We conjecture that to each ∈
N one can find a cubic polynomial having a cycle all of whose elements ( 1 2 3)ε
fulfill | | ≥ .

8. Concluding remarks

In the present paper all results apart from the examples in the previous section
are subject to the AP condition. Of course it would be desirable to get unconditional
results. We fear that this will be hard in general. There are two forthcoming papers
concerning related topics:

In Akiyama-Brunotte-Pethő [1], a conjecture of W.J. Gilbert on cubic CNS poly-
nomials is partially proved, and it is shown, that this conjecture is not complete.

In Akiyama-Rao [3], an efficient algorithm is given to determine whether or not
( ) is a CNS polynomial by Brunotte’s method [9]. Furthermore, large classes of

CNS polynomials are characterized.
Regarding the results under the AP condition we are sure thatthe sets of inequal-

ities in (5.1) can be considerably simplified also for higherdegrees. However the cal-
culations necessary to obtain such a simplification become very hard to survey. Up to
now we were not able to find a general principle that allows us to derive simplifica-
tions for the characterization of CNS of arbitrary degrees.
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[23] B. Kovács: Canonical number systems in algebraic number fields, Acta Math. Hungar.,37

(1981), 405–407.
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